Balloon Deployment

STE

Critical Design Review

Customer: Dr. Dale Lawrence Advisor: Matt Rhode

Patrick Paluszek Red Team Lead Jack Soltys CFO Kyler Stirewalt Head Systems Engineer Sebastian Urrunaga Head Test Engineer Chenshuo Yang Structural Designer

Presentation Overview

- Project Purpose and Objectives
- Design Solution
- Critical Project Elements
- Design Requirements and their Satisfaction
- Project Risks
- Verification and Validation
- Project Planning

Project Purpose and Objectives

Project Purpose and Objectives Mission Statement

The team shall design, build and test a high altitude balloon launcher for use in heavy winds supporting the Hypersonic Flight in the Turbulent Stratosphere (HYFLITS) program. The launcher will stand 3m high when fully extended, pose no risk for balloon puncture, be operable by a single user hands free and be easy to set up and transport.

Project Purpose and Objectives

Current Process

Project Purpose and Objectives Current Problem

• Instrument payload hits ground

Project Purpose and Objectives

- Need: High wind weather balloon
 launching system
- Program: Hypersonic Flight in the Turbulent Stratosphere (HYFLITS) program
 - Study how future hypersonic vehicles can account for turbulence and particles in stratosphere
 - U of Colorado, Embry-Riddle, U of Minnesota
- Customer: Professor Dale Lawrence at CU-Boulder Smead Aerospace Engineering

Project Purpose and Objectives Customer's Requirements

- 3m tall balloon launching structure
 - Allow balloon more time to rise before payload release
- Stable launch in 10-20 m/s winds
- 1 or 2 balloon rigging with single payload
- Does not pose puncture risk to balloon
- User control of release is hands free
- Sub 50 lbs, fits in 1m x .25m case
- Sub \$1000 mfg cost

Project Purpose and Objectives CONOPS

User arrives at launch site and begins assembly of BDS

User connects the upper, middle, and lower structure pieces

User attaches the release mechanism to upper structure piece

Project Purpose and Objectives CONOPS

The user releases the payload

Project Purpose and Objectives CONOPS

Project Purpose and Objectives CONOPS

After confirmation of a successful launch, the user disassembles BDS and stores the system in the carrying case for departure

The user departs the launch site and is able to repeat this process for another launch when needed

Design Solution

Design Solution BDS Subsystems

Design Solution Structure

- 3 sections of T-frame AI bars form tower
 - Al brackets with through bolt/wing-nut
- Tower staked with 3 ground anchors
 - Screw in anchors
 - Adjustable tie down strap support lines
- Dimension:
 - Tower: 3m x 3.8cm x 3.8cm
 - Footprint: 3 stakes 2.64m from tower @ 120°
- Weight: 29 lbs

Balloon Deployment System

Design Solution

Release Mechanism

Design Solution

Release Mechanism - DOF

Note: This motion is stopped by locking pin until structure is risen and secure

Design Solution Release Mechanism - Armed

- Permanent Electromagnet latches with ferromagnetic steel
- Surgical tubing mounted to pins
 - Slip fit to swinging arms
 - Friction fit to back-plate
- Polyethylene foam gripping balloon
 Adhesive spray to secure
- Polyurethane foam backstop coupled with 7lb pull-force cabinet latches

Design Solution Release Mechanism - Loading

- 5 in. rubber band for loading resistance
 - Removable slip-fit pins
- 108° freedom in mounting swivel
 Removable locking pin
- Rounded PLA inserts around electromagnet and steel
- Dimensions
 - Swinging Arms: 7 in.
 - Backstop: 14.75 in.
 - Arm-to-arm parallel distance: 3.3 in
- Weight: 7.5 lbm

Design Solution Command and Control

Design Solution Command and Control - FBD

Critical Project Elements

Critical Project Elements

- Ease of set up/transport
 - Launch from multiple sites per HYFLITS need
- Stability in wind
 - Allow for launches in high wind conditions
- Internal structure strength
 - Survive high wind launch forces
- No balloon damage
- No premature release of balloon
- Hands free release command
 - Allow user to focus on payload safety and launch

Design Requirements & Satisfaction

Design Requirements/ Satisfaction BDS Subsystems

Design Requirements/Satisfaction

Ease of set-up/transport: 37 lbs and dimensions of 1.03m x.15m x .15m

1) Unpack:

