

Offset S-duct PRopulsion Inlet

Team:

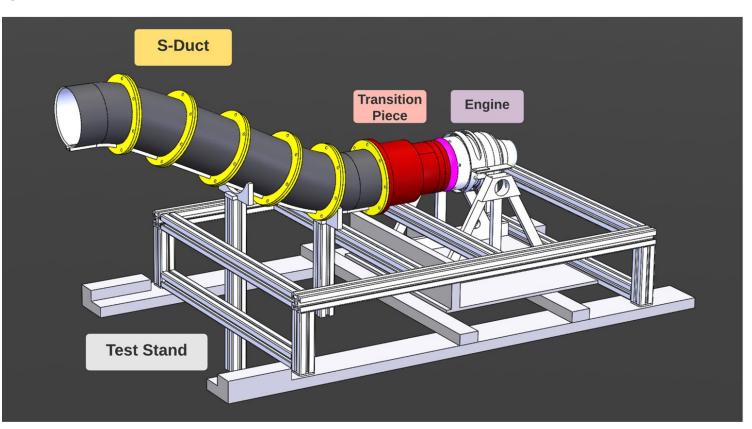
- Tim Breda
- Joey Derks
- Zak Dmitriyev
- Ryan Joseph
- Dishank Kathuria
- Harrison Methratta
- Joshua Seedorf
- Michael Vogel
- William Watkins
- John Wissler

Advisor: Customer: Laboratory POC: Professor John Mah Air Force Research

Capt. Riley Huff

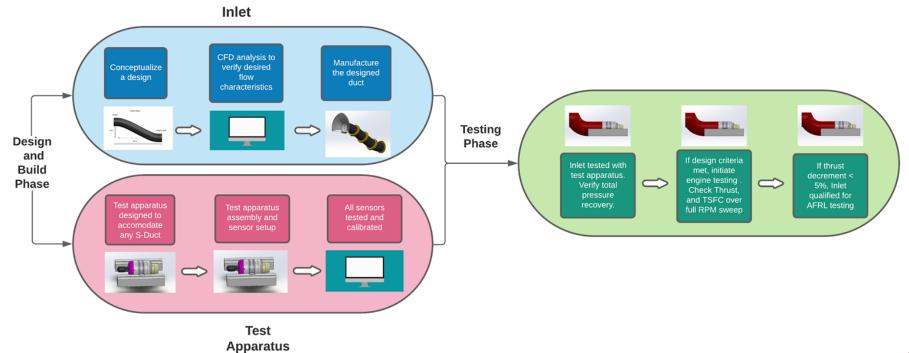
Section 1

Overview

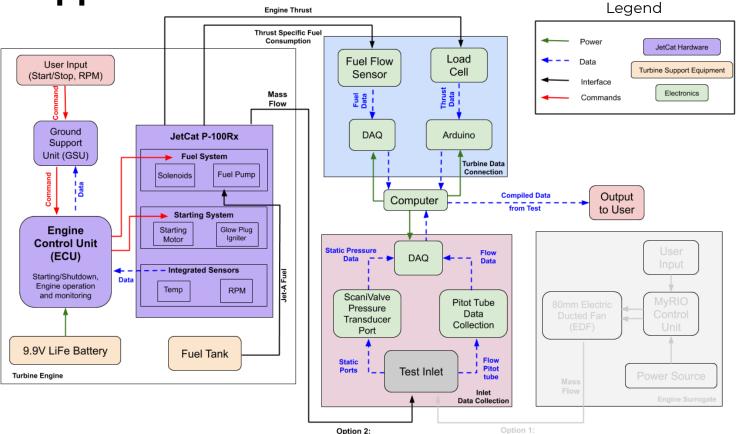

Problem Statement

The purpose of the OSPRI project is to:

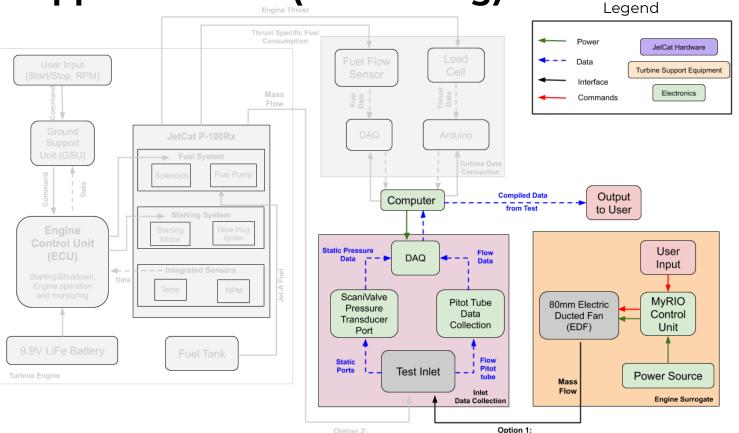
- Design and build an S-duct inlet for use with the JetCat P100-RX turbojet engine, for the Air Force Research Lab's (AFRL's) Aerospace Propulsion Outreach Program (APOP)
- Additionally, OSPRI will design and build a testing apparatus to measure total pressure and distortion distributions in the inlet, and measure fuel flow and thrust produced by the JetCat



Project Model



Concept of Operations (CONOPS)



Test Apparatus FBD

Test Apparatus FBD (For Testing)

Levels of Success

Level	Objective	
1	A test rig is designed and manufactured that is capable of measuring all parameters as outlined in the Design Requirements	
2	Experimental Verification of the test rig's ability to measure thrust and TSFC	
3	Experimental Verification of the test rig's ability to characterize the flow within a test inlet	
4	Experimental verification of an inlet with total pressure recovery >90%	
5	Experimental verification of nominal engine operation with level 4 inlet attached, with decrements to thrust and TSFC of no more than 10%	
6	Experimental verification of nominal engine operation with inlet attached, with decrements to thrust and TSFC of no more than 5%, and total pressure recovery ≥98%	

with

Critical Project Elements (Test Apparatus)

1. LabView & Electronics:

Three main functions from LabView control: Sensor data collection, EDF control, and turbine related sensor data collection

1. Mass Flow Surrogate:

Engine condition replication using Electric Ducted Fans allows for more inlet testing

1. Support hardware and infrastructure:

Test apparatus anchor point providing support for inlet, facilitates EDF and turbine tests

1. JetCat integrated testing:

Testing to calibrate and increase mass flow surrogate fidelity, integrated testing

inlet to provide thrust and TSFC data (customer requested)

Critical Project Elements (Inlet)

1. Print Inlet Sections:

Print inlet sections in a timely and cost effective manner

1. Print Transition Pieces:

Print transition pieces provided by AFRL

1. Assembly:

Assemble the printed sections and get inlet ready for testing

1. Iterative re-design and second printing: Utilize data gathered to manufacture improved inlet

OSPRI


Section 2

Schedule

Schedule

Schedule (cont'd)

- For SFR deliverables, 3 weeks of margin
 - Unable to incorporate 2nd inlet design before SFR

• For PFR, 2 weeks of margin if 2nd design necessary

- AFRL testing date unknown
 - Will incorporate once provided
 - Date may allow for another iteration (team availability depending)

OSPRI

Section 3

Test Readiness

JetCat Verification Test Status: Complete

Objective: Ensure that OSPRI has all required facilities and hardware to run turbine in the aerospace building

Test Fixtures: Engine test cell, horizontal engine test stand

Equipment/Setup: JetCat engine, engine support equipment, radios (for communication)

Risk Management:

- Ensure that there is a functioning turbine to conduct live inlet tests
- 2 man system with radio communication
- Blast proof control room
- Exhaust blast shield
- Clearing FOD immediately near turbine

Procedure and Results (JetCat Verification Test)

