<u>Mapping</u> Architecture Concept for Universal Landing Automation

MACULA

SPRING FINAL REVIEW

Customer: Jeffrey Thayer & Brian Argrow, University of Colorado Boulder AES. Faculty Advisor: Jay McMahon

Team Members:

Trevor Arrasmith, Brett Bender, Chris Brown, Nick Dawson, David Emmert, Bryce Garby, Russell Gleason, Matthew Hurst, Jared Levin, Ansel Rothstein-Dowden

Project Purpose and Objectives Design Description Test Overview Test Results Systems Engineering Project Management

1

Spring Final Review

2

PROJECT PURPOSE AND OBJECTIVES

Spring Final Review

5/3/17

Martian surface topography is well mapped, allowing for the selection of safe landing areas

Due to uncertainty in orbital insertion and EDL trajectory, safe landing areas must be large

https://www.nasa.gov/images/content/573652main_pia14294-anno-43_946-710.jpg

https://www.nasa.gov/sites/default/files/pia18391_sol663map-small.jpg

MOTIVATION: OTHER TARGETS

Other bodies, like Europa or asteroids, are not well mapped Unknown surface topography poses significant risk for a lander

https://solarsystem.nasa.gov/images/content/europa_48_bkg_700.jpg

https://www.nasa.gov/sites/default/files/thumbnails/image/vesta_trek.jpg

Design, **manufacture**, and **test** a **proof-of-concept** light detection and ranging (lidar) **scanning system** for a landing spacecraft

Success Levels:

- 1. Lidar sensor and scanning mechanism, mounted on a stationary platform, shall record correlated range and attitude measurements
- 2. System shall scan a known test scene and project measurements into a 3D point cloud
- 3. System shall scan a landing zone mockup and analyze the 3D point cloud for hazards
- 4. System shall select a safe landing zone

7

DESIGN DESCRIPTION

Spring Final Review

5/3/17

9

Modification	Rationale
Test range reduced from 14.1 m to 8 m	Lidar return reliability
Ghost mitigation	Noise in lidar data
Ferrite bead	Noise from motor EMI
Electronics shielding	Noise from motor EMI
PCB Rev B	Encoder level shifting issue
Motor cable strain relief	Improper lead attachment
Encoder mounting block	Correct error in mounting plan

FUNCTIONAL BLOCK DIAGRAM

Spring Final Review

SCANNING SYSTEM FUNCTIONAL BLOCK DIAGRAM

ASSEMBLED SYSTEM

Spring Final Review

5/3/17

14

6

1.Optics

- Why: concerned about measurements through prisms
- Result: resolved measurements taken through prisms

2. Risley Prism Control

- Why: precise pointing knowledge is required for scan
- Result: partially resolved motors cannot be driven sufficiently fast

3.Embedded System

- Why: communications and timing required for precise scan
- Result: partially resolved encoders cannot be read sufficiently fast

4.Manufacturing

- Why: quantity of work
- Result: resolved all manufacturing completed on time

TEST OVERVIEW

Spring Final Review

17

Relation to Project Success

- Success Level 1: obtain range measurements
- Success Level 2: accurate map construction

Objective

- Obtain measurements through prisms
- Characterize error

Requirements

- DR 4.1: Range of 12 -15 m
- DR 4.2: Error < 2.5 cm (1 sigma)

Procedure

 Sample range at 0.3 m increments between 12 m and 15 m with and without prisms

Drive System Test Overview

Relation to Project Success

- Success Level 1: obtain attitude measurements
- Success Level 2: accurate map construction

Objective

- Communication between BeagleBone and drivers
- Achieve desired scan pattern

Requirements

- DR 1.3: Scan resolution of 0.1 m
- DR 5.2.1: Motor acceleration of 15 rad/s²
- DR 5.2.2: Motor velocity from 0.45 rad/s to 10 rad/s

Procedure

- Incremental increase in communication capability
- Command and compare with desired resolution

SOFTWARE TEST OVERVIEW

Relation to Project Success

- Success Level 3: analyze point cloud for hazards
- Success Level 4: select a safe landing site

Objective

- Verify hazard detection algorithm performance
- Provide "truth" value for comparison

