

Offset S-duct PRopulsion Inlet

Team:

- Tim Breda
- Joey Derks
- Zak Dmitriyev
- Ryan Joseph
- Dishank Kathuria
- Harrison Methratta
- Joshua Seedorf
- Michael Vogel
- William Watkins
- John Wissler

Advisor: Customer: Laboratory POC: Professor John Mah Air Force Research OSPRI

Capt. Riley Huff

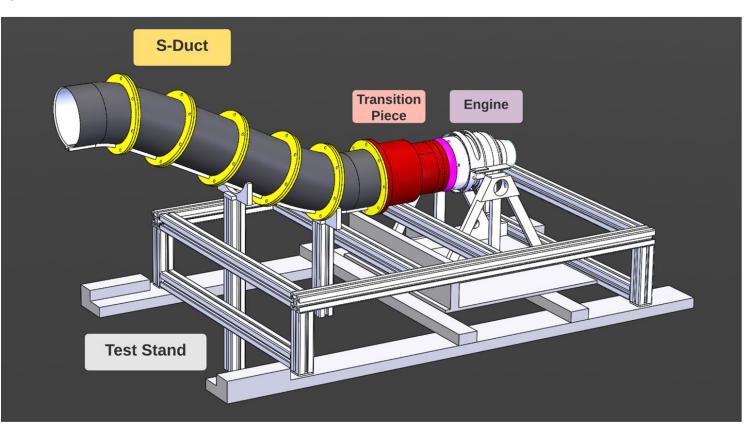
OSPRI

Section 1

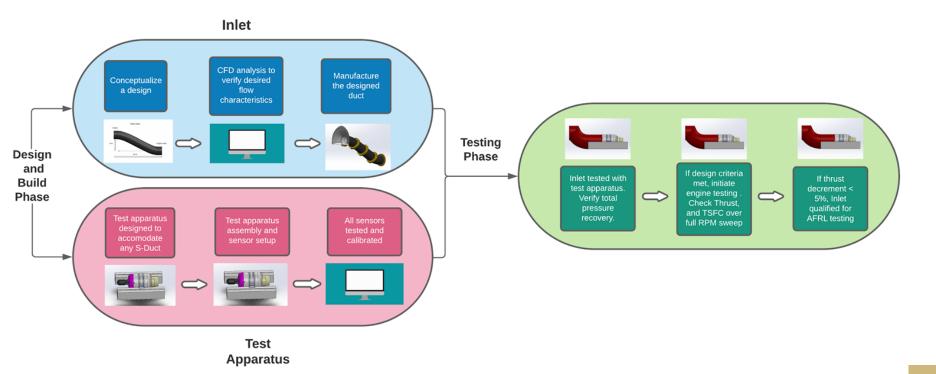
Overview

Overview Manufacturing Budget & Schedule

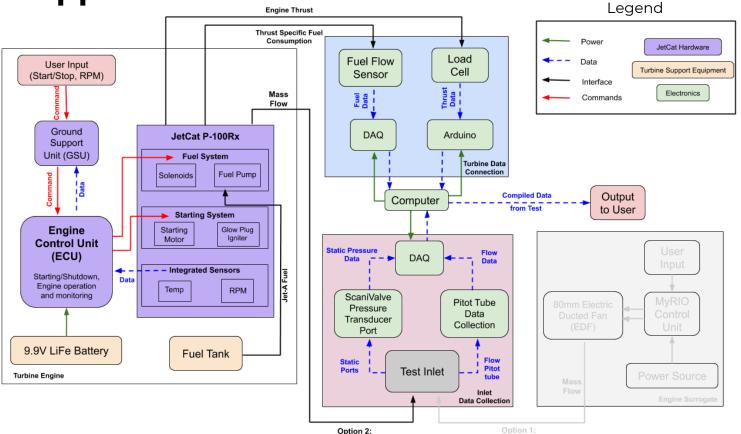
Problem Statement


The purpose of the OSPRI project is to:

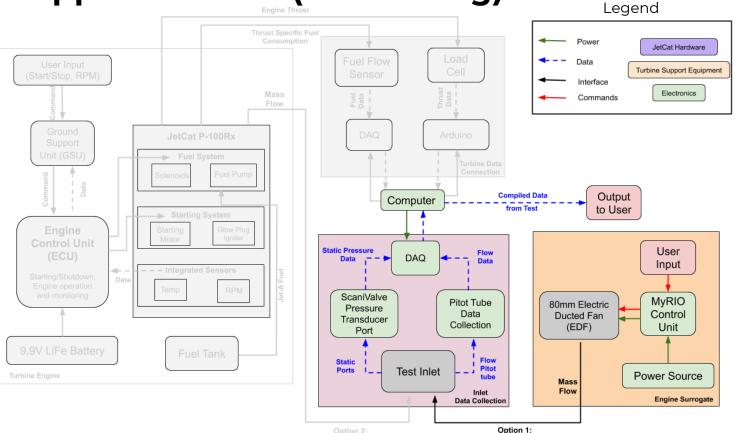
- Design and build an S-duct inlet for use with the JetCat P100-RX turbojet engine, for the Air Force Research Lab's (AFRL's) Aerospace Propulsion Outreach Program (APOP)
- Additionally, OSPRI will design and build a testing apparatus to measure total pressure and distortion distributions in the inlet, and measure fuel flow and thrust produced by the JetCat


OSPRI

Project Model



Concept of Operations (CONOPS)



Test Apparatus FBD

Test Apparatus FBD (For Testing)

Levels of Success

Level	Objective					
1	A test rig is designed and manufactured that is capable of measuring all parameters as outlined in the Design Requirements					
2	Experimental Verification of the test rig's ability to measure thrust and TSFC					
3	Experimental Verification of the test rig's ability to characterize the flow within a test inlet					
4	Experimental verification of an inlet with total pressure recovery >90%					
5	Experimental verification of nominal engine operation with level 4 inlet attached, with decrements to thrust and TSFC of no more than 10%					
6	Experimental verification of nominal engine operation with inlet attached, with decrements to thrust and TSFC of no more than 10%, and total pressure recovery ≥98%					

Critical Project Elements (Test Apparatus)

1. LabView:

Three main functions from LabView control: Sensor data collection, EDF closed loop control, and

turbine related sensor data collection

1. Mass Flow Surrogate:

Engine condition replication using Electric Ducted Fans allows for more inlet testing

