

Preliminary Design Review

OSPRI

Offset S-duct PRopulsion Inlet

Team:

- Tim Breda
- Joey Derks
- Zak Dmitriyev
- Ryan Joseph
- Dishank Kathuria
- Harrison Methratta
- Joshua Seedorf
- Michael Vogel
- William Watkins
- John Wissler

Advisor: Customer: POC: Professor John Mah Air Force Research Laboratory Capt. Riley Huff

Preliminary Design Review

OSPRI

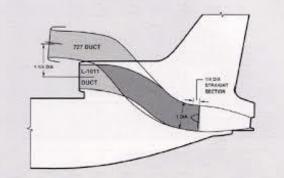
Section 1

Project Description

Problem Statement

The purpose of the OSPRI project is to:

- Design and build an S-duct inlet for use with the JetCat P100-RX turbojet engine, for the Air Force Research Lab's (AFRL's) Aerospace Propulsion Outreach Program (APOP)
- Design and build a testing apparatus to measure total pressure and distortion distributions, and measure fuel flow and thrust produced


Preliminary Design Review

Motivation

University of Colorado **Boulder**

- Integrating engines into the fuselage would reduce exposed surface area and overall drag
- S-ducts are susceptible to severe flow separation and poor total pressure recovery
- The Air Force Research Lab (AFRL) has asked 12 schools to come up with potential solutions
- Design point is a static test at standard conditions at Wright-Patterson AFB, Ohio

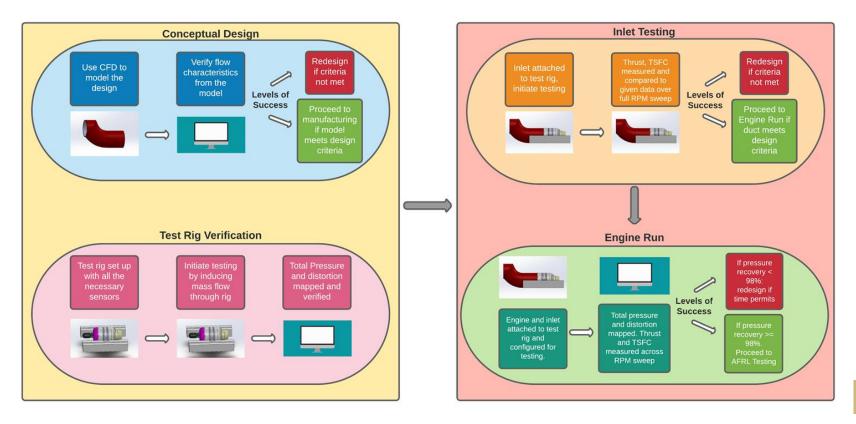
Functional Requirements

OSPRI functional requirements stem from the APOP's Statement of Work provided to the CU Aerospace Engineering Department and the OSPRI team:

- 1. Design, build, and validate an S-duct inlet for use with the JetCat P100-RX turbojet engine that performs according to AFRL's design requirements.
- 2. Design, build, and validate a test rig capable of measuring critical inlet performance metrics and inform inlet design.

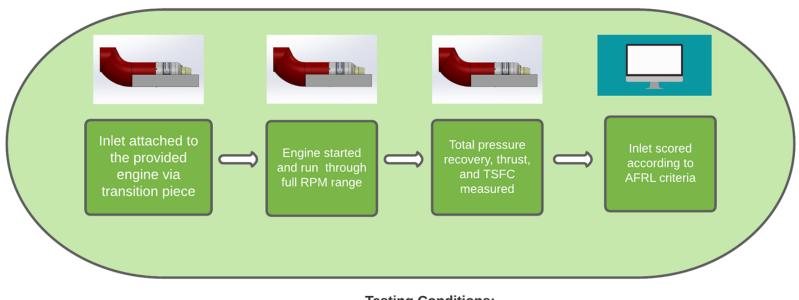
Inlet Design Requirements

- 1. The inlet shall interface with the AFRL transition piece.
- 2. The nearest outside edge of the capture area shall have a 6-inch offset from the centerline of the engine.
- 3. The inlet shall have a total pressure recovery ≥98% across the RPM sweep of the engine.
- 4. The maximum thrust decrement of the engine shall be $\leq 5\%$ with inlet attached.
- 5. The maximum TSFC increment of the engine shall be \leq 5% with inlet attached.
- 6. The inlet should have an axial length no greater than 24 inches, with the objective being 12 inches (or shorter, if feasible).

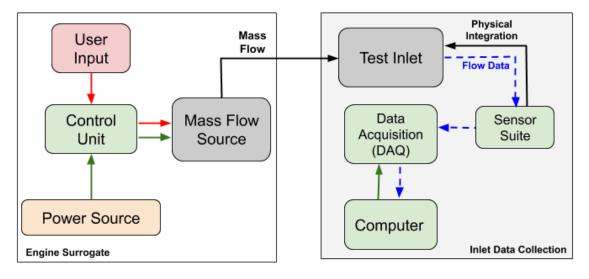


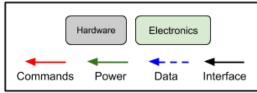
Test Apparatus (TA) Design Requirements

- 1. The TA shall be capable of mapping the total pressure distribution at the inlet entrance, the Aerodynamic Interface Plane (AIP), and between the first and second turns, at a minimum.
- 2. The TA shall be capable of mapping the distortion distribution throughout the inlet.
- 3. The TA shall be capable of measuring key engine parameters.
 - a. TA shall be capable of measuring the thrust produced by the engine.
 - b. TA shall be capable of measuring the Thrust Specific Fuel Consumption (TSFC) of the engine.
- 4. The TA shall be capable of interfacing with multiple different inlet designs.

