<u>Mapping Architecture Concept for Universal Landing Automation</u>

TEST READINESS REVIEW

Customer: Jeffrey Thayer & Brian Argrow, University of Colorado Boulder AES Faculty Advisor: Jay McMahon

Team Members:

Trevor Arrasmith, Brett Bender, Chris Brown, Nick Dawson, David Emmert, Bryce Garby, Russell Gleason, Matthew Hurst, Jared Levin, Ansel Rothstein-Dowden

Overview	Brett
Schedule	Brett
Test Readiness: Component	David, Jared
Test Readiness: Full-System	Jared, Trevor
Budget	David

OVERVIEW

Motivation

Rocks on the Martian surface http://geology.isu.edu/wapi/Geo_Pgt/Mod09_Mars/images/VIEWFRMLANDER2VLFMOS21.gif

Landing zones for spacecraft must be pre-determined as "safe," and can be far from areas of scientific interest

Curiosity's error ellipse on Mars (20 km minor, 25 km major axis)

http://www.nasa.gov/images/content/573652main_pia14294-anno-43_946-710.jpg

Project Objectives

Design, **manufacture**, and **test** a **proof-of-concept** light detection and ranging (lidar) **scanning system** for a landing spacecraft

Success Levels:

- Lidar sensor and scanning mechanism, mounted on a stationary platform, shall record correlated range and attitude measurements at a 0.1 m spatial resolution from a nadir distance of 14.1 m with a maximum 20° off nadir
- System shall scan a known test scene and project measurements into a 3D point cloud
- 3. System shall scan a landing-zone mockup and **analyze the 3D point cloud for hazards**
- 4. System shall **select a safe landing zone**; if no safe landing zone is found, hazard definition will be loosened until a landing zone is found

Concept of Operations

Functional Block Diagram

Test Readiness Review

- 1. Optics
 - CDR: Uncertainty about getting a lidar return through prisms
 - MSR: Still a major CPE, driver of early testing effort
 - TRR: Less of a concern, early testing is promising
- 2. Risley Prism Control
 - CDR: Uncertainty about motor and driver control law
 - MSR: Still a major CPE, driver of early manufacturing schedule
 - TRR: Still a major CPE, need encoders
- 3. Embedded System
 - CDR: A large portion of the project that was still uncertain
 - MSR: Design complete
 - TRR: Design fabricated and tested
- 4. Manufacturing
 - CDR: Concern about quantity of work
 - MSR: Major progress, still work to be done
 - TRR: All parts complete except for finishing touches on prism enclosures

Schedule

Full Schedule

	_			
Start	Finish	Predecessors	Resources	December 2016 January 2017 Petrulary 2017 March 2017 April 2017 March 2017
0.5117/2017	01030047			1 4 7 10 13 16 19 22 25 28 31 3 6 9 12 15 18 21 24 27 30 2 5 8 11 14 17 20 23 26 1 4 7 10 13 16 19 22 25 28 31 3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24
011720017	01/22/2017			
04147/20147	04/22/2011			
04117/2017	01/23/2017			
01/12/2017	01/00/2017			
01/17/2017	01/30/2017			
01/17/2017	02/03/2017			Blue: Manufacturing
01/21/2017	02/03/2017			Diae. Manataetaining
01/23/2017	02/03/2017			
03/17/2017	03/17/2017	7FS 10d		• 05/17/2017
02/06/2017	02/24/2017			
2/05/2017	02/24/2017			
02/13/2017	03/03/2017			
02/15/2017	03/10/2017	21		
03/13/2017	03/17/2017	14		
03/20/2017	03/21/2017	1,2,3,4,5,6,7,8,9		
01/23/2017	03/03/2017	Contraction of the local data		
03/05/2017	03/17/2017	17		
03/24/2017	03/24/2017	1		
01/17/2017	02/13/2017			
02/14/2017	02/14/2017			
02/15/2017	03/17/2017	20,21		
01/17/2017	02/10/2017			
02/27/2017	03/03/2017	23FS 100		()range
03/06/2017	03/17/2017	24		
03/22/2017	03/24/2017	16		Maganta
03/27/2017	03/28/2017	10,26,32		Wigguild. Integration/Test
04/03/2017	04/05/2017	27		
01/23/2017	02/17/2017			
02/20/2017	03/03/2017	29		Soltware
3/06/2017	03/10/2017	30		
03/13/2017	03/17/2017	31		
01/23/2017	01/25/2017			
01/26/2017	02/03/2017	33		
02/06/2017	02/06/2017	34		i 20042017 I UUAY
02/13/2017	02/17/2017			
02/20/2017	03/03/2017	36		
03/06/2017	03/06/2017	37		→ 0.30042017
01/30/2017	02/02/2017			
02/03/2017	02/03/2017	38		Y ■ 020322017
02/03/2017	02/03/2017	39		10 00032017
02/06/2017	02/24/2017	40		
02/26/2017	02/28/2017	42		02/2/2017
3/01/2017	03/09/2017	43		
03/10/2017	03/10/2017	44		** 03/02/37
3/13/2017	03/16/2017	45		
3/17/2017	03/17/2017	46		** 03/15/017
14/03/2017	94/10/2017			Dalivarablas
04/11/2017	04/11/2017	48		
04/13/2017	04/14/2017	49		
03/20/2017	03/24/2017			
13/27/2017	04/06/2017	51		
14/07/2017	04/07/2017	52		4 44770517
J4/10/2017	04/21/2017	53		

Manufacture lidar plate

Manufacture side bracket

Manufacture top bracket

Manufacture lidar bracket

Manufacture encoder hub

Manufacture baseplate.

Manufacture motor clamp

Manufacture main housing

Mount prisms in anclosure

Manufacture prism enclosure

Assemble scanning stages/full assembly

PCB testing with current components

Calibration (characterization testing)

Port code from Pi to Beaglebone

Final code functionality (GUE I/O)

Software testing (pre-assembly)

Manufacturing status review storyboarding

Manufacturing status review slide creation

Manufacturing status review (MSR) due

Test readiness review storyboarding

Test readiness review slide creation

Testreadiness review (TRR) due

AIAA paper planning Initial writing

AIAA plan/skeleton complete

AIAA abstract due

ALLA draft writing

AIAA draft complete

AMA paper revisions

Attal Engl restrictors

AMA paper DUE

AIAA conference

AMA conference prep

AIAA paper due to McMahon

AIAA online registration closes

Spring final review storyboarding

Spring final review create slides

Spring final review dry rans

Spring final review (SFR) due

Work on project final report

Project final report revisions

Project final report due

Spring final review slides due (internal)

Motor/driverleincoder testing (integrated)

Encoders expected

Manufacture rotor

Testbed design

Lidar testing

Prisms arrive

Prism testing

PCB design

PCB population

Full system test

Improve code speed

Testbed construction

Last machining day

Nanufacture bearing clamp

Manufacture encoder brackel

Manufacture encoder mounting block

Name

Duration Start

54

50

5d

5d

10d

10d

14d

10d

10d

10

15d

15d

15d

180

54

2d

30d

10d

10

20d

14

234

19d

5d

10d

34

20

34

204

10d

50

5d.

2.5d

7d

10

54?

10d

1d

4d

10

10

10

74

10

44

10

6d?

10

20

50?

907

10?

100?

10 15d?

5d?

