NanoSAM II

Nano-Stratospheric Aerosol Measurement

Spring Final Review April 29, 2021

Ball Aerospace

University of Colorado Boulder Department of Aerospace Engineering Sciences

Agenda

NanoSAM II SFR

Overview

Design Description

Test Overview

Test Results

Systems Engineering

Project Management

Project Overview

Jaret Anderson

Project Background & Purpose

Overview

Design

NanoSAM Mission CONOPS

Levels of Success

	Level 1 (solar tracking test)	Level 2 (Improved Ground Performance)	Level 3 (Flight Capability)
Payload Housing	The payload housing contains the integrated electronics board and optics bench inside a 0.5U enclosure.	The payload housing structural interface is compatible with an industry standard bus.	The payload housing functions within the operating temperature range of -20°C to 50°C and its lowest vibrational natural frequency is greater than 100Hz.
Data Capture	Software and electronics acquires, digitizes, packetizes, and downloads raw data from a photodetector to a computer at a rate of at least 50Hz within the mission specific measurement schedule detailed in the CONOPS.	Error checking measures are implemented in the ground software to detect data corruption occurring during transmission.	Data is transferred from the payload to a computer emulating an industry standard CubeSat bus communications system.
Electronics & Control	The redesigned electronics board successfully controls and powers all on-board operations and has a footprint compatible with the 0.5U payload enclosure.	The redesigned electronics board supports all optical design improvements.	The redesigned electronics board remains within the operating temperature range of -20°C to 50°C and its lowest vibrational natural frequency is greater than 100Hz.

Critical Project Elements

Structure

0.5U Payload Form Factor

Optics

Match SAM-II Instrument Legacy Performance

Software

Timely and Reliable Data Collection

Design Description

Donavon Schroeder

NanoSAM II Payload

Design

Overview

Integrated Payload

Mass: 0.48 kg Size: 0.5 U

Overview — Design — Testing

Optics Final Design

Flight Software Header Tree

Software Data Parameters

Science Data

Photodiode sample rate:	50 Hz
Sample size (primary ADC):	16 bits
Sample size (backup ADC):	12 bits
Max window duration:	240 sec
Max data per window (encoded):	27009 Bytes

External flash capacity: Minimum time to fill flash: 2 x 128 Mb 38 days

Design — Testing — Systems — Project Management

Persistent Payload Data

Persistent data size (encoded):	90 Bytes
EEPROM size:	1080 Bytes
Max EEPROM writes per address:	100,000
Max writes with address shifting:	1,200,000

Housekeeping Data

Housekeeping sample rate:	1 Hz
Housekeeping sample size:	32 Bytes
Sample buffer size (5000 samples):	156.25 kB

Changes Since TRR

• Software GUI

Overview

- Electronics white wire
- Bench drawing modifications
 - Not able to implement in hardware this year,

but will be useful for future teams

Design

> =	=== Found S	Serial Po	rts: ====	
- U	SB Serial [Device (C	OM4)	
> T	eensy usual	ly appea	rs as "USB Se	rial Device"
> E	nter the Te	ensy's C	OM port and c	lick "Open
Ser	ial Port" t	connec	t.	
> 1	he Arduino	serial m	ionitor must b	e closed before
att	empting to	connect:		
> =	=== Found S	Serial Po	rts: ====	
- U	SB Serial [Device (C	OM4)	
> 0	onnected to	port "C	0M4"	
> P	disconnecti	ng the T	ne port befor	e reprogramming
> 0	ommand Sent	:: 1	censy.	
> 0	ommand Sent	: 29		
> 0	ommand Sent	:: 9		
> 0	ommand Sent	:: 10		
> 0	ommand Sent	: 11		
-	120208			
Setu	p Serial			
Por	COM4		Open Serial Po	ort Close Serial Po