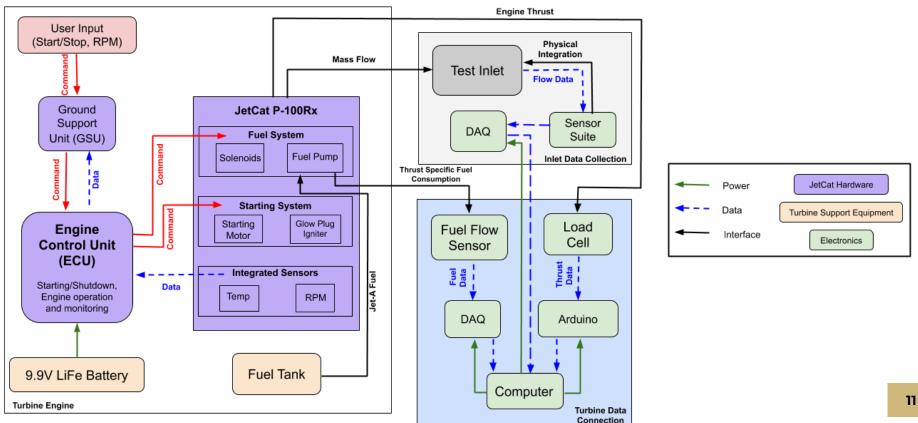


Design Concept of Operations (CONOPS)


AFRL Testing CONOPS



Testing Conditions: -Static Test - Standard conditions at Wright-Patterson Air Force Base, Ohio


Functional Block Diagram Testing Apparatus

Functional Block Diagram Engine Integration

Critical Project Feasibility Elements

Inlet

- CFD Simulations and Modelling
- Passive Flow Control
 System
- Geometry/Shape of S-Duct
- Manufacturing

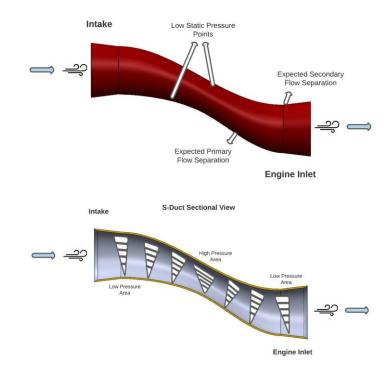
Inlet Test Apparatus

- Slotted Inlet Concept
- Pressure Measurement
- Mass Flow Surrogate
- Data Acquisition & EDF Control

Preliminary Design Review

Section 2

Baseline Design

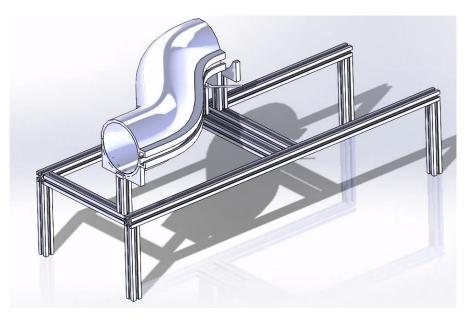


Baseline Design - Inlet

Needs: Flow control system to minimize separation and flow losses while maintaining steady mass flow for optimal engine performance. Optimizing the shortest inlet length for maximum total pressure recovery is paramount.

Considerations:

- Converging-Diverging Shape
- Circular Cross Section
- Vortex Generators



Baseline Design - Test Apparatus

Needs: Flow separation and adverse compressor face pressure distributions must be identifiable within the inlet. Capable of fuel flow sensor readings.

Capabilities:

- Discrete Surface Static Pressures
- Continuous Total Pressure along 2 axes
- Equilation Equilatio

Preliminary Design Review

Section 3

Inlet Feasibility

Inlet Feasibility Overview

Critical Elements for Success:

1. CFD:

Feasibility of CFD Simulations and Modelling

2. Flow Control:

Feasibility of Passive Flow Control System

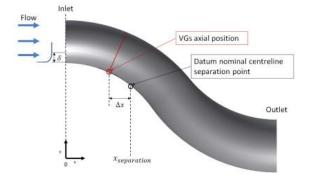
3. Geometry and Shape:

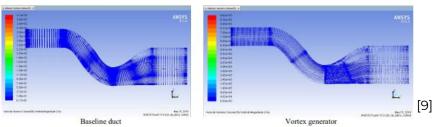
Major aspects affecting design and performance (Cross-Section, Length, Area Ratio)

4. Manufacturing:

Feasibility of Manufacturing

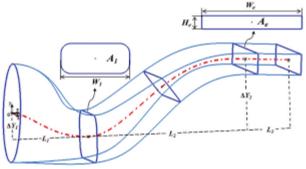
CFD Simulations and Modelling


- CFD Software
 - BlueCFD-Core from openFOAM
 - Commercial Products
 - 2D flow analysis of pressure and velocity
 - Estimate potential pressure losses
 - Estimate boundary layer separation
 - ~ 60%-90% accuracy
- Assumptions
 - Conservation Laws
 - Steady Flow
 - Ideal Gas
 - Incompressible



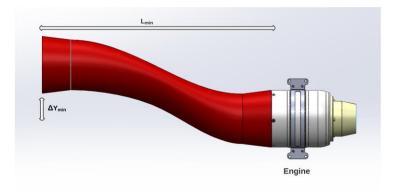
Passive Flow Control System

- Passive Control
 - Geometry
 - Vortex Generators
 - Hard to design for or simulate
 - Likely to be installed post manufacturing and compared to baseline
 - Proven experimentally to lessen exit flow distortion & increase total pressure recovery [3][8]
 - Converging-Diverging



Cross Sectional Inlet Entrance

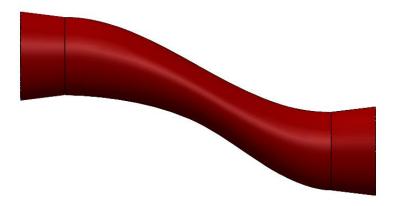
- Aspect Ratio
 - Uniform Circular
 - Lower Performance
 - Easier Manufacturing
 - Non-Circular Inlet Entrance
 - Higher Performance
 - Harder Analysis
 - Harder Manufacturing
- Implementing uniform AR will make TA integration and measurement recording simpler.


