NanoSAM II

Nano-Stratospheric Aerosol Measurement

Testing Readiness Review March 3, 2021

Ball Aerospace University of Colorado Boulder Department of Aerospace Engineering Sciences

Agenda

NanoSAM II TRR

Overview

Schedule

Test Readiness

Budget

Project Overview

Abby Hause

Project Background & Purpose

Overview

SAM/SAGE Instruments NanoSAM I NanoSAM II (1979-1984, 2001-2006, 2011-Current) (2019 - 2020)(2020-Current) Bulky, High Cost, Low Data Volume **Optical Instrument for** Integrated 0.5U **CubeSat Footprint CubeSat Payload** SAGE III on ISS [4]

Test Readiness

Budget

NanoSAM Mission CONOPS

NanoSAM II Payload

Overview

Schedule

Budget

Status on Critical Project Elements

Electronics Design V2

Test Readiness -

- Manufacturing tolerance on B2B copper pads
- New digital B2B layout with surface mount
- Larger resistor heater MOSFET
- Watchdog hardware switch
- **Clip Connectors for ease**
- Increased isolation of the ground planes

Overview

Budget

Schedule

Abby Hause

Budget

Schedule (Testing Focus)

Test Readiness

Matt Bridges, Jashan Chopra, Axel Haugland

Testing Rationale (Subsystems)

Tests Needed	Requirements Verified
Electronics Subsystem Test	Data Capture (1.0), Communications (2.0), Power Consumption (1.5)
Software Unit Testing	Error Checking (1.3), Fault Mitigation (2.2)
Optics Alignment	SAM-II Equivalent Optics (3.0), MTF (3.2.2)
Optics FOV Measurements	Vertical Resolution (3.2), FOV (3.2.1)

Test Readiness —

* Bold - Fully verifiable, Unbold - Partially verifiable

Budget

Testing Rationale (System Level)

Tests Needed	Requirements Verified
Data Collection Test (Electronics/Software)	Data Capture (1.0), Sampling rate (1.1.1), Processing rate (1.1.1.1), Data Collection Bit Size (1.1.2), Storage Size (1.1.3), Communications (2.0)
System State Monitoring (Electronics/Software)	Housekeeping (1.4.1-3), Fault Mitigation (2.2), Error Checking (1.3)
Data Window Timing (Electronics/Software)	Data Collection Timing (1.1.4), Calibration (1.2)
Regulated Light Source Test (Integrated System)	Optics Data (1.1), SNR (2.1), SAM-II Equivalent Optics (3.0), Wavelength (3.1)
Solar Attenuation Test (Integrated System)	SNR (2.1), SAM-II Equivalent Optics (3.0)

* Bold - Fully verifiable, Unbold - Partially verifiable

Budget

Testing Rationale (Environmental Tests)

Tests Needed	Requirements Verified	
Vibration Test	Vibration (5.1.1-2)	
Thermal Test	Thermal (5.2.1-2)	
Vacuum Test	Vacuum (5.3)	
	Likely to not be verified due to limited facility availability, however this requirement is not essential to Level 3 success	

Test Readiness

* Bold - Fully verifiable, Grey - unlikely to be verified

Budget

Overall Testing Flow

Risk Reduction

Electronics Assembly Tests

- Validate our manufacturing and design
- Ensures electronics debugging is not an issue in further testing

System Integration Tests

- Provide ample opportunity for system adjustment and calibration
- Meeting requirements in ground testing leads to greater beneficial margin b/w requirements and system capability
- Increase future NanoSAM team resources

Flight Readiness Tests

- Begin assessment of flight feasibility
- Provide most valuable analysis opportunity on structural capabilities
- Increase future NanoSAM team resources

Overview

Schedule

Test Readiness

Budget

Testing Safety

Equipment Safety

Electronics:

- ESD Mats in lab
- ESD wristbands for MOSFET handling

Optics:

- Proper cleanliness procedures when handling/operating
- Airtight storage of sensitive components for future teams

Other:

- Proper procedures applied in the use of external testing equipment

Schedule

Personnel Safety

Covid-19 Precautions:

- Use of masks and social distancing
- Follow CU policy when on campus, and proper policy in other facilities
- Sign up for lab spaces
- Prioritize the safety of our community over the timeline of the project

Before Feb 15: R2R forms + Procedures (email Nancy Glaze, 6 feet apart, masks)

Budaet

Electronics System Tests

Requirements V&V

1.0: Data Capture

- The supporting electronics and software shall digitize, packetize, and store housekeeping data and information collected from the photodiode
- The system uses less than 7.3W with the heater running.