10

14.5d

04/24/2017 04/24/2017 54

05/01/2017 05/05/2017 56 05/08/2017 05/08/2017 57

04/10/2017 04/28/2017

0

1

2

3

4

5

6

7

10 8

9 📸

10 📸

11 🐹

12 🛗

13

14 1

17 5

10 15

19 🛗

21 15

15

16

20

22

23

24

25

26 📷

27 📸

28 📅

29 🚆

30 📸

31 📸

32 📸

33 📸

34 📅

35 📷

36 📸

37 📸

38 📷

39 🛗

40 📸

41 📸

42 📅

43 5

44 📷

45

46 📸

47 5

48 🔡

49 🚟

50 📸

.61 🛗

62 📷

53 📸

54 10

55 📸

56 📸

57. 1

58 5

04/24/2017

Software Schedule

TEST READINESS

Facilities

- <u>ARSENL</u>
 - Optics bench
 - Component testing

- <u>RECUV Lab</u>
 - Length = 21.7 m
 - Height = 9.5 m
 - Width = 9.2 m
 - Full-scale testing

TEST READINESS: COMPONENT TESTS

- Motivation:
 - Lidar range: 12-15 m
 - Lidar standard deviation of random range error: 2.5 cm
- Resources needed:
 - BeagleBone for taking data
 - Measuring tape and calipers
 - Tests will be done in ARSENL
- Status:
 - In progress (10% completed)

- Without prisms:
 - Tests will be done for frequency, transient behavior, surface effect, current to range conversion

Lidar Characterization Tests

- Precision, accuracy, and maximum range will be determined
- With prisms:
 - Same tests will be performed and compared to tests without prisms
- Risk mitigation:
 - Need lidar return through prisms
 - Promising preliminary test results (not full range)

Motor/Motor Driver Motivation

- Requirements
 - Individual control of Risley prisms
 - Max angular acceleration of 15 rad/s²
 - Steady angular rates between 0.45 rad/s and 10 rad/s

Motor/Motor Driver Tests

MACULA

- What is being tested
 - Prism stage actuation
 - Match desired scan pattern
- Equipment and fixtures
 - Assembled scanning system
 - No external systems required
- Procedure overview
 - Send command to motor drivers
 - Individually and combined
 - Read/save encoder values for analysis

Models (Time Scan)

Time Scan:

- Min Rate: 7.34 rad/s
- Max Rate: 8.46 rad/s
- Max Accel: 14.36 rad/s²

Prism Angular Rates over Approximate Scan

Models (Resolution Scan)

Resolution Scan:

- Min Rate: 0.48 rad/s
- Max Rate: 0.55 rad/s
- Max Accel: 0.047 rad/s²

Prism Angular Rates over Approximate Scan

Motors/Motor Drivers

- Risk Reduction
 - Proper scan functionality relies on Risley prism stage actuation falling within predicted bounds
 - Directly addresses CPE 2 (prism control)
- Testing tasks
 - Command desired scan pattern
 - Record encoder values over time
 - Compare actual scan to desired scan
- Status
 - Can begin immediately following system integration

System Calibration

- MACULA
- On calibration day global axes provide frame to test ray tracing mathematics
- Spot location will be compared to predicted value obtained through lidar and encoder data

Animation of Scan with Risley Prisms

TEST READINESS: FULL-SYSTEM TEST

- Two system tests must be conducted to meet requirements
 - Resolution requirement (2.5 cm)
 - 12.5 minutes
 - Must accurately identify hazards
 - 76000 points
 - Time requirement (60 s)
 - 50 seconds for complete scan
 - 59.2 spirals
 - 5000 points

Bullasula

Full-System Test Process

- Place mockup centered at nadir
 - Verify mockup is correctly recreated
 - Verify resolution requirement is met
- Place mockup with edges aligned with 20° outer scan radius
 - Verify mockup is correctly recreated
 - Verify resolution requirement is met
- Producing requirement-conforming results at extremities verifies correct operation elsewhere

Testbed Status

- Construct a 6' × 6' landing zone mockup containing features of known dimensions
- Modular panels can be swapped and moved to any of nine locations
- Design phase is complete and testbed is currently being built (25% complete)

Knowledge of Dimensions

- Requirements
 - Need to know dimensions of test bed to within 1 cm
- Artec Eva Lite 3D Scanner Specs
 - 3D resolution: ± 0.5 mm
 - Outputs to a *.STL file
- Calipers
 - $\pm 0.02 \text{ mm}$

Software: Updates Since MSR

- Algorithm has been ported from Python to C++
- Finding neighboring points is still the most expensive operation, so this has been optimized
- Computation time is now ~53 seconds for a scan of 5001 points, down from 3+ minutes

- Virtual scans performed in Blender allow for development and testing of hazard detection algorithms (complete)
- Hazards are found by looking at nearby height differences for each scanned point (complete)

Model for comparison of full-system test results

Software: Verification of Requirements

- Complete:
 - Detection of landing hazards (Morphological Filter)
 - Selection of suitable landing site
 - Output of results for visualization on user PC
 - 60-second time requirement for time requirement test
 - Further algorithm improvements may be able to meet time and full resolution requirements simultaneously
- Yet to Complete:
 - Implement logging of raw data and calculated values
 - Interface algorithm with live data stream
 - Will read from a buffer in memory instead of from a generated file
 - Adjustment of algorithm parameters during testing
 - May achieve better results with adjusted hazard height, footprint radius, etc.

BUDGET UPDATE

Component List

Component	Status	MSR Budget	Actual Cost	Margin
Lidar	Received	0	0	0
Motors	Received	1658	1635.61	+22.29
Encoders OPS+Grating	Pending	1170	1471.5 (plus shipping)	-301.5
Bearings	Received	753.96	340.75	+413.21
Motor Drivers	In transit	877	1517.09	-640.09
Risley Prisms	Received	246	336	-90
Metal Stock	Received	849.77	488.58	+361.19
Tooling	Received	812	527.15	+284.85
Retro-reflective Tape	1 of 9 ordered	460.98	42.16 (379.44 total)	+81.54
Testbed Materials	Received	0	284.24	-284.24
Misc. Materials	Received	466	379.32	+123.57
Total		7293.71	7359.42	-65.71
3/6/17		8300	8300	

Breakdown

- Total budget: \$8300 (\$5000 dept., \$1000 UROP, \$2300 customer)
- Total spent: \$7022.14
- Remaining purchases: \$337.28
- Estimated total spending: \$7359.42 (\$7293.71 at MSR)
- Estimated Final Margin: \$940.58 (11.3%)

Acknowledgements

MACULA

Advisor: Jay McMahon

<u>PAB</u>: James Nabity, Kaley Pinover, Brian Argrow, Bobby Hodgkinson, Matt Rhode, Trudy Schwartz, Bob Marshall, Josh Stamps, Jelliffe Jackson

Active Remote Sensing Lab: Jeff Thayer, Rory Barton-Grimley, Bobby Stillwell

Computational and Mechanical Geometry Lab: John Evans, Luke Engvall, Joseph Benzaken

Dale Lawrence

Blue Canyon Technologies: Steve Steg, Matt Carton, Bryce Peters

Pepperl+Fuchs: Michael Turner

Leo, Guido, Button

QUESTIONS?

Backup Master

References

Main:

Purpose and Objectives FBDs Design Overview CPEs FRs Lidar **Prisms** Scan Motors **Motor Drivers** Encoders Controllers Microcontroller Calibration Risks Verification and Validation Planning

Cubesat Lander Concept **Requirements** Lidar Sensor Retroreflection **Risley Prisms** Prism Mounting **Prism Positions: Forward** Problem **Prism Positions:** Backward Problem System Assembly Drawings

Backup:

Material Analysis **Risk Analysis** Hardware Trades **Prism Control Calibration Testing** Software BeagleBone Measurements **Encoder Integration** Communication Power Connections Verification and Validation Budget

Calibration Plan

- This calibration test plan determines the alignment of the lidar and prisms to within a tolerance that meets our pointing knowledge requirement
 - DR: Error \leq 5 cm in the plane of the ground
- Most of the error in the beam steering is systematic and can be accounted for in software
- Reassembling the system after calibration introduces uncertainties that will not be calibrated

- Main housing: Completed
- Prism Enclosure: In process
 - Epoxy implementation finalized
 - Inner diameter increased for thermal expansion

DRs: Motors

DR 5.2.1: 15 rad/s², **DR 5.2.2**: 0.45 rad/s - 10 rad/s Inertia of rotating components: 9.5x10⁻⁴ kg m²

Direct Drive:

Most mechanically simple solution that satisfies requirements

Brushless DC (BLDC) Motor:

Large hollow core required for optics Fine continuous control of pointing or speed

ULT-165-A-12-A-x-00x:

Up to 5000 RPM (~523 rad/s) Max continuous torque of 1.255 Nm (~1200 rad/s²) 4.4 in. rotor inner diameter

Celera Motion OPS-SM-40 (~\$600 each)

Prism orientation measurements are required for motor control and for beam attitude knowledge.