$$AR = \frac{H_{inlet}}{W_{inlet}}$$

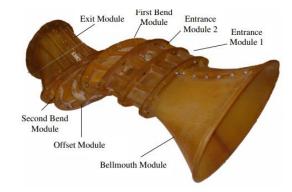
University of Colorado Boulder

Preliminary Design Review

Length


- OSPRI
 - ▶ △Y_{min} = 6 in (~150mm)
 - L_{min}= 15 in (~300 mm)
- Length Considerations for shorter inlet
 - Shorter is desired by customer (higher score)
 - Induces more flow separation
 - Design modifications (vortex generators) will be added to compensate for flow separation

Shape & Interior Geometry


- Converging-Diverging Shape
 - Increases flow speed while turning
 - Accelerating the flow will delay and help prevent separation bubble formation
 - Slowing flow into AIP will prevent engine malfunction
 - Helps avoid large distortion at JetCat compressor face

Manufacturing Feasibility

- Constructed in sections
 - Feasible with smaller manufacturing footprint
 - Allows for modular design iterations
- Stereolithography (SLA) Printing (Resin)
 - Accurate to ±35 microns
 - Printing can be done autonomously
 - Form 3L print space
 - 13.2 × 7.9 × 11.8 in
 - Resin is brittle and difficult to alter

Manufacturing Feasibility

- Molded Fiberglass
 - Inexpensive
 - Easily procured
 - Requires reinforcement
 - Wood
 - Requires molds
- Other
 - CNC Machining
 - ▶ 3D printing

Fiberglass inlet panes

Preliminary Design Review

Section 4

Test Apparatus Feasibility

Test Apparatus Feasibility Overview

Critical Elements for Success:

- 1. Pressure Measurement: Feasibility of static tap manufacturing, integration and flow separation identification
- 2. Slotted Inlet Concept:

Feasibility of slotted inlet manufacturing and testing capabilities

3. Mass Flow Surrogate:

Feasibility of engine condition replication using Electric Ducted Fans

4. DAQ & EDF Control:

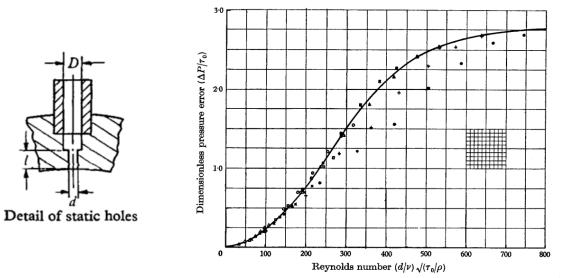
Data Acquisition system and EDF control setup

Essential Data Items

- 1. Total Pressure direct measurement
 - a. At the inlet entrance
 - b. At the inlet exit (AIP)
 - c. Along interior of inlet (captured via an inlet slot and sliding pitot tube)
- 2. Static pressures direct measurement through integrated static ports
- 3. Density derived measurement
 - a. Air Temperature (via room thermometer)
 - b. Static Pressure (static ports with no airflow or room barometer)
- 4. Mass flow derived measurement
 - a. Cross sectional inlet area (CAD measurements)
 - b. Density
 - c. Flow Velocity derived measurement

$$V_1^{2} = \frac{2a_1^{2}}{\gamma - 1} \left[\left(\frac{P_0}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

 $\dot{m} = \rho v a$

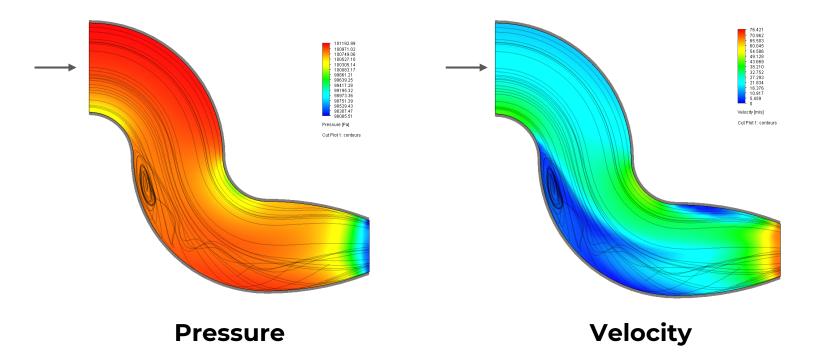

Eq.7.77a [2]

$$a_1 = \sqrt{\gamma RT}$$
 $\gamma = 1.4$

27

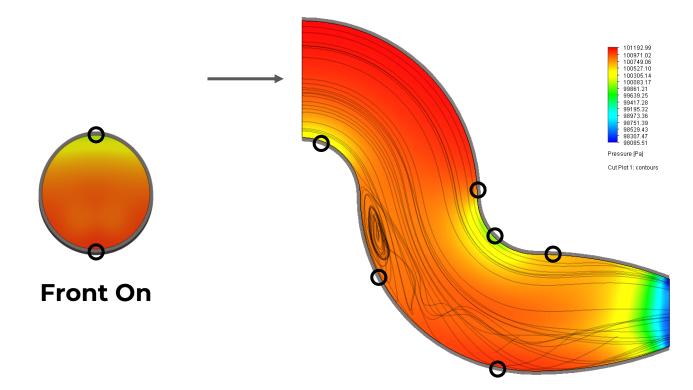
Static Pressure Taps

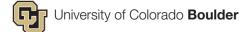
 $\frac{\Delta P}{\tau_0} = \frac{C}{2} \sqrt{\frac{d}{\nu} \sqrt{\frac{\tau_0}{\rho}}}$


FIGURE 7. Dimensionless pressure error against Reynolds number for l/d ratios 1.5 to 6. Hole diameter (in.): •, 0.175; +, 0.150; \blacktriangle , 0.125; **E**, 0.100; \bigcirc , 0.075; \Box , 0.0635; \times , 0.050; \triangle , 0.025.