--> Testing ---> Systems --> Project Management

Test Overview

Ryan Smithers

Tests Conducted

Test	Requirements	Success Level
Electronics System	Electronics gather 12 bit photodiode samples at 50 Hz	Level 3 (Flight Capable)
Data Collection	Payload shall process and store ≥10 bit data at 50 Hz for the duration of a data window and communicate this data to a ground computer	Level 3 (Flight Capable)
Alignment	NanoSAM II shall have optical performance equivalent to or surpassing those of SAM-II	Level 1 (Solar Tracking Test)
Solar Tracking Test	The system shall demonstrate solar tracking accuracy of 1 mRad or finer during ground testing	Level 3 (Flight Capable)
Vibration Test	The system shall maintain optics performance following exposure to vibration, Lowest natural frequency shall be > 90 Hz	Level 2 (Improved Ground Performance)
Thermal Test	Payload contents shall operate across a temperature range of -20°C to 60°C	Level 1 (Photodiode data not collected as light source could not be used in chamber)

Overview — Design — Testing — Systems — Project Management

Vibration Test Objectives

- Determine the resonant frequencies along each payload axis
- Use experimental modes to validate our vibrational model
- Test hardware identical to final hardware, analogous versions of the optics and electronics were used
- Test carried out at Altius Space Machines (Broomfield, CO)

Related Requirements

The system shall maintain optics performance following exposure to vibration - not assessed since optic is not staked Lowest natural frequency shall be > 90 Hz

Overview

Testing — Systems — Project Management

20

Thermal Test Objectives

Design

Overview

- Gather data: temperature of the optics bench and electronics boards compared to ambient temperature
- Assess the effectiveness of the thermal isolation fiberglass boards used for isolating optics
- Ensure electronics continue to function as the payload reaches the extremes of the temperature requirements
- Test done in a CU thermal chamber

Related Requirements

Testing — Systems — Project Management

Payload contents shall operate across a temperature range of -20°C to 60° C

Optics Alignment Objectives

Overview

- Use an interferometer to align the optic as best as possible
- Limited timeframe as the interferometer usage has been donated to us by Meadowlark Optics
- Metrics to measure this are modulation transfer function (MTF), defocus, and radial displacement
- Target MTF (derived from SAM-II): 0.74

Related Requirements

Testing — Systems — Project Management

NanoSAM II shall have optical performance equivalent to or surpassing those of SAM-II

Regulated Light Test Objectives

Overview

- Record photodiode output when receiving optical signal of known source
- Use results to characterize system accuracy by comparing to theoretical irradiance calculations
- Compare the 16-bit and 12-bit ADC results

Related Requirements

Testing — Systems — Project Management

Payload shall process and store \geq 10 bit data at 50 Hz for the duration of a data window and communicate this data to a ground computer

23

Solar Attenuation Test Objectives

Design

Overview

- Full system test, requires all other subsystems to be functional before it can be conducted
- Track the sun as it passes across the horizon and continuously gather irradiance measurements
 - This is as close to our on-orbit operations as we can get with a ground test
- Result of this test is a Langley plot

Testing — Systems — Project Management

Related Requirements

Payload shall process and store \geq 10 bit data at 50 Hz for the duration of a data window and communicate this data to a ground computer

Test Results

Ryan Smithers & Dan Wagner

Validation Status

Overview —

Functional Requirement	Tests	Success Level Explanation
0.1 Data Capture	Thermal, Regulated Light, Solar Attenuation	Pending Success, data captured and stored at the proper rate
0.2 Communications	Thermal, Regulated Light, Solar Attenuation	Pending Success, data properly formatted and communicated to ground computer
0.3 SAM II Equivalent Optics	Optics Alignment	MTF req. not met but light passing through system is adequate for testing
0.4 Payload Dimensions	Measurement	Dimensions are within 0.5U CubeSat volume/mass
0.5 Flight Testing	Vibration, Thermal	Vibrational Modes met requirement, Optic was not staked for testing, photodiode measurements were not taken during thermal test
0.6 Cost	Analysis	Project came in \$1000 under budget

Success Level: Level 3, Level 2, Level 1, Failed, Pending

Design — Testing — Systems — Project Management

Vibration Test Results

- 0-2000 Hz 3 Axis Resonance Survey Conducted at Altius Space Machines
- Meets requirement as there are no resonant frequencies below 90 Hz
- Lowest frequency from survey was 445 Hz compared to 962 Hz from Model
- Model extremely sensitive to boundary conditions