Requirements

• DR 1.4: Complete hazard detection within 60 sec

Procedure

- Generate simulated point cloud
- Run morphological filter
- Compare with expected results

Relation to Project Success

• Success Levels 1-4

Objective

- Complete a full scan and analysis within 60 sec
- Complete a full scan with required accuracy

Requirements

- DR 1.1: scan up to 20° off nadir
- DR 1.3: resolution better than 0.1 m
- DR 1.4: scan and analysis in 60 sec

Procedure

- Alignment and calibration
- Perform timed scan
- Perform resolution scan
- Compare results with expected results

TEST RESULTS

Spring Final Review

23

FUNCTIONAL REQUIREMENTS

- **FR 1**: The system shall analyze a potential landing zone for a 12U CubeSat.
- **FR 2**: The on-board processor (OBP) shall receive commands and data from a user-operated PC (UPC).
- FR 3: The OBP shall command the sensor package (SP).
- FR 4: The SP shall use a fixed-beam lidar sensor to obtain range measurements.
- FR 5: The SP shall employ two Risley prisms to direct the lidar beam.
- **FR 6**: The OBP shall receive data from the SP.
- **FR 7**: The OBP shall project the SP data into a three-dimensional (3D) point cloud.
- FR 8: The OBP shall analyze the 3D point cloud to identify hazardous locations.
- FR 9: The on-board processor shall select an acceptable landing site.

FR 10: The OBP shall generate output readable by the UPC.

Initial results

Successful in obtaining measurements through prisms (using manufacturer-provided tape)

Complication

• Purchased tape caused no returns at full range

Solution

• De-scope range from 14.1 m to 8 m

Implication

Still able to meet all other requirements at the reduced range

LIDAR TESTING: NO MOTORS

LIDAR TESTING: WITH SOLUTION

Requirements

- DR 4.1: Range of 12 -15 m (partially verified)
- DR 4.2: Error < 2.5 cm (1 sigma) (verified after solution)

Test	Error (1 sigma standard deviation)
Through prisms	0.196 cm
With motors	3.440 cm
With mitigation (filtering and averaging)	0.410 cm

Challenges

- No measurements at 12 m with purchased retro-reflective tape
- De-scope full-system test to 8 m

Test	Points meeting resolution requirement (0.1 m)
Nadir	99.3%
Edge	95.1%
and the second se	

Resolution must be met for a full-speed test

BeagleBone missing counts due to signal out of TTL range

Can achieve the necessary rates, but cannot collect meaningful data

Proposed solution (in progress): revised PCB

Incorporate uni-directional level shifter

DRIVE SYSTEM TESTING: SUMMARY

Requirements

- DR 1.3: Scan resolution of 0.1 m
- DR 5.2.1: Motor acceleration of 15 rad/s²
- DR 5.2.2: Motor velocity from 0.45 rad/s to 10 rad/s

Results

- DR 1.3 partially verified for slow scan but not for fast scan
- DR 5.2.1 and 5.2.2 verified by acceptance tests

Further work

- PCB Rev B to allow verification of DR 1.3 for fast scan
- Perform time test

Requirements

• DR 1.4: Complete hazard detection within 60 sec

Results:

5/3/17

- Algorithm functions properly, can be used for full-test point cloud and validation
- 9500 points: algorithm takes 93.87 sec (DR 1.4 not verified)

MACULA

Results from actual scan of testbed at range of 8 m

Spring Final Review

HAZARD ANALYSIS RESULTS

Actual result (adjusted hazard definition)

Expected result, adjusted hazard definition

Expected result, original hazard definition

FULL-SYSTEM: LANDING ZONE SELECTION

Comparison of results against original hazard definition

Test	Number correct	False Negative (safe marked unsafe)	False Positive (unsafe marked safe)	Failure Probability (select unsafe landing)
Nadir 1	18378 (77.8%)	5249 (22.2%)	3 (0.01%)	0.025%
Nadir 2	18635 (78.2%)	5120 (21.8%)	5 (0.02%)	0.042%
Nadir 3	18754 (79.7%)	4781 (20.3%)	1 (0.004%)	0.008%
Edge 1	4956 (84.2%)	927 (15.8%)	0 (0%)	0%
Edge 2	4983 (84.4%)	922 (15.6%)	2 (0.03%)	0.06%
Edge 3	4763 (80.8%)	1132 (19.2%)	1 (0.02%)	0.03%