Procedure

- 1. Secure turbine and all associated support equipment to the horizontal test stand
 - a. Route control cable for GSU into control room
- 2. Open garage door and set up blast shield
- 3. Notify professor ready to run turbine
- 4. Place downrange man outside /radio test ready

Results

- 2 successful test runs (~1 min and 5 min)
- Preliminary thrust data collection failed, arduino error

Turbine setup with support equipment in test cell

JetCat Baseline Test status: In Progress

Objectives: Obtain JetCat thrust and thrust specific fuel consumption data

Test Fixtures: Engine test cell, horizontal engine test stand

Equipment/Setup: JetCat engine, engine support equipment, Scanivalve & pitot probe, radios (for communication)

Risk Management:

- Data collected will provide baseline which will be used in performance analysis
- 2 man system with radio communication
- Blast proof control room
- Exhaust blast shield
- Clearing FOD immediately near turbine

Procedure and Results (JetCat Baseline Test)

Procedure

- 1. Secure turbine and all associated support equipment to the horizontal test stand
 - a. Route control cable for GSU into control room
- 2. Set up load cell with the data collection arduino for thrust data
- 3. Set up and connect fuel flow sensor to fuel tubing
- 4. Open garage door and set up clast shield
- 5. Notify professor ready to run turbine
- 6. Place downrange man outside/radio test ready

Results

- Test not conducted
- Goal: Measure corresponding thrust and TSFC

Wind Tunnel Sensor Characterization Test Status: Outstanding

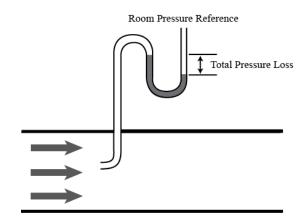
Objective: Characterize steady state flow pressure data consistency to calibrate data sampling configuration.

Test Fixtures: Wind tunnel

Equipment/Setup: Pitot Probe, Scanivalve, LabView Pressure DAQ software

Risk Management:

- Ensures accurate flow data measurements in later experiments
- Operate wind tunnel on existing procedures
- Single operator in the wind tunnel room


Procedure and Results (Wind Tunnel Sensor Characterization Test)

Procedure

- 1. Secure pitot probe in wind tunnel test section & connect to scanivalve
 - a. Measure total pressure referenced against room pressure
 - b. Represents the total pressure loss of the Wind Tunnel Inlet
- 2. Collect pressure data at a variety of steady state flow velocities (5, 10, 15, 20 m/s) using OSPRI device & software

Results

- Test not conducted
- Goal: Characterize pressure measurement uncertainty at steady state conditions

JetCat Mass Flow Data Collection Test Status:

Outstanding

Objectives: Verify previous JetCat mass flow model calculations.

Test Fixtures: Engine test cell, horizontal engine test stand, inlet test frame, AFRL transition piece

Equipment/Setup: JetCat engine, engine support equipment, bellmouth inlet, pitot probe, scanivalve, labview

Risk Management:

- Data collected reduces error for the mass flow rates of the surrogate
- Prior tests with JetCat to ensure safe operation of the JetCat turbine
- 2 man system with radio communication
- Blast proof control room/exhaust blast shield
- Clearing FOD immediately near turbine

Procedure and Results (JetCat Mass Flow Data Collection Test)

Procedure

- 1. Secure turbine and all associated support equipment to the horizontal test stand
 - a. Route control cable for GSU into control room
- 2. Secure bellmouth to frame and AFRL transition piece on turbine
- 3. Connect pitot probe to scanivalve (located in control room for safety)
- 4. Open garage door and set up clast shield
- 5. Notify professor ready to run turbine
- 6. Place downrange man outside/radio test ready

Results

- Test not conducted
- Goal: Collect mass flow at 5 representative point within the JetCat's RPM sweep

Straight Bellmouth

EDF Mass Flow Verification Test status: Outstanding

Objectives: Verify EDF is capable of computed requirements and actual JetCat mass flow data & correlate throttle input to mass flow

Test Fixtures: Bell mouth, Test Apparatus, EDF transition piece

Equipment/Setup: EDF, 4-6 S battery, Pitot Probe, Scanivalve, Wind Tunnel Room

Risk Management:

- Risk reduction by using EDF instead of JetCat for preliminary inlet tests
- Test Apparatus being used to secure the EDF
- Wireless EDF control

Procedure and Results (EDF Mass Flow Verification Test)

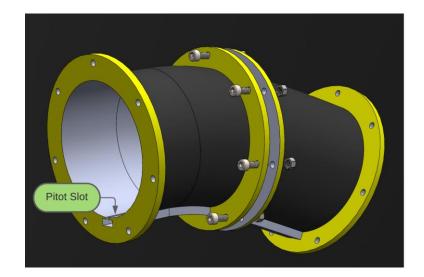
Procedure

- 1. Attach the EDF to the bellmouth inlet
- 2. Set up pitot tube to measure dynamic pressure
- 3. Note distance and position of probe from EDF
- 4. Calculate mass flow at various total throttle % setting (25%, 50%, 75%, 100%)
 - a. Begin with a 4S battery
 - b. If necessary, increase power with a 6S battery

Results

- Test not conducted
- Goal: Develop an equation relating throttle to mass flow
- Goal: Confirm that selected EDF is adequate

EDF mounted to test stand


Inlet Verification

Primary Aspects to verify:

- Total pressure recovery from intake to exit (>98%)
- Thrust decrement < 5%
- TSFC decrement < 5%
- Primary scoring criteria

Test Fixtures:

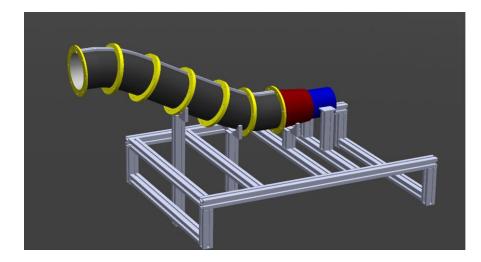
- Slot design to insert a pitot tube
- Test stand attached to a load cell

Inlet Sectional Side View

Inlet Verification EDF

Why the EDF?

- To prevent damages to the JetCat in case of poor inlet performance


Equipment/Setup:

- Extensively uses test apparatus
- EDF: Preliminary Test
- Engine test room used for testing

Risk Management:

- Sensors calibrated using wind tunnel in the aerospace building
- Additional support structure to hold the inlet

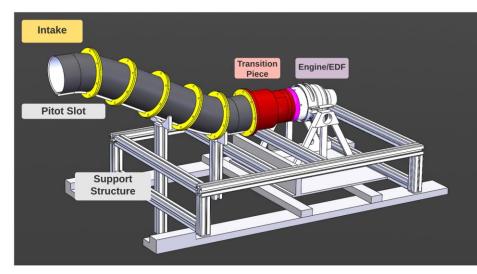
Anticipated Start Date: March 6th

Experimental Setup with EDF

Inlet Verification JetCat

Verification:

- Measure thrust and TSFC performance
- Final testing before AFRL testing


Equipment/Setup:

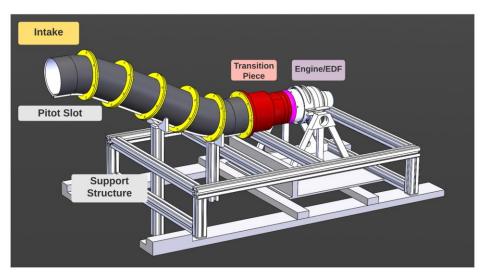
- Test apparatus plus the existing experimental stand
- Engine test room used for testing

Risk Management:

- Inlet pressure recovery verified and tested on the EDF
- Same sensors used for consistent data

Anticipated Start Date: March 15th

Inlet Experimental Setup


Procedure and Results (Inlet Verification)

Testing Procedure

- 1. Verify inlet and EDF/engine assembly is seated in TA.
- 2. Insert pitot tube into slotted inlet section
 - a. Perpendicular to sidewalls
 - b. 5 test points
 - c. Patch slot(s) with HVAC tape
- 3. Power EDF, collect dynamic pressure data.
- 4. Collect thrust data from load cell
- 5. Repeat steps 2, 3 and 4 moving toward compressor face

Results

- Goal: Have an array of pressure values along inlet
- TSFC calculated using data

Expected Result and Model Verification

Verification:

• Using the pitot tube, EDF, and jet engine to capture cross-sectional dynamic pressure profiles of the inlet.