Overview

Test Report

Testing

Thermal Test Results

Test results incomplete No success level satisfied

- Photodiode data was not gathered so • thermal requirements could not be fully verified by this test
- Shallower slopes in optics temperature curve compared to electronics temperature curves
 - Suggests thermal isolation 0 efforts were effective
- No vacuum in this test, so it is not representative of spaceflight conditions
- We recommend adding a photodiode temp sensor to create a clearer profile of the entire bench

Thermal Model Validation

Design

Overview

- Heater updated to dissipate 2.4 W (+/- 0.1 W), electronics boards produce negligible heat
- Temperature of the system still stays within the allowable range (-20 °C to 50 °C) with average conditions
- Further analysis needed

Testing — Systems — Project Management

- Equilibrium temperatures were extrapolated from data
- Still large uncertainty in the power output of the heater and electronics boards due to nature of the test

Optics Alignment Results

Level 1 Success Solar Attenuation Test Capable

Design

Overview

- System Defocus, ϵ_{z} : 0.2941 mm
 - Target: 0.045 mm 0
 - NSI Defocus: 0.735 mm 0
- Max Radial Displacement, ϵ : 0.0676 mm
 - Target: 0.030 mm Ο
 - NSI Radial: 0.159 mm Ο

Regulated Light Test

- Indoor test to quickly validate functionality before solar attenuation
- Test Failed

Overview

- Incoming light rays were not parallel
- But there were positives...
 - Solar Attenuation Test covers remaining unknowns
 - SNR, Error, Measurement Stability
 - Pinhole and Photodiode work independently

Design

Testing — Systems — Project Management

Solar Attenuation Test Status

Upcoming Success level unknown

- Test with final assembly of NSII
 - Final assembly competed ~ 4/20/21

Design

- Ground test, using solar tracker, collects irradiance data
- Dependent on weather

Overview

• Test data range: 4/(20-30)/21

Testing — Systems — Project Management

Sun

Reflection on PDD Requirements

PDD Functional		
Requirements	CDD Functional	Results Summary
0.1 Data Capture	Requirements	
	0.1 Data Capture	Flight Capable & Penc
0.2 Communications		
	0.2 Communications	Flight Capable & Penc
0.3 Monochromatic Imager		
	0.3 SAM II Equivalent Optics	Solar Tracking Test Ca
0.4 Vertical Resolution	0.4 Payload Dimensions	Flight Capable
0.5 Tracking Accuracy	0.5 Flight Testing	Solar Tracking Test Ca
0.6 Payload Size	0.6 Cost	Flight Capable
0.7 Flight Testing	Success Level: Level	3. Level 2. Level 1. Failed

Overview — Design — Testing — Systems — Project Management

33

Systems Engineering

Donavon Schroeder

Systems Engineering Approach

35

Risks Predicted vs. Issues Encountered

	Negligible Impact	Low Impact	Moderate Impact	Extreme Impact	Catastrophic Impact
Almost Certain					
High Probability		Short inability to downlink			
Moderate Probability			Photodiode Temp Changes		
Low Probability	Single ADC Failure	Main loop below 50Hz		Structure fails vibration test	
Negligible Probability			Unable to get return sphere	Components not manufacturable	No alignment facility access

Overview — Design — Testing — Systems — Project Management

36
Lessons Learned

- Many of our official tests had overlap
 - Understanding of how the requirements are met
- Integration of subsystems was harder to anticipate than predicted
 - Individual assembly procedures were not continuous during full system integration

Testing — Systems — Project Management

- Heater adhesive
- Photodiode connectors

Design

- Even though everyone started with same documentation, gaps in knowledge developed
- Impact of subsystem changes to other subsystems
 - Status should include how changes may affect other subsystems

Project Management

Jaret Anderson

Approach & Lessons Learned

Design

Overview

Lessons Learned

- Clear role expectations ensure that tasks are not forgotten, but can lead to uneven work distributions
- We used a peer-review system in software which worked really well
 - Three people all had to sign off on a commit before it was pushed to the main branch
 - Should have used this rigorous review system on our testing procedures as some of our tests ended up not being