Thermal Analysis

- Done to investigate failure in epoxy and prisms
- Thermomechanical model created for epoxy-enclosure-prism system
- Epoxy fails at 25% elongation

Thermal Analysis

• For 0.001% chance of failure in prisms after 1 year, tensile stress must be less than 2 ksi (13.8 Mpa)

http://www.sigmadyne.com/sigweb/downloads/SPIE-5176-3.pdf

Critical Parts

• Prism Enclosure

- Housing and interface for prisms
- Manufactured on CNC mill from square stock
 - Stock will be squared, creating points of reference
 - Can manufacture up to 1° for re-clamps

Hardware Architecture Diagram

References

"AMG Series Optical Mounts & Gimbals." Aerotech. Aerotech Inc., n.d. Web. 22 Sept. 2016. ">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx>">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx<">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx<">https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx<"/https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx<"/https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx<"/https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx<"/https://www.aerotech.com/product-catalog/gimbals-aspx<"/https://www.aerotech.com/product-catalog/gimbals-aspx

Berg, Mark . Computational Geometry: Algorithms and Applications. Berlin: Springer, 2008. Print.

By FAS — March 23, 2016. "Federation Of American Scientists -." Federation Of American Scientists. N.p., n.d. Web. 24 Sept. 2016.

Cryan, Scott, and Christian, John A. "A Survey of LIDAR Technology and its Use in Spacecraft Relative Navigation." AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, 19-22 Aug. 2013. Web.

Dunbar, Brian. "Lidar Atmospheric Sensing Experiment (LASE): Measuring Water Vapor, Aerosols and Clouds." NASA. NASA, 21 Nov. 2004. Web. 24 Sept. 2016.

Folger, Jean. "Why Curiosity Cost \$2.5 Billion." Investopedia, LLC. 5 Sept. 2012. Web.

Hughes, T. J. R, J. Cottrell A., and Y. Bazilevs. "Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement." Computational Methods in Applied Mechanics and Geometry 194.39-41 (2005): 4135-195. Web.

Gonzales, Rafael C. Digital Image Processing. 3rd ed. N.p.: Pearson Education International, n.d. Print.

"LeddarTech Launches LeddarVu, a New Scalable Platform Towards High-Resolution LiDAR." PR Newswire Association LLC. Quebec City, 7 Sept. 2016. Web.

References

"LiDAR, Laser Scanners and Rangefinders." RobotShop, Inc. 2016. Web. http://www.robotshop.com/en/lidar.html

Lynch, Andrew, and Kai Focke. "Beam Manipulation: Prisms vs. Mirrors." Photonik International (n.d.): n. pag. Mar. 2009. Web. 20 Sept. 2016. http://www.edmundoptics.com/globalassets/resources/articles/beam-manipulation-prisms-vs-mirrors-en.pdf>.

"Puck LiDAR: Our Lightest Yet." Velodyne LiDAR, Inc., 2016. Web. http://velodynelidar.com/vlp-16-lite.html

"Round Wedge Prisms." Round Wedge Prisms. THORLABS, n.d. Web. 20 Sept. 2016. https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=147 >.

Saniee, Kamron. "A Simple Expression for Multivariate Lagrange Interpolation." SIAM (2007): n. pag. Web.

Schwarze, Craig. "A New Look At Risley Prisms." Photonics Spectra (n.d.): n. pag. Photonics Media, June 2006. Web. 20 Sept. 2016.

Shan, Jie, and Charles Toth K. Topographic Laser Ranging and Scanning: Principles and Processing. Boca Raton: CRC/Taylor & Francis Group, 2009. N. pag. Print.

Shewchuk, J. "What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint)." University of California at Berkeley 73 (2002).

References

"Technology Overview." Advanced Scientific Concepts, Inc. 2015. Web. http://www.advancedscientificconcepts.com/technology/technology.html

Wilsenack, Frank. "Defense & Security." Detecting and Tracking Thin Aerosol Clouds. SPIE, 12 Oct. 2012. Web. 24 Sept. 2016.

Y. Bazilevs et al., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg. (2009), doi:10.1016/j.cma.2009.02.036

Riemersma, Thiadmer. "Candela, Lumen, Lux: the equations." CompuPhase, 2016. Web.

"Standard Test Method for Coefficient of Retroreflection of Retroreflective Sheeting Utilizing the Coplanar Geometry." ASTM International, Designation E 810-03, 2016. PDF.

"Pepperl+Fuchs VDM 28 Photoelectric Sensor Datasheet." Pepperl+Fuchs, 2016. PDF.

"Reflexite Daybright V92 Conspicuity Sheeting." Reflexite America, 2006. PDF.

BACKUP: GENERAL CONCEPT

- Landing hazard definition based on hypothetical CubeSat lander dimensions
- Hazards (obstacles and gradients) identified where the lander could land more than 15° off of vertical
- Scanning resolution of 10 cm selected to detect ~98% of potential hazards

Top view of Martian surface

Aspect ratio distribution

Side view of Martian surface

Aspect ratio distribution

Resolution Requirement

- Statistical analysis of rock size/aspect ratios on Mars
- Created a software map of a characteristic landing surface
- Monte Carlo simulation with different scan resolutions
- Determine probability of aliasing over a hazard (failure) vs. scan resolution

Test Readiness Review

Maximum Scan Angle

Resulting points with lidar scan

BACKUP: DESIGN REQUIREMENTS

FR 1

- 1. The system shall analyze a potential landing zone for a 12U cubesat.
 - 1.1. The system shall scan up to a half-angle of 20° off of nadir.
 - 1.2. The system shall scan from a nadir range of 14.1 m.
 - 1.3. The system shall scan with a resolution of better than 0.1 m.
 - 1.3.1. The error in this resolution shall be less than 0.05 m in the plane of the scan area.
 - 1.4. The system shall complete the scan and analysis in less than 60 seconds.
 - 1.4.1. The system shall complete the scan in less than 50 seconds.
 - 1.4.2. The system shall complete the analysis in less than 10 seconds.

- 2. The on-board processor (OBP) shall receive commands and data from a user-operated PC (UPC).
 - 2.1. The OBP shall execute a main driver routine.
 - 2.1.1. While executing the main driver, the OBP shall receive a "ready" command from the UPC.
 - 2.1.2. After a "ready" command is received, the OBP shall receive a "start command from the UPC.
 - 2.1.3. During operation (after a "start" command) the system shall receive a "stop" command from the UPC.
 - 2.1.3.1. Upon receiving a "stop" command, the system shall stop operation (cut power to the lidar and the motors) within 1 second.

- 2. The on-board processor (OBP) shall receive commands and data from a user-operated PC (UPC).
 - 2.2. Outside of the main driver, the OBP shall receive and store data from the UPC.
 - 2.2.1. The OBP shall receive and store in memory a list of Risley Prism orientations for the desired scan.
 - 2.2.2. The OBP shall receive and store in memory a list of simulated IMU values for the spacecraft.
 - 2.2.2.1. These IMU data shall be a Direction Cosine Matrix (DCM) for the system at each scan time, relative to the scan surface.
 - 2.2.3. The OBP shall retain memory while powered and unpowered.
 - 2.2.4. The OBP shall be programmable so that stored data and routines can be modified through the interface with the UPC.

- 3. The OBP shall command the sensor package (SP).
 - 3.1. The OBP shall control power (on or off) to the lidar sensor.
 - 3.2. The OBP shall control power (on or off) to the motors.
 - 3.3. The OBP shall send commands to the motor drivers.
 - 3.3.1. The OBP shall read the data file of Risley prism orientations to send to the motors.
 - 3.3.2. The desired prism orientations must be updated at least once every 10 ms.

- 4. The SP shall use a fixed-beam lidar sensor to obtain range measurements.
 - 4.1. The lidar shall operate within a range of 12 m 15 m.
 - 4.2. The lidar shall have a range error with a standard deviation of less than 2.5 cm at all ranges between 12 m and 15 m.

- 5. The SP shall have control over the lidar beam direction using two Risley prisms.
 - 5.1. The Risley prisms shall be capable of actuating the beam across the entire scan area.
 - 5.1.1. The Risley prisms together shall be capable of deflecting the lidar beam by at least 20° from nadir.
 - 5.2. The Risley prisms shall be individually controlled in order to direct the lidar beam.
 - 5.2.1. The Risley prism actuation system shall be capable of producing sufficient torque to achieve 15 rad/s^2.
 - 5.2.2. The Risley prism actuation system shall be capable of producing angular rates between 0 rad/s and 10 rad/s.
 - 5.3. After system calibration, the lidar shall have a cross-range error with a standard deviation of less than 2.5 cm for all locations in the scan area.
 - 5.3.1. The sum of two standard deviations plus the radius of the beam spot shall not exceed 5 cm at any point in the scan area.
 - 5.3.2. The Risley prism orientations shall be known to within 0.1° about the axis of rotation.