2.0: Communications

Overview

 Communicates with laptop for ground testing

Schedule

Budaet

Test Readiness

Electronics System Tests Specifics

Test Readiness

Budaet

Overview

Schedule

20

Software Dev/Testing Status

Unit Testing Methodology

Sched

Overvie

Test Readiness

Budaet

Alignment Status / Other optics tests

Test Readiness

Budaet

Overview

Schedule

23

Solar Tracking Test

Overview

3.0: SAM-II Equivalent Optics

- Tracking accuracy of 1 mRad or finer during ground testing

Budget

Test Readiness –

Regulated Light Test

Requirements V&V

1.0: Data Capture

 Optics data transferred and processed at desired size and rate

2.0 Communications

Overview

 SNR value from photodiode dark current

3.0 SAM-II Equivalent Optics

 Irradiance values equivalent to light bulb output around 1.03 um

Schedule

Test Facilities: Dark room

Test Readiness

Expected data: Light bulb irradiance data to compare to expected No light irradiance data to find dark current for SNR

Budaet

25

Solar Attenuation Test

Requirements V&V

1.0: Data Capture

- Data collected and transferred as desired
- Calibration data stored

2.0 Communications

- SNR value from photodiode dark current

3.0 SAM-II Equivalent Optics

 Irradiance values equivalent to solar output at 1.03 um

Schedule

- Tracks solar trajectory

4.0 Payload Dimensions

Overview

- 0.5U Volume, 0.615 kg

Test Facilities: Open outdoor space on sunny day

Test Readiness

Expected data: Solar irradiance data to compare to expected Weight and mass of payload

Budaet

Facility Usage

Thermal Test

Procedure complete (Approved on 2/23) TestEquity 115A-F Chamber Run by Dr. Scott Palo in AERO -73°C to +175°C chamber range, testing -20°C to +50°C

Overview

Vibration Test

Altius Space Machines facility Low level sine sweep for resonant frequencies Test procedures in-progress. \$200/hr for 3-4 hrs.

Test Readiness

Vacuum Test

Test procedure and request form in-progress. JANA chamber Run by Professor Nabity 50 mtorr achievable

27

Budget

Budget

Jashan Chopra

Budget Update

Test Readiness

Schedule

Overview

Update Summary

- Allocated funds for 4 hours of vibe testing
- Allocated funds for optics shim cutting
- Purchased all new components required for electronics redesign
- Purchased vibration testing equipment

Remaining Purchases

- Vibration testing facilities
- Additional OAP mirror
- Optics shim cutting

Budget

- Still considering options
- Currently allocated funds for electrical discharge machining

Acknowledgements

Our Customers:

Jim Baer & Jaykob Velasquez Ball Aerospace

Our Peer Evaluators:

Lara Buri & Colin Claytor

... and all of our personal friends who should send us a bill for their time doing engineering review **CU Aerospace Department:**

Dr. Allison Anderson The PAB

Our Local Professionals:

Meadowlark Optics Inc Blue Canyon Technologies John Ferguson

Questions

References

[1] QB50:System Requirements and Recommendations. Issue 7, Section 1.6 "Thermal Control" and Section 2.2 "Resonance Survey." Published 13 Feb 2015.

https://www.qb50.eu/index.php/tech-docs/category/QB50_Systems_Requirements_issue_76e8e.pdf?download= 89:qb50-docs

[2] Anderson, B. & Justus, C. & Batts, G. "Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design" 2001.

[3] Henninger H. John, "Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal-Control Coatings" Goddard Space Flight Center, April 1984. <u>https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840015630.pdf</u>

[4] "SAGE III on ISS", Wikipedia, Last Edited 10 September 2020. https://en.wikipedia.org/wiki/SAGE_III_on_ISS#/media/File:SAGE_III_Instrument.jpg

[5] Mason, J. & Woods, T. "Miniature X-Ray Solar Spectrometer (MinXSS) – A Science-Oriented, University 3U CubeSat."

https://arxiv.org/pdf/1508.05354.pdf

[6] Anderson, J. & Et. Al "NanoSAM II Preliminary Design Report". Published 13 October 2020.

References

[7] "3U CubeSat Structure" ISIS Space, https://www.isispace.nl/product/3-unit-cubesat-structure/

[8] "PC/104 Specification" PC/104 Embedded Consortium. Version 2.6, October 13, 2008 https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf

[9] "2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00." National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html

[10] "General Environmental Verification Standard: GSFC-STD-7000", Office of the NASA Chief Engineer, NTSS Version 7.0, 30 Sep 2015, updated 29 March 2019. <u>https://standards.nasa.gov/standard/gsfc/gsfc-std-7000</u>

[11] Kim, Sung-Hwa & Hwangbo, Chang-Kwon. "Temperature Dependence of Transmission Center Wavelength of Narrow Bandpass Filters Prepared by Plasma Ion-Assisted Deposition." Journal of the Korean Physical Society. Vol. 45, No. 1, July 2004. <u>https://inis.iaea.org/search/search.aspx?orig_q=RN:41100734</u>

[12] McCormick, M. P. Et. Al. "Satellite Studies of the Stratospheric Aerosol." Bulletin American Meteorological Society. Vol. 60, No. 9, September 1979.