Final Budget Summary/Comparison

Desian

Overview

Reasons for changes

- Testing costs allocated
 - Uncertainty in facilities at CDR left margin for testing in the unallocated funds
- New OAP not ordered

Testing — Systems — Project Management

 Minor electronics redesign required going over margin slightly

Total Industry Cost

Industry Cost (200% overhead applied)

	Catego
Optics	Optics
Structures	Structure
Electronics	Electronic
Testing	Testing
AIAA/Deposit	AIAA/Dep
Meadowlark Alignment	Meadowl
Thermal Testing	Alignmen
Labor	Thermal Testing
	Labor

-----> Design ----> Testing ---> Systems ---> Project Management

Category	Cost
Optics	\$2,814
Structures	\$768
Electronics	\$902
Testing	\$2,380
AIAA/Deposit	\$550
Meadowlark	
Alignment	\$4,000
Thermal	
Testing	\$1,300
Labor	\$251,532
Total	\$264,277

Acknowledgements

Our Customers:

Jim Baer & Jaykob Velasquez Ball Aerospace

Our Peer Evaluators:

Lara Buri & Colin Claytor

... and all of our personal friends who should send us a bill for their time doing engineering review **CU Aerospace Department:**

Dr. Allison Anderson The PAB

Our Local Professionals:

Meadowlark Optics Inc Blue Canyon Technologies John Ferguson

Questions

References

[1] QB50:System Requirements and Recommendations. Issue 7, Section 1.6 "Thermal Control" and Section 2.2 "Resonance Survey." Published 13 Feb 2015.

https://www.qb50.eu/index.php/tech-docs/category/QB50_Systems_Requirements_issue_76e8e.pdf?download= 89:qb50-docs

[2] Anderson, B. & Justus, C. & Batts, G. "Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design" 2001.

[3] Henninger H. John, "Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal-Control Coatings" Goddard Space Flight Center, April 1984. <u>https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840015630.pdf</u>

[4] "SAGE III on ISS", Wikipedia, Last Edited 10 September 2020. https://en.wikipedia.org/wiki/SAGE_III_on_ISS#/media/File:SAGE_III_Instrument.jpg

[5] Mason, J. & Woods, T. "Miniature X-Ray Solar Spectrometer (MinXSS) – A Science-Oriented, University 3U CubeSat."

https://arxiv.org/pdf/1508.05354.pdf

[6] Anderson, J. & Et. Al "NanoSAM II Preliminary Design Report". Published 13 October 2020.

References

[7] "3U CubeSat Structure" ISIS Space, https://www.isispace.nl/product/3-unit-cubesat-structure/

[8] "PC/104 Specification" PC/104 Embedded Consortium. Version 2.6, October 13, 2008 https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf

[9] "2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00." National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html

[10] "General Environmental Verification Standard: GSFC-STD-7000", Office of the NASA Chief Engineer, NTSS Version 7.0, 30 Sep 2015, updated 29 March 2019. <u>https://standards.nasa.gov/standard/gsfc/gsfc-std-7000</u>

[11] Kim, Sung-Hwa & Hwangbo, Chang-Kwon. "Temperature Dependence of Transmission Center Wavelength of Narrow Bandpass Filters Prepared by Plasma Ion-Assisted Deposition." Journal of the Korean Physical Society. Vol. 45, No. 1, July 2004. <u>https://inis.iaea.org/search/search.aspx?orig_q=RN:41100734</u>

[12] McCormick, M. P. Et. Al. "Satellite Studies of the Stratospheric Aerosol." Bulletin American Meteorological Society. Vol. 60, No. 9, September 1979.