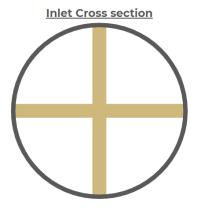
The Influence of Hole Dimensions on Static Pressure Measurements [6]

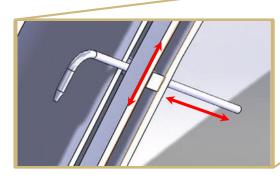
Static Pressure and Flow Separation


Adverse Pressure Gradients (Low to High)



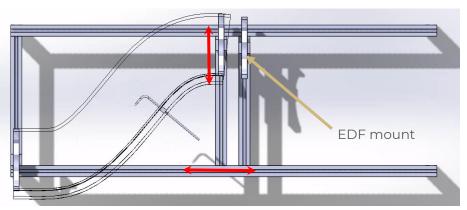
Preliminary Design Review

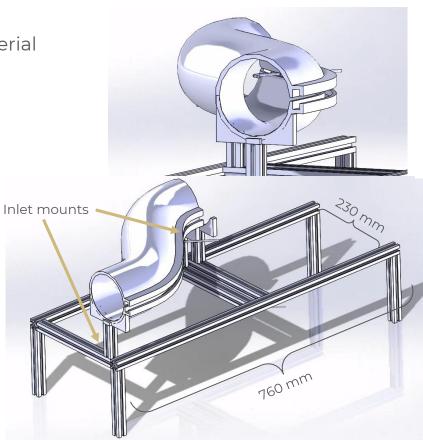

Static Tap Locations



Slotted Inlet Approach Overview

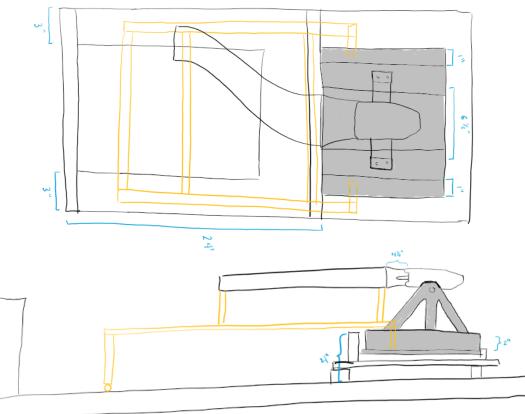
- Pitot Tube used for measurements
 - Needs to be parallel to flow to be accurate
- Inlet pitot rail system (vertical/horizontal orientations)
- Static ports also integrated on the inlet surface
- Single slot in inlet allows for data collection along the entire length of inlet (along 2D plane)





OSPRI

Inlet Test Frame


- Modular aluminum extrusion framing material
- Adaptable to a variety of inlets for testing
 - Different lengths, offsets, etc
- Capable of vertical and horizontal test configurations (important for sensors)
- Initial estimate of \$90 for materials
 - Factory precut
- One frame for EDF tests and JetCat tests

JetCat Test Stand Integration

- Dual purpose test stand (will work with EDF and JetCat)
- Minor alterations required (with bolt-on attachments)
- Modular aluminum framing allows for flexibility
- Vertical and horizontal inlet testing
- No effect on the test stand load cell

Mass Flow Surrogate

$$T = \dot{m}(v_e - v_\infty) + A_e(p_e - p_\infty)$$

Assumptions: p_e = p_∞ and v_∞ = 0

 $\dot{m} = \rho \cdot A_e \cdot v_e$

Assumptions: constant $v_{\rm e}$ across fan

$$T = \rho \cdot A_e \cdot v_e^2$$

$$\dot{m} = \sqrt{T \cdot \rho \cdot A_e}$$

70mm EDF with 1200g of thrust Typical small EDF

Mass Flow Surrogate

Minimum of 1200g of thrust

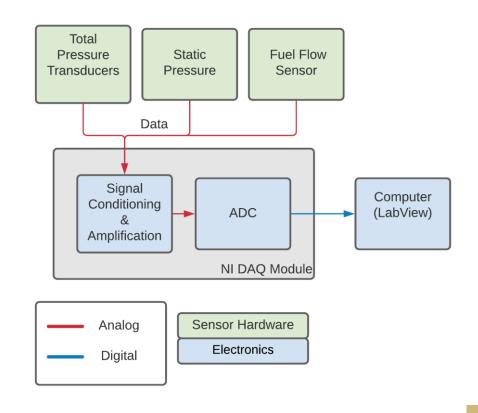
• Additional thrust required as $p_e > p_{\infty}$

70mm EDF with 2300g of thrust

- Dr. Mad Thrust 70mm EDF 1200W (4S)
- Nearly twice the estimated required thrust
 - Some higher thrust options are available

The required mass flow is achievable

TA Data Acquisition


Data Collection Needs:

- Total Pressure (x1)
- Static Pressure (x6-10)
- Fuel Flow (x1)

NI DAQ module

Heritage LabVIEW Sensor Code

Direct data import into Matlab

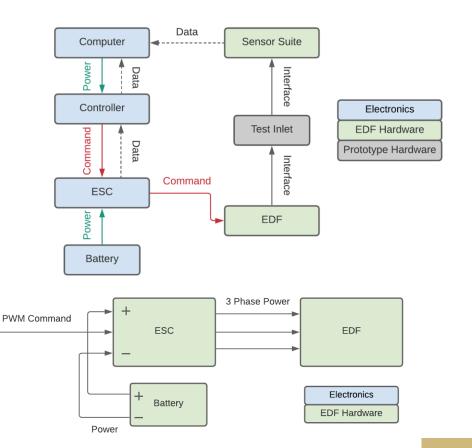
Controller

EDF Control

Electronic Speed Control (ESC)