- 5. The SP shall have control over the lidar beam direction using two Risley prisms.
 - 5.4. The SP shall not inhibit the lidar sensor from receiving a return signal.
 - 5.4.1. The Risley prism receiver field of view shall be less than 50% obscured.
 - 5.4.2. The transmissivity of the Risley prisms shall allow for a beam return of at least 90% strength, assuming a perfect specular retroreflection from the target.
 - 5.4.2.1. The Risley prisms shall be covered with an anti-reflective coating appropriate for the lidar wavelength.
 - 5.4.3. The Risley prism actuation system shall not impede the optical path of the lidar beam for any orientation within the scan area.

- 6. The OBP shall receive data from the SP.
 - 6.1. The OBP shall read and save the lidar range measurement to memory every 10ms.
 - 6.1.1. The output of the lidar sensor shall be converted into a voltage.
 - 6.1.2. The voltage shall be readable by the OBP Analog to Digital Converted (ADC).6.1.2.1. The ADC shall have a resolution of at least 12 bits.
 - 6.1.2.1. The ADC shall have a resolution of at least 12 bi
 - 6.2. The OBP shall read the prism orientation measurements.
 - 6.2.1. The OBP shall read the quadrature output of the each encoder continuously to translate into a count.
 - 6.2.1.1. Each count shall be translated into an absolute angular position of each prism.
 - 6.2.2. Each prism orientation shall be saved to memory every 10ms.
 - 6.3. The lidar range measurement and prism orientations shall be correlated such that prism orientations from t=0 match with lidar ranges from t=5ms.

- 7. The OBP shall project the SP data into a three-dimensional (3D) point-cloud.
 - 7.1. The OBP shall translate the prism orientations into a location (origin) for the outgoing lidar beam.
 - 7.2. The OBP shall translate the prism orientations into a direction vector for the outgoing lidar beam.
 - 7.3. The OBP shall project the range measurement along the computed direction vector, then add this to the computed origin to find a point in an intermediate cartesian frame relative to the lidar emitter.
 - 7.4. The OBP shall rotate the point in the intermediate frame into an inertial frame using the simulated IMU data.
 - 7.5. These calculations shall occur as the scan is being completed.

- 8. The OBP shall analyze the 3D point-cloud to identify hazardous locations.
 - 8.1. The OBP shall begin analysis once the scan points have reached a distance of 0.45 meters from nadir.
 - 8.2. The OBP shall process a scan point by finding all points within the error-compensated lander footprint range, then computing the maximum height difference between of all these points. A safe point is one where this difference does not exceed the error-compensated hazard height.
 - 8.3. The points shall be analyzed in the order in which they arrive.
 - 8.4. A point shall be analyzed if and only if it is the next point in the queue and the distances from nadir of the most recently found points has exceeded the sum of the distance of the queued point from nadir and its error-compensated lander footprint range.

- 9. The OBP shall select an acceptable landing site.
 - 9.1. The OBP shall identify the first computed safe point as the acceptable landing site.

- 10. The OBP shall generate output readable by the UPC.
 - 10.1. The OBP shall generate health and status information readable by the PC in real time.
 - 10.1.1. The OBP shall provide a status message to the UPC once per second while the system is driver is running.
 - 10.1.1.1. The status message shall be "off" if the system is running the driver but is not ready or running.
 - 10.1.1.2. The status message shall be "warming up" if the system has received the "ready" command but has not yet completed the ready sequence.
 - 10.1.1.3. The status message shall be "ready" if the system has completed the ready sequence after receiving the "ready" command.
 - 10.1.1.4. The status message shall be "running" if the system is executing the scan. This message shall be time-stamped relative to the receipt of the "start" command.
 - 10.1.1.5. The status message shall be "analyzing" if the system has completed the scan but not the analysis. These messages shall be time-stamped with relative to the receipt of the "start" command.
 - 10.1.1.6. The status message shall be "complete" if the system has completed the scan and analysis. This message shall be time-stamped relative to the receipt of the "start" command.
 - 10.1.1.7. After a "complete" message is displayed, the system status shall be reset to "off."
 - 10.1.1.8. The status message shall be "stopped" if the operation was terminated with the "stop" command. This status shall remain in effect until the driver is restarted.

Test Readiness Review

- 10. The OBP shall generate output readable by the UPC.
 - 10.1. The OBP shall generate health and status information readable by the PC in real time.
 - 10.1.2. The health and status information shall appear on the terminal of the UPC once per second.
 - 10.2. The OBP shall save raw sensor outputs to memory.
 - 10.2.1. The OBP shall save lidar sensor measurements to memory.
 - 10.2.2. The OBP shall save prism orientation measurements to memory.
 - The OBP shall save translated beam attitudes to memory.
 - 10.4. The OBP shall save x, y, and z coordinates for each point to memory.
 - 10.5. The OBP shall save a SAFE/UNSAFE designation to memory for each point.
 - 10.6. The OBP shall save the coordinates of the selected landing site to memory.
 - 10.7. The saved data for each point shall be correlated.
 - 10.8. The saved data shall be readable on the UPC outside of the driver routine.

Lidar Sensor Sampling

Pepperl+Fuchs VDM28:

- COTS sensor that meets requirements and budget constraints
- Sensor shortcomings:
- 100 Hz sampling frequency
- Time-averages over 10 ms (takes 2500 samples in that interval)

Possible solution:

- Custom-built sensor with higher sampling frequency and no time-averaging
 - Cost estimate: ~\$10,000

point distribution not to scale

250 kHz

Lidar Sensor Sampling

Resolution

- Spiral Spacing: 8.66 cm
- Arc-point Spacing: 10 cm • Minimum frequency
- Total points: 9,550
- $f_{min} = 159 \text{ Hz}$

Scan Time vs. Scan Resolution

0.1 m spatial resolution at 14.1 m nadir range with 20° maximum scan angle

Scan process completed in less than 60 seconds

Problem: These two closely coupled objectives cannot be completed concurrently due to financial limitations on the lidar sensor

Lidar Wavelength

Feasibility for MACULA

• Test surface can be constructed with white diffuse paint or white retroreflective tape

Why this sensor was selected

- Meets budget and accuracy constraints
- Test surface can be constructed to fit sensor Benefits of Using 660 nm
- Visible spectrum (verification)

Lidar Wavelength

- Per **FR1**, MACULA is proof-of-concept system for CubeSat lander
 - Wavelength can be selected for custom-built sensors
 - Implemented systems will choose wavelength based upon landing surface

http://pics-about-space.com/asteroid-surface?p=1

http://pics-about-space.com/planet-mars-surface?p=1

- Red lasers are the most common and cheapest to manufacture
- Laser colors other than red require specialized crystals with rare-earth elements such as Neodymium
 - These extra components can drive up the cost of other color lasers (yellow, blue, green) to dozens of times the cost of a red laser
- These colors can have better reflection on certain surfaces, but do not provide a general advantage over red lasers

Detector Functionality

- Parabolic mirror to collect diffuse returns
- Specular returns do not disperse

Retroreflection

- Luminous Intensity [candela] – Quantity of luminous flux in given direction
- Illuminance [lux] Measure of concentration of luminous flux falling on surface
- Luminance [candela/m²]

 Measure of flux emitted from or reflected by a uniform surface

http://www.konicaminolta.com/instruments/knowledge/light/concepts/04.html

Retroreflection

Laser Emitter

- Pulse: < 4 nJ
- Pulse length: 5 ns
- Beam divergence: $- \delta = 0.057^{\circ}$
- Luminous Intensity:
 - 4.24e7 candela
- Illuminance on surface (15 m, 20° from nadir)

– 1.89e5 lux

Retroreflection

Reflexite Daybright V92

Observation Angles	Entrance Angles	White
0.2 °	- 4 °	460
	30°	250
0.5 °	-4 °	100
	30 °	65

- Luminance of return:
 - 1.23e7 candela/m²
- Luminance of Pepperl+Fuchs datasheet tests (90% Kodak White):
 - 1.70e5 candela/m²

https://en.wikipedia.org/wiki/Retroreflector

Risley Prism Specs

- Suitable for wide range of wavelengths
 - 450 nm 2000 nm
- Coatings available for 660 nm
 - Reflectance of about 1%, resulting in above 90 % transmissivity
- Cost:
 - \$100 each uncoated
 - Additional \$5 for coated

- Ross Optical P-WRC059
 - Diameter: 5.08 cm
 - 10° Maximum Beam Deviation (per prism)
 - Wedge Angle: 18° 8′
 - Angle Error: \pm 30 arc seconds
 - Material: N-BK7 Grade A fine annealed
 - Transmission: 91% at 660 nm
 - Density: 2.51 g/cm³
 - Thermal Expansion: $7.1 \times 10^{-6} \text{ K}^{-1}$
 - Thi.. _Jge Thickness: 3mm
 - Dimensional Tolerance $\pm 0.1 \text{ mm}$

Index of Refraction

• N-BK7 has variable index of refraction

Prism Attenuation

• Material: N-BK7 Grade A fine annealed

Prism Diameter

MACULA

- Beam lines calculated for eight rotations of the prisms (rotated together to produce maximum deflection angle)
- Transmitter and two points on the edge of the receiver are projected straight and their refractions are calculated for each of the prism rotations
 - This is only part of the receiver field of view. The lidar is placed to maximize what the receiver can see, without clipping the transmitter
- Prism diameter based on the farthest point from the center axis for any beam on any prism face
- Resulting distance is divided by 0.9 to produce the prism diameter (for best refraction results from the prism)
- Modeled as blocks for ease of plotting only. Reported size is the diameter

- Possible Risk: Reflections off prisms trigger lidar false returns.
- Reflections were analyzed to determine if they would hit detector.
- This risk can be mitigated by moving lidar away from prisms.