- 1. Support hardware and infrastructure: Test apparatus anchor point providing support for inlet, facilitates EDF and turbine tests
- 1. JetCat integrated testing:

Testing to calibrate and increase mass flow surrogate fidelity, integrated testing

with

inlet to provide thrust and TSFC data (customer requested)

Critical Project Elements (Inlet)

1. Print Inlet Sections:

Print inlet sections in a timely and cost effective manner

1. Print Transition Pieces:

Print transition pieces provided by AFRL

1. Assembly:

Assemble the printed sections and get inlet ready for testing

1. Iterative re-design and second printing: Utilize data gathered to manufacture improved inlet

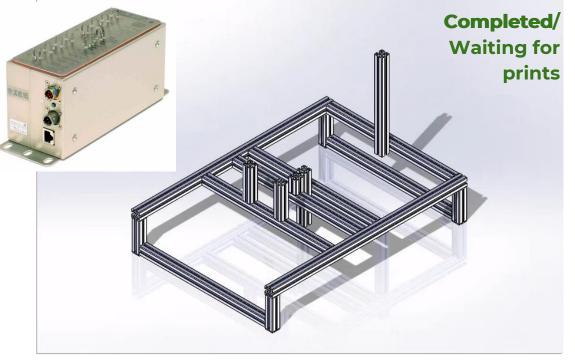
OSPRI

Section 2

Manufacturing

OSPRI

Section 2.1


Test Apparatus Manufacturing

Test Apparatus Breakdown/Overview

- Inlet test frame
- Inlet cradles
- Power plant to inlet transition piece
- Sensor suite
 - Scanivalve
 - Pitot probe
 - Static pressure ports
 - LabView controlled
- Electric Ducted Fan (EDF)
- Turbine test stand
- JetCat P100-Rx
- AFRL designed transition piece

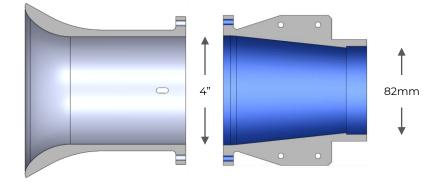
Test Apparatus Model Overview

Test Apparatus Status Overview

Frame Assembly	Completed (Due 24 Jan)
Transition piece/cradles	Completed (Due 24 Jan)
EDF Integration and Verification	On Track (Due 5 Feb)
Labview Development and Verification	On Track (Various Due dates)
Sensors Verification	On Track (Due 3 Feb)
JetCat Engine and Testing	Setback (Various Due dates)

Frame Assembly Status (Completed)

- Assembly completed
- All sliding posts yet to be tightened
 - Internal dimensions still variable
- Extremely rigid, lightweight
- To be moved to Aero Building soon



Transition pieces/cradles status completed

- JetCat Transition Piece
 - Design provided by AFRL
 - Completed 24 Jan
- EDF Transition Piece
 - Completed 24 Jan
- Straight bell-mouth inlet
 - Mass flow calibration
 - Completed 24 Jan
- Cradles
 - Bolted design for EDF Transition
 - Hose Clamp design for Jetcat
 - <u>Completed 24 Jan (print in progress)</u>

Straight bell-mouth Inlet and EDF Transition piece

Cradle for the Jet Engine Transition Piece

Cradle for the EDF Transition piece

EDF Integration Status On Track (Due 5 Feb)

- EDF and ESC (Electronic Speed Controller)
 - The finance department did not order last semester
 - Ordered again and <u>delivered January 27th</u>
- 6 cell LiPo battery
 - Provided by the electronics lab
- Maximum mass flow validation
 - Targeting 0.23 kg/s
 - Using a servo tester for control
- Mass flow calibration
 - Using Labview for precise control

LabView Development Status (On Track)

- Stages of Development
 - Stage 1: Scanivalve functionality (Completed Jan 31st)
 - For pressure measurements (Sample rate: 500Hz)
 - Extract required existing Wind Tunnel code
 - Stage 2: EDF Control functionality (Complete by Feb 12th)
 - For fan flow control
 - Integrate cDaq & NI 9401 (digital I/O module)
 - Stage 3: JetCat Fuel Flow Sensor functionality (Complete by Feb 21st)
 - For fuel flow measurements
 - Integrate NI 9215 (analog in module)

LabView Development Status cont (On Track)

- LabView Software
 - Working closely with Josh Mellin
 - Troubleshooting and debugging
 - Tasks to do:
 - Finalize software for fuel flow
 - Finish VI interface to connect with TA rig
 - Verify data acquisition outputs (graphs, plots, etc)
 - cDaq (+ PWM Module, Frequency Module): Checked Out
 cDAQ-9171, NI-9401, NI-9215 w/ BNC modules

Sensors & DAQ Status On Track (Due 3 Feb)

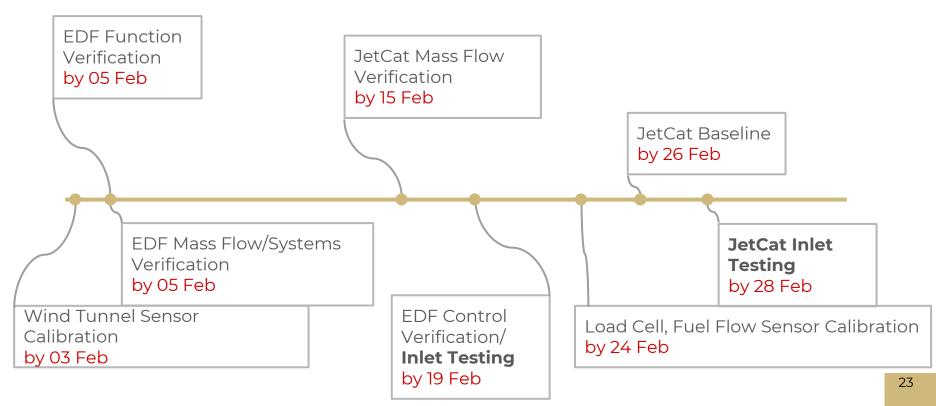
- cDaq (+ Digital Module, Analog Module): Checked out
- Labview Module Development: Development underway
- Sensors : Acquired
 - Pitot Probe: Acquired
 - Slotted Inlet Mount: Designed & Printed
 - Fuel Flow Probe: Acquired
- Scanivalve: Available upon request