Exact components dependant on EDF

Min RPM


Max RPM

ESC Signal for RC EDFs

20ms

2ms

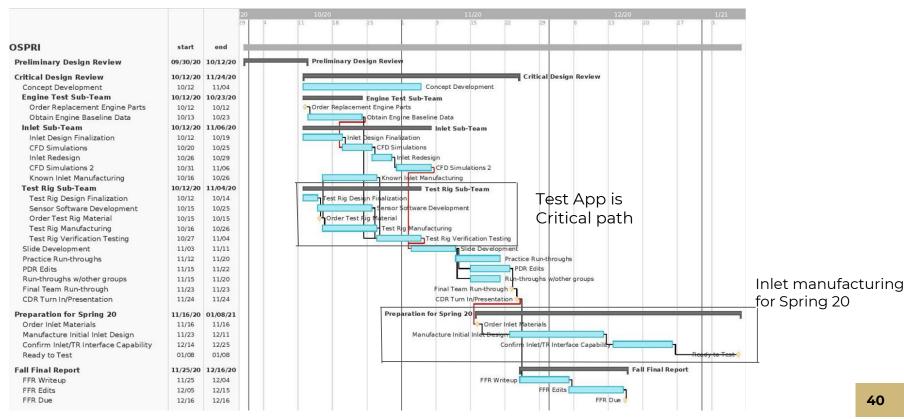
• 50 Hz PWM, 5-10% duty cycle

Preliminary Design Review

Section 5

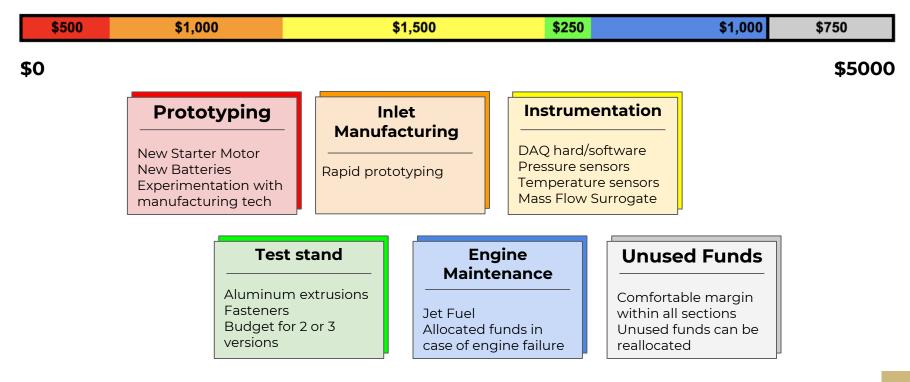
Other Considerations

Other Considerations


- **Critical Elements for Success:**
 - 1. Time Budget:

Feasibility of manufacturing completion by January

2. Financial Budget: Preliminary budget analysis



Time Budget Feasibility

Financial Budget Feasibility

Preliminary Design Review

Section 6

Project Summary

Project Feasibility Summary

Inlet		
Critical Element	Feasible	Further Study
CFD Simulation & Modelling	Х	Х
Passive Flow Control System	Х	
Geometry & Inlet Shape	Х	
Manufacturing	Х	

Project Feasibility Summary

Inlet Test Apparatus		
Critical Element	Feasible	Further Study
Pressure Measurement	Х	
Slotted Inlet	Х	Х
Mass Flow Surrogate	Х	
Data Acquisition & EDF Control	Х	Х

Project Summary

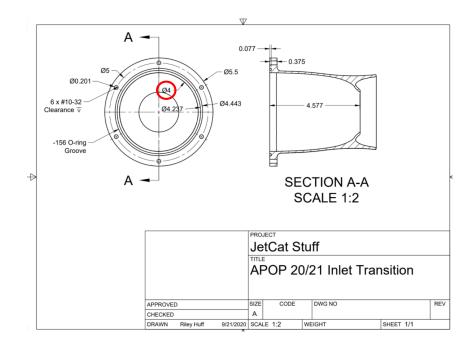
- Utilizing an S-duct inlet for an aircraft can deliver significant benefits, but successful design is difficult to achieve
- Project is feasible, but with caveats
 - Several inlet and test apparatus elements require further study
- Timeline is accelerated
 - Critical path is clear, but accelerated timeline will be challenging
- Budget adequate to complete project

Resources

- [1] Lee, J., Cho, J. "Effect of aspect ratio of elliptical inlet shape on performance of subsonic diffusing Sduct," J Mech Sci Technol 32, 1153–1160 (2018). https://doi.org/10.1007/s12206-018-0218-5.
- [2] Anderson, J., Introduction to Flight Eighth Edition, New York City:McGraw Hill education, 2016
- [3] Sun, S., Guo, R.W. 2006. "Serpentine Inlet Performance Enhancement Using Vortex Generator Based Flow Control," Chinese Journal of Aeronautics
- [4] Tanguy, G. 2016. "Passive flow control study in a convoluted intake using Stereo Particle Image Velocimetry," The French Aerospace Lab
- [5] Kirk, A. M. 2006. "Active flow control in an advanced serpentine jet engine inlet duct Master's thesis", Texas A&M University
- [6] Shaw, R., "The Influence of Hole Dimensions on Static Pressure Measurements," Department of Mechanical Engineering, University of Liverpool, 1 July 1959.
- [7] "Dr. Mad Thrust 70mm 10-Blade Alloy EDF 3000KV Motor 1200W (4S)," HobbyKing.com, retrieved 11 Oct. 2020.
- [8] Reichert, B.A., and Wendt, B.J., 1994, "Improving Diffusing S-Duct Performance by Secondary Flow Control," AIAA 32nd Aerospace Sciences Meeting and Exhibit.
- [9] Basawaraj, Hosur, S., 2016. "CFD Analysis of Serpentine Inlet Duct to Enhance the Flow Properties Using Vortex Generator," International Journal of Innovative Research in Science, Engineering and Technology
- [10] Rabe, A. 2003. "Effectiveness of a Serpentine Inlet Duct Flow Control Scheme at Design and Off-Design Simulated Flight Conditions," Virginia Polytechnic Institute and State University