UV Cured Epoxy

- Upon curing, surface of epoxy exposed to UV light shrinks forming a meniscus
- Various techniques can be utilized to minimize stress upon shrinkage.
- Internal Barrel Button Bond method selected. Allows for slip fit and minimal shrinkage stress.

Epoxy Shrinkage shown on the right. Epoxy mounting techniques shown on the left.

https://www.norlandprod.com/techrpt s/techniques.html

Epoxy Selection

Selected UV Cured Epoxy: Thorlabs NOA81

- Shrinkage: 1.5 %
- Tensile Strength: 4000 psi
- Glass to Metal bond strength: Excellent
- Cost: \$33.5
- Amount per bottle: 1 oz
- Recommended Curing Intensity: >2 mW/cm² @ 365 nm

Mounting Stress Analysis

- Allowable Shear Stress: 1000 psi
- Estimated Area Exposed to Epoxy: 0.47 in²
- Allowable Torque: 470 lb-in or 53.10 Nm
- Maximum Torque Supplied by Motors: 1 Nm
- Very low chance of failure

Epoxy Shrinkage shown on the right. Epoxy mounting techniques shown on the left.

Point p_0 and normal *n* define a plane

- Line *l* intersects the plane *p* at $l_0 + \frac{n \cdot (p_0 l_0)}{l \cdot p} * l$ •
- The distance travelled between l_0 and p_0 is $\frac{n \cdot (p_0 l_0)}{l \cdot p} * ||l||$

Ray Propagation

Snell's Law in 3 dimensions

Law in 2 dimensions if we transform coordinates such that our new x and y lie in the plane formed by r_i and *n*. The equations are shown below

Test Readiness Review

101

Ray Propagation

By propagating in between prism faces and through material interfaces we can trace the ray path

Ray Propagation

Topographic Map

$$R = r - e - n(d'_{1} + d'_{2}) - \frac{d_{p}}{\cos \beta_{1_{o}}}$$
$$P_{xyz} = R \cdot l_{2_{o}} + p_{2_{o}}$$
$$P_{n} = \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix} P_{xyz}$$

$$P = \text{DCM}_{\text{IMU}} \cdot P_n + \begin{pmatrix} 0 \\ 0 \\ 15\cos(20^\circ) \end{pmatrix}$$

- *r* Lidar return
- e Distance between lidar and first prism
- d_p Prism separation
- n Prism refractive index
- d' Distance travelled within prism
- *l* Direction vector
- p Position vector
- $\beta \qquad \begin{array}{l} \text{Angle between beam} \\ \text{and optical axis} \end{array}$

Scan Pattern to Prism Angles

determined, theta component is found by rotating prisms togetherPrism angles can be

• Radial component of

prism offset angle

• Once offset angle is

points determined by

• Prism angles can be found numerically for all points in scan

Theoretical vs. Approximated Spiral

Scan Pattern Approximation

Time Scan:

Scan Center:

0.021653

Scan Edge:

5.11939

5.1194

5.11941

x (m)

5.11942

0.021649

0.02165

0.021651

x (m)

0.021652

5.11943

Approximate

Theoretical

Scan Pattern Approximation

Resolution Scan:

Scan Center:

Scan Edge:

Prism Positions

Test Readiness Review

Motor Rates

Time Scan:

- Min Rate: 7.34 rad/s
- Max Rate: 8.46 rad/s
- Max Accel: 14.36 rad/s²

Resolution Scan:

- Min Rate: 0.48 rad/s
- Max Rate: 0.55 rad/s
- Max Accel: 0.047 rad/s²

Prism Angular Rates over Approximate Scan

BACKUP: SYSTEM Assembly

Scanning Stage

3/6/17

3/6/17

Test Readiness Review

119

3/6/17

3/6/17

BACKUP: MATERIAL ANALYSIS

Thermal

• Linear Thermal Expansion: $\Delta l = l_0 \alpha (T_f - T_o)$

•
$$\alpha_{ss} = 6.61 \; \frac{\mu i n}{i n F}$$

•
$$\alpha_{52100} = 9.61 \frac{\mu in}{inF}$$

Max error (5°F)

- 0.003806°
- 2.5% of error budget

Mechanical

MACULA

- Steel dowel pin
 - $-V_{max} = 7117 \text{ N}$
 - $-\tau_{allow} = 246 \text{ Nm}$
 - $-\tau_{max} = 1.26 \text{ Nm}$
 - FOS = 202

BACKUP: HARDWARE TRADE STUDIES

Metric	1	2	3	4	5
Resolution	$\geq 0.15^{\circ}$	$\geq 0.075^{\circ}$	$\geq 0.0375^{\circ}$	$\geq 0.0187^{\circ}$	$\geq 0.0094^{\circ}$
Interface/Decoding	Not a common on chip peripheral	-	-	-	Common on chip peripheral
Cost per	\geq \$600	\geq \$500	\geq \$400	≥ \$300	\geq \$200

	Weight	Absolute	Incremental	Sin Cos In- cremental	Rotary Poten- tiometer	Resolver
Resolution	50%	3	4	5	1	3
Interface	40%	1	5	1	5	1
Cost	10%	2	2	2	5	1
Sum	100%	2.1	4.2	3.1	3.0	2.0

Encoder Trade Study

Metric	1	2	3	4	5
Cost	\geq \$1400	\geq \$1200	\geq \$1000	\geq \$800	\geq \$600
Immunity to Environment	Knocked out by a slight breeze	Constant Interference	Innately exposed scanning head	Innately shrouded scanning head	Impervious
Design Flexibility	Any change requires replacing both scanning head and scale	Diameter change requires replacing both scanning head and scale	Scale change requires replacing both scanning head and scale	-	Scanning head and scale may be changed in- dependently of each other, diameter only affects scale

	Weight	OPS Series	IncOder Series	Lika SMR Series	Heidenhain
Cost	40%	5	3	5	1
Immunity to Environment	30%	3	5	2	4
Design Flexibility	30%	5	2	5	5
Sum	100%	4.4	3.3	4.1	3.1

Motor Driver Trade Study

Metric	1	2	3	4	5
Cost	\geq \$500	\geq \$400	\geq \$300	\geq \$200	\geq \$100
Development Time	Build board, create control law, tuning	-	Create control law, then tune	-	Just tuning
Modes of control	Torque / Current	-	Velocity, Torque / Current	-	Position, Velocity, Torque / Current
Commutation / Feedback	Hall effect	-	Sensor-less	-	Encoder Feedback

	Weight	Custom	AMC Servo Drivers	TI BLDC Motor Controllers	ST Eval Boards
Cost	10%	5	2	5	5
Development Time	40%	1	5	3	3
Modes of control	20%	5	5	3	5
Commutation / Feedback	30%	5	5	3	5
Sum	100%	3.4	4.7	3.2	4.2

Microcontroller Trade Study

Metric	1	2	3	4	5
Cost	\geq \$500	\geq \$400	\geq \$300	\geq \$200	\geq \$100
Development Time	Build board from scratch	-	Bare Metal C	Has an OS or a third party application to ease development	OS, can use previously written Python scripts
Peripherals	Does not have any needed	Has only ADC	Has ADC, and UART	Has ADC, UART, USB/Ethernet	Has ADC, UART, USB/Ethernet, quadrature decoders
Design Flexibility	Component changes requires a different mi- crocontroller	-	Component changes requires additional chips to handle them, but can interface with microcon- troller	Program FPGA to adapt	Easy to adjust to component changes