2) Assemble tower, measure/set anchors (check for buried lines-typical 24in deep): 3) Attach 2 tie downs

4) Load balloon w/ kickstand 5) Raise, attach last tie down to final anchor

Design Requirements/ Satisfaction Support Structure

- Stability in Wind
 - Highest forces expected for subsequent modeling:
 - Max Wind Sustained
 - Max potential wind: 20m/s
 - Model balloon as sphere
 - Drag: 308N (upper bound)
 - Wind Gust Dynamic Load:
 - mass=3.689 kg (latex+helium)
 - Acceleration of wind 10m/s to 20m/s
 - Empirical data using gust factor
 - $F_{dynamic}$ =184.5N (less than F_{drag} =308N)

Design Requirements/ Satisfaction Support Structure

- Stability in Wind
 - Large moment to resist:
 - Wind Speed: 20 m/s
 - Drag: 308 N (model as sphere, upper bound)
 - Height: 3m
 - Moment_{wind}=924 N*m
 - Moment solution:
 - F_{tie-down}=2225N
 - F_{stake @45}=1730N
 - F_{stake @vert}=1165N (unlikely)
 - F_{support}=466N (wind coming directly on support)
 - F_{support}=537N (wind coming @ 30° off support)
 - F required in cable and anchor
 - FOS=1165N/537N=2.16

Design Requirements/ Satisfaction Support Structure

- Stability in Wind
 - Wind direction change model
 - Max mom. from wind vs max mom. structure can resist
 - Assume stakes in vert pull (weakest)

Wind = 90° –

 FOS=min moment resist/max moment from wind=2.16

Wind = 0°

Design Requirements/ Satisfaction

Support Structure

• Internal Structure Strength:

Internal Structure Strength:	Factor of Safety	
	(1.5-2 for aerospace)	
Cable/Tower Attach: Steel D-ring	4.14 (max rated tension)	
Screw Anchors: Polycarbonate	2.17 (max rated tension)	
Bar Joints: 6061 Al	127 (shear stress)	
Bar Fasteners: Steel	44 (shear stress)	

cable/tower attachment

Design Requirements/ Satisfaction BDS Subsystems

Balloon Deployment System **Release Mechanism** Support Structure **Command & Control** Base Extension Transmitter Receiver 39

Design Requirements/ Satisfaction Release Mechanism - Balloon Loading

Balloon neck will be pushed through the blue 3D parts

Design Requirements/ Satisfaction Release Mechanism - Cleanly Closing

- Back plates will hit the polyurethane foam padding to decelerate the arm
- While the cabinet latch will catch the incoming arms of the release mechanism

Design Requirements/ Satisfaction

Release Mech - Does the Venting Valve Get Caught?

Design Requirements/ Satisfaction Release Mech - Does the Balloon Get Damaged?

Metal protrusions and edges will be chamfered
 and smoothed to prevent balloon damage

Design Requirements/ Satisfaction Release Mech - Grip Strength

- Total Friction Force = $2F_N * \mu_s$
- Assuming $\mu_{\rm S}$ between rubber and urethane.
- Total Grip Strength of 267 lbs
- Required Grip Strength of 70.5 lbs
- Factor of Safety = 3.79

Friction Force

Force on balloon due to wind

61

Forces imposing moment on simple beam model arm

* Normal force from balloon neck

Perpendicular force from latex tubing

Magnet pull force

Design Requirements/ Satisfaction BDS Subsystems

Design Requirements/ Satisfaction Command and Control - Hands-free Operation

- Pressed with elbow to send signal when ready
- Freedom of motion
- Easily adjustable

Design Requirements/ Satisfaction Command and Control - Electrical Design

					Time On		Number of
Component	Voltage (V)	Current (A)		Power (Watts)	(Minutes)	Charge (A-Hr)	Launches
Receiver:							
Arduino Uno		12	0.2	2.4	5	0.017	
Electromagnet Gripper		12	3.25	39	0.01666	0.001	
RF Board		5	0.01	0.05	5	0.001	
RF Rx		5	0.01	0.05	5	0.001	
1 Speaker with 12V Battery		12	0.01	0.12	0.5	0.000	
Arduino		12	5	90	5	0.417	
Rx Total						0.436	15.597
User:							
Remote Wireless Key Fob		3	0.04	0.12	0.5	0.000	630.000
Power:							
Rechargeable Battery Pack		12	6.8			6.800	15.597
CR2302 (Tx)		3	0.2			0.210	630.000