Upcoming tests

- Wind tunnel sensor calibration test: (Complete by 3 Feb)
 - Calibration of pitot probe using 6 or more known airspeeds in the windtunnel

JetCat P-100Rx Status (Setback)

- Engine issues (warranted services by JetCat Americas) (Est. return: 12 Feb)
 - *Fall semester:* Starter motor and front sensor board burnt out, sticky bearings
 - > 27 Jan: After servicing, surface mounted chip fell off of front sensor board
- Upcoming tests
 - JetCat initial verification test: (Complete by 27 Jan moved to 15 Feb)
 - Unmodified test to verify functionality with CU facilities and procedure familiarization
 - JetCat mass flow verification test: (Complete by 15 Feb)
 - Collect mass flow data through entire RPM sweep to calibrate mass flow surrogate
 - JetCat baseline test: (Complete by 26 Feb)
 - Collect thrust data and fuel flow (TSFC) data through entire RPM sweep



Test Apparatus Future Outlook

System 1: EDF testing						System 2: JetCat Turbine testing					
Task number	Due date	Task/description	Dependent on task:	Building access required	Complete	Task number	Due date	Task/description	Dependent on task:	Building access required	Complete
E.1.a	24 Jan	EDF transition piece design/print	N/A	Ν	Y	J.1.a	24 Jan	AFRL transition piece print	N/A	Ν	Y
E.1.b	24 Jan	EDF/Transition Piece cradles design/print	N/A	Ν	Y	J.1.b	24 Jan	Bell mouth design/print	N/A	Ν	Y
E.1.c	24 Jan	Bell Mouth design/print	N/A	N	Y	J.1.c	24 Jan	Transition piece print	N/A	N	Y
E.1.d (TA.1)	24 Jan	Inlet frame assembly	N/A	N	Y	J.1.d (TA.1)	24 Jan	Inlet frame assembly	N/A	N	Y
E.2 (TA.2)	31 Jan	Labview scannivalve functionality	N/A	Y	Y	J.3 (TA.2)	31 Jan	Labview scannivalve functionality	N/A	N	Y
E.3 (TA.3)	3 Feb	Wind tunnel sensor calibration test	E.2 (TA.2)	Y		J.4 (TA.3)	3 Feb	Wind tunnel sensor calibration test	J.3 (TA.2)	Y	
E.4	5 Feb	EDF systems functionality test with temporary control and frame integration	E.1	?		J.2	(Org 27 Jan) 15 Feb	JetCat verification run	N/A	Y	
E.5	10 Feb	EDF mass flow verification test	E.1, E.2, E.3, E.4	Y		J.5	15 Feb	JetCat mass flow verification test	J.1, J.2, J.3, J.4	Y	
E.6	12 Feb	Labview EDF control functionality	E.4	Ν		J.6	21 Feb	Labview Equiflow fuel flow sensor functionality	N/A	N	
E.7.a	19 Feb	EDF control verification tests	E.6, J.5	Ν		J.7	24 Feb	Flow sensor/load cell calibration test	J.6	Y	
E.7.b	19 Feb	Turbine to EDF mass flow calibration tests	E.1, E.2, E.3, E.4	Y		J.8	26 Feb	JetCat baseline test	J.3, J.4, J.5, J.6, J.7	Y	
E.8	19 Feb	Inlet testing	E.1-E.8	Y		J.9	26 Feb	Inlet testing	J.1 - J.8, E.8	Y	
											22
		Indicates test which nee	eds scheduling			Current as o	f 31 Jan 2021				

Test Apparatus Future Outlook

Challenges

Timeline

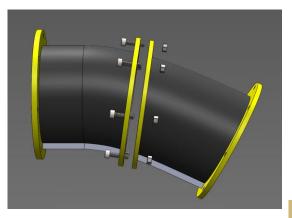
- Need to construct and perform verification and validation before any inlet testing can begin
- Quicker test apparatus is ready, the more inlet iterations can be tested
- Repeated issues with JetCat P-100RX
- Integrating all sensors into cohesive LabView package

OSPRI

Section 2.2

Inlet Manufacturing





Initial Plan

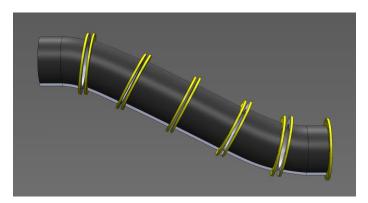
- → Originally planned FDM printers for prototype
 - Extensive post-processing
 - High chance of inconsistent surfaces
- → Switched gears to SLA
 - Planned for access to 3 FormLabs SLA printers
 - Inlet made to be sectioned to fit smaller print volume
- → Assembly
 - Using 7 M5 bolts and nuts

Assembly

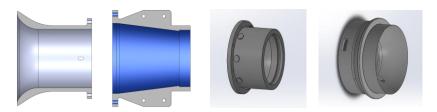
Status

- → Currently, initial design is being printed by the PILOT
 - Finished first of six inlet sections **On Track (Due Feb 14)**
 - Paused queue in order to print parts need for test assembly
 - Dealing with upcoming issues with manufacturing

Inlet Section



APOP Transition (Inlet Side)


Challenges

University of Colorado Boulder

- → Printer Reliability Problems
 - IdeaForge printers unuseable
 - Working with only 1 printer
- → Print Quality
 - ~25 micron 50 microns
 - Limited Print volume
- → Part Prioritization
 - Transition pieces then inlet
 - 10 SLA parts in queue

Inlet Sectional View

Transition Pieces

OSPRI

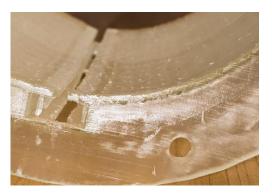
Challenges

- → Cost
 - Outside vendor quotes
 - ~\$800 for just 4 parts
 - ~\$600 in ASEN machine shop for all 10 parts

Line Item	Service	Description	Quantity	Unit	Price	Line Total
1	Print	50 um EDF transition and Inlet and Inlet transition and Jetcat 1x each Hard Black-Photocentric	1.00	Each	\$780.09	\$7 80.09
2	Sanding		2.00	Hours	\$35.00	\$70.00
3	Support Removal		2.00	Hours	\$10.00	\$20.00
4						
5						