Backup Slides

Table of Contents

Risks	54 - 59
Optics	60 - 64
Electronics	65 - 97
Structures	98 - 115
Softwara	116 100
Soltware	116 - 120
Management	121 - 133
Testing	134 - 146

Backup Slides

Old Schedule

Work Breakdown Structure

Levels of Success

	Lvl 1 (solar tracking test)	Lvl 2 (Improved Ground Performance)	Lvl 3 (Flight Capability)
Payload Housing	The payload housing contains the integrated electronics board and optics bench inside a 0.5U enclosure.	The payload housing structural interface is compatible with an industry standard bus.	The payload housing functions within the operating temperature range of -20°C to 50°C and its lowest vibrational natural frequency is greater than 100Hz [10].
Data Capture	Software and electronics acquires, digitizes, packetizes, and downloads raw data from a photodetector to a computer at a rate of at least 50Hz within the mission specific measurement schedule detailed in the CONOPS.	Error checking measures are implemented in the ground software to detect data corruption occurring during transmission.	Data is transferred from the payload to a computer emulating an industry standard CubeSat bus communications system [11].
Electronics & Control	The redesigned electronics board successfully controls and powers all on-board operations and has a footprint compatible with the 0.5U payload enclosure.	The redesigned electronics board supports all optical design improvements.	The redesigned electronics board remains within the operating temperature range of -20°C to 50°C and its lowest vibrational natural frequency is greater than 100Hz [10].

Optics Instrument Overview

Structure Parts and Quantities

S01: Structural Ribs (2x) S02: EPS Board Rib (1x) S03: Top/Bottom Walls (2x) S04: Left/Right Walls (2x) S05: Front Wall (1x) S06: Back Wall (1x) S07: Structural to Board Rib Screws (4x) S08: 0.5 cm PCB Spacers (4x) S09: 0.25 cm PCB Spacers (4x)

* Parts all Ordered from McMaster Carr

S010: PCB Screws (4x)
S011: PCB Washers (4x)
S012: External Wall Screws (24x)
S013: Optics Bench to Thermal Isolator Screws (4x)
S014: Optics Bench to Thermal Isolator Washers (4x)
S015: Thermal Isolator to Structural Rib Screws (8x)
S016: Thermal Isolator to Structural Rib Washers (8x)
S017: Fiberglass Isolators (2x)

Structures Parts Status

Completed (Job Shop 01)	To be Completed	
 Horizontal Ribs (1) EPS Mount Rib (2) All Housings/Walls (3) 	 Board-Board Spacers Small EPS Spacers Thermal Isolators 	

NanoSAM II Dimensioned Drawing

NanoSAM II Horizontal Rib Drawing

NanoSAM II EPS Board Rib Drawing

NanoSAM II EPS Top/Bottom Housing Drawing

NanoSAM II Left/Right Housing Drawing

NanoSAM II Front Housing Drawing

NanoSAM II Bench Isolator Drawing

Electronics: Test Points

Test Point	Description	Expected Value	Checks?
1	Pre Feedback Resistor	Depends on light source	Photodiode working
2	Post Transimpedance Amplifier	Depends on light source	Transimpedance amp working
3	ADC Vcc	3.3V	Voltage reference working
4	ADC Ref-	GND	ADC reference good
5	Analog Thermistor Voltage Divider Output	Depends on temperature	Thermistor good
6	Analog Thermistor Voltage Buffer Output	Should be the same as T5	Voltage follower good
7	5V Regulator Positive Output	+5V	Bipolar regulator good
8	5V Regulator Negative Output	-5V	Bipolar regulator good
9	5V Regulator EPAD Ground	GND	Bipolar regulator good
10	Voltage Bus Input	System Vin	Voltage source good
11	Current Sense Output	Backsolve for Vin	Current sense monitor good

DIGITAL BOARD TEST POINTS

Test Point	Description	Expected Value	Checks?
1	Microcontroller Vin	3.3V	Microcontroller getting required power, also checks MOSFET not busted
2	Watchdog RST Signal	3.3V	lf watchdog triggers, RST goes high
3	Watchdog /ST Signal	3.3V, 50ns width square	Microcontroller outputs watchdog signal
4	Flash 1 Vin (U\$1)	3.3V	Flash 1 power
5	Flash 2 Vin (U\$2)	3.3V	Flash 2 power
6	Digital Thermistor Voltage Divider Output	Depends on temperature	Thermistor good
7	Digital Thermistor Voltage Buffer Output	Should be the same as T6	Voltage follower good
8	3.3V Regulator Output	3.3V	Linear regulator good
9	3.3V Regulator GND	GND	Linear regulator good
10	3.3V PG Pin	High (~3.3V)	Linear regulator good
11	Voltage Bus Input	System Vin	Voltage source good
12	Current Sense Output	Backsolve for Vin	Current sense monitor good
13	Optical Bench Thermistor	Depends on temperature	Thermistor good
14	Optical Thermistor Voltage Buffer Output	Same as T13	Voltage follower good
15	Resistor Heater Vin	~System Vin (minus TVS diode drop)	Use to check heating resistor voltage drop
16	Resistor Heater GND	~GND (+MOSFET Drop)	Use to check heating resistor voltage drop

(2/2) Board Analog

OSHPark CAM Job Render [Analog]

OSHPark CAM Job Render [Digital]

Completed Analog Board

Science Memory Handling Module Breakdown

Test Readiness

Budaet

Overviev