Design Requirements/ Satisfaction C&C - Magnet Trade-Offs (Electromagnet)

- Always off except when a 12v current is applied
- Consider very safe for user when loading the balloon
- More concerned with balloon safety
- More power intensive

Design Requirements/ Satisfaction C&C - Magnet Trade-Offs (Permanent Electromagnet)

- Always on except when a 12v current is applied
- Concern on user's safety (might trigger the gripper to close during loading)
- More efficient and effective application compared

Design Requirements/ Satisfaction

C&C - Magnet Trade-Offs (Permanent Electromagnet)

	(Old) Electromagnet	(New) Permanent Electromagnet
Power Usage	High	Low
Risk	Unintended Deployment	Pinch Hazard
Likelihood	High	Low
Prevention	More Batteries	Procedures, Increased Caution

Project Risks

Project Risks Risk Analysis

Likelihood/ Severity	Minimal (5)	Minor (4)	Major (3)	Hazardous (2)	Catastrophic (1)
Frequent (A)					
Probable (B)	Balloon bouncing off the structure				Pandemic restricts or delays project
Remote (C)		Balloon coming out when loading			
Extremely Remote (D)	Venting valve catching	Tether gets tangled		Cables/stakes come out	
Extremely Improbable (E)	Deploy signal not received			Finger pinched in release mech	80/20 connections breaking Balloon Damage

Unacceptable Risk Acceptable Risk with Mitigation

Acceptable Risk

Verification and Validation

Verification and Validation

- Stability in wind
 - Allow for launches in high wind conditions
- Internal structure strength
 - Survive high wind launch forces
- Ease of set up/transport
 - Launch from multiple sites per HYFLITS need
- No balloon damage
- No premature release of balloon
- Hands free release command
 - Allow user to focus on payload safety and launch

Verification and Validation

Verification Testing

Test	What is Addressed FR/DR Motivation		Test Location	
Stake	Validate pull out force	 Withstand forces/ moments 	CU Aerospace Courtyard	
Structural	Validate and verify full structure strength & stability	 Address stability in 20 m/s wind at 3m high Ability to load the balloon by an avg height user 	CU Aerospace Courtyard/ Testing site provided by customer	
System	Verify release mechanism and software	 Wireless link and battery powered release mechanism Hands-free operation 	CU Aerospace Courtyard/ Testing site provided by customer	

Verification and Validation Staking Test

- Force exerted on the anchors does not exceed the hold force in the ground.
- We would then apply a load that is equivalent to that experienced by the balloon by using a spring scale to verify 537 N at the weakest configuration
- Use ratchet strap to simulate

Staking Test

Objectives	Validate pull out forceVerify the functionality of stakes
Equipment Needed	 Stakes 2 spring scale Ratchet strap Cables Payload equivalent to that experienced by the ballon by pull force
Measurements Made	 Reaction force on the stake exerted by the cable
Verified Against	 Reaction forces analysis/ calculations Reaction moments analysis/ calculations

Structural Test

Objectives	 Validate full structure strength Verify inner joints and linear bearing strength Verify cables attachment stability
Equipments Needed	 Stake Teather/payload Balloon Bearing Cables
Measurements Made	Drag forceTension force
Verified Against	 Factor of safety of structural components Wind gust factor Wind condition/direction may vary

System Test

Objective	 Verify software Verify release mechanism Validate design integration
Equipment Needed	 Payload Arcade button Belt/Belt attachment Integrated system
Measurements Made	 Signal deliverable - time and distance Electromagnet gripper position Balloon neck condition Cable tension Audio feedback
Verified Against	Analytical PredictionsFunctional Logic

Deliverable Breakdown Structure

Deliverable Breakdown Structure

Phase Work Breakdown Structure

T. Filter by task name... Today Week -

Due Date o ± Me ≥ x to to e ± < Share ...</p>

C + Task

Today Week -

a

Due Date 0 ± Me ≝ ,* 15 ≅ e ± <Share ...
</p>

C + Task ==

Project Planning Cost Plan

\$112.06 **Release Mechanism** 33.8% \$444.10

Project Planning

Cost Plan & Uncertainty Cost (USD)