Full-System Testing: Summary

Requirements

- DR 1.1: scan up to 20° off nadir
- DR 1.3: resolution better than 0.1 m
- DR 1.4: scan and analysis in 60 sec

Results

- DR 1.1 verified
- DR 1.3 partially verified (>95% of points pass)
- DR 1.4 not verified (analysis not performed in time)
- Point cloud matches expectation with mean offset 5 mm and standard deviation 7 mm
- Hazard detection produces a maximum 0.06% chance of failure

Further work

- PCB Rev B to allow verification of DR 1.3 for fast scan
- Perform time test

ACHIEVEMENT OF PROJECT OBJECTIVES

Objectives from PDD

"The purpose of the MACULA project is to design, manufacture, and test a light detection and ranging (LiDAR) scanning system that a landing craft can use to dynamically select a safe area on an unknown body. On-board software will detect hazards, making this system both safer and more generally applicable than current systems."

Success Levels

Success Level	Status
1 – Correlated range and attitude	Achieved
2 – Topographic map construction	Achieved
3 – Hazard analysis	Partial – >95% accurate
4 – Landing site selection	Partial – 3 not achieved

FUNCTIONAL REQUIREMENTS

Functional Requirement	Status
1 – Analyze landing site for 12U CubeSat	Partial – not completed in required time
2 – Commands received from user PC	Achieved
3 – Command sensor package	Achieved
4 – Use fixed-beam lidar	Achieved
5 – Use two Risley prisms	Achieved
6 – Receive sensor data	Partial – BeagleBone misses counts
7 – Construct topographic map	Achieved
8 – Hazard detection	Partial – >95% accurate
9 – Landing zone selection	Achieved
10 – Output to PC	Achieved

Systems Engineering

Spring Final Review

41

Scan a landing environment using lidar

- Customer requirement
- Created need to steer beam and measure steering

Create a 3D point cloud

Created need for correlation of range and attitude measurements

Detect hazards

- Defined scale
- Defined error requirements

Identify a safe landing zone

Fixedbeam

Optically Segmented

Rationale

- Low cost
- Meets error requirements

Implications

- Created need for actuation system
- Drove error requirements on mechanical system

Rationale

- Implications on pattern
- Simple actuation

Implications

- Drove design of mechanical system
- Drove design of scan pattern

Lidar testing

- Range measurements through prisms
- Error within requirement
- De-scope full-system test range

Motor testing

- Necessary rates/accelerations can be achieved
- Scan pattern resolution 95.1% achieved at low speed
- High-speed scan work in progress

Software testing

- Given a 3D point cloud, hazards can be detected (>95%)
- Time requirement not met

System Verification & Validation

Resolution test

- Goal:
 - Environment at given distance can be scanned
 - 3D point cloud can be created
 - Hazards of defined scale can be detected
- Result:
 - Partially validated

Time test

- Goal:
 - Motors can be controlled for scan under time constraint
 - Process can be completed during theoretical hover phase
- Result:
 - Incomplete

Mission objective was to design a proof-of-concept scanning system for spacecraft landing

- Accomplishments
 - Range and attitude measurements correlated into 3D point cloud
 - 3D point cloud analyzed for hazards
 - Scalable design can be applied to different mission scenarios
- Shortcomings
 - Processing time
 - Error reduction
 - Capabilities for INS data

R1	Reflection off of prisms causes false return
R2	Encoder mount damage occurs
R3	Limited machine shop availability
R4	Risley prism damage occurs during storage or handling
R5	Limited availability in RECUV
R6	Delays during manufacturing process
R7	Loss of calibration

Not included in risk matrix

Quality of parts from suppliers

- Hollow-core motors from Celera Motion
- Motor driver power issue
- Integration issues larger than expected
 - EMI induced error
 - Encoder counts missed

Drivers of schedule

- Waiting for components to arrive from suppliers
- Integration and troubleshooting

