OSPRE Test Readiness Review

LOCKHEED MARTIN

OVERVIEW

Project Purpose

- Customer: Lockheed Martin
- Objective: To use optical relative navigation to determine a spacecraft's state vector and state vector error during a lunar transit
- CubeSat based on NASA CubeQuest
 Challenge
 - Lunar mission
 - Launch on SLS EM-1

Mission CON-OPS

Specific Objectives

4.208	Level 1	Level 2	Level 3
Data Processing	OSPRE shall output a state vector for full Moon and Earth disks and shall gather data for no longer than an hour at a time.	OSPRE shall estimate the error of the state vector.	OSPRE shall provide the state vector error within an accuracy of 1000km and 250m/s and shall function for all Moon and Earth phases.
Electrical	OSPRE shall operate nominally provided 3.3V, 5V, or 12V electrical power, and interface with the ZedBoard and image sensor(s) using SPI, I ² C, or Cameralink.	OSPRE shall have a peak current of no more than 500mA and maximum power draw of no greater than 3W.	The system shall provide voltage sense and current sense telemetry.
Structural	OSPRE's mass shall not exceed 0.8kg.	OSPRE's dimensions shall not exceed 5cm x 5cm x 1cm.	
Testing	OSPRE's testing shall include testing the accuracy of the algorithm. OSPRE shall create a software test capable of quantifying the navigation software's error.	OSPRE's testing shall include a physical simulation. OSPRE shall create an Earth-Moon testbed that quantifies the error of the navigation hardware.	OSPRE's testing shall incorporate hardware and software testing simultaneously. The system shall compute the state vector autonomously in a test environment.

Specific Objectives

• (* - 1) ÷	Level 1	Level 2	Level 3
Data Processing	OSPRE shall output a state vector for full Moon and Earth disks and shall gather data for no longer than an hour at a time.	OSPRE shall estimate the error of the state vector.	OSPRE shall provide the state vector error within an accuracy of 1000km and 250m/s and shall function for all Moon and Earth phases.
Electrical	OSPRE shall operate nominally provided 3.3V, 5V, or 12V electrical power, and interface with the ZedBoard and image sensor(s) using SPI, I ² C, or Cameralink.	OSPRE shall have a peak current of no more than 500mA and maximum power draw of no greater than 3W.	The system shall provide voltage sense and current sense telemetry.
Structural	OSPRE's mass shall not exceed 0.8kg.	OSPRE's dimensions shall not exceed 5cm x 5cm x 1cm.	
Testing	OSPRE's testing shall include testing the accuracy of the algorithm. OSPRE shall create a software test capable of quantifying the navigation software's error.	OSPRE's testing shall include a physical simulation. OSPRE shall create an Earth-Moon testbed that quantifies the error of the navigation hardware.	OSPRE's testing shall incorporate hardware and software testing simultaneously. The system shall compute the state vector autonomously in a test environment.

Functional Block Diagram

LEGEND Power Data

Functional Block Diagram

Baseline Design OSPRE Sensor Package

Baseline Design Changes from MSR

- Camera "off-ramp" taken
 - Could not get 13MP camera working with SOM
 - Don't have the proper camera driver
 - Bought a cell phone (Motorola Moto G3) to use for
 - Performance Testing and System-Level Testing
 - Uses same 13MP sensor and SOM that we have
 - Phone will be used in test setup to take pictures, in place of the OSPRE package
 - Images will then be fed to SOM and OSPRE software will run as if the camera controller had just taken a picture
 - Requires updated design for the camera mount

Critical Project Elements

Solution Accuracy:

- State vector must be determined to within required accuracy - 1,000km position, 250m/s velocity
 - Camera resolution, Image Processing, Navigation
 algorithms

Testing Accuracy:

- Solution accuracy must be verified in testing
 - <100km position error
- Scaling of the Earth-Moon system
 - •Measurement of distance between camera and target, measurement of the location of the center of the target
- SWAP:
- Size, Weight, And Power requirements must be met •Component size, component power draw, component weight

SCHEDULE

Schedule Summary

Task	Due Date	Status
Camera setup	March 3rd	Complete
Software integration	March 6th ext. March 10th	In progress
Manufacturing	March 13th	 In progress Light box in assembly Camera stand in progress Encasing in progress
Carrier Board	March 13th ext. March 20th	In progress Layout complete Order pending
Performance Testing	March 23rd	Pending