Expected Success:

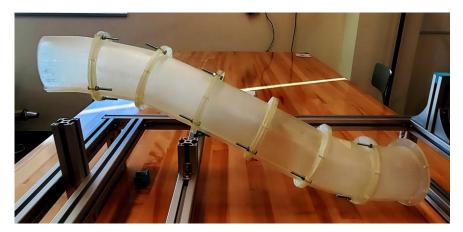
- Verify high Total Pressure Recovery % > 98%.
- Verify flow separation points and boundary layer formations as predicted.

Further Developments:

• Working on 3D CFD to further improve the fidelity of the CFD models, as well as improve the redesign workflow.

MATLAB App File Edit	-	- 🗆	×
File Eult			
Static Pressure			
Air Density	Pressure of Selection		
	Velocity of Selection		
	Total Pressure Recovery		(
	Total Pressure Recovery		

MATLAB GUI that will help calculate total pressure recovery from the data expected



OSPRI

Current Status

• Inlet Assembled

• Ready for initial verification test

First Inlet Iteration Assembly

Section 4

Budget

Cost Plan

Allotment

Unused Funds - (\$ -) Plenty of extra room in budget to be reallocated

Inlet Manufacturing - (\$560) Enough room for ~4 prints at current estimates

Test Apparatus - (\$203) Test stand fully purchased, room for another if necessary

Instrumentation - (\$229) Most instruments borrowed from Aero Dept, plenty of budget in case

Engine Maintenance - (\$586) Engine sent to JetCat & fixed twice, extra budget given engine

Major Costs

Inlet

- SLA Printing 6 pieces (\$50 \$60 each) ~ \$360
- Transition Pieces 4 pieces (\$40 each) ~ \$160
- Bolts, nuts, and tape ~ \$40
- Total budget for Inlet iterations: \$2000
- ▶ Leftover money: \$1440

Test Apparatus

- Mounting Cradles 4 (\$25-30 each) ~ \$120
- Set screws, nuts, hardware ~ \$30
- Total budget for Test Apparatus: \$500
- Leftover money: \$300

Resources

- [1] Lee, J., Cho, J. "Effect of aspect ratio of elliptical inlet shape on performance of subsonic diffusing S-duct," J Mech Sci Technol 32, 1153–1160 (2018). https://doi.org/10.1007/s12206-018-0218-5.
- [2] Anderson, J., Introduction to Flight Eighth Edition, New York City:McGraw Hill education, 2016
- [3] Sun, S., Guo, R.W. 2006. "Serpentine Inlet Performance Enhancement Using Vortex Generator Based Flow Control," Chinese Journal of Aeronautics
- [4] Tanguy, G. 2016. "Passive flow control study in a convoluted intake using Stereo Particle Image Velocimetry," The French Aerospace Lab
- [5] Kirk, A. M. 2006. "Active flow control in an advanced serpentine jet engine inlet duct Master's thesis", Texas A&M University
- [6] Shaw, R., "The Influence of Hole Dimensions on Static Pressure Measurements," Department of Mechanical Engineering, University of Liverpool, 1 July 1959.
- [7] "Delta-V 32 80mm (EFLDF32) Fan Unit Instructions," Horizon Hobby, retrieved November 12, 2020.
- [8] Reichert, B.A., and Wendt, B.J., 1994, "Improving Diffusing S-Duct Performance by Secondary Flow Control," AIAA 32nd Aerospace Sciences Meeting and Exhibit.
- [9] Basawaraj, Hosur, S., 2016. "CFD Analysis of Serpentine Inlet Duct to Enhance the Flow Properties Using Vortex Generator," International Journal of Innovative Research in Science, Engineering and Technology
- [10] Rabe, A. 2003. "Effectiveness of a Serpentine Inlet Duct Flow Control Scheme at Design and Off-Design Simulated Flight Conditions," Virginia Polytechnic Institute and State University
- [11] Anderson, B. H., and Gibb, J., "Vortex Generator Installation Studies on Steady State and dynamic Inlet Distortion," AIAA Paper 96-3279, July 1996.
- [12] Dudek, J. C., "Empirical Model for Vane-Type Vortex Generators in an Navier-Stokes Code", AIAA Journal, Vol. 44, No. 8, pp 1779-1789, August 2006.

Resources

- [13] HARRINGTON-CRESSMAN, PETER J.M., "AIRCRAFT SYSTEM COMPARTMENT DIAGRAM." Retrieved 10 September 2020. https://www.airlinereporter.com/2015/09/requiem-trijetmasterpiece-lockheed-l-1011-tristar/aircraft-system-compartment-diagram/

Additional Slides

Test Readiness Review

OSPRI

Inlet Slides

Inlet Length Guide

Δ Z/L - Horizontal Duct Offset

Vortex Generator Example Visualization [10]

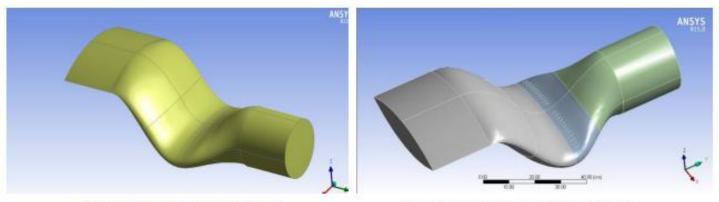
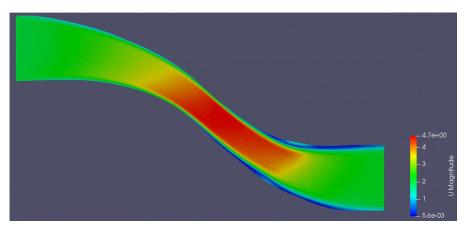
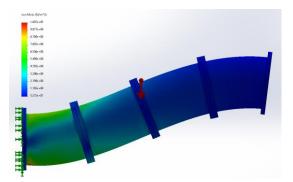
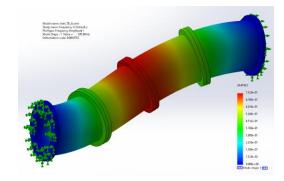
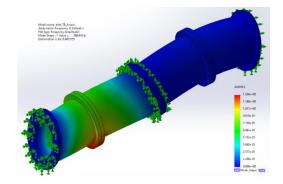



Figure-1 Baseline serpentine duct model

Figure-2 Serpentine duct with vortex generators


CFD Results (Design 05) using icoFoam




Re#: ~2350 (Transition-Turbulent Flow)

Stress and Vibration Analysis

• Free standing Static

- Restrained at ends only
- 1st failure mode at 396 Hz

- Restrained at ends and throat
- 1st failure mode at 986 Hz
- Tests conducted with Formlabs Standard (Clear) material properties
- Inlet: L = 24 in AR = 1

Test Readiness Review

OSPRI

Challenges

- → Crack in flange of Inlet section
 - 2 cm length
 - Does not extend to the actual inlet
 - Pressing forward with use