Command and Control

13.3%

Strucutures 52.9%

Weight Plan & Uncertainty

Weight (lbs)

Project Planning Test Plan

Project Planning Test Plan

© (SHOW CLOSED SHOW CLOSED							
\odot	TO DO 10 TASKS	ASSIGNEE	DUE DATE	PRIORITY	0			
	 Release Mechanism Weighted Test 	8	2/17/21	Г				
	✓	8	1/22/21	F				
	✓	8	2/5/21	F				
\odot	✓ O Software Use Test	8	2/8/21	F				
	 Preliminary System Test 	8	3/8/21	F				
	 Preliminary Portability Test 	8	3/8/21	F				
	 RF Range and Interface Test 	8	2/15/21	F				
	 System Secondary Test 	8	3/22/21	F				
	 Tethered Balloon Test in Varios Wind 	8	4/12/21	F				
	✓ O Final "Real World" Test	8	4/19/21	F				
	+ New task							

Acknowledgements

Dr. Dale Lawrence

Matt Rhode

Dr. Jelliffe Jackson

Appendix

Verification and Validation Testing

- Structural Loading stability and internal component testing
 - Testing of stake Spring scale
 - Structural test Pulley system & lift
 - System test when integrated to structure
- Ease of set up/transport
 - Opening of the Release Mechanism
 - Assembly & Setup
 - Radius of the Command and Control

-Sin 0 = 0 = 4.278 0 = Sin - (4.278) = 37.10 F= Kx cos B =(5.5)(4-)cos(37.1°) = 17.54 = 17.5 [bf] M=rF=(3.278)(17.5)= 57.5 . [16f.in] & = <u>1</u> = <u>57.5</u> = 7.976 [rad] <u>2</u> 8 [rad] += (268 = /2(180T) = 0.264 = 0.26E5] $F = ma \quad a_y = \frac{2F}{m} = \frac{20}{3} k_s = 6.6 \frac{m}{s^2}$ $\Delta Y = \frac{1}{2}\alpha t^2 \qquad \Delta Y = 12 - 2.54 = 9.46 \text{ Ein]} = 0.24 \text{ Em]}$ $0.24 = \frac{1}{5}(6.66) + 2 + = 0.268 = 0.2753$ 0.275370.26[57

Phase Work Breakdown Structure

Design Solution: BDS Subsystems

Design Solution: BDS Subsystems

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

Evidence of Baseline Feasibility: Structure

- Shear (V) in linear bearing:
 - UHMW material
 - Weakest configuration w/ wind as indicated
 - Area subject to shear (blue)
 - *τ*=.55 MPa < *τ*_{max}=20 MPa
 −−−

Evidence of Baseline Feasibility: Structure

- Structure Strength:
 - Bending Stress: 61.5 kPa ~ 8.91 Psi
 - Bending Moment: ~ 620 Nm

- Structure Strength:
 - Bending Stress: 190 kPa ~27.6psi
 - Bending Moment: ~620 Nm

Evidence of Baseline Feasibility: Structure

1m

- Launch height from 3m
 - Average user height: 1.6 m (~62 in)

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

Critical Project Elements

Critical Project Elements	Requirements	Feasible		
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user 			
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 			
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 			

BDS Subsystems

Evidence of Baseline Feasibility: Release

- Current method for transport
- Similar to BDS method
- Will not damage balloon

Evidence of Baseline Feasibility: Release

Critical Project Elements

Critical Project Elements	Requirements	Feasible		
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 			
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 			
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 			

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

BDS Subsystems

Component	Voltage (V)	Current (A)	Power (Watts)	Time On (Minutes)	Charge (A-Hr)	Number of Launches
Receiver:						
Arduino Uno	12	0.2	2.4	5	0.017	
Electromagnet Gripper	12	3.25	39	0.01666	0.001	
RF Board	5	0.01	0.05	5	0.001	
RF Rx	5	0.01	0.05	5	0.001	
1 Speaker with 12V Battery	12	0.01	0.12	0.5	0.000	
4 Channel Relay Shield for Arduino	12	5	90	5	0.417	
Rx Total					0.436	19.037
User:						
Remote Wireless Key Fob	3	0.04	0.12	0.5	0.000	630.000
Power:						
Rechargeable Battery Pack	12	6			8.300	19.037
CR2302 (Tx)	3	0.2			0.210	630.000