TEST READINESS

Test Breakdown

SOFTWARE TESTING

Test Breakdown

Software - Scope

Software - Scope

Software Testing Scope Test Procedures

- Unit Testing:
 - Individually tested for expected outcomes and for edge cases (invalid inputs)
- Integration Testing:
 - Software works as a whole on personal PC
 - Software works as a whole on the SOM, and unit tests will be re-run

Software Simulations:

- System Soak
 - Run software for a long period of time to check for memory leaks
- Software Mission Simulation
 - Simulated flight using STK and OSPRE software to evaluate performance

Software Testing Software Mission Simulation

Software Testing Risk Reduction

- Unit Testing reduces project risk because it makes it easier to isolate and fix bugs within the system early on
- Integration Testing reduces risk because it proves that the OSPRE software will work together on the SOM
- Software Simulations reduce risk because they test the software in a flight-like environment

ELECTRICAL & INTEGRATION TESTING

Test Breakdown

Carrier Electrical & Integration Test Requirements Verification Matrix

Carrier Electrical & Integration Test Facilities and Equipment Requirements

*Will be ordered ASAP

Equipment	Status
*Carrier Board	To be ordered
DC Power Supply (5 & 12V output)	In Aerospace Electrical Shop
Digital Multimeter	In Aerospace Electrical Shop
Optical loupe (~4X)	Received
Thermal Meter or FLIR Camera	Renting from ITLL
Scale	In Aerospace Electrical Shop
OSPRE Test Cable	In Progress

Carrier Electrical & Integration Test Test Procedures

Carrier and Electrical Integration Test Scope

PERFORMANCE TESTING

Test Breakdown

Performance Testing Requirements Verification Matrix

REQ ID		REQ Summary	Verification Method	
FR1.1	DR1.5	OSPRE shall output the computed state vector update and error.		
FR1.2	DR1.2	OSPRE shall achieve less than 1000 km of positional accuracy.	Test Data Analysis	
FR1.3	DR1.3	OSPRE shall achieve less than 250 m/s of velocity accuracy.		

Performance Testing Risk Reduction: Project-Level

- Increase our understanding of system capabilities
 - Angles only navigation algorithm
 - Kalman filter
 - Image Processing
- Quantify worst-case positional error
- Quantify worst-case velocity error

Scaled to ECCE 2B49A

Performance Testing Constructed Test Equipment: Lightbox

Performance Testing Facilities and Equipment Requirements

raciity	Status	1
ECEE 2B49A	Permission Received	

Equipment	Status
Lightbox	In Assembly
Camera mount	Construction in Progress
Camera target	In Progress
Laser ranger (x2)	Received
Measuring Tape	Received
Level (x2)	Received
Support equipment	Permission Received
Simulated S/C Computer	Received

Performance Testing Test Procedure

Performance Testing Changes Since CDR

- Re-evaluated measurement tools to reduce reliance on advertised accuracy/precision
 Accuracy cortification standards (Ex. ISO 16331.1)
 - Accuracy certification standards (Ex. ISO 16331-1)
- Improved error simulations to reflect new measurement accuracy as well as the most up-to-date test configurations
 - The test-attributed error remains below 100 km of scaled position uncertainty 98.31% of the time
- Detailed test procedures to help mitigate risk

Performance Testing Expected Results

- PRIMARY OBJECTIVE: Acquire quality test images for calculating position and velocity errors

 HYPOTHESIS: OSPRE meets position and velocity error requirements
- SECONDARY: Improve software simulation fidelity
 - The hardware introduces a component of error that can be incorporated into the software simulation to improve realism

SYSTEM-LEVEL TESTING

Test Breakdown

System-Level Testing Requirements Verification Matrix

REQ ID		REQ Summary	Verification Method	
FR1.1	DR1.1 - DR 1.5	OSPRE shall use angles-only navigation to determine a state vector.		
FR1.2 & FR 1.3	DR1.2 & DR1.3	OSPRE shall determine the position and velocity to within 1000 km and 250 m/s of the true value.	System-Level	
FR1.4	DR1.4	OSPRE shall calculate the Earth, spacecraft, Moon angle	Testing	
FR1.5	DR1.5	OSPRE software shall include solution validation.		
FR2.0	Various	OSPRE shall meet integration requirements.		