Resources

 [10] HARRINGTON-CRESSMAN, PETER J.M., "AIRCRAFT SYSTEM COMPARTMENT DIAGRAM." Retrieved 10 September 2020. https://www.airlinereporter.com/2015/09/requiem-trijetmasterpiece-lockheed-l-1011-tristar/aircraft-system-compartment-diagram/


Preliminary Design Review

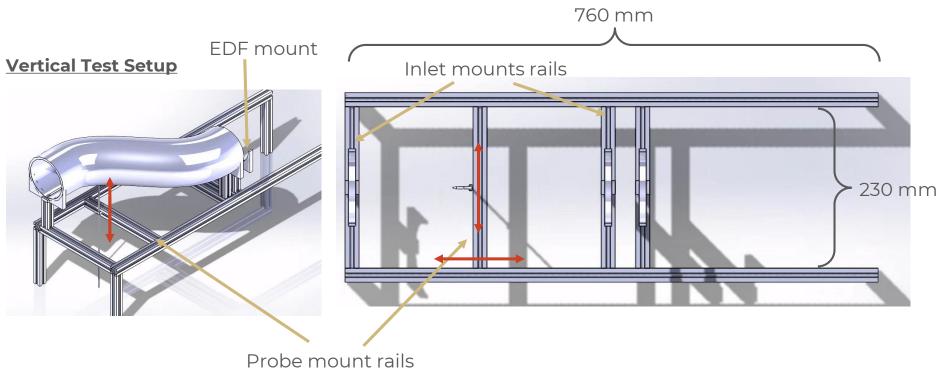
OSPRI

Additional Slides

Mass Flow Surrogation

$$\dot{m} = \rho \ v \ a$$

$$v = \frac{.23 \ \frac{kg}{s}}{\frac{\pi}{4} \ (0.1016m)^2 * (1.225 \ \frac{kg}{m^3})}$$


$$v = 23.16 \ \frac{m}{s}$$

Assumptions:

Circular cross section Constant area cross section Standard atmospheric conditions

Simple Horizontal Slotted Inlet Mechanism

Sensor Trade Study

Criteria	1	2	3	4	5
Flow	The probe	The probe	The probe	The probe	The probe
Obstruction	obstructs 20%	obstructs 15%	obstructs 10%	obstructs 5% of	obstructs 0% of
(35%)	or more of the	of the inlet area	of the inlet area	the inlet area	the inlet area
	inlet area				
Accuracy	Propagated	Propagated	Propagated	Propagated	Propagated
(20%)	error less than	error less than	error less than	error less than	error less than
	or equal to 5%	or equal to 4%	or equal to 3%	or equal to 2%	or equal to 1%
	for total	for total	for total	for total	for total
	pressure	pressure	pressure	pressure	pressure
Pertinence	No further	Data requires	Data requires	Data requires	Data allows for
(20%)	design relevant	processing and	processing and	processing but	easy
()	data can be	design changes	allows for some	allows for	identification of
	obtained from	are based upon	identification of	improvement to	design concerns
	measurements	many	design changes	design	0
		assumptions	00	iterations	
Complexity	Sensors are	Sensors are	Sensors are easy	Sensors are easy	Sensors are
(15%)	highly complex,	somewhat	to use but have	to use but have	easily
	difficult to	complex and	significant	slight difficulty	assembled,
	implement and	have significant	difficulty being	being integrated	mounted and
	utilize for	difficulty being	integrated into	into the test	require minimal
	testing	integrated into	the test	apparatus	setup for testing
		the test	apparatus		
		apparatus			
Cost (10%)	> \$500	> \$250	> \$100	> \$50	< \$50

Factor	Weight	Pitot Probe	Kiel Probe	Static Ports	Anemometer	Hot Wire A.meter
Obstruction	0.35	4.6	3.6	5	1	3.4
Accuracy	0.20	5	5	4	5	1
Pertinence	0.20	5	5	4	3	4
Complexity	0.15	4	4	5	3	4
Cost	0.10	4	2	5	4	3
Weighted	Totals	4.61	4.06	4.6	2.8	3.09

Sensor Utilization Trade Study

Criteria	1	2	3	4	5	
Effect on	Nominal inlet	Large	Some deviations	Minimal	Nominal in	let
Flow (30%)	flow heavily	deviations from	from nominal	deviations from	flow is	
	affected, data is	nominal flow,	flow, data may	nominal flow,	unaffected	
	not	data is unlikely	not be	data is		
	representative	to be	representative	representative		
	of inlet	representative	-	of nominal flow		
	performance					
Manufacturing	Extreme	Considerable	Fair amount of	Little	No	
Complexity	amount of	amount of	manufacturing	manufacturing	manufactur	ing
(20%)	manufacturing	manufacturing	necessary. A	necessary.	necessary.	_
	necessary. 2	necessary. 2	few days to 2	Sensors are	Sensors are	
	months and	weeks to 2	weeks to have	ready for	ready for	
	beyond to have	months to have	sensors fully	testing within a	testing	
	sensors fully	sensors fully	functioning and	few days	immediately	y
	functioning and	functioning and	ready			
	ready	ready				
Inlet	Sensors can	Sensors can	Sensors can	Sensors can	Sensors can	
Coverage	effectively	effectively	effectively	effectively	effectively	
(20%)	survey and	survey and	survey and	survey and	survey and	
	collect data	collect data	collect data	collect data	collect data	
	from less than	from 30 to 50	from 50 to 70	from 70 to 90	from more t	than
	30 percent of	percent of the	percent of the	percent of the	90 percent o	of
	the inlet	inlet	inlet	inlet	the inlet	
Adaptability	Sensors and	Complications	Complications	Minor easily	Sensors can	
(30%)	mounting	will occur	may occur	resolvable	easily be	
	systems cannot	adapting to new	adapting to new	concerns	adapted for	new
	be adapted to	design, concerns	design, concerns	transferring to	design	
	new designs	may not be	are resolvable	new design		Facto
		resolvable				Dor
						Effec
						Man