Top View

Outsourced Quotes

→ The 3D Printing Store

3D PRINTING STORE Powered By ACCUCODE

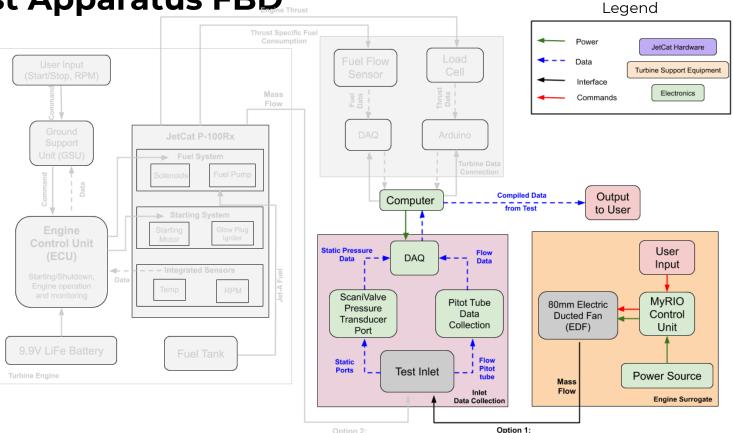
Date:	January 25, 2021
Valid Until	February 24, 2021
Customer:	Tim Breda

Customer Info:				
Company				
Client	Tim Breda			
Email	Timothy.Breda@colorado.edu			
Number				

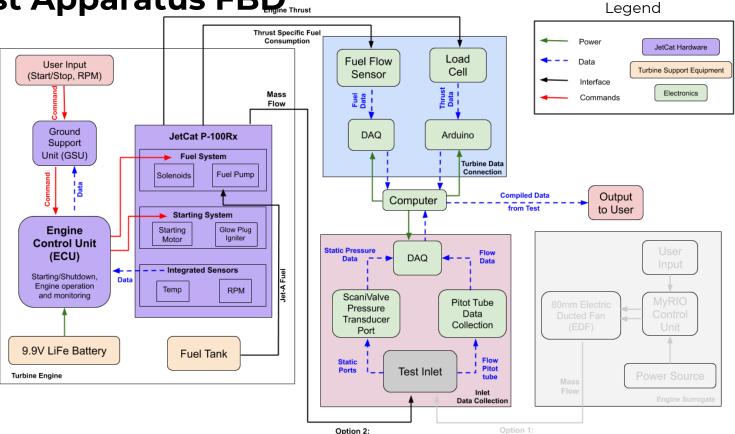
Quote/Project Description

50 um EDF transition and Inlet and Inlet transition and Jetcat 1x each Hard Black-Photocentric

Line Item	Service	Description	Quantity	Unit	Price	Line Total
1	Print	50 um EDF transition and Inlet and Inlet transition and Jetcat 1x each Hard Black-Photocentric	1.00	Each	\$780.09	\$ 780.09
2	Sanding		2.00	Hours	\$35.00	\$70.00
3	Support Removal		2.00	Hours	\$10.00	\$20.00
4						
5						