SAME FACILITY, TOOLS, AND TEST SETUP AS PERFORMANCE

System-Level Testing Risk Reduction: Project-Level

- Verify that the OSPRE system, operating as a whole, meets all customer requirements
- Characterize the OSPRE system

 Power draw, thermal characteristics, timing, process bottlenecks, communication, etc.
- Identify potential system-level improvements
- Improve OSPRE's reliability and pedigree prior to delivery to customer

System-Level Testing Test Procedure

System-Level Testing Expected Results

- PRIMARY OBJECTIVE: Validate that OSPRE meets all applicable functional and design requirements through demonstration
 - HYPOTHESIS: Test demonstrates that OSPRE, as a complete system, meets all functional and design requirements
- SECONDARY OBJECTIVES
 - The system's computational timing is quantified
 - Thermal characteristics are recorded
 - Camera limitations are better understood

Test Status

BUDGET

Budget

- MarginTo Buy
- Purchased

* Includes \$500 shipping margin

Budget

Subsystem	Item	Procurement Status	Subsystem	ltem	Procureme nt Status
Testing	Laser Range Finder	Received		13 MP	Received
	Light Panel	Received	Sec. 4	Camera	1.0001100
	Geared Tripod Head	Received	Optics	Moto G Phone	Received
	Lightbox Materials	Received		Snandragon	Received
	Mount Materials	Shipped and building		410 Dev Kit	1 COONCO
	Enclosure Materials	Received		CDR, FFR,	Received
Mechanical	Enclosure Fasteners	Received		MSR Printing	
Meenamear	Phase Materials	Not ordered, same day pickup	Admin	SFR, FDR Printing	Not ordered, next day
Electrical	Snapdragon 410 Dev Kit	Received	Elen in a		pickup
	ZedBoard	Received			
	PCB Components	Received			
	PCB	Not ordered			61

Budget

Thank You

LOCKHEED MARTIN

(P)

 \bigstar

Paige Arthur PM **Ryan Cutter** Systems Seth Zegelstein Software Michael Ricciardi Electrical **Anthony Torres** Image Processing **Navigation** Cameron Maywood **Dylan Richards Remote Sensing** Zach Folger **Mechanical David Walden** Testing

Backup Slides

Testing Scope, Overview Test Plan Flowdown

Integrated Systems Testing

TO-DO

Requirement Verification

Functional Requirement	Verification & Validation Method	
FR 0.0 - Provide relative navigation from an image sensor package on a lunar trajectory	System-Level Lightbox Test	
FR 1.0 - Provide state vector within desired error bounds: Position: ± 1000 km Velocity: ± 250 m/s	System-Level Lightbox Test	
FR 2.0 - Meet dimensional requirements: 5 x 5 x 1 cm	Dimensional Measurements	
FR 2.1 - Meet electrical requirements: 0.3, 5, or 12VDC, 0.5A (max), 3W (max)	Carrier Electrical and Integration Testing	
FR 2.2 - Meet interfacing requirements: SPI or I ² C	Software Capability	

SOFTWARE TESTS

Software Testing Requirements Verification Matrix

REQ ID		REQ Summary	Verification Method
FR1.1	DR1.1 - DR 1.5	OSPRE shall use angles-only navigation to determine a state vector.	
FR1.2 & FR 1.3	DR1.2 & DR1.3	OSPRE shall determine the position and velocity to within 1000 km and 250 m/s of the true value.	Software
FR1.4	DR1.4	OSPRE shall calculate the Earth, spacecraft, Moon angle	Demonstration
FR1.5	DR1.5	OSPRE software shall include solution validation.	
FR2.4	Various	OSPRE shall meet integration requirements.	

Software Testing Facilities and Equipment

Facility	Status	
Aerospace Electrical Shop	Access Received	1. 2 × 4.

Equipment	Status
Zedboard	Received
OpenQ410 SOM	Received

ELECTRICAL & INTEGRATION TESTS

Carrier Electrical & Integration Test Test Setup

Carrier Electrical & Integration Test Risk Reduction

- Inspection and Resistance checks
 - -Identifies many discrepancies prior to application of power
 - -Correction prevents cascading discrepancies
- Voltage Regulation Check
 - -Verifies proper voltage levels before integration of SOM and camera module
 - -Verifies electrical isolation of power traces, pads
 - -Prevents over/under volt damage to SOM and camera module
- PCB Assembly Fit Check
 - -Verifies isolation between PCB features and housing
 - -Identifies areas of housing requiring polyimide insulation