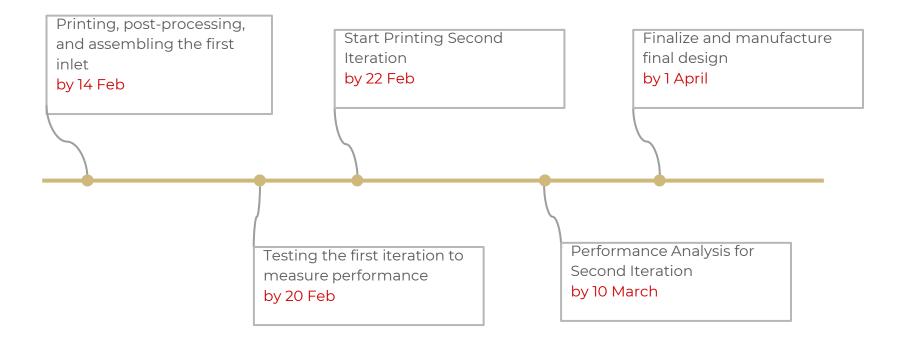
The 3D Printing Store Quote

- → Manufacturing Defects
 - Crack along flange of printed Inlet section
 - Will fix with epoxy patch



Challenges

- → Post-Processing
 - Sanding inside surface as needed
 - Support structure dependent on individual print


Transition Section

Inlet Section

Inlet Timeline

OSPRI

Section 3

Budget & Schedule

Overview Manufacturing Budget Schedule

\$1000

\$2,000

\$500

\$500

\$1,000

Cost Plan

Unused Funds - Plenty of extra room in budget to be reallocated

Inlet Manufacturing - (\$560) Enough room for ~4 prints at current estimates

Test Apparatus - (\$203) Test stand fully purchased, room for another if necessary

Instrumentation - (\$229) Most instruments borrowed from Aero Dept, plenty of budget in case

Engine Maintenance - (\$586) Engine sent to JetCat & fixed twice, extra budget given engine

Major Costs

Inlet

- SLA Printing 6 pieces (\$50 \$60 each) ~ \$360
- Transition Pieces 4 pieces (\$40 each) ~ \$160
- Bolts, nuts, and tape ~ \$40
- Total budget for Inlet iterations: \$2000
- ▶ Leftover money: \$1440

Test Apparatus

- Mounting Cradles 4 (\$25-30 each) ~ \$120
- Set screws, nuts, hardware ~ \$30
- Total budget for Test Apparatus: \$500
- Leftover money: \$130

Schedule

					7 14 21 28 7 14 21 28 4 11 18 25 2
OSPRI	start	end	Oh	0%	
Manufacturing	01/17/21	03/31/21	Oh	0%	Manufacturing
MSR Deadline	02/08	02/08	0	0%	MSR Deadline
Inlet	01/18/21	03/31/21	Oh	0%	iniet
Manufacture Initial Inlet Design	01/18	02/12	0	0%	Manufacture Initial Inlet Design
Second Inlet	02/13	02/22	0	0%	Second Inlet
Finalize Inlet Design	03/01	03/14	0	0%	Finalize Inlet Design
Manufacture Final Design	03/15	03/31	0	0%	Manufacture Final Design
Test App	01/17/21	02/24/21	Oh	0%	Test App
Configure/Test EDF control	01/17	02/11	0	0%	Configure/Test EDF control
Sensor calibration tests	01/30	02/24	0	0%	< Sensor calibration tests
Test EDF massflow	02/12	02/18	0	0%	Test EDF massflow
Fit AFRL transition piece to engine	02/01	02/15	0	0%	Fit AFRL transition piece to engine
Testing	01/25/21	03/08/21	Oh	0%	Testing
TRR Deadline	03/08	03/08	0	0%	TRR Deadline
Perform initial turbine run	01/25	02/15	0	0%	< Perform initial turbine run
JetCat massflow verification test	02/08	02/15	0	0%	JetCat massflow verification test
Turbine sensor calibration tests	02/16	02/23	0	0%	Turbine sensor calibration tests
Turbine baseline test	02/24	02/25	0	0%	Turbine baseline test
Test First Inlet	02/13	02/18	0	0%	Test First Inlet
Test Second Inlet	02/23	02/28	0	0%	Test Second Inlet
Spring Final Review	03/29/21	04/19/21	Oh	0%	Spring Final Revie
SFR Slides	03/29	04/11	0	0%	SFR Slides
SFR Edits	04/12	04/16	0	0%	SFR Edits
SFR Run-throughs	04/12	04/18	0	0%	SFR Run-throughs
SFR Due	04/19	04/19	0	0%	SFR Due-
Project Final Report	04/19/21	05/05/21	Oh	0%	Project Final Report
PFR Writeup	04/19	04/25	0	0%	PFR Writeup
PFR Edits	04/27	05/03	0	0%	PFR Edits
PFR Due	05/05	05/05	0	0%	PFR Du