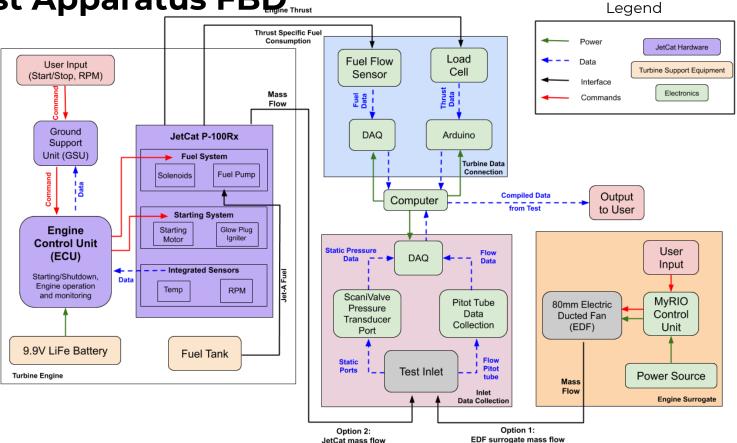

Test Readiness Review

Test Apparatus Slides


Test Apparatus FBD

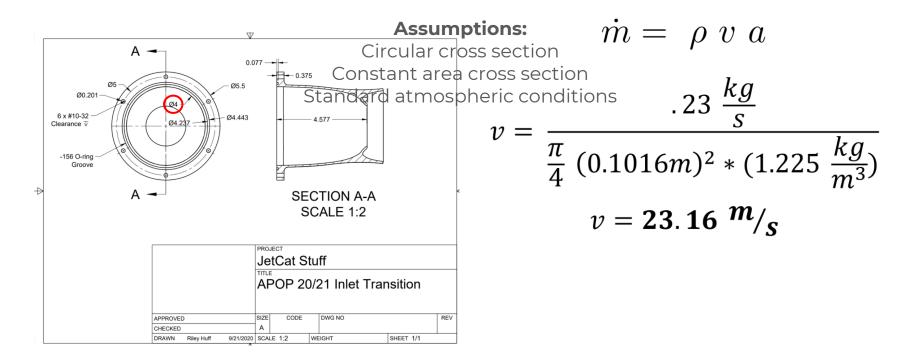
EDF surrogate mass flow

Test Apparatus FBD

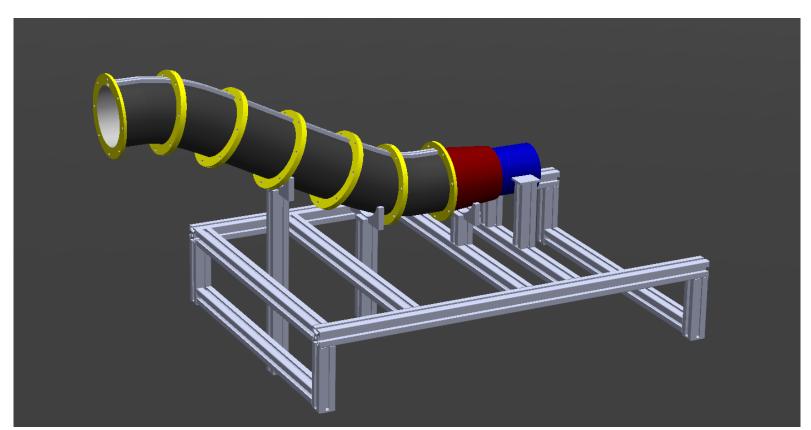


JetCat mass flow

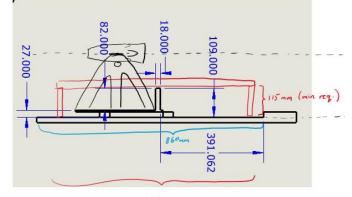
Option 1: DF surrogate mass flow



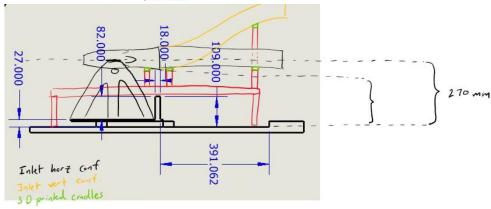
Test Apparatus FBD

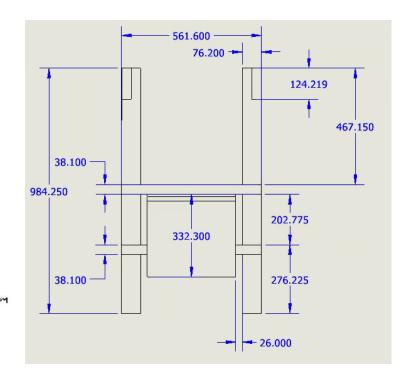


Mass Flow Surrogation

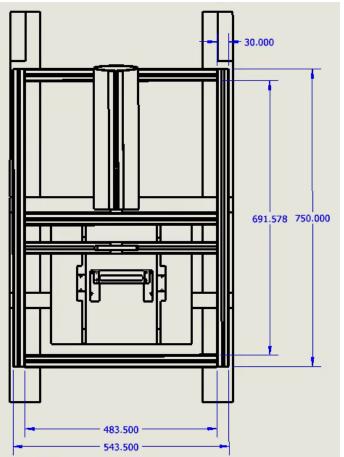


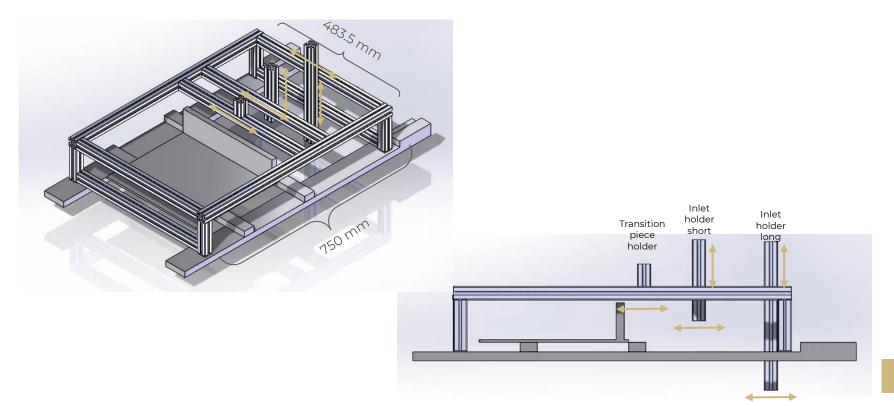
Inlet Testing with EDF





Test Stand Design Process


750 mm



Test Stand Frame 330.000 50.000 -30.000 - 180.000 112.000 3.000 -

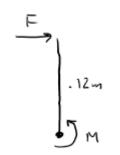
Test Stand Frame

Test Stand Design Process

Item	Quantity	Length (mm)	Pice Per	Price Total
Struts Across	6	483.5	\$5.31	\$31.86
Struts Along	2	750	\$8.25	\$16.50
Vertical Stand Supports	4	112	\$4.47	\$17.88
EDF Trans Piece	1	50	\$4.47	\$4.47
Inlet Trans Piece	1	50	\$4.47	\$4.47
EDF Holders	2	120	\$4.47	\$8.94
Inlet Holder Short	2	180	\$4.47	\$8.94
Inlet Holder Long	1	330	\$3.63	\$3.63
End Caps	4	HFC6-3030	\$1.79	\$7.16
EDF mount L brackets	6	HBLFSSW6	\$3.13	\$18.78
Frame L Brackets	min of 40 (11 packs)	-	\$1.98 (4 pack)	\$21.78
Channel Nuts	min of 80	HNTT6-4	package of 100	\$36.56
M4 screws 10 mm	min of 80 (40 packs)	10	0.98 (2 pack)	\$39.20
M4 screws 12 mm (EDF)	min of 8 (5 packs)	12	0.98 (2 pack)	\$4.90
			Total	\$225.07

Test Stand Design Process

M = (dist)(Force) $F = \sim 2.3 \ kg = 22.5553 \ N$ $M = (120 \ mm)(22.5553N) = 2706.64 \ N \cdot mm$


Flexure Formula:
$$\sigma_b = \frac{M \cdot (y \text{ dimension})}{I_y}$$

From 30x30 Aluminum Extrusion Documentation:

$$I_y = 2.83 \ x \ 10^4 \ mm^4$$

$$y \text{ dimension} = 30 \text{ mm}$$

$$\sigma_b = \frac{(2706.64 \text{ N} \cdot \text{mm})(30\text{ mm})}{2.83 \text{ x } 10^4 \text{ mm}^4} = 2.86923 \text{ N/mm}^2$$

Mechanical Properties of Aluminum Extru

	JI	JIS Standard (Reference)			
Series		HFS Series			
Material (JIS Symbol)	A	6N01SS-T5 Aluminum All	loy		
Tensile Strength (N/mm ²)	Π	245 or more			
Proof Stress (N/mm ²)		205 or more			
Longitudinal Elastic Modulus (N/mm ²)	┌╹	69972			
Brinell Hardness (HB)	88				
Surface Treatment		Anodize 9µm or more			

20ms

2ms

Controller

EDF Control

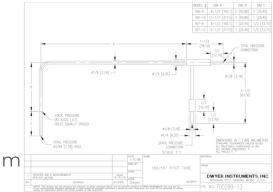
Electronic Speed Control (ESC)

Exact components dependant on EDF

Min RPM

Max RPM

ESC Signal for RC EDFs


• 50 Hz PWM, 5-10% duty cycle

Total Pressure Measurement: Pitot Probe

- Dwyer 167-6 pitot probe
 - ¼8th inch diameter probe
 - 1.5 inch probe length
 - 6 inch insertion length
- $0.00098 \le A_{probe}/A_{inlet} \le 0.0099$
 - Area of probe over area of inlet at minimum and m
 - Minimal flow interference
- Probe accurate to within 0.5%
 - Only accurate at minimum of 5 m/s airflow
 - Accuracy converges above this speed
- Total & static pressure measured using scanivalve

Equilow Flow Measurement Instrument

- Working closely with professor Trudy Schwartz to understand how t
- Instrument output is a square wave and counting the frequency wi
- Typically use a microcontroller or NI DAQ with a counter/timer char square wave, encoder, etc measurements.
- In the past teams have used the NI 9401 digital input module to rea
- Disposable to reduce clogging and inaccuracies. Will need to purch tests.
- Max turbine flow rate: 0.36 L/min
- Min turbine flow rate: 0.06 L/min (at idle)
- 0045 model flow rate: 0.1 1.8 L/min (with minimum flow of 0.06 L/m
- Pack of 10 Replacements (€ 400.00 ~ \$470)
- <u>https://www.equflow.com/product/pfa-click-housing-flow-sensor</u>
- https://www.equflow.com/product/pfa-flow-tube-4-5-for-click-housing-tul

Test Apparatus Spending

Category	Item	Unit Price (USD)	Amount	Total Price
Test Stand Aluminum	Struts Across	\$5.31	6	31.86
	Struts Along	\$8.25	2	16.5
	Vertical Stand Supports	\$4.47	4	17.88
	EDF Trans Piece	\$4.47	1	4.47
	Inlet Trans Piece	\$4.47	1	4.47
	EDF Holders	\$4.47	2	8.94
	Inlet Holder Short	\$4.47	2	8.94
	Inlet Holder Long	\$3.63	1	3.63
Test Stand Accessories	End Caps	\$1.79	4	7.16
	EDF mount L brackets	\$3.13	6	18.78
	Channel Nuts	\$36.56	1	36.56
	M4 Screws 10 mm	\$0.98	40	39.2
	M4 Screws 12 mm	\$0.98	5	4.9
	Corner L Bracket (1)	\$2.13	2	4.26
	Corner L Bracket (2)	\$2.42	10	24.2
	Set Nut (M3-0.5)	\$0.56	6	3.36
	Set Screw (M3-0.5x6)	\$0.56	6	3.36
	Shipping	\$19.36	1	19.36
Total				203.29