Subsystem integration before full-system test

- Issues not fully presented until full-system test
 - EMI induced error

Need better tracking of design requirement specifics

Re-visit requirements throughout testing and integration

More iterations necessary on design requirements

Higher-quality metrics to evaluate design

PROJECT MANAGEMENT

Spring Final Review

52

MANAGEMENT SUCCESSES AND DIFFICULTIES

Successes:

Setting internal deadlines **Ensuring high-quality work** Familiarity with project as a whole Ambitious scheduling and significant margin Conflicts resolved **Difficulties: Enforcing internal deadlines Resource allocation** Unforeseen schedule slip **Conflicts** existed

No incentives

Management Lessons Learned

Margin!! (both schedule and budget) Ambitious scheduling can be demoralizing Maintain technical knowledge Enforce internal deadlines Check in regularly on tasks Authority/incentive/respect

FINAL BUDGET COMPARISON

Item	CDR Budget	Actual Cost	Difference	Reason
Stock	\$849.77	\$488.58	-\$361.19	Machine shop
Tooling	\$812.00	\$527.15	-\$284.85	Machine shop
Testbed	\$0	\$326.50	+\$326.50	Built into misc.
Misc. Materials	\$466.00	\$447.31	-\$18.69	
Lidar	\$0.00	\$0.00	+\$0.00	
Motors	\$1033.00	\$1728.30	+\$695.30	Quantity/shipping
Encoders	\$1120.00	\$1496.15	+\$376.15	Mounting cost
Bearings	\$327.08	\$340.75	+\$13.67	
Microprocessor	\$55.00	\$0.00	-\$55.00	Owned by team
Reflective Tape	\$325.98	\$367.95	+\$41.97	
Motor Drivers	\$847.00	\$1599.74	+\$752.74	Quality/shipping
Risley Prisms	\$216.00	\$336.00	+\$120.00	Spare prism
Shipping	\$330.00	\$0.00	-\$330.00	Built into others
Total	\$6381.83	\$7658.43	+\$1276.60	

FINAL BUDGET COMPARISON

	CDR Budget	Actual
Expenses	\$6381.83	\$7658.43
Funding	\$8300.00	\$8300.00
Margin	\$1918.17 (23.11%)	\$641.57 (7.73%)

TRUE PROJECT COST: SPRING HOURS

TRUE PROJECT COST: SUMMARY

Fall Semester Hours	2800.25
Spring Semester Hours (through 4/21/17)	2380.95
Total Hours	5181.20
Yearly Engineer Salary	\$65,000.00 (2080 hours)
Hourly Engineer Cost	\$31.25
Total Personnel Cost	\$161,912.50
Total Overhead	\$323,835.00
Material Cost	\$7,658.43
Total Project Cost (through 4/21/17)	\$493,395.93

Advisor: Jay McMahon

<u>PAB</u>: James Nabity, Kaley Pinover, Brian Argrow, Bobby Hodgkinson, Matt Rhode, Trudy Schwartz, Bob Marshall, Josh Stamps, Jelliffe Jackson

Aerospace Machine Shop: Adrian

ITLL Machine Shop: Mark Eaton

Active Remote Sensing Lab: Jeff Thayer, Rory Barton-Grimley, Bobby Stillwell

Computational Mechanics and Geometry Lab: John Evans, Luke Engvall, Joseph Benzaken

Research Center for Unmanned Aerial Vehicles: Steve McGuire

Bowman Research Group: Nick Bongiardina

Blue Canyon Technologies: Steve Steg, Matt Carton, Bryce Peters

Pepperl+Fuchs: Michael Turner

<u>Celera Motion:</u> Michael Healey

Advanced Motion Controls

Dale Lawrence

Stephen Arrasmith

Undergraduate Research Opportunities Program

5/3/17

Johnson, Andrew E. Johnson, Andrew E., et al. "Lidar-based hazard avoidance for safe landing on Mars." Journal of guidance, control, and dynamics 25.6 (2002): 1091-1099.

"RIEGL Airborne Solutions." The RIEGL Newsroom. N.p., 05 Aug. 2016. Web. 31 Aug. 2016

San Martin, A. Miguel, Steven W. Lee, and Edward C. Wong. "The development of the MSL guidance, navigation, and control system for entry, descent, and landing." (2013).