Factor	Weight	Slotted Inlet Concept	Inlet Sectioning Concept	Discrete Locations
Effect on Flow	0.30	4	3	5
Manufacturing	0.20	3	3	4
Complexity				
Inlet Coverage	0.20	5	3	1
Adaptability	0.30	4	3	4
Weighted Tot	als	4	3	3.7

Mass Flow Surrogate Trade study

Criteria	1	2	3	4	5
Previous	Team/team	Team/team	Team/team	Team/team	Team/team
Experience	members have	members have	members have	members have	members have
(10%)	no experience	used system at	have used	used system at	routinely
	with the system	least 10 times	system at least	least 20 times	utilized the
		combined	15 times	combined	system (more
			combined		than 30 times
					combined)
Availability	Rare	With extended	Notice needed	Short notice	Any time/no
for Testing	availability/	notice (weeks in	(within a	(same day)/	competition for
(30%)	high	advance)/	week) / fair	light	use
(competition for	moderate	competition for	competition for	
	use	competition for	use	use	
		use			
Test Duration	Test can only	Test can only	Test can only	Test can only	Test can be
(10%)	be conducted	be conducted	be conducted	be conducted	conducted for
	for 10 seconds	for 11 to 60	for 1 to 3	for 3 to 7	longer than 7
	or less at one	seconds at one	minutes at one	minutes at one	minutes at one
	time	time	time	time	time
Mass Flow	No means to	Mass flow can	Mass flow can	Mass flow can	Mass flow can
Control/Tun-	change/alter	be changed and	be changed and	be changed and	be changed and
ing	mass flow	altered with	altered with	altered with	altered with no
(20%)		significant	inconveniences	little	inconvenience
		inconveniences	and moderate	inconvenience	and no effort
		and effort	effort	and light effort	
Test	Delay greater	Delay between 1	Delay between	No more than 1	No delay
Turnaround	than 1 day	day and 5 hours	5 and 1 hour	hour between	between tests
Time (10%)	between tests	between tests	between tests	tests	
Manufacturing	2 months and	2 weeks to 2	A few days to 2	Fully	Fully
Time (20%)	beyond to have	months to have	weeks to have	functioning and	functioning and
. /	fully	fully	fully	ready for	ready for
	functioning and	functioning and	functioning and	testing within a	testing
	ready	ready	ready	few days	immediately

Factor	Weight	Air Tank System	Wind Tunnel	Electric Ducted Fan
Previous Experience	0.10	1	4	5
Availability for Testing	0.30	5	2	5
Test Duration	0.10	3	5	4
Mass Flow Control/Tuning	0.20	3	5	5
Test Turnaround Time	0.10	3	4	4
Manufacturing Time	0.20	2	5	3
Weighted Totals	•	3.2	3.9	4.4

5.

Inlet Trade Studies

Criteria	1	2	3	4	5
Anticipated	Little to No	Serious flow	Moderate	Theorized total	Guaranteed
Total	Anticipated	losses	anticipated	pressure	total pressure
Pressure	Pressure	anticipated	total pressure	recovery	recovery equal
Recovery	Recovery		recovery	nearing AFRL	to AFRL
(35%)				standards	standards
Anticipated	Major	Distortion in	Distortion is	Little to no	No distortion
Pressure	distortion,	Problematic	present	Distortion in	
Distortion	engine may fail	areas		non-	
(20%)				problematic	
				areas	
Ease of	No further	Data requires	Data requires	Data requires	Data allows for
Simulation	design relevant	processing and	processing and	processing but	easy
(15%)	data can be	design changes	allows for some	allows for	identification of
	obtained from	are based upon	identification of	improvement to	design concerns
	measurements	many	design changes	design	
		assumptions		iterations	
Ease of Man-	Sensors and	Complications	Complications	Minor easily	Sensors can
ufacturing	mounting	will occur	may occur	resolvable	easily be
(15%)	systems cannot	adapting to new	adapting to new	concerns	adapted for new
	be adapted to	design, concerns	design, concerns	transferring to	design
	new designs	may not be	are resolvable	new design	
		resolvable			
Technical	Structural or	Structure or	Structure or	Structure or	Structure or
Complexity	part failure	part needs	part requires	part requires	part needs no
(15%)	every test run	replacements	minor	monitoring but	monitoring and
		every test run	adjustments	no adjustments	little to no
			every test run	or replacements	maintenance
				every test run	

5.2.1 Passive vs. Active Inlet System

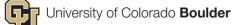
Factor	Weight	Passive System	Active System
Anticipated Total	0.35	4	4.5
Pressure Recovery			
Anticipated Pressure	0.20	4	4.2
Distortion			
Ease of Simulation	0.15	5	2
Manufacturing Ease	0.15	5	2
Technical Complexity	0.15	5	1
Weighted Totals		4.5	3.2

5.2.2 Inlet Cross Section and Shape

Factor	Weight	Non Circular	Circular
Anticipated Total Pressure Recovery	0.35	4.5	4
Anticipated Pressure Distortion	0.20	3.5	4
Ease of Simulation	0.15	2.5	4.5
Manufacturing Ease	0.15	3.5	4
Technical Complexity	0.15	3	4
Weighted Totals	3.6	4.1	