	Weight	Custom	BeagleBone Black	Pi Series	MyRio	ZedBoard
Cost	15%	4	5	5	1	3
Development Time	30%	1	5	5	4	5
Peripherals	40%	5	5	3	5	5
Design Flexibility	15%	5	3	3	4	3
Sum	100%	3.65	4.7	3.9	3.95	4.4

BACKUP: MOTOR/PRISM CONTROL

Control Loop

- Built in feedback control
- Primary positional or velocity control

Position Control

- P.I.D control
- Feedforward acceleration and velocity

- Used when position trajectory must be tracked closely
- Feed forward gains added for better tracking

• Point-to-point applications

Tuning

- Performed with a motor installed into system
- Oscilloscope
 - 1-3Hz square wave
 - Channel one: Position Target
 - Channel two: Position Measured
- Gains initialized to zero
 - $0 \le Kp \le 0.5$
 - $0 \le Ki \le 9.766$
 - $0 \le \mathrm{Kd} \le 0.0008$
 - $0 \le \mathrm{Kv} \le 0.0008$
 - $0 \le Ka \le 8 x$

BACKUP: CALIBRATION

Theodolite

What does it do?

• Determines vertical and horizontal angles of surveyed

How does it work?

- Plumb bobs ensures that it is vertical relative to the surveying point
- Internal bubble level ensures that it is level relative to the horizon
- Graduated circles allow for horizontal and vertical angles of surveyed object to be measured

Sources of Error

Sources of Error

Must be Calibrated System Inherent

Lidar:

- Translational deviations
- Rotational deviations
- Beam divergence

BACKUP: Software/Algorithm

Blender Lidar Simulator

- Blender is an open-source program for 3D modeling
- Projects points onto any arbitrary face or object to simulate a lidar scan
- Can extract 3D data by running Python scripts within Blender

Example Blender artwork

Blender Lidar Simulator

- Scan pattern is defined on the plane of the ground, and projected backward onto a sphere centered on the lidar (Blender camera)
- The pattern is then projected outward from the lidar location onto the modeled map
- A Python script exports the point cloud to a CSV file

Hazard Detection Algorithms

MACULA

Morphological Filter

- Identifies hazards by height differences between neighboring points
- Time to run on laptop: 0.31 sec for 10 cm grid

Time Estimates

Estimated total time for software elements when run in Python on a personal laptop: about **0.666 s**

Analysis shows that the BeagleBone will run ~ 10.24 times slower (**6.83** s). Given our 10 s margin, we will be well within the time requirement even after porting to the microprocessor. More computationally expensive functions may be written in C for speed improvements.

BACKUP: BEAGLEBONE

BeagleBone Black Rev C.1

	Sitara AM	13358BZCZ100			
Processor	1GHz, 2000 MIPS				
Graphics Engine	SGX530 3D, 20M Polygons/S				
SDRAM Memory	512MB DDR3L 800MHZ				
Onboard Flash	4GB, 8bit Embedded MMC				
PMIC	TPS65217C PMIC regulator and one additional LDO.				
Debug Support	Optional Onboard 20-pin CTI JTAG. Serial Header				
Power Source	miniUSB USB or DC 5VDC External Via Expansion Jack Header				
PCB	3.4" x 2.1" 6 layers				
Indicators	1-Power, 2-Ethernet, 4-User Controllable LEDs				
S USB 2.0 Client Port	Access to USB0, Client mode via miniUSB				
S USB 2.0 Host Port	Access to USB1, Type A Socket, 500mA LS/FS/HS				
Serial Port	UART0 access via 6 pin 3.3V TTL Header. Header is populated				
Ethernet	10/100, RJ45				
D/MMC Connector	microSD, 3.3V				
	Res	et Button			
User Input	Bo	ot Button			
	Power Button				
and a sector of the sector of	16b HDMI, 1	1280x1024 (MAX)			
Video Out	1024x768,1280x720,1440x900,1920x1080@24Hz				
	w/ED	ID Support			
Audio	Via HDMI	Interface, Stereo			
	Power 5V, 3.3V	V, VDD_ADC(1.8V)			
	3.3V I/C) on all signals			
rancian Connectors	McASP0, SPI1, I2C, GPIO(69 n	nax), LCD, GPMC, MMC1, MMC2, 7			
connectors	AIN(1.8V MAX), 4 Ti	mers, 4 Serial Ports, CAN0,			
	EHRPWM(0,2),XDMA Interrup	ot, Power button, Expansion Board ID			
	(Up to 4	can be stacked)			
Weight	1.4 oz ((39.68 grams)			
Devues	1.4 oz (39.08 grams)				

Expansion Header P8 Pinout

PIN 1.2	PROC	NAME	MODEO	MODE1	MODE2	MODE3 GND	MODE4	MODE5	MODE6	MODE7
3	R9	GPIO1 6	apmc ad6	mmc1_dat6		OND				apio1[6]
4	Т9	GPIO1 7	gpmc_ad7	mmc1_dat7						gpio1[7]
5	R 8	GPIO1 2	gpmc ad2	mmc1_dat2						gpio1[2]
6	Т8	GPIO1 3	gpmc ad3	mmc1_dat3						gpio1[3]
7	R7	TIMER4	gpmc_advn_ale		timer4					gpio2[2]
8	T7	TIMER7	gpmc_oen_ren		timer7					gpio2[3]
9	T6	TIMER5	gpmc_be0n_cle		timer5					gpio2[5]
10	U6	TIMER6	gpmc_wen		timer6					gpio2[4]
11	R12	GPI01_13	gpmc_ad13	lcd_data18	mmc1_dat5	mmc2_dat1	eQEP2B_in		pr1_pru0_pru_r30_15	gpio1[13]
12	T12	GPI01_12	gpmc_ad12	Lcd_data19	mmc1_dat4	Mmc2_dat0	Eqep2a_in		pr1_pru0_pru_r30_14	gpio1[12]
13	T10	EHRPWM2B	gpmc_ad9	lcd_data22	mmc1_dat1	mmc2_dat5	ehrpwm2B			gpio0[23]
14	T11	GPIO0_26	gpmc_ad10	lcd_data21	mmc1_dat2	mmc2_dat6	ehrpwm2_tripzone_in			gpio0[26]
15	U13	GPIO1_15	gpmc_ad15	lcd_data16	mmc1_dat/	mmc2_dat3	eQEP2_strobe		pr1_pru0_pru_r31_15	gpio1[15]
16	V13	GPI01_14	gpmc_ad14	lcd_data17	mmc1_dat6	mmc2_dat2	eQEP2_index		pr1_pru0_pru_r31_14	gpio1[14]
17	U12	GPI00_27	gpmc_ad11	lcd_data20	mmc1_dat3	mmc2_dat7	ehrpwm0_synco			gpio0[27]
18	V12	GPIO2_1	gpmc_clk_mux0	Icd_memory_clk	gpmc_wait1	mmc2_clk			mcasp0_fsr	gpio2[1]
19	U10	EHRPWM2A	gpmc_ad8	lcd_data23	mmc1_dat0	mmc2_dat4	ehrpwm2A			gpio0[22]
20	V9	GPI01_31	gpmc_csn2	gpmc_be1n	mmc1_cmd			pr1_pru1_pru_r30_13	pr1_pru1_pru_r31_13	gpio1[31]
21	09	GPIO1_30	gpmc_csn1	gpmc_cik	mmc1_cik			pr1_pru1_pru_r30_12	pr1_pru1_pru_r31_12	gpi01[30]
22	0	GPIO1_5	gpmc_ad5	mmc1_dat5						gpio1[5]
23	V7		gpmc_ad4	mmc1_dat4						gpi01[4]
24	117		gpmc_ad1	mmc1_dat0						gpio1[1]
20	VG		gpmc_add	miner_date						gpio1[0]
20	115	GPI01_23	gpmc_csno	apmc 28				or1 pru1 pru r20 9	pr1 pru1 pru r21 9	gpi01[23] gpi02[22]
28	V5	GPI02_22		gpmc_a0				pr1_pr01_pr0_r30_0	pr1_pr01_pr0_r31_10	gpi02[22] gpi02[24]
29	R5	GPI02_24	led hsvne	apmc a9				pr1_pr01_pr0_r30_9	pr1_pr0_pr0_r31_9	gpio2[23]
30	R6	GPIO2_25	Icd ac bias en	gpmc_all				pri_prai_pra_roo_o	pri_pri_pri_pri_101_0	gpio2[25]
31	V4	UART5 CTSN	Icd data14	gpmc a18	eQEP1 index	mcasp0_axr1	uart5 rxd		uart5 ctsn	gpio2[20]
32	T5	UART5 RTSN	lcd_data15	gpmc a19	eQEP1 strobe	mcasp0_ahclkx	mcasp0_axr3		uart5 rtsn	apio0[11]
33	V3	UART4 RTSN	Icd data13	gpmc a17	eQEP1B in	mcasp0_fsr	mcasp0_axr3		uart4 rtsn	gpio0[9]
34	U4	UART3_RTSN	Icd_data11	gpmc_a15	ehrpwm1B	mcasp0_ahclkr	mcasp0_axr2		uart3_rtsn	gpio2[17]
35	V2	UART4_CTSN	lcd_data12	gpmc_a16	eQEP1A in	mcasp0_aclkr	mcasp0_axr2		uart4_ctsn	gpio0[8]
36	U3	UART3_CTSN	lcd_data10	gpmc_a14	ehrpwm1A	mcasp0_axr0			uart3_ctsn	gpio2[16]
37	U1	UART5_TXD	lcd_data8	gpmc_a12	ehrpwm1_tripzone_in	mcasp0_aclkx	uart5_txd		uart2_ctsn	gpio2[14]
38	U2	UART5 RXD	Icd data9	gpmc a13	ehrpwm0 synco	mcasp0_fsx	uart5 rxd		uart2 rtsn	gpio2[15]
39	T3	GPIO2_12	lcd_data6	gpmc_a6		eQEP2_index		pr1_pru1_pru_r30_6	pr1_pru1_pru_r31_6	gpio2[12]
40	T4	GPIO2_13	lcd_data7	gpmc_a7		eQEP2_strobe	pr1_edio_data_out7	pr1_pru1_pru_r30_7	pr1_pru1_pru_r31_7	gpio2[13]
41	T1	GPIO2_10	lcd_data4	gpmc_a4		eQEP2A_in		pr1_pru1_pru_r30_4	pr1_pru1_pru_r31_4	gpio2[10]
42	T2	GPIO2_11	lcd_data5	gpmc_a5		eQEP2B_in		pr1_pru1_pru_r30_5	pr1_pru1_pru_r31_5	gpio2[11]
43	R3	GPIO2_8	lcd_data2	gpmc_a2		ehrpwm2_tripzone_in		pr1_pru1_pru_r30_2	pr1_pru1_pru_r31_2	gpio2[8]
44	R4	GPIO2 9	Icd data3	gpmc a3		ehrpwm0 synco		pr1_pru1_pru_r30_3	pr1_pru1_pru_r31_3	gpio2[9]
45	R1	GPIO2_6	Icd_data0	gpmc_a0		ehrpwm2A		pr1_pru1_pru_r30_0	pr1_pru1_pru_r31_0	gpio2[6]
46	R2	GPIO2 7	Icd data1	gpmc a1		ehrpwm2B		pr1_pru1_pru_r30_1	pr1_pru1_pru_r31_1	gpio2[7]