Backup Slides

Table of Contents

Risks	54 - 59
Ontice	60 64
Optics	60 - 64
Electronics	65 - 97
Otherset	
Structures	98 - 115
Software	116 - 120
Management	121 - 133
Testing	134 - 146

Backup Slides

Old Schedule

Schedule (Testing Focus)

Work Breakdown Structure

Optics Instrument Overview

Power Budget

Power Requirement 8 W

Estimated Power Usage (worst case scenario) ~7.17 W w/ heater ~1.66 W w/o heater

Power Usage Ratio 89.6%

Power estimates for digital I.C's are based off maximum DC characteristics, and are not representative of the typical power draw, merely the maximum possible at any given point

Power Consumption

Status Summarv

Baseline Feasibility (Electronics)

Percentages are of the 1.66 W

board component power usage

Signal to Noise Ratio (SNR)

Noise Sources [ref. 5]

Photodiode

Dark Current Johnson Noise Shot Noise 1/f noise

Circuitry / Transmission

Loss in op-amp 5V Regulator Uncertainty Quantization noise (ADC) ADC Offset Noise

Status Summary

Project Description

Baseline Feasibility (Electronics)

Temperature Monitoring Correction

Description

Requirements

Texas Instruments LMT86LP

-10.9 mV/°C slope

Sampled w/ 12 bit ADC: = 0.8mV LSB = 0.043°C resolution

Risks

High precision analog optics bench temperature sensor to track temperature-related errors, correct these errors in software - 0.0198 V/K

Planning

Electronics: Photodiode Saturation

The photodiode output will saturate when the output voltage approaches the reverse bias voltage on the photodiode.

Our reverse bias voltage should be greater than the maximum output voltage, which is 3.3V.

Electronics: SPI Bus Connections

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html

Electronics: SPI Bus Pull Up Resistors

Pull up resistors on the chip select pins ensure that the CS pin is high, thus the MISO/MOSI lines will disengage.

This makes sure a line is only transmitting when absolutely driven low by the microcontroller, reducing potential cross talk.

This can also be corrected in software, but it provides an extra layer of redundancy at little cost.

Electronics SPI Bus Noise Considerations

Electronics: Resistor Heater

3.3V Linear Regulator can supply the needed 1.65 A. This increases the power requirement of the system a lot. We can directly use the 12V input to save power usage, controlling the input with a TVS diode.

MOSFET provides a very low voltage drop, but can be accounted for in resistor sizing.

Microcontroller can supply the activation signal with a PWM output

-20-50°C P=IV - I. 5.46 00 tem orge I = 1.65455 A N-chamel Enhonament RH Prover = IRDS. Ros floor dotusheet for DOUES chown maslet Vin = 3.3V (~3,2 ish may're im The HI murach Design constraints : Q= 1% = 3.3% Ru Vin, max = 330, 10m A max Vec = 3.3V, 3.5 A mox Preg = 5.46 W (acus RH) RH = V2/p = 3.3V/5.46 w RH = 1. 9945 IL ERRORS Ling La when der: VGD = Vin < Vin Use ~ 2-10mV (HE signal is ~3.2-3.3V) ID 20 (extremy luw) ROS 20. 7 R [dalcohead] "Lo when an : VGD >> Utr Vo> = I0800 = 0.16V Incorporating 1000 = RH. (Vec-Vos)2 (3.3-16)2 RH 2 1.80579 JL

Electronics: Extended Bill of Materials

Part	Value	Device	Package	Size (mm ²)	DK Part #	Cost	Temperature Rating
U\$2	TEENSY4.0	TEENSY4.0	TEENSY4.0	814.1	1568-DEV-16997-ND	24.38	-40°C ~ 85°C
U\$3	AD8671	AD8671	S08	31	AD8671ARMZ-ND	2.89	-40°C ~ 125°C
U\$4	LT6105	LT6105	MSOP8	4.7925	LT6105HDCB#TRMPBFTR-ND	3.46	-40°C ~ 125°C
U\$5	LTC2470	LTC2470	MSOP12	10.5	LTC2470IMS#TRPBFTR-ND	5.01	- <mark>4</mark> 0°C ~ 85°C
U\$12	LT8610A	LT8610A	MSOP16	19.79	LT8610AEMSE#TRPBFTR-ND	9.5	-40°C ~ 125°C
U\$16	MT25QL128ABA1ESE	MT25QL128ABA1ESE	SO-08M	48	557-1982-2-ND	2.29	-40°C ~ 85°C
U\$17	MT25QL128ABA1ESE	MT25QL128ABA1ESE	SO-08M	48	557-1982-2-ND	2.29	-40°C ~ 85°C
U\$19	THERMISTOR	THERMISTOR	M0805	2.58064	BC3395CT-ND	1.08	-40°C ~ 150°C
U\$26	LTC2470	LTC2470	MSOP12	10.5	LTC2470IMS#TRPBFTR-ND	5.01	-40°C ~ 85°C
U\$30	LT6105	LT6105	MSOP8	4.7925	LT6105HDCB#TRMPBFTR-ND	3.46	-40°C ~ 125°C
U\$33	LT6654-3.3	LT6654-3.3	SOT23-6L	8.12	LT6654BMPS6-5#TRMPBFTR-ND	9.76	-55°C ~ 125°C
U1	LTC3260EMSEPBF	LTC3260EMSEPBF	MSOP-16_MSE	16	LTC3260EMSE#PBF	8.47	-40°C ~ 125°C
U2	LMV324	LMV324	SO14	9.15	LMV324QPW-ND	0.9	-40°C ~ 125°C