Resources

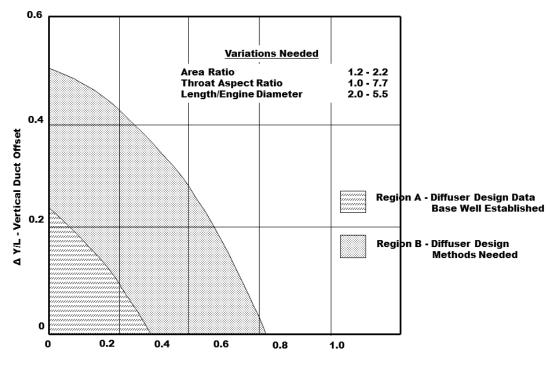
- [1] Lee, J., Cho, J. "Effect of aspect ratio of elliptical inlet shape on performance of subsonic diffusing S-duct," J Mech Sci Technol 32, 1153–1160 (2018). https://doi.org/10.1007/s12206-018-0218-5.
- [2] Anderson, J., Introduction to Flight Eighth Edition, New York City:McGraw Hill education, 2016
- [3] Sun, S., Guo, R.W. 2006. "Serpentine Inlet Performance Enhancement Using Vortex Generator Based Flow Control," Chinese Journal of Aeronautics
- [4] Tanguy, G. 2016. "Passive flow control study in a convoluted intake using Stereo Particle Image Velocimetry," The French Aerospace Lab
- [5] Kirk, A. M. 2006. "Active flow control in an advanced serpentine jet engine inlet duct Master's thesis", Texas A&M University
- [6] Shaw, R., "The Influence of Hole Dimensions on Static Pressure Measurements," Department of Mechanical Engineering, University of Liverpool, 1 July 1959.
- [7] "Delta-V 32 80mm (EFLDF32) Fan Unit Instructions," Horizon Hobby, retrieved November 12, 2020.
- [8] Reichert, B.A., and Wendt, B.J., 1994, "Improving Diffusing S-Duct Performance by Secondary Flow Control," AIAA 32nd Aerospace Sciences Meeting and Exhibit.
- [9] Basawaraj, Hosur, S., 2016. "CFD Analysis of Serpentine Inlet Duct to Enhance the Flow Properties Using Vortex Generator," International Journal of Innovative Research in Science, Engineering and Technology
- [10] Rabe, A. 2003. "Effectiveness of a Serpentine Inlet Duct Flow Control Scheme at Design and Off-Design Simulated Flight Conditions," Virginia Polytechnic Institute and State University
- [11] Anderson, B. H., and Gibb, J., "Vortex Generator Installation Studies on Steady State and dynamic Inlet Distortion," AIAA Paper 96-3279, July 1996.
- [12] Dudek, J. C., "Empirical Model for Vane-Type Vortex Generators in an Navier-Stokes Code", AIAA Journal, Vol. 44, No. 8, pp 1779-1789. August 2006.

Resources

[13] HARRINGTON-CRESSMAN, PETER J.M., "AIRCRAFT SYSTEM COMPARTMENT DIAGRAM." _ Retrieved 10 September 2020. https://www.airlinereporter.com/2015/09/requiem-trijetmasterpiece-lockheed-I-1011-tristar/aircraft-system-compartment-diagram/

OSPRI

Additional Slides



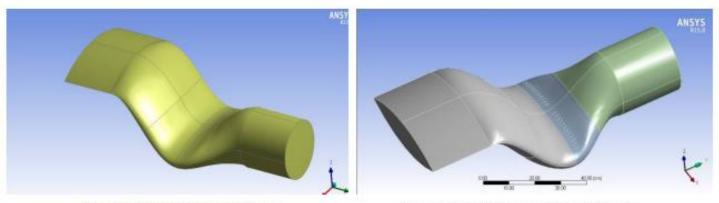
OSPRI

Inlet Slides

Inlet Length Guide

Δ Z/L - Horizontal Duct Offset

Vortex Generator Example Visualization [10]



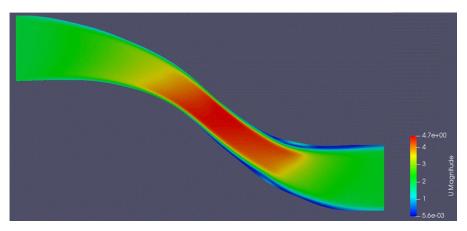
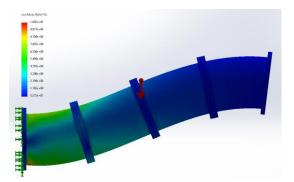
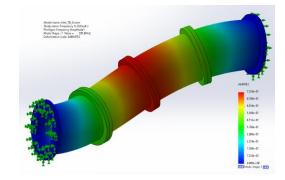
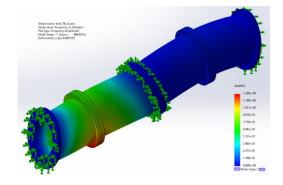

Figure-1 Baseline serpentine duct model

Figure-2 Serpentine duct with vortex generators


CFD Results (Design 05) using icoFoam




Re#: ~2350 (Transition-Turbulent Flow)

Stress and Vibration Analysis

• Free standing Static

- Restrained at ends only
- 1st failure mode at 396 Hz

- Restrained at ends and throat
- 1st failure mode at 986 Hz
- Tests conducted with Formlabs Standard (Clear) material properties
- Inlet: L = 24 in AR = 1

OSPRI

Challenges

- → Crack in flange of Inlet section
 - 2 cm length
 - Does not extend to the actual inlet
 - Pressing forward with use

Top View

Outsourced Quotes

→ The 3D Printing Store

Quote

	5DPS	
3 D	PRINTING STORE* Powered By ACCUCODE	

Customer Info:					
Company					
Client Tim Breda					
Email	Timothy.Breda@colorado.edu				
Number					

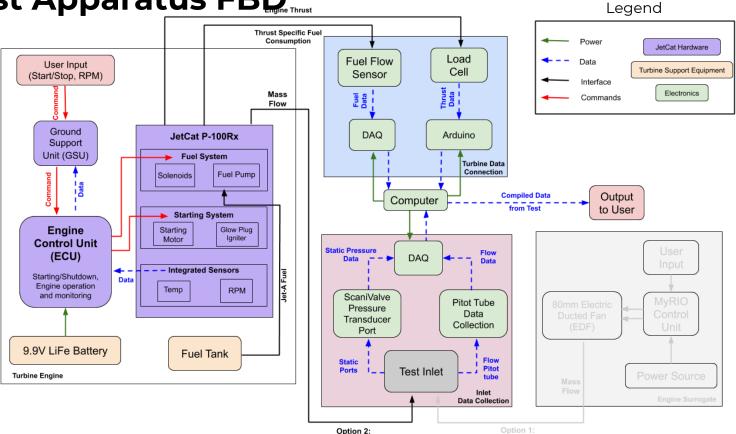
Quote/Project Description

50 um EDF transition and Inlet and Inlet transition and Jetcat 1x each Hard Black-Photocentric

