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Project Motivation & Statement

MEGACILAW is a proof of concept for
mitigating debris by capturing then
deorbiting debris or performing
maintenance on broken spacecraft.

Heritage: CASCADE, KESSLER

MEGACLAW shall use a robotic arm equipped with an end effector
(EE) to capture a flat plate grapple point (GP) spinning on a motor
at a constant rate, which simulates a solar panel on a 6U CubeSat
rotating about a single axis of rotation.
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Functional Block Diagram
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Functional Block Diagram
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Control Block Diagrams

Plant
: Padj
Desired Realized End Effector
Position, Pref Ap 5, State Change
Built-in Actuator
3 Control Block Inverse Kinematics PID Control \I
" | ) 1
: y !
Pactual I
1
1
__/
& ‘ Coarse: Intel D435

‘ Fine: Pixy 2

- O S R W WS S S S W R WS S S S S W O S S S S R W S S S W R R S e S S e e e s s




SIERRA
NEVADA
CORPORATION

Hardware Description — Arm and Actuators

Actuator | Girder | Actuator | Girder | (Vertical) | (Horizontal) | Dual Gripper
Actuator Actuator

Mass[kg] 0.425 0.037 0.126 0.022 0.072 0.072 0.187

Length[m] 0.093 0.127 0.061 0.0635 0.051 0.0355 0.1516
Stall 16 6 2.5 2.5
Torque [Nm)]
Factor ~19 ~11 ~10 ~18

of Safety
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Hardware Description — End Effector

2.375"

=)

« Ball Joint Grippers * AC4598 Slip Ring * Pololu 0.6" Force
e Allows 10° error with * End Effector needs to Sensitive Resistor
ogripping position be able to rotate * Confirms a successful

indefinitely ograpple
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Hardware Description - Test Bed

* Improving KESSLER test bed
* Added Crossbars to counteract
torque from arm

7 ft
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Hardware Description: Solar Panel

e 11.81n x 7.91n x 0.51n

« 2 fiducial markers on edges
for position determination

* 3 color center for rotation




Primary Vision System Block Diagram
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Vision System: Intel RealSense D435 & Pixy2

Depth Sensors GB

3.54" x 0.98" x 0.98” 1.5” X ]_.65” X 0.6”

Intel RealSense D435 Pixy2

Provides: Color video Provides: Pixel position and
(1920x1080) at 30fps angle of solar panel

* 69.4° x 42.5° * 60°x40°

3D metric position 10 grams

e <1% error
e 85.2°x H&°
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Primary Vision System: AR Tags

Fiducial markers proposed at PDR: New design solution:

Colored Spheres AR tags

Drawbacks: Advantages:

* Prohibitively slow (~0.5 Hz)  Fast (~20 Hz)

* Sensitive to variable lighting  Reliable in variable lighting and
« Number of distinct colors limits orientation

availlable number of markers (~6) ¢ Up to 250 unique IDs
* Four corners give orientation of tag

A B
&) B g
=N
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Hardware Description — End Effector Tags

,
5
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Secondary Vision System: Colored Markers

* Pixy2 uses color signatures to * Solar Panel is blue, with
track objects 3 colored markers placed 1n
 Pixy2 has a FOV of 40° x the center
60°, and can track up to 7 * Two or more color signatures side
color signatures by side are used to determine the

angle of the signatures

1.0" 1.0"

11.8"

Top View of Grapple Point *not to scale*
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Critical Project Elements

Error tolerance is very small, multiple
components contribute

Sensors/Controls - Accuracies

Image processing and 3D modeling are time-
Software - Speed Intensive processes; minimum GP angular
velocity sampling rate

Actuation of Robotic Arm
and Ground Support
Equipment

Any damage to components in the project can
cause week-long delays
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Design Requirements: Stage 1

%\ (Side
View)
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Design Requirements: Stage 2
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Design Requirements: Stage 3
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Stage 3:

Rotation Matching

Y
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Design Requirements: Stage 4

Stage 4: Side
Grapple  View

2.5[em)] |
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Satisfying Design Requirements — End
Effector State Accuracy

Control algorithm shall command EE within

convergence tolerance of 1.45 cm

Z-Position of Arm vs. Command

* Created and solved inverse kinematics (1K) 0.44 oo ‘
using exact SolidWorks model of arm —— iggﬁian dod
042 O
« Simulated error from actuators between IK and .
forward kinematics, then error of sensor E 04 .
measurement 5
_-|§ e sk
e Set convergence tolerance of arm to 1.45 [cm] in o 0.38 *
z-position (can set for any of the states) N ek
0.36 1 ok
» Satisfied tolerance, <1.45 [em] (and therefore N
the design requirement), every time 0.34 | | |
0 10 20 30

Requirement Satisfied Command Number




Visual Processing — Accuracy of
Position Determination

Why?
Must be accurate enough for end
effector to grab grapple point.