Total Size (mm^2)	Total Cost (\$)	# Components	Clearence (mm^2)	Traces (mm^2)	Board Cost
5060.264744	517	129	14.5125	655.32	65

Temperature Effects on Components

Device	Temperature Effects (over -20C to 50C)
Transimpedance Amplifier	Output voltage high and low remain within our necessary bounds, supply current delta around 0.5mA, and slight increase in input offset voltage with temperature, overall negligible.
ADC	Gain error and offset error change by ~6-10 LSB, unavoidable but quite small. Calibrating for median temperature will help. Negligible change in conversion time.
Voltage Reference	~0.1mV change maximum, will not affect a significant amount of LSB.
5V Bipolar Regulator	~100mV change maximum, could introduce AD8671 op-amp noise, but we use decoupling capacitors. Does not veer outside of required operating range.
3.3V Linear Regulator	~5mV change in voltage output, not enough to affect digital component operation
Current Sense Monitors	0.01% gain error change, no concern

Reference voltage for ADC

Electronics: Voltage Regulator Output Noise

5V Bipolar Regulator				
Output Voltage Noise	e 100e-6 V		2 bins noise	
+ Decoupling capa	acitors on transimp	edance amplifier Vc	c	
3.3V Linear Regulato	r			LDO Rejection of V _{OUT} Ripple
Table 1. Output Voltage Ripple vs LT8610AB when $V_{IN} = 12V$, $V_{OUT} =$	Output Capacitance for 3.3V, and L = 4.7µH	+3V3/1.6B	VLD0* 10mV/DIV AC-COUPLED	
OUTPUT CAPACITANCE	OUTPUT RIPPLE	47uF C8 C9	VLD0 ⁻	
47µF	40mV		AC-COUPLED	
47µF ×2	20mV	DCND	VOUT 10mV/DIV	man
47µF ×4	10mV	DGND	AC-COUPLED	

1266-520

 $V_{IN} = 15V V_{LDO}^+ = 12V$

100

=-12V

1µs/DIV

Electronics: Recommended Voltage Regulator Routing

Analog Voltage Regulator

.... GND ... CFLY Vour VIN LDO* LD0⁻ GND 3268 F05 Figure 5. Recommended Layout

Digital Voltage Regulator

Electronics: ADC Saturation

Maximum temperature (during data collection): Responsivity at maximum temperature: Maximum incident power:

Maximum output current:

Feedback resistor for 3.3V

30 deg C 0.405 A/W 0.006 W

0.00247 A

1268 Ohms

We also use a 3.3V zener diode on the ADC input to prevent overvoltage. The ADC COMP can only accept 3V to 3.6V (at 3.3V Vcc).