In-and-Out of Housing Thermal Characterization

- -Verifies SOM and camera will remain within acceptable temperature range
- -Identifies potential thermal dissipation needs prior to longer testing
Carrier Electrical Test CAD Model, Carrier Board

0 0

 Camera Module Connector (Samtek LSHM RH)

> SOM Connectors (2) (Samtek SS4)

External Connector (Hirose DF19)

12 to 3.7 Volt
 Regulation
 (LT1913)

UART-USB — Interface (FTDI FT234XD)

Carrier Electrical Test Layout, Carrier Board

- Dimensions:
 - 46 x 48mm overall
 - 1.216mm thick
- 5-Layer (FR4)
- Trace width:
 - Power: 10-16 mil
 - Signal: 8 mil
 - Min. 8 mil air gap
- Drill holes:
 - Count: 182
 - Size: 8 to 106 mil
- SMD Pads:
 - Count: 358
 - No vias under
- No hidden/buried/blind vias
- Cost:
 - PCB: \$1234
 - Tacliner \$450

Carrier Electrical Test Layout Stack-up, Carrier Board

	Layer Name	Туре	Material	Thickness (mm)	Dielectric Material	Dielectric Constant
,	Top Overlay	Overlay				
	Top Solder	Solder Mask/Co	Surface Material	0.01016	Solder Resist	3.5
	Top Layer	Signal	Copper	0.036		
	Dielectric 1	Dielectric	Core	0.254	FR-4	4.2
	Signal Layer 2	Signal	Copper	0.036		
	Dielectric 2	Dielectric	Core	0.254		4.2
	Signal Layer 3	Signal	Copper	0.036		
	Dielectric 3	Dielectric	Core	0.254		4.2
	Signal Layer 4	Signal	Copper	0.036		
	Dielectric 4	Dielectric	Core	0.254		4.2
	Bottom Layer	Signal	Copper	0.036		
	Bottom Solder	Solder Mask/Co	Surface Material	0.01016	Solder Resist	3.5
	Bottom Overlay	Overlay				

Carrier Electrical Test Carrier ICD, External Connector

CONNECTOR PARNO		Hirose DF19G-14P-1H(54)	J1		
REFDES	CONTACT	SIGNAL NAME	SOM ITFC	DESTINATION	NOTE
J1	1	12VDC			
J1	2	12VDC			
J1	3	5VDC		To Donoh DS	
J1	4	GND	1.20		
J1	5	GND		0	
J1	6	GND			
J1	7	UART_USB_DATA_P			
J1	8	UART_USB_DATA_N		I To Test PC (NONFLT)	Serial over USB 115200BPS
J1	9	UART_USB_VBUS			
J1	10	OSPRE_ENABLE	KPD_PWR_N	A State of the second second	Hold LOW 4-5 sec to boot
J1	11	SPI_CLK	BLSP30	and the second	
J1	12	SPI_SS	BLSP31	To ZedBoard	CARLEY & Dr. C. C.
J1	13	SPI_DATA_MOSI	BLSP32		
J1	14	SPI_DATA_MISO	BLSP33		

Carrier Electrical Test Carrier ICD, Camera Module Connector

CONNECTOR F	PARNO	LSHM-120-01-L-RH-A-S-K		B2B CAM CONNECTOR	
REFDES	CONTACT	SIGNAL NAME	SOM ITFC	DESTINATION	NOTE
J701	36	BLSP_61			2
J701	34	BLSP60			
J701	3	CSI0_CLK_N		9	DP
J701	5	CSI0_CLK_P	1		DP
J701	20	CSI0_I2C_SCL	a line of the second	alter	
J701	22	CSI0_I2C_SDA			
J701	9	CSI0_LANE0_N			DP
J701	11	CSI0_LANE0_P			DP
J701	15	CSI0_LANE1_N		10°	
J701	17	CSI0_LANE1_P			
J701	21	CSI0_LANE2_N	18 1 A 18 2	Contraction of the second	
J701	23	CSI0_LANE2_P			
J701	27	CSI0_LANE3_N	Law Harris		
J701	29	CSI0_LANE3_P		and the states and	
J701	33	CSI0_MCLK			
J701	18	CSI0_PWDN			
J701	35	CSI0_RST	The state of the		
J701	37	VPH_PWR_3P7		127 444 198	3.7VDC from LT1913
J701	39	VPH_PWR_3P7			3.7VDC from LT1913
J701	40	VPH_PWR_3P7			3.7VDC from LT1913
J701	2	VREG_L10_2P8	W. C. C. Starter		2.80VDC from SOM
J701	10	VREG_L17_2P85			2.85VDC from SOM
J701	6	VREG_L6_1P8		State of the State of the	1.80VDC from SOM