Results

* Position error between known
position and primary sensor
~2-5mm

Regquirement Satisfied
 Position error between two known
positions = 4 - 8 mm




Visual Processing — Accuracy of
Orientation Determination

m The spin axis offset during grapple must be no more than 10°

AR tag actual and measured angles - 500 readings

AR tag set as close as possible to ol
50° away from Intel D435

« Mean measurement: 52.19°

e 0=0.21°

* Some error likely due to setup

|-Measured angles Actual anqle| |

100F

80

60 r

40 |

Mumber of readings in bin

Mean error: 2.19°

20+

Requirement Satisfied

49 49.5 50 50.5 51 51.5 52 52.5 53
Degrees
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Visual Processing — Visibility

Sensors shall determine whether grapple point is within the

field of view.

15° 45°_ 60° 75° Visibility of AR
: - tag's at variant
conditions:

« Distances:
0.4 m, 0.5 m,
0.6 m, 0.7 m

 Angles:
15°, 45°, 60°, 75°

66% 1n view at
0.6m , 60°

Requirement Satisfied
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Secondary Vision System — Pixy2 Angle
Determination

The GP spin rate determined by
DR 2.5.1 the secondary sensor shall have

an error + 0.33 deg/s (1% error)

Why?
From the time the wrist is spun up to final

grapple, the offset angle can be no more than
10°

Results: _ i
Testing at 200 deg/s provided an error of 0.368% ' _ GIFX

Requirement Satisfied

200 deg/s rotation
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Spin Axis Alignment

* Intel D435 will scan the fiducial
markers and create point cloud.

* Find centroid and normal vector
out of centroid. _

« Move arm to align with
estimated spin axis (normal
vector).

« Switch over to Pixy2 for fine

alignment and spin rate . :
determination. Calculated Centroid Location
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Spin Axis Alignment

MATLAB simulation incorporating error i1n measurements.

Simulation of Grapple Point Axis of Rotation Estimate

The spin axis offset during
grapple must be no more than 10°

O Measurements

0 Estmate The ball joint grippers only

allow for an addition 10°
of movement

 Measured X,Y,Z position from AR
tags and Intel

« Black circle 1s true path of the AR
tags on the GP

Path of AR tags on solar panel
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Spin Axis Alignment

MATLAB simulation incorporating error i1n measurements.

Simulation of Grapple Point Axis of Rotation Estimate

Calculated Spin Axis DR 2.5 The S]gl)m ax1: lc;ffset durlntgh e
Actual Spin Axis grapple must be no more than

Results: St mulation provided
12 - a mean spin axis offset
E 0.68° from actual

Requirement Satisfied

Mean calculated from 2000
o | . simulations each run over a
Side View  xm Yim) 30s 1nterval
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Risks — Before Mitigation

1. Bad gains

Negligible Minor Moderate Significant Severe

2. Wires become tangled
during actuation of arm

Very
: Likely
3. Coordinate =
frame transformation ey 3
accuracy
Possible 4
4. Actuators overheating
: - Unlikely
5. Camera not identifying AR
tags In view
Very
Unlikely

6. Arm is commanded into
a damaging configuration
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Risks — Mitigation Methods

Risks Mitigation Method
1. Bad gains Spend time tuning gains, trial and error
(iteration)
2. Wires become Slip ring implementation

tangled during actuation of arm

3. Coordinate frame transformation accu | Utilization of ROS for
racy transformation and VICON
for measurement

4. Actuators overheating 255s completion time requirement,
vertical arm orientation, shortened arm

5. Camera not 1identifying AR tags in Two camera system

view

6. Arm 1s commanded into a damaging Emergency power cut option and set
configuration limitations in software
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Risks — After Mitigation

1. Bad gains

Negligible Minor Moderate Significant Severe

2. Wires become tangled
during actuation of arm

Very
: Likely
3. Coordinate =
frame transformation ey
accuracy
Possible
4. Actuators overheating
: - Unlikely
5. Camera not identifying AR
tags In view
Very
Unlikely