- 1. Power the electromagnet
- 2. Start the timer to prevent accidental launch during set-up
- 3. Send Deploy Command
- 4. When signal is received (and the time is up), electromagnet is deactivated
- 5. Balloon is launched

Critical Project Elements

Critical Project Elements	Requirements	Feasible		
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 			
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 			
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 			

Prices

Item	Quantity	Price per Unit (USD)	Shipping Cost (USD)	Total Cost
Arduino Uno	1	\$23.00	\$1.63	\$24.63
RF Board	2	\$23.10	\$0.00	\$46.20
RF Rx	2	\$6.80	\$0.00	\$13.60
Remote Wireless Key Fob	1	\$5.20	\$0.00	\$5.20
6V Battery (Rx)	4	\$15.00	\$0.00	\$60.00
CR2302 (Tx)	1	\$2.85	\$0.00	\$2.85
Electromagnet	1	\$95.00	\$0.00	\$95.00
F24 Truss	1	\$231.00	\$0.00	\$231.00
1515 80/20	1	\$22.82	\$0.00	\$22.82
1530 80/20	2	\$39.06	\$0.00	\$78.12
L-Brake	4	\$12.10	\$0.00	\$48.40
80/20 Linear Bearings	4	\$48.50	\$0.00	\$194.00
Pulley Wire	1	\$2.79	\$0.00	\$2.79
			Total Cost	\$824.61

Current Status and Remaining Studies

	SUN	MON	TUE	WED	THU	FRI	SAT
	30	31	1	2	3	4	5
		Lab		Lab		Team Meeting 10am – 12pm	
		10:40am – 12:30pm		10:40am – 12:30pm			
_	Team Meeting 5 – 7pm						

Current Status and Remaining Studies

08	3			09	9			1(0			1	1		
W1	W2	W3	W4	W1 PDD	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
					CDD	•	•								
							PDR								
									CDR						

Approximate Build & Test Schedule

Current Status and Remaining Studies

- In depth analysis on wind/drag modeling on the balloon
 - Lower project cost
 - More portable
 - Higher factor of safety

Appendix - Pat Drag Work

Changing the assumption Dt=0.2 for linear impluse $2 \tan g = m \Delta V = 3(20) = 300 N = 68[67]$ $D = QC_0 A = \frac{1}{2} \frac{1}{2}$ $l^{*}=r=lm$ Re= 1.20.1/(18.400))=100) 6=0.2 for smooth spheres experaneing 10° Re $D = 2a^{2}(0,2)\pi = 125.66[N] = 30164$

Appendix - Grant Moment Work

Appendix - Pete Moment Work

Appendix- Secure two system deployment

Appendix: Evidence of Baseline Feasibility -Structure • Material properties:

	Description	Material	Area	Tensile Strength	Shear Strength	
Extending Bar	8020 bar 1.5 in x1.5 in	6105-T5 Aluminum	744.16 m ²	280 MPa	170 MPa	
Base Truss	Global Square Truss F24	6082-T6 Aluminum	1.068e-4 m ²	250 MPa	210 MPa	
Support Cables	Steel wire rope ¼ inch	Steel	3.166e-5 m ²	200 MPa	NA	
Support Legs						
n Deployment System

Appendix:Evidence of Baseline Feasibility -Structure Fasteners/Junctions stress

The bolt will be used for connecting rail and the top bar. Two bolts stabilize the connection point.

- Assumption:
 - Wind force is acting on the connection part in the y direction.
 - Two bolts are identical, the reaction force from each bolt is the same.
- Purpose:
 - Determine the maximum shear stress on each bolt.
 - Minimum diameter of the bolt.