Instrumentation & Maintenance Spending

Category	Item	Unit Price (USD)	Amount	Total Price
Massflow Surrogate	EDF	\$39.99	1	39.99
	ESC	\$35.49	1	35.49
Test Stand Instrumentation	Pitot Tube	\$93.00	1	93
	Tubing	\$0.60	100	60
Total				228.48
Category	Item	Unit Price (USD)	Amount	Total Price
Initial Engine Parts	Starter Motor	\$89.99	1	89.99
	LiFE Battery	\$49.99	1	49.99
	EC3 M to XT60 F Adapter	\$1.99	1	1.99
	EC3 F to XT60 M Adapter	1.99	1	1.99
Packaging Supplies	Bubble Wrap	\$6.62	1	6.62
	Cardboard Box	\$6.99	1	6.99
	Sales Tax	\$1.20	1	1.2
Turbine Ground Support	4mm tubing	\$1.29	3	3.87
	Festo Ball Valve 4mm	\$21.47	2	42.94
	Festo Blanking Cap 4mm	\$2.21	3	6.63
	iTrap40 Classic Pro 4mm	\$85.54	1	85.54
	Plastic Syringe	\$10.38	1	10.38
	Diesel Fuel Can	\$26.15	1	26.15
Shipping	Outbound (1)	\$34.84	1	34.84
	Outbound	\$117.00	1	117
	Inbound	\$50.00	2	100
Total				586.12

Test Plan

Test	Materials	Location	Special Access
TA Turbine Operation verification	JetCat Engine	Engine Test Cell	Yes - R2R Schedule*
TA Instrument Verification	Test App, Wind Tunnel	Aero Wind Tunnel	Yes - R2R Schedule*
TA Turbine mass flow test	JetCat Engine, Test App	Engine Test Cell	Yes - R2R Schedule*
TA EDF Verification	Test App, EDF	Aero Wind Tunnel	Yes - R2R Schedule*
TA Turbine sensors calibration test	Test App, Inlet, JetCat	Engine Test Cell	Yes - R2R Schedule*

* - R2R Schedule only allows Team OSPRI to be on campus 2 days/week

Test Plan cont.

Test	Materials	Location	Special Access
Inlet EDF Testing	Test App, Inlet, EDF	Wind Tunnel	Yes - R2R Schedule*
TA Turbine baseline test	JetCat Engine, Test App	Engine Test Cell	Yes - R2R Schedule*
Inlet Turbine integrated inlet testing	JetCat Engine, Test App, Inlet	Engine Test Cell	Yes - R2R Schedule*

* - R2R Schedule only allows Team OSPRI to be on campus 2 days/week

Test Readiness Review

	System 1: EDF testing							S	ystem 2: JetCat Tur	bine testing		
Task number	Due date	Task/description	Dependent on task:	Building access required	Complete		Task number	Due date	Task/description	Dependent on task:	Building access required	Complete
E.1.a	24 Jan	EDF transition piece design/print	N/A	Ν	Y		J.1.a	24 Jan	AFRL transition piece print	N/A	Ν	Y
E.1.b	24 Jan	EDF/Transition Piece cradles design/print	N/A	Ν	Y		J.1.b	24 Jan	Bell mouth design/print	N/A	Ν	Y
E.1.c	24 Jan	Bell Mouth design/print	N/A	N	Y		J.1.c	24 Jan	Transition piece print	N/A	N	Y
E.1.d (TA.1)	24 Jan	Inlet frame assembly	N/A	N	Y		J.1.d (TA.1)	24 Jan	Inlet frame assembly	N/A	N	Y
E.2 (TA.2)	31 Jan	Labview scannivalve functionality	N/A	Y	Y		J.3 (TA.2)	31 Jan	Labview scannivalve functionality	N/A	N	Y
E.3 (TA.3)	3 Feb	Wind tunnel sensor calibration test	E.2 (TA.2)	Y	Y		J.4 (TA.3)	3 Feb	Wind tunnel sensor calibration test	J.3 (TA.2)	Y	Y
E.4	5 Feb	EDF systems functionality test with temporary control and frame integration	E.1	-	Y		J.2	(Org 27 Jan) 15 Feb	JetCat verification run	N/A	Y	Y
E.5	10 Feb	EDF mass flow verification test	E.1, E.2, E.3, E.4	Y	Y		J.5	15 Feb	JetCat mass flow verification test	J.1, J.2, J.3, J.4	Y	
E.6	12 Feb	Labview EDF control functionality	E.4	Ν			J.6	21 Feb	Labview Equiflow fuel flow sensor functionality	N/A	Ν	
E.7.a	19 Feb	EDF control verification tests	E.6, J.5	Ν			J.7	24 Feb	Flow sensor/load cell calibration test	J.6	Y	
E.7.b	19 Feb	Turbine to EDF mass flow calibration tests	E.1, E.2, E.3, E.4	Y			J.8	26 Feb	JetCat baseline test	J.3, J.4, J.5, J.6, J.7	Y	
E.8	19 Feb	Inlet testing	E.1-E.8	Y			J.9	26 Feb	Inlet testing	J.1 - J.8, E.8	Y	
		Indicates test which nee	eds scheduling				Current as o	f 26 Feb 2021				

Setup		Engine start checklist	
Required items		Pre start	
P-100Rx	Proj Room/Test cell	Load cell stop block	Remove
ECU	Proj Room/Test cell	Load cell arduino	Powered on (if used)
GSU	Proj Room	Sensor/tubing	Secured (if used)
Long Cord	Proj Room	Scannivalve	Connected/Powered on
Battery	Charged	Data collection	Reading data
Support items	Proj Room/Test cell	Radio check	Good comms
Fuel can	Test cell	Downrange man	In place outside cell
Radios	Proj Room/Test cell	Downrange	Clear of personnel
		Test cell	Clear of personnel
Test cell setup			
Professor	Notify	Engine Start	
Garage Door	Open	Professor	Notified/present
Fume fan	On	ECU power	Depress for 5 sec
Plexiglass	Lean against garage door	Menu selected	Run
Blast area	Clear	Engine control man	Radio start ready
Mount engine	x4 bolts	Downrange man	Radio blast area clear
Engine	Secure	Set and Spool	Depress
Fuel Pump	Secure	Automatic startup	Let self stabilize
ECU	Secure		
GSU lead	Routed into control room	Test control	
GSU	Connected (in control room)	Throttle Increase	Spool and plus
Battery	Connected and secure	Throttle decrease	Spool and minus
		Immediate max	Spool and min/max
Fuel line purge		Immediate idle	Spool and run
Fuel tank	Insert fuel line		
UAT	Air Purged	Shutdown	
UAT Shuttoff valve	Open	Engine control man	Radio test termination
Pump Shuttoff valve	Open	Set and Spool	Depress
Engine fuel line	Disconnect	Automatic cooling	Let self cool
ECU Power	Depress for 5 sec	Pump Shuttoff valve	Close
Menu selected	Test Function	UAT Shuttoff valve	Close
Change Value	Hold on purge page		
Fuel line	Air purged		
Fuel line	Reconnect		

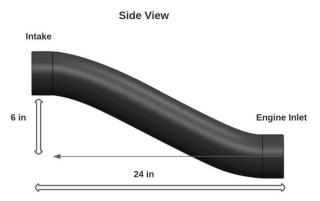
OSPRI

Test Readiness Review

OSPRI

Management Slides

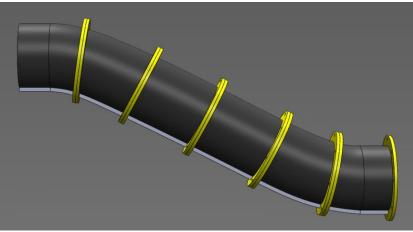
Functional Requirements


OSPRI functional requirements stem from the APOP's Statement of Work provided to the CU Aerospace Engineering Department and the OSPRI team:

- 1. Design, build, and validate an S-duct inlet for use with the JetCat P100-RX turbojet engine that performs according to AFRL's objectives.
- 2. Design, build, and validate a test rig capable of measuring critical inlet performance metrics and inform inlet design.