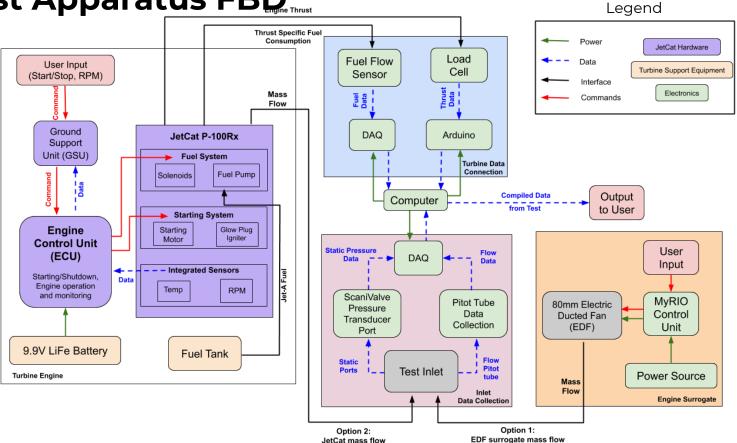
Line Item	Service	Description	Quantity	Unit	Price	Line Total
1	Print	50 um EDF transition and Inlet and Inlet transition and Jetcat 1x each Hard Black-Photocentric	1.00	Each	\$780.09	\$7 80.09
2	Sanding		2.00	Hours	\$35.00	\$70.00
3	Support Removal		2.00	Hours	\$10.00	\$20.00
4						
5						