5.2.3 Length of Inlet

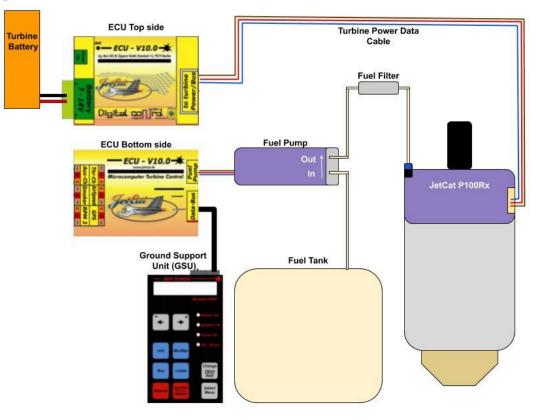
Factor	Weight	Shorter Inlet	Longer Inlet
Anticipated Total Pressure	0.35	4	4.5
Recovery			
Anticipated Pressure	0.20	4	4.5
Distortion			
Ease of Simulation	0.15	4	4
Manufacturing Ease	0.15	4	3.5
Technical Complexity	0.15	4	4
Weighted Totals		4	4.2


5.2.4 Area Ratio

Factor	Weight	CD Inlet	D Inlet
Anticipated Total Pressure Recovery	0.35	4	3
Anticipated Pressure Distortion	0.20	4.2	3.5
Ease of Simulation	0.15	4	4
Manufacturing Ease	0.15	3	4
Technical Complexity	0.15	3	4
Weighted Totals	3.7	3.6	

Frame Pricing Breakdown

Part	Number needed	Individual price	Total Price
Long sides (760 mm)	2	\$6.99	\$13.98
Cross members (230 mm)	6	\$3.96	\$23.76
Legs (6 in/152 mm)	4	\$3.96	\$15.84
Inlet Support (short 3in/76mm)	3	\$3.96	\$11.88
Inlet Support (tall 11 in/280 mm)	2	\$3.96	\$7.92
Connecting nuts	25	\$0.51	\$12.75 (or \$35.42 for package of 100)
Total	-	-	\$86.13

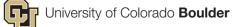

Equilow Flow Measurement Instrument

- Working closely with professor Trudy Schwartz to understand how to properly use the provided sensor
- Instrument output is a square wave and counting the frequency will provide the flow rate measurement
- Typically a microcontroller or NI DAQ with a counter/timer channel is used to read these types of square wave, encoder, etc., measurements
- In the past, teams have used the NI 9401 digital input module to read data
- Disposable to reduce clogging and inaccuracies. Will need to purchase new test sections for subsequent tests
- Max turbine flow rate: 0.36 L/min
- Min turbine flow rate: 0.06 L/min (at idle)
- 0045 model flow rate: 0.1 1.8 L/min (with minimum flow of 0.06 L/min)
- Pack of 10 Replacements (€ 400.00 ~ \$470)
- <u>https://www.equflow.com/product/pfa-click-housing-flow-sensor</u>
- <u>https://www.equflow.com/product/pfa-flow-tube-4-5-for-click-housing-tubeholder-clamp-10-pack-7-mm-hose-barb</u>

JetCat Engine FBD

Integrated Engine Test

Pressure Distribution

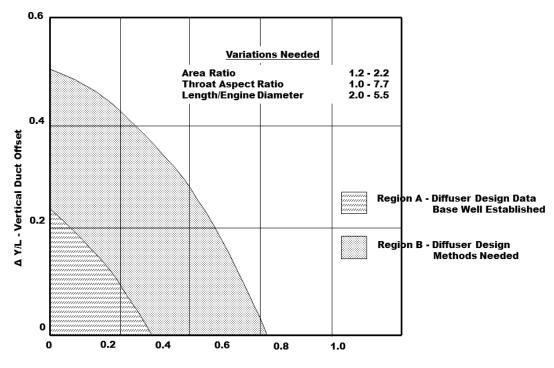

Continuous 2D pressure data from slotted inlet allows for pressure distribution modelling

Load cell

25 lb load cell which functions to measure the turbine's thrust. AES department provided equipment with Arduino to read data into computer program. Already integrated into test stand and functioning from previous years. Engine capable of 22.4 lbf of thrust.

Fuel Flow Sensor

The fuel flow sensor will only be required for integrated engine tests.



Prototyping Budget Breakdown

Category	Item	Price per Unit	Amount	Sum Total (USD)
Initial Parts List to Run Engine	Starter Motor Assembly, New Style	89.99	1	89.99
	3200mAh 3S 9.9V Smart LiFe ECU Battery Pack	49.99	1	49.99
TOTAL (USD)	EC3 Male to XT60 Female Adapter	1.99	1	1.99
143.96	EC3 Female to XT60 Male Adapter	1.99	1	1.99
Test Rig Structure	Long Sides (760 mm)	6.99	2	13.98
	Cross Members (230 mm)	3.96	6	23.76
	Legs (152 mm)	3.96	4	15.84
	Inlet Support - short (76 mm)	3.96	3	11.88
TOTAL (USD)	Inlet Support - tall (280 mm)	3.96	2	7.92
86.13	Connecting Nuts	0.51	25	12.75
Fuel	Jet-A Fuel (gal)	1.71	5	8.55
TOTAL (USD)	Oil (litre)	30	1	30
38.55				
DAQ & Instrumentation	TBD			
TOTAL (USD)				
0				
Inlet Manufacturing Experimentation	TBD			
TOTAL (USD)				
0				

Inlet Length Guide

Δ Z/L - Horizontal Duct Offset

Preliminary Design Review

Vortex Generator Example Visualization [10]

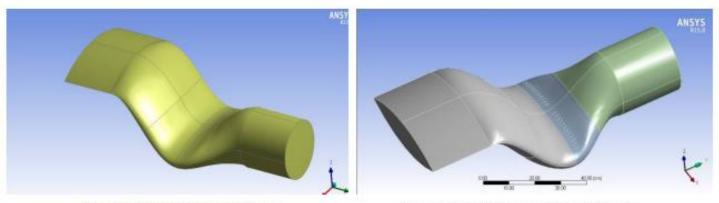


Figure-1 Baseline serpentine duct model

Figure-2 Serpentine duct with vortex generators