6. Arm is commanded into
a damaging configuration
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Verification & Validation — Controls

Requirement:
* 2.4.4 The position of EE shall satisfy a control
tolerance of 1.5 cm

Solution:

* Use an external reference to confirm that when
the control algorithm indicates convergence, it
1s within this requirement

Verification & Validation Test:

o Utilize CU RECUV's VICON camera system
with 8 reflective spheres to track the end
effector's position within ~ 1 [mm]

« Mimic CASCADE test setup (vertical)
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Verification & Validation —
Visual Accuracy

Requirement:

* 2.4.2 The position of EE shall be determined
within 1.45 cm

* 2.4.3 The position of GP shall be determined
within 1.45 cm

Solution:
e 2 camera system
« Calibration of D435 and Pixy2 cameras for accuracy

Verification & Validation Test:

 The VICON will be used to determine the actual
position of a stationary arm to within 1 mm, and
this measurement will be compared against the
measurement of the D435 primary camera




Visual Processing — Accuracy
Confirmation of Spin Rate

The solar panel will be rotated using a turntable motor that will be commanded to
33 deg/s. The actuator will return position and time data, which will be

used to calculate the true spin rate. This truth data will be compared to the
Pixy2's calculated spin rate. il @

Pixy2 tested at

3" from GP
Actuator truth

spin rate,
accurate within
0.1°

V.S.
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Visual Processing — Coordinate transter

Requirement:

 2.4.5 Coordinate frames shall be defined 1n
software with a maximum error of +0.1 cm and
+0.5° from their actual locations

Solution:
e Measure coordinate frame locations with +0.1
cm and +0.5° accuracy

Verification & Validation Test:

« Utilize CU RECUV's VICON camera
system with reflective spheres located on the
coordinate frames of interest

* This provides measurement accuracy of ~0.1cm

* Angular accuracy dependent on sphere
locations, £0.5° can be achieved
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Customer (SNC) _

TJ Sayer KEY:
Team B - oo Consunan
PAB Advisor C] - Sub-team Leader

Prof. Francisco Lopez Jimenez

Organlzatlon :] - Sub-team Member

. . Project Manager .
Visual Processing Caleb Inglis Systems / Integration
[ |
- ) s )
Electronics Software Systems Engineer
Andy Kain Bailey Topp Jack Ishill
' v, L _.-'
i ™) . ™)

Testing
Sheridan Godfrey

Optics / Sensing
Daniel Mastick

Controls
Ben Elsaesser

Analysis
Cedric Leedy

Financial
Chris Leighton

Controls

Manufacturing
Luke Beasley

Safety
Joe Beightol
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Work Breakdown Structure

. Management / Systems . . Hardware
‘ Deliverables ‘ ‘ Logistics ‘ Engineering ‘ “H’ISUEl Processing ‘ Controls &Testing
—[ PDD ] Organization —[ Objectives ] [ Sensor Inverse Heritage
Chart Selection — Kinematics - Hardware
_[ CDD ] Requirement Model of Arm Acquisition
Schedule —{ Breakdown ‘ | Sensor Control L E ——
Gantt Chart Acquisition || ontrol Loop L_|=rappling Arm
—[ PDR ] [ ) s - Design SolidWorks
WEBS Software
_[ CDR ] _[ ] i =0 ] Interface | Control Loop | | Construct
Simulation Grappling Arm
_[ FFR ] _[ Puded ] —[ oD ] Data Data Handling Test Herit
: Acquisition - | | Test Hentage
{ MSR | _CostPlan | C':'lf' e Software Hardware
raime Develop State —
[ TestPlan | Definitions ~| Determination Actuation Slip Ring
_[ TRR ] Full Interface Algorithm sll o LEERLL
[ i Development ‘ i
| sFR | ‘| el ‘ : [ Determine  Full Test Plan |
_[ PFR ] _[ Order Parts ] of Fiducials "EE Gimbals & |
Determine il Sensor Mount
- aaa | | Relative State \(Design, Print)
Key: of Arm [ Truth Data |
— =~ Determination
| | - Complete |_(Vicon Test) |
' -
| | - Incomplete Software /
I — Hardware

,__Integration_

Univegsitylof Colorado




SNG:=..... Work Plan (Gantt Chart)