Electronics: SNR Detailed Calculations

All noises are converted to an equivalent voltage, and compared to the expected voltage signal to the ADC. For a worst case scenario, we assuming the typical signal will be 50% of our dynamic range, or 1.65V.

$$\begin{split} V_{shot} &= R_f * \sqrt{2q(I_s + I_d)f} \\ V_{johnson} &= R_f * \sqrt{\frac{4k_BTf}{R_{shunt}}} \\ V_{dark} &= R_f * Idark \\ V_{lowpass} &= \frac{28nV}{\sqrt{f}} \\ V_{regulator} &= 0.1mV \\ V_{quantization} &= \frac{LSB}{\sqrt{12}} \\ SNR &= \frac{0.5 * I_s R_f}{\sqrt{V_{quantization}^2 + 2V_{regulator}^2 + V_{lowpass}^2 + V_{dark}^2 + V_{johnson}^2 + V_{shot}^2} \end{split}$$

Electronics Risks

Requirements -----

Risk	Mitigation
Voltage regulator noise	Low noise components, voltage reference for ADC, recommended routing patterns
Pin overvoltages	TVS diode on heating resistor, zener diode on ADC input, voltage regulators
ADC failure	Backup 12 bit ADC on Teensy meets SNR requirements
ESD component destruction	Test plan recommendations, ESD safety in test procedures
Signal integrity	Signal-ground connector layout, low frequency signals, off-board wire shielding, robust SPI communication design

Risks V&V

Planning

Electronics Risks

Risk	Mitigation
ESD damage or component issues go undetected	Abundant test points to check all input/outputs to each IC
Photodiode saturation	Reverse bias voltage applied on pin >3.3V
Photodiode responsivity changes	Software correction via high sensitivity optical temp sensor IC
ADC Dynamic Range	Feedback resistor sized for maximum expected output current with margin of error
Radiation triggers Teensy 4.0 latch up	External watchdog monitoring circuit and backup watchdog implementation in software (using microprocessor built in)

Requirements -----

68

Planning

OSHPark CAM Job Render [Analog]

OSHPark CAM Job Render [Digital]

Electronics Design V2

Test Readiness -

- Manufacturing tolerance on B2B copper pads
- New digital B2B layout with surface mount
- Larger resistor heater MOSFET
- Watchdog hardware switch

Overview

- **Clip Connectors for ease**
- Increased isolation of the ground planes

Budget

75

Electronics System Tests

Requirements V&V

1.0: Data Capture

- The supporting electronics and software shall digitize, packetize, and store housekeeping data and information collected from the photodiode
- The system uses less than 7.3W with the heater running.

2.0: Communications

Overview

 Communicates with laptop for ground testing

Schedule

Budaet

Test Readiness

Electronics System Tests Specifics

Test Readiness

Budaet

Overview

Schedule

Electronics Subsystem Test Results

Test Point	Actual Value	Expected Value
1	3-4mV floating	0V
2	2-3mV floating	0V
3	3.3V	3.3V
4	2-4mV floating	0V
5	2-4mV floating	0V
6	2-4mV floating	0V
7	4.99V	5V
8	-4.99V	-5V
9	2-4mV floating	0V
10	11.95V	12V
11	2-4mV floating	0V

Table 9 Analog Board Individual Test Results

Test Point	Actual Value	Expected Value
Analog 2	50-70mV [iPhone Flashlight]	[Depends on Light]
Board Connector Pin 19	2mV less than Analog 2	N/A
Digital 13	1.85V	1.77V at 30 deg C
Digital 14	1.85V	1.77V at 30 deg C
T14/T13 Low Pass Ratio	1	0.989775
Digital 15	12V	12V
Digital 16	6mV	0V

Test Point	Actual Value	Expected Value
1	Floating, 0.6V, 3.3V	0V [Teensy not on]
2	2-3mV floating	0V
3	2-3mV floating	0V
4	3.3V	3.3V
5	3.3V	3.3V
6	3.3V	0.6V
7	3.3V	0.6V
8	3.0V	3.3V
9	0.3mV floating	0V
10	0.35mV	3.3V
11	12V	12V
12	0.31V	Input Current, Variable
13	2-3mV floating	0V
14	47mV	0V
15	12V	12V
16	2-3mV floating	0V