OSPRI

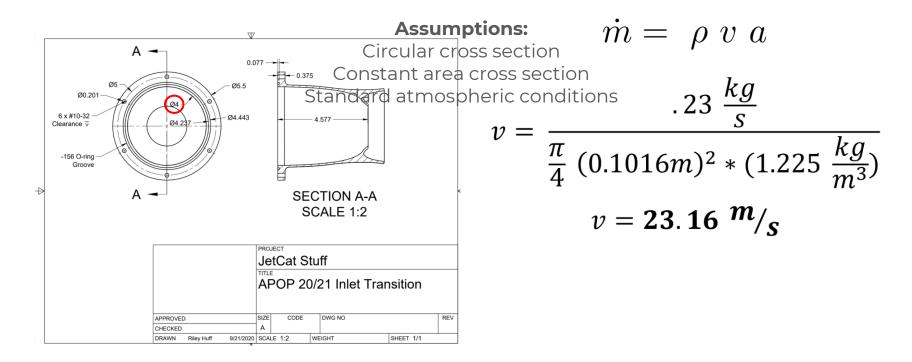
Test Apparatus Slides


Test Apparatus FBD

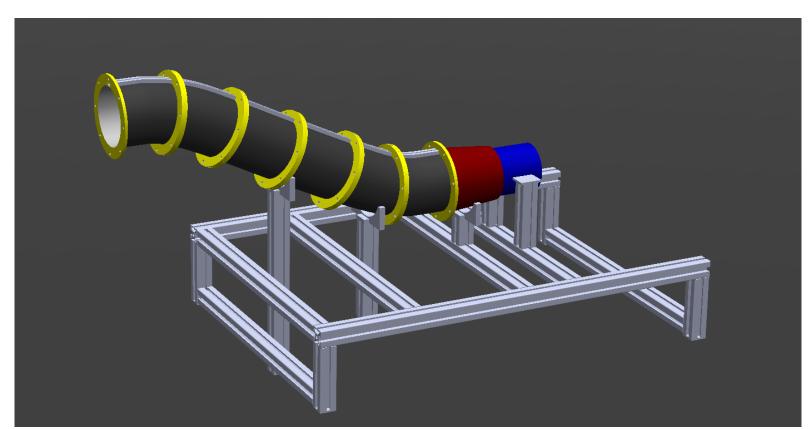
EDF surrogate mass flow

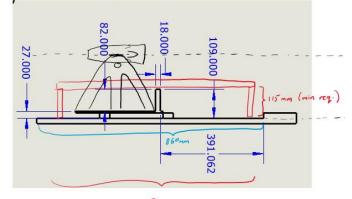

Test Apparatus FBD

JetCat mass flow

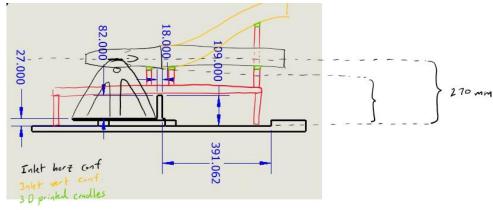


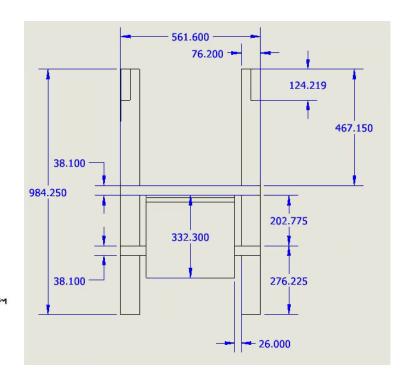
Test Apparatus FBD


Mass Flow Surrogation


OSPRI

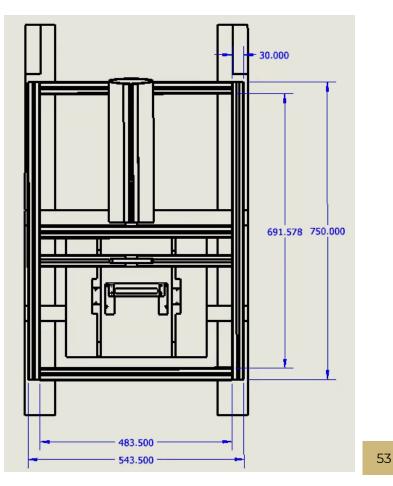
Inlet Testing with EDF





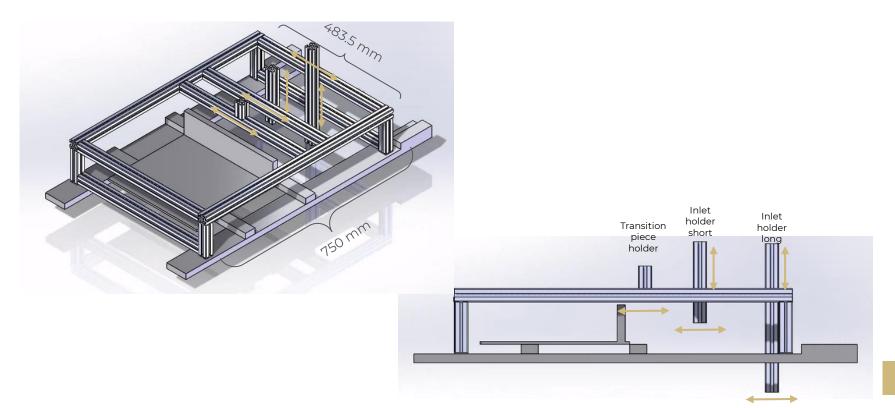
Test Stand Design Process

750 mm



3.000 -

Test Stand Frame


330.000 50.000 -30.000 - 180.000 112.000

OSPRI

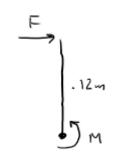
Test Stand Frame

Test Stand Design Process

Item	Quantity	Length (mm)	Pice Per	Price Total
Struts Across	6	483.5	\$5.31	\$31.86
Struts Along	2	750	\$8.25	\$16.50
Vertical Stand Supports	4	112	\$4.47	\$17.88
EDF Trans Piece	1	50	\$4.47	\$4.47
Inlet Trans Piece	1	50	\$4.47	\$4.47
EDF Holders	2	120	\$4.47	\$8.94
Inlet Holder Short	2	180	\$4.47	\$8.94
Inlet Holder Long	1	330	\$3.63	\$3.63
End Caps	4	HFC6-3030	\$1.79	\$7.16
EDF mount L brackets	6	HBLFSSW6	\$3.13	\$18.78
Frame L Brackets	min of 40 (11 packs)	-	\$1.98 (4 pack)	\$21.78
Channel Nuts	min of 80	HNTT6-4	package of 100	\$36.56
M4 screws 10 mm	min of 80 (40 packs)	10	0.98 (2 pack)	\$39.20
M4 screws 12 mm (EDF)	min of 8 (5 packs)	12	0.98 (2 pack)	\$4.90
			Total	\$225.07

Test Stand Design Process

M = (dist)(Force) $F = \sim 2.3 \ kg = 22.5553 \ N$ $M = (120 \ mm)(22.5553N) = 2706.64 \ N \cdot mm$


Flexure Formula:
$$\sigma_b = \frac{M \cdot (y \text{ dimension})}{I_y}$$

From 30x30 Aluminum Extrusion Documentation:

$$I_y = 2.83 \ x \ 10^4 \ mm^4$$

$$y \ dimension = 30 \ mm$$

$$\sigma_b = \frac{(2706.64 \ N \cdot mm)(30mm)}{2.83 \ x \ 10^4 \ mm^4} = 2.86923 \ N/mm^2$$

Mechanical Properties of Aluminum Extru

	J	JIS Standard (Reference)		
Series	HFS Series			
Material (JIS Symbol)	A	A6N01SS-T5 Aluminum Alloy		
Tensile Strength (N/mm ²)		245 or more		
Proof Stress (N/mm ²)		205 or more		
Longitudinal Elastic Modulus (N/mm ²)	69972			
Brinell Hardness (HB)	88			
Surface Treatment	Anodize 9µm or more			

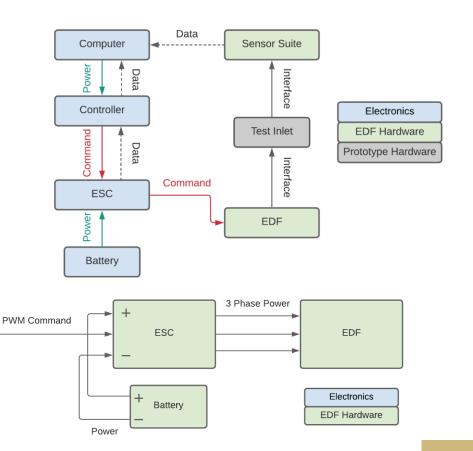
20ms

2ms

Controller

EDF Control

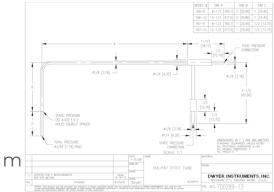
Electronic Speed Control (ESC)


Exact components dependant on EDF

Min RPM

Max RPM

ESC Signal for RC EDFs


• 50 Hz PWM, 5-10% duty cycle

Total Pressure Measurement: Pitot Probe

- Dwyer 167-6 pitot probe
 - ¼8th inch diameter probe
 - 1.5 inch probe length
 - 6 inch insertion length
- $0.00098 \le A_{probe}/A_{inlet} \le 0.0099$
 - Area of probe over area of inlet at minimum and m
 - Minimal flow interference
- Probe accurate to within 0.5%
 - Only accurate at minimum of 5 m/s airflow
 - Accuracy converges above this speed
- Total & static pressure measured using scanivalve

Equilow Flow Measurement Instrument

- Working closely with professor Trudy Schwartz to understand how t
- Instrument output is a square wave and counting the frequency wi
- Typically use a microcontroller or NI DAQ with a counter/timer char square wave, encoder, etc measurements.
- In the past teams have used the NI 9401 digital input module to rea
- Disposable to reduce clogging and inaccuracies. Will need to purch tests.
- Max turbine flow rate: 0.36 L/min
- Min turbine flow rate: 0.06 L/min (at idle)
- 0045 model flow rate: 0.1 1.8 L/min (with minimum flow of 0.06 L/m
- Pack of 10 Replacements (€ 400.00 ~ \$470)
- https://www.equflow.com/product/pfa-click-housing-flow-sensor
- https://www.equflow.com/product/pfa-flow-tube-4-5-for-click-housing-tul

OSPRI

Test Apparatus Spending

Category	Item	Unit Price (USD)	Amount	Total Price
Test Stand Aluminum	Struts Across	\$5.31	6	31.86
	Struts Along	\$8.25	2	16.5
	Vertical Stand Supports	\$4.47	4	17.88
	EDF Trans Piece	\$4.47	1	4.47
	Inlet Trans Piece	\$4.47	1	4.47
	EDF Holders	\$4.47	2	8.94
	Inlet Holder Short	\$4.47	2	8.94
	Inlet Holder Long	\$3.63	1	3.63
Test Stand Accessories	End Caps	\$1.79	4	7.16
	EDF mount L brackets	\$3.13	6	18.78
	Channel Nuts	\$36.56	1	36.56
	M4 Screws 10 mm	\$0.98	40	39.2
	M4 Screws 12 mm	\$0.98	5	4.9
	Corner L Bracket (1)	\$2.13	2	4.26
	Corner L Bracket (2)	\$2.42	10	24.2
	Set Nut (M3-0.5)	\$0.56	6	3.36
	Set Screw (M3-0.5x6)	\$0.56	6	3.36
	Shipping	\$19.36	1	19.36
Total				203.29