Carrier Electrical Test Carrier ICD, SOM Connector (J2000)

CONNECTOR	PARNO	SS4-50-3.00-L-D-K		B2B SOM CONNECTOR	
REFDES	CONTACT	SIGNAL NAME	SOM ITFC	DESTINATION	NOTE
J2000	44	BOOT_CONFIG_BIT2		VREG_L5_1P8 (J2000.75)	
J2000	46	BOOT_CONFIG_BIT3		VREG_L5_1P8 (J2000.75)	
J2000	48	BOOT_CONFIG_BIT5		VREG_L5_1P8 (J2000.75)	
J2000	100	KPD_PWR_N		J1.10	OSPRE_ENABLE
J2000	89	VPH_PWR_3P7	State Carlo		
J2000	91	VPH_PWR_3P7	19		
J2000	93	VPH_PWR_3P7			1.2
J2000	95	VPH_PWR_3P7	frank i star		
J2000	97	VPH_PWR_3P7		A Contraction and	A State State
J2000	99	VPH_PWR_3P7	Set M	U102.BD	Main Power
J2000	69	VREG_L10_2P8			2V8DC to carrier
J2000	57	VREG_L17_2P85			2V85DC to carrier
J2000	59	VREG_L17_2P85	1		2V85DC to carrier
J2000	75	VREG_L5_1P8		The set of set the	1V8DC to carrier

Note: Unused and GND contacts not shown

Carrier Electrical Test Carrier ICD, SOM Connector (J2001)

CONNECTOR	PARNO	SS4-50-3.00-L-D-K		B2B SOM CONNECTOR	
REFDES	CONTACT	SIGNAL NAME	SOM ITFC	DESTINATION	NOTE
J2001	93	BLSP22_UART_RX	U105.RXD		UART to USB Receive
J2001	95	BLSP23_UART_TX	U105.TXD		UART to USB Transmit
J2001	9	BLSP30_SPI_CLK		J1.11	
J2001	11	BLSP31_SPI_SS		J1.12	
J2001	13	BLSP32_SPI_MOSI		J1.13	
J2001	15	BLSP33_SPI_MISO		J1.14	
J2001	80	BLSP60		J701.34	Camera
J2001	78	BLSP61		J701.36	Camera
J2001	5	BOOT_CONFIG_BIT0	in the second second	VREG_L5_1P8	
J2001	50	CSI0_CLK_N		J701.3	MIPI CSI DATA Clock NEG
J2001	48	CSI0_CLK_P		J701.5	MIPI CSI DATA Clock POS
J2001	6	CSI0_I2C_SCL	APQ8016_GPIO30	J701.20	Camera Control
J2001	4	CSI0_I2C_SDA	APQ8016_GPIO29	J701.22	Camera Control
J2001	44	CSI0_LANE0_N		J701.9	MIPI CSI DATA Lane 0 NEG
J2001	42	CSI0_LANE0_P		J701.11	MIPI CSI DATA Lane 0 POS
J2001	49	CSI0_LANE1_N		J701.15	MIPI CSI DATA Lane 1 NEG
J2001	47	CSI0_LANE1_P		J701.17	MIPI CSI DATA Lane 1 POS
J2001	55	CSI0_LANE2_N		J701.21	MIPI CSI DATA Lane 2 NEG
J2001	53	CSI0_LANE2_P		J701.23	MIPI CSI DATA Lane 2 POS
J2001	43	CSI0_LANE3_N		J701.27	MIPI CSI DATA Lane 3 NEG
J2001	41	CSI0_LANE3_P		J701.29	MIPI CSI DATA Lane 3 POS
J2001	20	CSI0_MCLK	APQ8016_GPIO26	J701.33	Camera Clock
J2001	12	CSI0_PWDN	APQ8016_GPIO34	J701.18	Camera Power Down
J2001	2	CSI0_RST	APQ8016_GPIO35	J701.35	Camera Reset
J2001	34	VREG L6 1P8			TSDC to carrier