Connection between rail and top bar :

>Ry= Ty

Appendix: Evidence of Baseline Feasibility -

- Fasteners/Junction Stress:
 - Minimum diameter required for Grade 5 anchor bolts is 1/2 inch (12.7 mm)
 - Minimum required area for the bolt:

$$A_{min} = \frac{\pi \cdot d_{min}^2}{4} = \frac{\pi \cdot 0.0127^2}{4} \quad \therefore A_{min} = 1.2668 \cdot 10^{-4} (m^2)$$

• Shear stress of the bolt:

$$V = \frac{R_y}{2} = \frac{154N}{2} = 77N$$

$$\tau = \frac{V}{A} \qquad \tau_{max} = \frac{V}{A_{min}} = \frac{77N}{1.2668 \cdot 10^{-4}m^2}$$

$$\therefore \tau_{max} = 607.830 k Pa \approx 88.158 psi$$

Ky

cut

cut

Appendix - Project Description - Functional Block Diagram

Appendix:Evidence of Baseline Feasibility -Structure • Structure strength:

• Moment and deflection of the bolt section:

$$M_z(x) = -311.376x$$
$$EI_{zz}v''(x) = \frac{-311.38}{2}x^2 + C_1$$

$$EI_{zz}v'(x) = \frac{-311.38}{6}x^3 + C_1x + C_2$$

$$v(x) = \frac{-51.896}{EI_{zz}}(L-x)^2(2L+x)$$

Appendix: Evidence of Baseline Feasibility -Release Mechanism

113

tensile strength of 3100 PSI; FOS ~35

Appendix - Evidence of Baseline Feasibility -Stability in 20 m/s winds

- Max x-dir force on balloon: 308 N or 70lbs @ 3m high
 - Drag of a sphere:
 - D_{sphere}=q_∞*S*C_d
 - $q_{\infty} = (1/2) \rho_{\infty} V_{\infty}^{2}$
 - S=(π/4)d²
- Anchor pull out force/Support line tension:
 - Tent Stakes: 66N vert pull, 133 N angle pull
 - Screw Style: 1165 N vert pull, 1730 N angle pull
 - 1/4 in. Upwind Steel Wire Rope: 6227.5 N in tension
- X-dir length of upwind cables/downwind support legs:
 - No anchoring: 9.5 m (unfeasible)
 - Tent stake anchoring: 5.7 m
 - Screw anchors: 1.55 m

Appendix - Evidence of Baseline Feasibility -Structure • Loaded by Single User

- Truss section staked to ground
- Balloon loaded at 1 m (3.3 ft)
 - Within reach of user
- Extension bar raised/locked for launch at 3m height
- Collapsible
 - 1 m truss section, 2x 1 m bar extension
 - Support legs assembled in 1 m max length sections
 - Cross section of truss: .22m x.22m
 - Wing nut/bolt on support legs
 - Carabiner clip on upwind cable anchors
 - No tools required besides hammer for staking

Appendix - Evidence of Baseline Feasibility -Structure

- Structure strength:
 - Shear (V) in extending bar:
 - 8020 Aluminum
 - **τ**_{max}=170 MPa
 - A=744 mm²
 - **τ**=V/A=.4 MPa < **τ**_{max}
 - Shear in extension bearing:
 - Shear (V) in truss corner bar:
 - 6082-T6 Aluminum
 - τ_{max}=210 MPa
 - A=106.8 mm²
 - **τ**=V/A=16.2 MPa < **τ**_{max}
 - Truss support leg/cable junction
 - Load/ft: 604 N load/foot
 - Max center load: 3962 N

Structure Strength: $\sigma_b = \frac{My}{I}$ Shear Stress = 0.4 MPa \bigcirc 1FLift σ_{h} – Bending stress Foras Axial Stress = 2.79 KPa M – Calculated bending moment \bigcirc y – Vertical distance away from the neutral axis Bending Stress = 102 MPa Ο I – Moment of inertia around the neutral axis Maximum bending moment= 616N⋅m Ο Maximum moment acting on linear bearing: 308N·m Ο Maximum deflection= 2.369e-9 m(~0m) 0 Foright 80/20 extension borrs linear bearing drag Fdrag = 308N 1.5.hch=.0381m 0B = 6.68 MPn 0 3 2m 1 cut Fdrag $\langle o \rangle$

Folog = 308N

TVy(x) TMZ(X)

Appendix - Evidence of Baseline Feasibility -Structure

.50

T= 418a)