Expansion Header P9 Pinout

PIN	PROC	NAME	MODE0	MODE1	MODE2	MODE3	MODE4	MODE5	MODE6	MODE7
1,2						GND DC 2.2V				
3,4										
78						SYS 5V				
9						PWR BUT				
10	A10					SYS RESETA				
11	T17	UART4 RXD	apmc wait0	mii2 crs	apmc csn4	rmii2 crs dv	mmc1 sdcd		uart4_rxd_mux2	(100)apio0
12	U18	GPI01_28	gpmc_be1n	mii2_col	gpmc_csn6	mmc2_dat3	gpmc dir		mcasp0_aclkr_mux3	gpio1[28]
13	U17	UART4_TXD	gpmc_wpn	mii2_rxerr	gpmc_csn5	rmii2_rxerr	mmc2_sdcd		uart4_txd_mux2	gpio0[31]
14	U14	EHRPWM1A	gpmc_a2	mii2_txd3	rgmii2_td3	mmc2_dat1	gpmc_a18		ehrpwm1A_mux1	gpio1[18]
15	R13	GPI01_16	gpmc_a0	gmii2_txen	rmii2_tctl	mii2_txen	gpmc_a16		ehrpwm1_tripzone_input	gpio1[16]
16	T14	EHRPWM1B	gpmc_a3	mii2_txd2	rgmii2_td2	mmc2_dat2	gpmc_a19		ehrpwm1B_mux1	gpio1[19]
17	A16	I2C1_SCL	spi0_cs0	mmc2_sdwp	I2C1_SCL	ehrpwm0_synci	pr1_uart0_txd			gpio0[5]
18	B16	I2C1_SDA	spi0_d1	mmc1_sdwp	I2C1_SDA	ehrpwm0_tripzone	pr1_uart0_rxd			gpio0[4]
19	D17	I2C2_SCL	uart1_rtsn	timer5	dcan0_rx	I2C2_SCL	spi1_cs1	pr1_uart0_rts_n		gpio0[13]
20	D18	I2C2_SDA	uart1_ctsn	timer6	dcan0_tx	I2C2_SDA	spi1_cs0	pr1_uart0_cts_n		gpio0[12]
21	B17	UART2_TXD	spi0_d0	uart2_txd	I2C2_SCL	ehrpwm0B	pr1_uart0_rts_n		EMU3_mux1	gpio0[3]
22	A17	UART2_RXD	spi0_sclk	uart2_rxd	I2C2_SDA	ehrpwm0A	pr1_uart0_cts_n		EMU2_mux1	gpio0[2]
23	V14	GPI01_17	gpmc_a1	gmii2_rxdv	rgmii2_rxdv	mmc2_dat0	gpmc_a17		ehrpwm0_synco	gpio1[17]
24	D15	UART1_TXD	uart1_txd	mmc2_sdwp	dcan1_rx	I2C1_SCL		pr1_uart0_txd	pr1_pru0_pru_r31_16	gpio0[15]
25	A14	GPIO3_21*	mcasp0_ahclkx	eQEP0_strobe	mcasp0_axr3	mcasp1_axr1	EMU4_mux2	pr1_pru0_pru_r30_7	pr1_pru0_pru_r31_7	gpio3[21]
26	D16	UART1_RXD	uart1_rxd	mmc1_sdwp	dcan1_tx	I2C1_SDA		pr1_uart0_rxd	pr1_pru1_pru_r31_16	gpio0[14]
27	C13	GPIO3_19	mcasp0_fsr	eQEP0B_in	mcasp0_axr3	mcasp1_fsx	EMU2_mux2	pr1_pru0_pru_r30_5	pr1_pru0_pru_r31_5	gpio3[19]
28	C12	SPI1_CS0	mcasp0_ahclkr	ehrpwm0_synci	mcasp0_axr2	spi1_cs0	eCAP2_in_PWM2_out	pr1_pru0_pru_r30_3	pr1_pru0_pru_r31_3	gpio3[17]
29	B13	SPI1_D0	mcasp0_fsx	ehrpwm0B		spi1_d0	mmc1_sdcd_mux1	pr1_pru0_pru_r30_1	pr1_pru0_pru_r31_1	gpio3[15]
30	D12	SPI1_D1	mcasp0_axr0	ehrpwm0_tripzone		spi1_d1	mmc2_sdcd_mux1	pr1_pru0_pru_r30_2	pr1_pru0_pru_r31_2	gpio3[16]
31	A13	SPI1_SCLK	mcasp0_aclkx	ehrpwm0A		spi1_sclk	mmc0_sdcd_mux1	pr1_pru0_pru_r30_0	pr1_pru0_pru_r31_0	gpio3[14]
32						VADC				
33	C8					AIN4				
34						AGND				
35	A8					AIN6				
36	B8					AIN5				
37	B7					AIN2				
38	A7					AIN3				
39	B6					AINO				
40	C7					AIN1				
41#	D14	CLKOUT2	xdma_event_intr1		tclkin	clkout2	timer7_mux1	pr1_pru0_pru_r31_16	EMU3_mux0	gpio0[20]
	D13	GPIO3_20	mcasp0_axr1	eQEP0_index		Mcasp1_axr0	emu3	pr1_pru0_pru_r30_6	pr1_pru0_pru_r31_6	gpio3[20]
42@	C18	GPIO0_7	eCAP0_in_PWM0_out	uart3_txd	spi1_cs1	pr1_ecap0_ecap_capin_apwm_o	spi1_sclk	mmc0_sdwp	xdma_event_intr2	gpio0[7]
	B12	GPI03_18	Mcasp0_aclkr	eQEP0A_in	Mcaspo_axr2	Mcasp1_aclkx		pr1_pru0_pru_r30_4	pr1_pru0_pru_r31_4	gpio3[18]
43-46						GND				

BACKUP: MEASUREMENTS

Lidar range and beam attitude measurements shall be taken within one microsecond.