PERFORMANCE TEST

Performance Testing Test Procedures: Content

- Test article descriptions
- References to applicable documentation
- Safety information and standard procedures
- Equipment inspection/preparation checklist
- Test setup procedures and diagrams with space for note taking
- Test procedures
- Test teardown and closeout
- Data analysis (simulation tools)

Operational Systems Testing Error

Source	Associated Error	Source	Human Error Margin
Lightbox Pointing	± 0.2	Alignment error due to equipment	x 1.5 margin
Camera Pointing	± 0.007 [.]	0.5 pixel error	x 1.1 margin
Calipers	± 0.025 mm	Advertised equipment error	x 1.5 margin
Steel Tape Measure	± 1.1 mm	Advertised equipment error	x 1.5 margin
Laser Ranger	± 1.5 mm	Advertised equipment error	x 1.2 margin
Center Finding	± 0.05 mm	Machining accuracy	x 1.2 margin

Operational Systems Testing Error

Worst Case Error Scenario

5,000,000 trials Gaussian randomized error

< 50 km Error Goal

79.9% of the time

< 100 km Error

98.31% of the time

Performance Testing Measurement Tools

Model: Leica DISTO E7100i Accuracy: ± 1.5 mm with ISO 16331-1 Certification

- when it has to be right

Leica Geosystems Calibration Certificate Silver

Calibration Certificate Silver with measurement values issued by Manufacturer

ProductLeica DISTO™E7100iArticle No.812806

Serial No. / Certificate no. 1262041019 Inspection Date 08-07-2016

Compliance

The Calibration Certificate Silver with measurement values issued by Manufacturer corresponds to the Producer Inspection Certificate M in accordance with DIN 55 350 Part 18-4.2.2.

Certificate

We hereby certify that the product described has been tested with the following result:

	Compliance	The test results are within the specification of the product.
	Non-Compliance	The test results are not within the specification of the product

The test equipment used is traceable to national standards or to recognized procedures. This is established by our Quality Management System, audited and certified to ISO 9001 by an independent national accreditation authority.

Test Equipment

Distance	Leica µ-base (576183)
Inclination	n.a.

Inclina Test results

	Distance			
Reference value (m)	0.4948	1.9967	4.9964	
Calibration value* (m)	0.4950	1.9965	4.9964	
Deviation (mm)	0.20	-0.20	0.00	

* with statistical confidence level of ± 2 sigma; temperature of 23°C (± 3°C); target plate albedo 1

	Inclination			
Reference value (°)				
Calibration value* (°)				
Deviation (°)				

* with statistical confidence level of ± 2 sigma; temperature of 23°C (± 3°C)

Leica Geosystems AG

Thomas Grabher Vice President DISTO™ Leica Geosystems AG Heinrich-Wild-Str. 9435 Heerbrugg

Art. No. 766669c This Certificate may not be reproduced other than in full except with prior written approval of the issuing authority Wolfram Mathis Quality Management

Performance Testing Test Procedures: Alignment Testing

PURPOSE

- Quantify laser beam pointing uncertainty
- Improve error model fidelity

ADDED VALUE

- Test procedure authorship practice
- Lessons learned
- Establish safety and

1.3.2 Lightim Was chicken for advances in referring to a piece of text operation due to construct the streng due traditions, this decements is not and advances and the streng due to the text on GOPM. So the response of provides documentation by the strength on the due to the systems of the strength documentation by the strength document the systems due to the strength on the strength and the strength document and the strength d

and (Revision	13	

ALCONTRACTOR		and the second s		
				and the second
			701-	
romania di ese sento may ale montaniami di ese sento may ale montanismo. Plesse enviros el impro- te de la constanta de la simulation (nol to ve res de secondo de atemático (nol to ve veder se locase de necessary files, EQUIPMENT CHECKLIST	phi, as well as a table to place require the use of constrem require the use of constrem requirement is accessible pu- refy the outcome, Plane see the use of the software, and a	the Manfrom 035XPR the alignment mirror is rights, ropes wires, or a crights, ropes wires, or a single to beginning the tool the 'Data Analysis' sec- the interpretation of the	OIB tripped, 1 the destruid ther setup setup ton for results.	
ITTAL				
IIII	-			
ALC .	PRESENT	MISSING		
etal plan w/d hai		DAM DAM	AGED	- 19
and services		-		
-4 Polts				
mits (optional)				- 18
Terrer				
RROR RIG			-	
R plate w/ minut				- 100
and many and the				- 100
to impod head			-	
Tripod			-	100
Roceaulus .				1000
			7	
(upnent (optional)			-	
			1	1000
an D. C. C.			1	1000
er einaber Wi			-	