0

Appendix - Evidence of Baseline Feasibility: Command/Control

```
sketch_oct08a§
int pin = 7;
unsigned long duration;
void setup() {
  // put your setup code here, to run once:
  Serial.begin(9600);
  pinMode (pin, INPUT);
void loop() {
  // put your main code here, to run repeatedly:
  time = pulseIn(pin, HIGH);
  Serial.println(time);
```


mant Quetern

Appendix - Evidence of Baseline Feasibility: Structure Shear (V) in linear bearing:

- UHMW material
- Area subject to shear
- τ =.55 MPa < τ_{max} =20 MPa

Max shear stress of ~80 PSI; UHMW has a tensile strength of 3000 PSI; FOS ~37.5

80/20

Linear Bearing, 2.062 In H, 1.875 In L

Mfr. Model # 6730

Catalon Page # N/

Item # 2RCN3 UNSPSC # 31171506

Country of Origin USA. Country of Origin is subject to change.

Compare this product

Help us improve our Product Images

Technical Specs

Item	Linear Bearing	Bearing Type	UHMW PAD
Туре	Single Flange Assembly	Lubrication	Dry
Overall Width (In.)	1.624 in	Material	UHMWPE
Overall Length (In.)	1.875 in	Finish	Clear Anodize
Overall Height (In.)	2.062 in	Color	Silver
Body Width (In.)	2.062 in	Height	2.062
Mounting Hole Center (In.)	1 in	Mounting Bolt (In.)	1/4-20
Mounting Hole Dia. (In.)	0.265 in	Mounting Hole (In.)	0.265 in
Bolt Size	1/4-20	Width	1.624
Slot Width (In.)	0.255 in	For Use With	10 Series

Appendix: Design Requirements/Satisfaction

https://www.wmo.int/pages/prog/www/tcp/Meetings/HC31/documents/Doc.3.part2.pdf

122

Appendix Design Requirements/Satisfaction

Appendix: Design Requirements/Satisfaction

- Stability in Wind
 - Highest forces expected for subsequent modeling:
 - Max Wind Sustained
 - Max potential wind: 20m/s
 - Model balloon as sphere
 - mass=3.689 kg (latex+helium)
 - Drag: 308N (upper bound)
 - Max Wind Gust (Balloon tug/bounce):
 - V=10m/s -> 20 m/s
 - Gust Factor = $V_{Gust} / V_{Sustained} = 2$
 - $\Delta t=0.2s$ (V=10m/s to V=20m/s)
 - $a=\Delta V/\Delta t = 50 \text{ m/s}^2$
 - Force=ma=184.5N

References - PDR

Modulus of Elasticity: <u>https://www.azom.com/properties.aspx?ArticleID=920</u>

Wind direction change: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/wea.176.04 Coefficient of Drag: https://www.arc.id.au/CannonballDrag.html#:~:text=Newton%20experiments%20vielded%20the%20first%20accurate%20measuremen ts%20of.for%20low%20speed%20drag%20on%20a%20smooth%20sphere. Electronics: https://store.arduino.cc/usa/arduino-uno-rev3 https://buymagnets.com/product-pdfs/BRE-1525-12.pdf https://www.dfrobot.com/product-1089.html https://www.dfrobot.com/product-1607.html https://www.dfrobot.com/product-1090.html https://www.grainger.com/product/45EK05?gclid=CiwKCAiwzvX7BRAeEiwAsXExo6VwS4nzvN8WSBvfhlht9TifD0_Tg1Hkt1im EHrhyUy84 Bfgz7GBoCJEUQAvD BwE&cm mmc=PPC:+Google+PLA&ef id=CjwKCAiwzvX7BRAeEiwAsXExo6VwS4nzvN8 WSBvfhlht9TifD0 Tq1Hkt1imEHrhyUv84 Bfqz7GBoCJEUQAvD BwE:G:s&s kwcid=AL!2966!3!281698275282!!!q!470981977 891!&gucid=N:N:PS:Paid:GGL:CSM-2295:4P7A1P:20501231 https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla &id=S-17590&gclid=Ci0KCQjw2or8BRCNARIsAC ppyZeiSM- 7YcD-PU2886X0NzdmHSN3YnyFgzdSNg8gxcJ6U0IQ7NSjkaA mJ3EALw wcB&gclsrc=aw.ds https://cdn-shop.adafruit.com/datasheets/maxell cr2032 datasheet.pdf