- 15 ADC clocks per sample 625 ns full conversion
- Reading the quadrature decoder registers may be accomplished in this time (~4 ns)

Full measurement time is limited by the ADC

Lidar Measurement

The lidar shall send range data to the on-board processor or DAQ

- The lidar produces a 0/4 mA to 20 mA current loop based off of the range between two set points A and B.
- A 90 ohm resistor is used to turn this into a 1.8 V max signal which is read on the microcontroller's ADC

Quadrature Decoding

The beam attitude measurement shall be sent to the on-board processor or DAQ.

- The BeagleBone Black has quadrature decoders that interface directly with the OPS optical encoders
- Taking measurements is as simple as reading each counter

BACKUP: ENCODER INTEGRATION

OPS Encoder Mounting Side

Ζ

Wide Alignment Tolerances

OPS Top Mount Configuration Sensor Alignment Tolerances			
Axis	Alignment Tolerance		
X	Direction of Motion		
Y	± 0.20mm		
Z	± 0.15mm		
θx	± 1.0°		
θγ	± 1.0°		
θz	± 2.0°		

Sensor Size & Weight (top mount sensor) Height Width Length 0.3518.03mml 0.53.113.40mml 1.26.132.00

Weight	6g (without cable	e)
weight	og (without cable	=)

Test Readiness Review

OPS Encoder Alignment

MicroE Systems SmartPrecision II Se	oftware - Displaying Live Data	
Elle View Help		
		SmartPrecision ^{TV} II Software for OPS Digital Sensor 400X
	Encoder Position	
	68,264 counts	Reset
Data Plots	Status	Signal Level
Encoder Signal	Index not at index	
Signal Plots	Calibrate GOP Set Left Limit Calibrate Index Set Right Limit	a
Settings	Calibration Normal Operation	Optin
	Start Cal Stop Cal Start Align Stop Align	
	Limits	
	Right	Poor

BACKUP: COMMUNICATION

Communication Between Microcontroller and PC

- UART 115200 bits / sec
- USB 2.0 480 Mbits / sec (high speed)
- Ethernet/IP 10/100/1000 Mbits /sec

Controller-PC communication layer agnostic to protocol

UART

- Will require an FTDI
- 115200 bits/s
- 8 data bits per packet 1 start and 1 stop
- 11520 bytes/s

Ethernet data rate feasibility

IPv4

Max Ethernet packet 1518 bytes 68 bytes of UDP overhead (with IP and Ethernet frames) 1472 bytes left for data \rightarrow 60 measurements per packet 1512 byte total packet size 100 Mb/s: 8127 frames/sec * 1512 bytes/frame = 12.288 Mbytes/s 1000 Mb/s: 81274 frames/sec * 1512 bytes/frame = 122.8 Mbytes/s

Ethernet UDP Overhead

Fast Ethernet (IEEE 802.3u) - UDP

Maximum Ethernet frames and data throughput rate calculations.

*** Note 1: Units - M: 1,000,000 Mi: 1,048,576

NST - 2011

Ethernet UDP Overhead

Maximum Ethernet frames and data throughput rate calculations.

*** Note 2: Gigabit Ethernet allows for larger MTUs (Jumbo or Super Jumbo Frames).

*** Note 3: Units - M: 1,000,000 Mi: 1,048,576

175

USB Da	ta Rate	Feasi	bil	it
--------	---------	-------	-----	----

• Universal Serial Bus Specification Revision 2.0

Table 5-10. High-speed Bulk Transaction Limits

	Protocol	Overhead (55 bytes)	(3x4 SYNC bytes 2 CRC16, and a	s, 3 PID bytes, 3x(1+11) byte	2 EP/ADDR+CR interpacket delay	C bytes, / (EOP, etc.))
	Data Max Bandwidth Payload (bytes/second)		Microframe Bandwidth per Transfer	Max Transfers	Bytes Remaining	Bytes/ Microframe Useful Data
	1	1064000	1%	133	52	133
	2	2096000	1%	131	33	262
	4	4064000	1%	127	7	508
	8	7616000	1%	119	3	952
	16	13440000	1%	105	45	1680
	32	22016000	1%	86	18	2752
	64	32256000	2%	63	3	4032
	128	40960000	2%	40	180	5120
	256	49152000	4%	24	36	6144
	512	53248000	8%	13	129	6656
ix		6000000				7500

21 measurements for the maximum data payload produces a 508-byte data payload Speeds should be over 50 million bytes a second

USB 2.0

Test Readiness Review

178

Top Level Connections

BeagleBone Connections

Test Readiness Review

Lidar Connections

BACKUP: VERIFICATION AND VALIDATION

Artec Eva Lite 3D Scanner

Specifications

- 3D resolution: 0.5 mm
- 3D point accuracy: 0.1 mm

<u>Output</u>

• Creates a SOLIDWORKS file of the scanned object/surface

Scan Pattern Feasibility

MACULA

Solution: Perform two system-level tests:

- 1. Verify that the sensor package can obtain measurements with the required resolution in a longer period of time
- 2. Verify the ability of the system to perform a 60-second scan/analysis, even though the required resolution cannot be met

Resolution requirement test:

- Lidar frequency: 100 Hz
- Point spacing (exterior): 2.5 cm
- Exterior spiral arc length: 32.32 m
- Time to complete scan: ~12 min
- Maximum prism angular acceleration
- Required angular velocity: 4.6536 rpm
- Maximum prism angular acceleration: 4.8e-6 rad/s²

Time requirement test:

- Spiral spacing of 8.66 cm gives 59 total spirals
- Time: 50 seconds (leaving margin for analysis)
- Required lidar frequency: 382 Hz
- Required angular velocity: 71.0763 rpm
- Maximum prism angular acceleration: 3.76e-6 rad/s²

Test Setup (Lidar)

- Receive return through glass
 - Shoot lidar through panes of glass and use oscilloscope to determine if the lidar is receiving a return
- Range, error and precision
 - Over a timespan on 60 sec, consistent measurements with accuracy of +/- 5 cm must be taken
- Reflective tape
 - Measure signal return accuracy, consistency, and strength from surface with and without retro-reflective tape
- Sample Frequency
 - Using an oscilloscope, determine time (in milliseconds) between range measurements

Test Setup (Prisms)

- Must be able to turn beam 20°
 - Mount prisms parallel to lidar, manually rotate prisms and verify 20° beam divergence
- Returns through glass
 - If the lidar does not receive returns through glass, replace the glass with coated prisms and repeat trials

- Determine functionality of hardware
 - Connect encoders to microprocessor and motors
 - Manually move motor to verify functionality of encoders
 - This is just to test connectivity and verify that communication is working properly

Test Setup (Motors)

- Motor functionality
 - Connect motors to motor drivers and provide any arbitrary commands, verify response happens
- All required motor rates must be achievable
 - Once motor, encoder, driver, and microprocessor system is fully integrated
 - Command to maximum rate of 71 rpm and hold for 50 sec
 - Command to minimum rate of 4 rpm and hold for 13 min
- Time to accelerate to desired motor rates
 - Given motor rate commands, verify motor accelerations are within desired bounds from encoder output analysis

- Given any input the drivers must change the position of the motors
 - This can be visually verified
- Verify that command accuracy of 0.1° can be met
 - Can verify commanded vs actual by manually comparing commanded angle and actual angle
 - Can more accurately verify by comparing computational models of prism rotation, given a single motor angle displacement, against encoder positions
 - Measuring initial and final laser position physically and predictively in software

Test Setup (Software)

- Unit tests
 - x, y, z coordinate rotation
 - Read in IMU data, prism positions, and range
 - Combine to produce range measurement
 - Actual hazard output should match expected
 - Expected generated by software mockup
 - Generate health and status reports
 - Output results