Instrumentation & Maintenance Spending

Category	Item	Unit Price (USD)	Amount	Total Price
Massflow Surrogate	EDF	\$39.99	1	39.99
	ESC	\$35.49	1	35.49
Test Stand Instrumentation	Pitot Tube	\$93.00	1	93
	Tubing	\$0.60	100	60
Total				228.48
Category	Item	Unit Price (USD)	Amount	Total Price
Initial Engine Parts	Starter Motor	\$89.99	1	89.99
	LiFE Battery	\$49.99	1	49.99
	EC3 M to XT60 F Adapter	\$1.99	1	1.99
	EC3 F to XT60 M Adapter	1.99	1	1.99
Packaging Supplies	Bubble Wrap	\$6.62	1	6.62
	Cardboard Box	\$6.99	1	6.99
	Sales Tax	\$1.20	1	1.2
Turbine Ground Support	4mm tubing	\$1.29	3	3.87
	Festo Ball Valve 4mm	\$21.47	2	42.94
	Festo Blanking Cap 4mm	\$2.21	3	6.63
	iTrap40 Classic Pro 4mm	\$85.54	1	85.54
	Plastic Syringe	\$10.38	1	10.38
	Diesel Fuel Can	\$26.15	1	26.15
Shipping	Outbound (1)	\$34.84	1	34.84
	Outbound	\$117.00	1	117
	Inbound	\$50.00	2	100
Total				586.12

Test Plan

Test	Materials	Location	Special Access
TA Turbine Operation verification	JetCat Engine	Engine Test Cell	Yes - R2R Schedule*
TA Instrument Verification	Test App, Wind Tunnel	Aero Wind Tunnel	Yes - R2R Schedule*
TA Turbine mass flow test	JetCat Engine, Test App	Engine Test Cell	Yes - R2R Schedule*
TA EDF Verification	Test App, EDF	Aero Wind Tunnel	Yes - R2R Schedule*
TA Turbine sensors calibration test	Test App, Inlet, JetCat	Engine Test Cell	Yes - R2R Schedule*

* - R2R Schedule only allows Team OSPRI to be on campus 2 days/week

Test Plan cont.

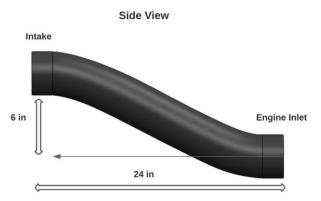
Test	Materials	Location	Special Access
Inlet EDF Testing	Test App, Inlet, EDF	Wind Tunnel	Yes - R2R Schedule*
TA Turbine baseline test	JetCat Engine, Test App	Engine Test Cell	Yes - R2R Schedule*
Inlet Turbine integrated inlet testing	JetCat Engine, Test App, Inlet	Engine Test Cell	Yes - R2R Schedule*

* - R2R Schedule only allows Team OSPRI to be on campus 2 days/week

OSPRI

Management Slides

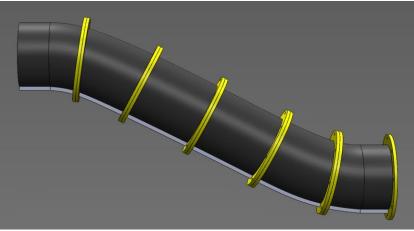
Functional Requirements


OSPRI functional requirements stem from the APOP's Statement of Work provided to the CU Aerospace Engineering Department and the OSPRI team:

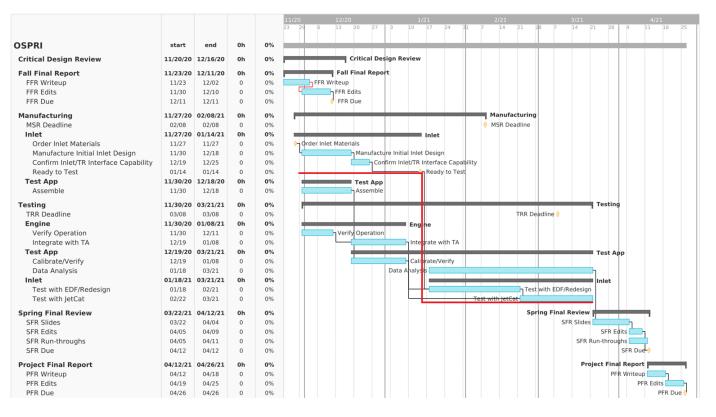
- 1. Design, build, and validate an S-duct inlet for use with the JetCat P100-RX turbojet engine that performs according to AFRL's objectives.
- 2. Design, build, and validate a test rig capable of measuring critical inlet performance metrics and inform inlet design.

Inlet Design Requirements

- 1. The inlet shall interface with the AFRL transition piece
- 2. The nearest outside edge of the capture area sha centerline of the engine.
- 3. The inlet shall have a total pressure recovery ≥989 engine.
- 4. The maximum thrust decrement of the engine sł attached.
- 5. The maximum TSFC increment of the engine sha attached.
- 6. The inlet shall have an axial length between 20 incres and 20 incres, with the objective being 20 inches (or shorter, if feasible).*
 - a. Requirements changed from PDR


Test Apparatus (TA) Design Requirements

- 1. The TA shall be capable of mapping the total pressure distribution at the inlet entrance, the Aerodynamic Interface Plane (AIP), and between the first and second turns, at a minimum.
- 2. The TA shall be capable of mapping the distortion distribution throughout the inlet.
- 3. The TA shall be capable of measuring key JetCat engine parameters.
 - a. TA shall be capable of measuring the thrust produced by the engine.
 - b. TA shall be capable of measuring the Thrust Specific Fuel Consumption (TSFC) of the engine.
- 4. The TA shall be capable of interfacing with multiple different inlet designs.


Timeline Moving Forward

- Printing, post-processing, and assembling the first inlet (Complete by Feb. 14th)
- 2. Testing the first iteration to measure performance (Complete by Feb. 20th)
- Start Printing the second iteration (Complete by Feb. 22nd)
- Performance analysis for second iteration (Complete by Mar. 10th)
- Finalize and Manufacture Final Design (Complete by Apr. 1st)

Work Plan