Decenber 2018 January 2013 February 2019 March 2013 Apri 200

MEGACLAW CDR

¥ Critical Design

Write FFR KEY

COR Feedback Review -
Full Team, Logistics

Fall Final Report & FFR Ij
Finalz Week |:| Breaks
LA sk B
Winter Break l : Hardwars
Order Comporents |Delrver Before Jan, 14)
I:] Electronics
v iR Sl B —TE—— [ tuitiple Subteams

End Effector Gimbals | | |:J Controls Softwars
GSE Structure :
Sensor Mounts :I ‘ Milestone
Elecirical Cemponant Inspection B )
Mechanical Component Testing : # Critical Path
Baud Rate Anakysis

r Data Handling, Command Actuation 5_. | .:| Margin

: - - .-"I'EE b
Manufacturing Status Review ’ "

> Component Testing prm— EEEEEEE——— ¢ "

Subsystem Testing, integration

(Full} System Testing
¥ Project Conclusion
SFR Wark

Spring Final Revidw

5FR Feedback Review

Project Final Beport



MEGACLAW (2018-19) Expenses

GSE Hardware: 229.99

~  Sensors: 611.21

Elec. & Mech. Components: 636.29

e
e

Remaining: 3143.92 —
Miscellaneous: 378.49

I CsE Hardware M Sensors | Elec. & Mech. Components [l Miscellaneous [ Remaining
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Test Plan

(Reservation)
Phase Location (Facility) Special Amenities Feasibility

Electronic and ASEN Senior Projects  Storage, Floor and Through ASEN 4018/28

Mechanical Component Room Table Space (for test

Testing bed and components,

(1/14 — 1/21) respectively)

Subsystem Testing ASEN Senior Projects  (as above) (as above)

(1/14 — 3/4) Room
VISIONS Lab VICON motion capture CASCADE, KESSLER
(RECUYV) system

System Testing (as above) (as above) (as above)

(3/5 - 4/22)
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Project Statement

MEGACLAW shall use a robotic arm equipped with an end effector
to capture a grapple point, a flat plate spinning on a motor at a constant
rate, which simulates a solar panel on a 6U CubeSat rotating about a single
axis of rotation.

End Effector (EE) Grapple Point (GP)
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Cube
Satellite

Y

Primary Vision System Block Diagram

Depth
Data Output
from IR:

LT
&

)

v

Color
Data Output
from visual

R.G B

A

Legend

Determine
position
P |ocation of
AR tag from
pixel index
Determine l
AR tag's
centroid pixel
index Crientation
and Position
of AR tag
Determined
|dentify Determine
specific = AR tag
AR tag orientation

o

Searches for
AR tag by
applying
AR fag
algorithm

_ - Hardware Connection

----- * IR Feedback
— ' |R Data

= = = = = = Visual Feedback
—- * Visual Data

—_ Dafa Flow

g

-

AR tag

Universityfof Colorado
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Primary Vision System: Binary AR tags

Advantages:
« Fast (20-30 Hz) even with many tags
* Reliable recognition at:

 High viewing angles

7 E
 Wide variety of lighting conditions - -
* Unique IDs provided by binary codification
(white pattern)
L5
5

 Four corners allows for orientation estimation

Implementation used: AprilTags
« Available through OpenCV/ArUco
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Primary Vision System: AR tag Algorithm

Adaptive Thresholding Perspective Removal

 Converts input image to black- * Detected tag i1s reshaped into a
and-white square

Boundary Segmentation Bit Extraction

» Identifies contours of AR tags  Marker i1s divided 1into grid

=)
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Primary Vision System: Position/Orientation

MELGACLA

Iniversity’of Colorado

Orientation provided by OpenCV library:
 Found by measuring perspective
distortion of each detected tag

Cartesian position:

* Applying pixel position of tag to depth
1mage to find linear distance

* Using Intel-provided functionality (along
with calibration parameters) to S
reconstruct Cartesian position of tag
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Primary Vision System: State Determination

Target state determination:
* Prior to grapple, tags on target will be visible for a full
revolution

End effector state determination:

* System will have foreknowledge of geometric relationships
between n visible tags and the end effector center and rotation
axis

* By constructing n transformation matrices, n estimates of the
end effector's state can be obtained

 The best estimate of the true state will be the average of the n
states
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Visual Processing Test Setup (Mock-Up)