Table 10 Digital Board Individual Test Results

Test Point	Actual Value	Expected Value
Analog 1	3-4mV floating	0V
Analog 2	2-3mV floating	0V
Analog 3	3.3V	3.3V
Analog 4	3.7mV	0V
Analog 5	0.65V floating	0.6V [Room Temp]
Analog 6	0.61V floating	0.6V [Room Temp]
Analog 7	5.0V	5V
Analog 8	-4.97V	-5V
Analog 9	3.8mV	0V
Analog 10	12.01V	12V
Analog 11	3.8mV floating	0V
Digital 1	2.02V, 0.8V	3.3V [Teensy on]
Digital 2	N/A [Not Tested]	0V
Digital 3	N/A [Not Tested]	0V
Digital 4	3.3V	3.3V
Digital 5	3.3V	3.3V
Digital 6	0.367V	0.6V
Digital 7	0.367V	0.6V
Digital 8	3.3V	3.3V
Digital 9	4.6mV	0V
Digital 10	0.35mV floating	3.3V
Digital 11	12V	12V
Digital 12	5.6mV	Input Current, Variable
Digital 13	N/A [Not Tested]	0V
Digital 14	N/A [Not Tested]	0V
Digital 15	12V	12V
Digital 16	10mV	0V

Table 11 Board Integration Test Results

Table 12 External Connector Test Results

Design

Software Conceptual FBD

Flight Software Header Tree

Thermal Updates

Determining Heater Output Error Bounds

- Using MATLAB fit toolkit
 - Assuming high stability
 - Imperfect because of resolution inaccuracies that can be seen in the data
- Results from using Eq temperatures in Matlab model:
 - Heater output = 2.4 + 0.1 W
 - Electronics outputs below chamber equilibrium
 - Negligible output

 $T(t) = T_{
m env} + (T(0) - T_{
m env}) e^{-t/ au}.$

Temperature Change on the Photodiode Block

Data Window	Max ΔT (K)	Time (s)	
Sunset	~0.1	192.6	
Sunrise	~0.9	192.6	

- Calculated for β = 60° (orbital parameters corresponding to maximum length data window)
- Average values used for albedo, IR, and solar radiation [2]
- Negligible electronics board power dissipation used in model alongside a 2.4 W heater
- Black anodize exterior coating [3]
- No longer lumped system analysis (done through Solidworks + MATLAB modeling)
 - Threads and screws removed along with small holes

Temperature Change on the Photodiode Block

Temperature Change on the Photodiode Block

- Input into SolidWorks in order to account radiation from the Earth
 - Neither SolidWorks or ANSYS has this ability built in
- Still uses **area** factor analysis
- Modeled as surface sources alongside the heater and the EPS board power dissipation

Thermal Isolation of the Optics Bench

 Introduction of structural fiberglass on either side of the optics bench (S-Glass)

S-Glass Properties	
Density	2.49 g/cc
Thermal Conductivity	1.28 W/m-K
Specific Heat	738 J/kg-K

Thermal Model Diagram

Thermal Model Details

Key Assumptions:

- Bodies other than the Earth/Sun don't produce significant incident radiation
- Kirchoff's law ($\epsilon_{\lambda}(T) = \alpha_{\lambda}(T)$)
- Satellite surfaces are gray, diffuse, surfaces
- Radiation to deep space (0 K)

Key Equations:

$$T_{sys,eq} = \left[\frac{\dot{Q}_{in,sun} + \dot{Q}_{in,A} + \dot{Q}_{in,IR} + P_i}{2\sigma\epsilon(2A_s + A_p)}\right]^{(1/4)}$$
$$\dot{Q}_{tot} = \dot{Q}_{in,A} + \dot{Q}_{in,IR} + \dot{Q}_{in,sun} + P_i - \dot{Q}_{out}$$

$$T_i = \frac{\dot{Q}_{tot}\Delta t}{mc_p} + T_{i-1}$$

Vibrational Updates

Vibration Test Results

Physical Setup

Vibration Test Results

- 0-2000 Hz 3 Axis Resonance Survey Conducted at Altius Space Machines
- Requirement was no resonant frequencies below 90 Hz
- Lowest frequency from survey was 445 Hz
- Model extremely sensitive to boundary conditions

		Closest Solidworks Resonant Frequency (Hz)	
Axis	Frequency (Hz)	Solidworks (Fixed Base)	Solidworks (Fixed Optics)
x	493.3	982.6	416.8
x	901.1	982.6	873.9
у	445.5	982.6	416.8
у	621.4	982.6	636.5
z	619.5	982.6	636.5