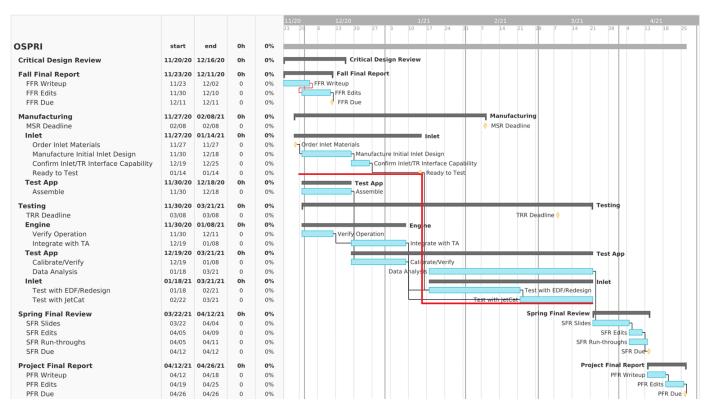
Inlet Design Requirements

- 1. The inlet shall interface with the AFRL transition piece
- 2. The nearest outside edge of the capture area sha centerline of the engine.
- 3. The inlet shall have a total pressure recovery ≥98% engine.
- 4. The maximum thrust decrement of the engine sł attached.
- 5. The maximum TSFC increment of the engine sha attached.
- 6. The inlet shall have an axial length between 20 incres and 20 incres, with the objective being 20 inches (or shorter, if feasible).*
 - a. Requirements changed from PDR

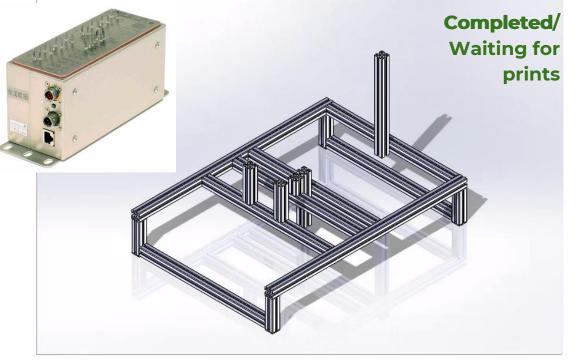

Test Apparatus (TA) Design Requirements

- 1. The TA shall be capable of mapping the total pressure distribution at the inlet entrance, the Aerodynamic Interface Plane (AIP), and between the first and second turns, at a minimum.
- 2. The TA shall be capable of mapping the distortion distribution throughout the inlet.
- 3. The TA shall be capable of measuring key JetCat engine parameters.
 - a. TA shall be capable of measuring the thrust produced by the engine.
 - b. TA shall be capable of measuring the Thrust Specific Fuel Consumption (TSFC) of the engine.
- 4. The TA shall be capable of interfacing with multiple different inlet designs.

Timeline Moving Forward


- Printing, post-processing, and assembling the first inlet (Complete by Feb. 14th)
- 2. Testing the first iteration to measure performance (Complete by Feb. 20th)
- Start Printing the second iteration (Complete by Feb. 22nd)
- Performance analysis for second iteration (Complete by Mar. 10th)
- Finalize and Manufacture Final Design (Complete by Apr. 1st)

Test Readiness Review


Work Plan

Test Apparatus Breakdown/Overview

- Inlet test frame
- Inlet cradles
- Power plant to inlet transition piece
- Sensor suite
 - Scanivalve
 - Pitot probe
 - Static pressure ports
 - LabView controlled
- Electric Ducted Fan (EDF)
- Turbine test stand
- JetCat P100-Rx
- AFRL designed transition piece

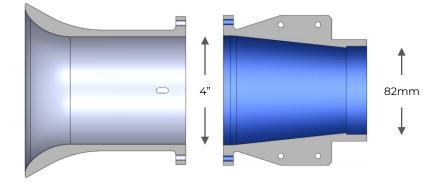
Test Apparatus Model Overview

Test Apparatus Status Overview

Frame Assembly	Completed (Due 24 Jan)
Transition piece/cradles	Completed (Due 24 Jan)
EDF Integration and Verification	On Track (Due 5 Feb)
Labview Development and Verification	On Track (Various Due dates)
Sensors Verification	On Track (Due 3 Feb)
JetCat Engine and Testing	Setback (Various Due dates)

Frame Assembly Status (Completed)

- Assembly completed
- All sliding posts yet to be tightened
- Extremely rigid, lightweight
- To be moved to Aero Building soon



Transition pieces/cradles status completed

- JetCat Transition Piece
 - Design provided by AFRL
 - Completed 24 Jan
- EDF Transition Piece
 - Completed 24 Jan
- Straight bell-mouth inlet
 - Mass flow calibration
 - Completed 24 Jan
- Cradles
 - Bolted design for EDF Transition
 - Hose Clamp design for Jetcat
 - <u>Completed 24 Jan (print in progress)</u>

Straight bell-mouth Inlet and EDF Transition piece

Cradle for the Jet Engine Transition Piece

EDF Integration Status On Track (Due 5 Feb)

- EDF and ESC (Electronic Speed Controller)
 - The finance department did not order last semester
 - Ordered again and <u>delivered January 27th</u>
- 6 cell LiPo battery

University of Colorado **Boulder**

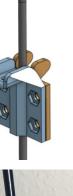
- Provided by the electronics lab
- Maximum mass flow validation
 - Targeting 0.23 kg/s
 - Using a servo tester for control
- Mass flow calibration
 - Using Labview for precise control

LabView Development Status (On Track)

- Stages of Development
 - Stage 1: Scanivalve functionality (Completed Jan 31st)
 - For pressure measurements (Sample rate: 500Hz)
 - Extract required existing Wind Tunnel code
 - Stage 2: EDF Control functionality (Complete by Feb 12th)
 - For fan flow control
 - Integrate cDaq & NI 9401 (digital I/O module)
 - Stage 3: JetCat Fuel Flow Sensor functionality (Complete by Feb 21st)
 - For fuel flow measurements
 - Integrate NI 9215 (analog in module)

LabView Development Status cont (On Track)

- LabView Software
 - Working closely with Josh Mellin
 - Troubleshooting and debugging
 - Tasks to do:
 - Finalize software for fuel flow
 - Finish VI interface to connect with TA rig
 - Verify data acquisition outputs (graphs, plots, etc)
 - cDaq (+ Digital Module, Analog Module): Checked Out
 cDAQ-9171, NI-9401, NI-9215 w/ BNC modules



Sensors & DAQ Status On Track (Due 3 Feb)

- cDaq (+ Digital Module, Analog Module): Checked out
- Labview Module Development: Development underway
- Sensors : Acquired
 - Pitot Probe: Acquired
 - Slotted Inlet Mount: Designed & Printed
 - Fuel Flow Probe: Acquired
- Scanivalve: Available upon request

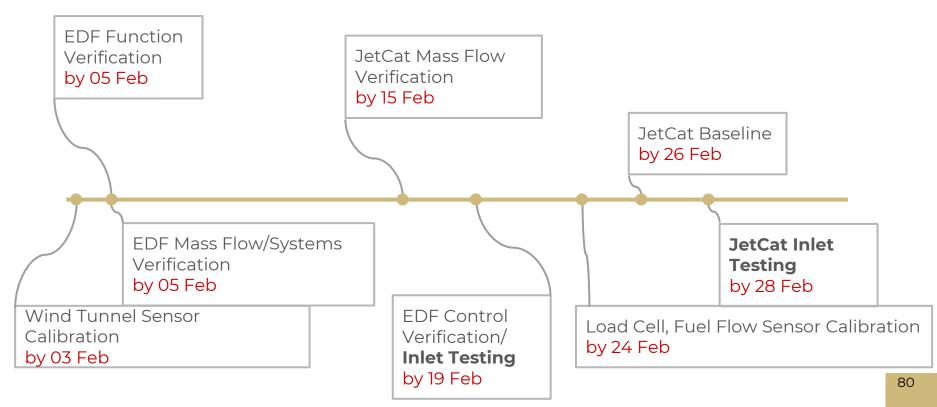
Upcoming tests

- Wind tunnel sensor calibration test: (Complete by 3 Feb)
 - Calibration of pitot probe using 6 or more known airspeeds in the windtunnel