Performance Testing Alignment Test: Basic Setup

Performance Testing Alignment Test Results

SIMULATION TOOL:

- Using this tool, we can
 validate with 95%
 confidence that the laser
 ranger has between X and
 Y degrees of pointing error
- Example simulation shown on the right

Mission Testing Manipulation

Camera Pointing

Manfrotto 410 Junior Geared Tripod Head

Manfrotto ProX Tripod

Performance Testing Risk Reduction: Test-Level

- Validate critical tools are meeting accuracy tolerances
- Detailed and thorough test procedures
- Closely adhering to test & safety procedures
- Allot ample time in test facility
- Continuing improving error simulation
- Create and uphold safety procedures

Validation

- Characterize camera performance
 - Compare image processing accuracy between test and digitally generated images
 - Make recommendations for sensor, exposure, or preprocessing improvements
 - Validate mission simulation
 - Compare position and velocity errors
 - Confirm data collection timing

IMAGE PROCESSING

 Sensitivity with artificially created phases, using real moon image scaled to worst anticipated scenario of 67 pixel diameter

- Flatness is defined as the reduction in moon pixel width with constant height
- Used to evaluate how precise the test instruments need to be pointed at the lightbox

Various regressions applied to evaluate flatness effect on radius error

BUDGET

\$1,800.00

φ±,000.00

get C α Subsyster

\$1,400.00	
\$1,200.00	
\$1,000.00	
\$800.00	
\$600.00	

\$400.00

\$200.00

\$0.00

00	
0.00	

6500 00
\$529.00

\$529.00

 6F20.00
5529.00

¢52	0 0	0	

\$557.14

ĊE	20	00
- ÇÇ	23.	00

\$513.86

Testing

1

Margin

To Buy

Purchased

	2.8
	-
and a second	

\$529.00	-

529.00	

	Component	% Subsystem Budget	Status
	LED Lightpanel	5.1	Purchased
	Precise geared tripod mount	13.7	Purchased
	Laser Range Finder	18.6	Purchased
	Calibration Materials	4.0	Purchased
	Measurement Materials	9.1	To Buy
	Structure	7.3	To Buy

\$450.00

\$400.00					
\$350.00	\$116.85				
ಕ್ಷ \$300.00			Component	% Subsystem Budget	Status
ອັດ ສິ \$250.00 ພ	\$120.00	Margin	Aluminum Encasing	9.4	Purchased
\$200.00		Purchased	Moon Cutout Sheet Metal	11.2	Purchased
\$100.00		3.15	Enclosure Fasteners	8.3	Purchased
\$50.00	\$163.15		Black Acrylic Phase Detail	25.0	To Buy
\$0.00 —	Mechanical				

\$2,000.00					
\$1,800.00	\$372.90				
\$1,600.00			6 8	and the second	
\$1,400.00		Margin	Component	% Subsystem Budget	Status
ອີສິ່ ຊີ້ ຊີ້	\$600.00		Snapdragon 410 Development Kit	18.2	Purchased
s \$1,000.00		■ To Buy ■ Purchased	ZedBoard	17.6	Purchased
\$600.00			PCB Components	13.0	
\$400.00	\$927.10		РСВ	31.6	To Buy
\$200.00					
\$0.00 —		- Section of the			
	Electrical				

\$700.00

\$600.00					
\$500.00 teg 97 \$400.00			Component	% Subsystem Budget	Status
tem B		 Margin To Buy Purchased 	13MP Camera	20.8	Purchased
\$300.00 sdns) \$599.94		Snapdragon 410 Dev Kit	57.5	Purchased
\$200.00			Moto G Phone	21.7	Purchased
\$100.00			1		
\$0.00 —	Optics				

\$600.00

\$500.00					
tj \$400.00	\$179.03		Component	% Subsystem Budget	Status
osystem B	\$160.00	 Margin To Buy Purchased 	CDR, FFR, PDR, MSR, and TRR Printing	32.2	Purchased
³ \$200.00			SFR and FDR Printing	32.0	To Buy
\$100.00	\$160.97				
\$0.00 —	Admin				