« Two AR tags on each top end of the GP
* Used by intel to determine spin axis

 Three colored markers centered on top of
GP
* Used by PIXY 2 to determine
spine rate and fine tune axis
alignment

« Additional AR tags will be placed on the
tip of the claw for Intel to ensure a 90
degree alignment with the claw for
successful grapple
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Spin Axis Alignment — Vision Area




Axis Angular Estimate Error

-1 0 1
X Position Error [mm]

-1 0 1
Y Position Error [mm]

-1 0
Z Position Error [mm] . 04 06 08 1 12 14 16 1.8

Angular State Error [deg]




-0.5 0 0.5
X Position Error [mm]

-0.5 0 0.5
Y Position Error [mm]

-0.5 0 0.5
Z Position Error [mm]

1

1.5

Axis Angular Estimate Error

0.5 1
Angular State Error [deg]




- | | EEe Gy,
Inside the Control Block

* Inside the control block, apply proportional control to the error
and add to desire position to "trick" actuator PID control

 Assume small angle adjustments (by limiting distance between
commanded points) to simplify quaternion control to linear:
* lal, 42, q3, o4]' = [¢/2, 0/2, w/2, 1]’

Control Block

" 4 [Ax]
R [ay] | (B
—'[‘”'k“p}’ oo Ky, Kz Kal 1az)
1 [Aq] |
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Other Processes

* Inverse Kinematics: Takes commanded end effector state
Xx,y,z,ql,q2, g3, q4] and returns joint angles.
Quaternion eliminates singularities

e Built-In Actuator PID Control: Takes a set of joint angles
and sends to actuators. Actuators respond according to
their supplied PID control

* Intel, Pixy2: Senses the actual state of the end effector,
returns to the algorithm
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Overview of CPE's and Functionality

CPE 1: State Estimation
CPE 2: Controls
CPE 3: Hardware

Actuate to

Final Grapple

Identifv Spin Actuate Arm to Determine GP
Axis gf Glii) Align EE and Spin Rate and
GP Axes Match EE Rate
CPE 1 CPE 1 CPE 1
CPE 2 CPE 2

CPE 3 CPE 3

CPE 2
CPE 3
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Software Rate Requirement

The rate of 0.916 Hz is for the entire control loop. This means that

all operations within the closed loop must be performed in 1.092

seconds.

« Some control loop processes can be achieved simultaneously.

* The control loop rate becomes a primary concern during stages 3
and 4 due to the stages having the most complicated controls.
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Visual Processing - Speed

 Reading in position —Intel 0.067 seconds
 Reading in position — Pixy 0.003 seconds

Impact of number of visible tags on D435 processing frequency

« Communication with ROS — Negligible I

20F

« (Calculating center point — 0.015 seconds

15 ¢

* Visual Processing total time — 0.082
seconds
* Overall time requirement — 1.092 seconds

Rate (Hz}

1 2 3 i 5 ] 7 8 9
Visible AR tags
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Visual Processing — Visibility

15

Visibility of AR tag's at variant
conditions:

e Distances: 0.4 m, 0.5 m, 0.6 m, 0.7 m

* Angles: 15°, 45°, 60°, 75°
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Visual Processing — Visibility
45°

15°
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Visual Processing — Visibility
45° y

60

15°
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Visual Processing — Visibility

15° 45 60° 75°




End Effector States

|
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|
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Marker Location on GP and EE

State of end effector shall be measured using a

decoupled sensor

State of grapple point shall be measured using a
decoupled sensor

« Two AR tags on each top edge of the GP
* Used by Intel D435

* Three colored markers centered on top of GP
* Used by Pixy2
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- o ! 1 = ; I 1 I\- i I!.r - ?l e - Univegsitylof Colorado
- —Fal s E - 7 = ™ |! | | & i
| |)| | - [ | = —— - i .
. 1

s Gy | - Spin rate of record player 1s

NIEAee S TG Ee R VR 33.333 rev/min
S0 ey BIE. TR OEEEEEL S A - 33.333 * 360° / 60s = 200°/s

Lorygs @ Wt oost T ¢ B Ayeraging b calculations,

A ENER T | - estimated spin rate = 200.736°/s
) = 3 3 =i _.--_:— v s,

s By @2 oa gy | B EEROR=0.736 1200 100%
L) = 7007 '|'_|;_*‘_:'___I _ e | = 0.368%
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Control Loop Accuracy

L S\
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Control Loop Accuracy — VICON Test
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