OSPRI

JetCat P-100RX Status (Setback)

- Engine issues (warranted services by JetCat Americas) (Est. return: 12 Feb)
 - *Fall semester:* Starter motor and front sensor board burnt out, sticky bearings
 - > 27 Jan: After servicing, surface mounted chip fell off of front sensor board
- Upcoming tests
 - JetCat initial verification test: (Complete by 27 Jan moved to 15 Feb)
 - Unmodified test to verify functionality with CU facilities and procedure familiarization
 - JetCat mass flow verification test: (Complete by 15 Feb)
 - Collect mass flow data through entire RPM sweep to calibrate mass flow surrogate
 - JetCat baseline test: (Complete by 26 Feb)
 - Collect thrust data and fuel flow (TSFC) data through entire RPM sweep



Test Apparatus Future Outlook

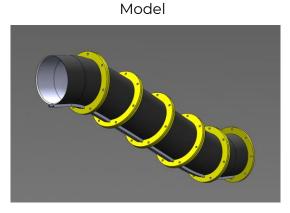
System 1: EDF testing						System 2: JetCat Turbine testing						
Task number	Due date	Task/description	Dependent on task:	Building access required	Complete	Т	Task number	Due date	Task/description	Dependent on task:	Building access required	Complete
E.1.a	24 Jan	EDF transition piece design/print	N/A	Ν	Y		J.1.a	24 Jan	AFRL transition piece print	N/A	Ν	Y
E.1.b	24 Jan	EDF/Transition Piece cradles design/print	N/A	Ν	Y		J.1.b	24 Jan	Bell mouth design/print	N/A	Ν	Y
E.1.c	24 Jan	Bell Mouth design/print	N/A	N	Y		J.1.c	24 Jan	Transition piece print	N/A	N	Y
E.1.d (TA.1)	24 Jan	Inlet frame assembly	N/A	N	Y		J.1.d (TA.1)	24 Jan	Inlet frame assembly	N/A	N	Y
E.2 (TA.2)	31 Jan	Labview scannivalve functionality	N/A	Y	Y		J.3 (TA.2)	31 Jan	Labview scannivalve functionality	N/A	N	Y
E.3 (TA.3)	3 Feb	Wind tunnel sensor calibration test	E.2 (TA.2)	Y			J.4 (TA.3)	3 Feb	Wind tunnel sensor calibration test	J.3 (TA.2)	Y	
E.4	5 Feb	EDF systems functionality test with temporary control and frame integration	E.1	?			J.2	(Org 27 Jan) 15 Feb	JetCat verification run	N/A	Υ	
E.5	10 Feb	EDF mass flow verification test	E.1, E.2, E.3, E.4	Y			J.5	15 Feb	JetCat mass flow verification test	J.1, J.2, J.3, J.4	Υ	
E.6	12 Feb	Labview EDF control functionality	E.4	Ν		Ī	J.6	21 Feb	Labview Equiflow fuel flow sensor functionality	N/A	Ν	
E.7.a	19 Feb	EDF control verification tests	E.6, J.5	Ν			J.7	24 Feb	Flow sensor/load cell calibration test	J.6	Υ	
E.7.b	19 Feb	Turbine to EDF mass flow calibration tests	E.1, E.2, E.3, E.4	Y			J.8	26 Feb	JetCat baseline test	J.3, J.4, J.5, J.6, J.7	Υ	
E.8	19 Feb	Inlet testing	E.1-E.8	Y			J.9	26 Feb	Inlet testing	J.1 - J.8, E.8	Y	
												79
		Indicates test which nee	eds scheduling		0	Current as o	f 31 Jan 2021					

Test Apparatus Future Outlook

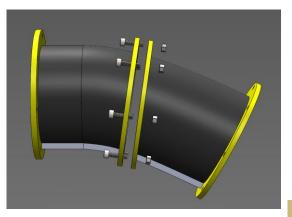
Challenges

Timeline

- Need to construct and perform verification and validation before any inlet testing can begin
- Quicker test apparatus is ready, the more inlet iterations can be tested
- Repeated issues with JetCat P-100RX
- Integrating all sensors into cohesive LabView package


University of Colorado Boulder

Test Readiness Review



Initial Plan

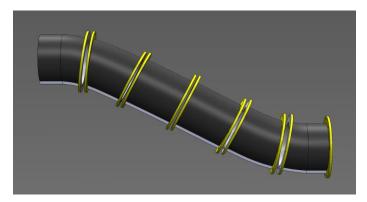
- → Originally planned FDM printers for prototype
 - Extensive post-processing
 - High chance of inconsistent surfaces
- → Switched gears to SLA
 - Planned for access to 3 FormLabs SLA printers
 - Inlet made to be sectioned to fit smaller print volume
- → Assembly
 - Using 7 M5 bolts and nuts

Assembly

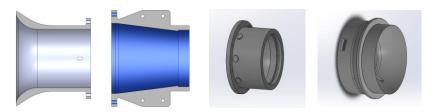
Status

- → Currently, initial design is being printed by the PILOT
 - Finished first of six inlet sections **On Track (Due Feb 14)**
 - Paused queue in order to print parts need for test assembly
 - Dealing with upcoming issues with manufacturing

Inlet Section


APOP Transition (Inlet Side)

Test Readiness Review


Challenges

University of Colorado Boulder

- → Printer Reliability Problems
 - IdeaForge printers unuseable
 - Working with only 1 printer
- → Print Quality
 - ~25 microns 50 microns
 - Limited Print volume
- → Part Prioritization
 - Transition pieces then inlet
 - 10 SLA parts in queue

Inlet Sectional View

Transition Pieces

Challenges

- → Cost
 - Outside vendor quotes
 - ~\$800 for just 4 parts
 - ~\$600 in ASEN machine shop for all 10 parts

Line Item	Service	Description	Quantity	Unit	Price	Line Total
1	Print	50 um EDF transition and Inlet and Inlet transition and Jetcat 1x each Hard Black-Photocentric	1.00	Each	\$780.09	\$7 80.09
2	Sanding		2.00	Hours	\$35.00	\$70.00
3	Support Removal		2.00	Hours	\$10.00	\$20.00
4						
5						

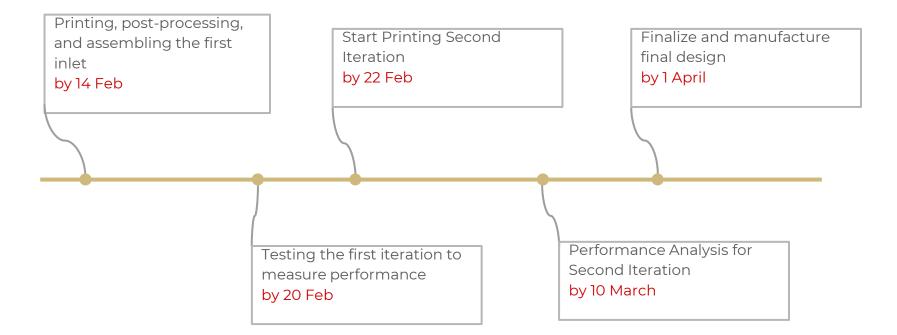
The 3D Printing Store Quote

- → Manufacturing Defects
 - Crack along flange of printed Inlet section
 - Will fix with epoxy patch

Challenges

- → Post-Processing
 - Sanding inside surface as needed
 - Support structure dependent on individual print

Transition Section



Inlet Section

Test Readiness Review

Inlet Timeline