Schwarze, Craig. "A New Look At Risley Prisms." Photonics Spectra (n.d.): n. pag. Photonics Media, June 2006. Web. 20 Sept. 2016.

Way, David W., et al. "Mars Science Laboratory: Entry, descent, and landing system performance." Aerospace Conference, 2007 IEEE. IEEE, 2007.

"What Is LIDAR?" What Is LIDAR? National Ocean Service, n.d. Web. 31 Aug. 2016.

Whitwam, Ryan. "How Googles Self-driving Cars Detect and Avoid Obstacles — ExtremeTech." ExtremeTech. N.p., 8 Sept. 2014. Web. 31 Aug. 2016.

QUESTIONS?

Objective

- Returns through prisms
- Characterizing short-range error
- Comparing two different lidars
- Frequency analysis
- Procedure

- Test range at 2 m with and without prisms
- Increase range at 10" increments to characterize error
- Place object in front of lidar and rapidly vary its position

Requirements

Verify the specifications of the lidar for current-to-distance measurements

Stepping stone to long-range tests to confirm voltage-torange conversions for operation

Actual data: num safe: 11672 Actual data: num hazardous: 11958

Comp data: num safe: 12660 Comp data: num hazardous: 10970

Num correct: 22624 Num hazardous should be safe: 997 Num safe should be hazardous: 9

Portion correct: 0.9574269995768091 Portion hazardous should be safe: 0.04219212865002116 Portion safe should be hazardous: 0.0003808717731696995

HAZARD ANALYSIS RESULTS

Nadir 2

Actual data: num safe: 11682 Actual data: num hazardous: 11808

Comp data: num safe: 12544 Comp data: num hazardous: 10946

Num correct: 22616 Num hazardous should be safe: 868 Num safe should be hazardous: 6

Portion correct: 0.9627926777352065 Portion hazardous should be safe: 0.03695189442315879 Portion safe should be hazardous: 0.0002554278416347382

Nadir 3

Actual data: num safe: 12051 Actual data: num hazardous: 11485

Comp data: num safe: 12586 Comp data: num hazardous: 10950

Num correct: 22997 Num hazardous should be safe: 537 Num safe should be hazardous: 2

Portion correct: 0.9770989123045547 Portion hazardous should be safe: 0.02281611148878314 Portion safe should be hazardous: 8.49762066621346e-05

HAZARD ANALYSIS RESULTS

Edge 1

Acutal data: num safe: 3329 Actual data: num hazardous: 2554

Comp data: num safe: 3547 Comp data: num hazardous: 2336

Num correct: 5505 Num hazardous should be safe: 298 Num safe should be hazardous: 80

Portion correct: 0.9357470678225395 Portion hazardous should be safe: 0.05065442801291858 Portion safe should be hazardous: 0.0135985041645419

HAZARD ANALYSIS RESULTS

Edge 2

Actual data: num safe: 3357 Actual data: num hazardous: 2550

Comp data: num safe: 3597 Comp data: num hazardous: 2310

Num correct: 5597 Num hazardous should be safe: 275 Num safe should be hazardous: 35

Portion correct: 0.9475198916539699 Portion hazardous should be safe: 0.04655493482309125 Portion safe should be hazardous: 0.005925173522938886

Spring Final Review

Edge 3

Actual data: num safe: 3131 Actual data: num hazardous: 2765

Comp data: num safe: 3545 Comp data: num hazardous: 2351

Num correct: 5324 Num hazardous should be safe: 493 Num safe should be hazardous: 79

Portion correct: 0.9029850746268657 Portion hazardous should be safe: 0.08361601085481682 Portion safe should be hazardous: 0.013398914518317503

Spring Final Review

FULL-SYSTEM: LANDING ZONE SELECTION

Comparison of results for adjusted hazard definition

Test	Number correct	False Negative (safe marked unsafe)	False Positive (unsafe marked safe)	Failure Probability (select unsafe landing)
Nadir 1	22624 (95.7%)	997 (4.2%)	9 (0.04%)	0.071%
Nadir 2	22616 (96.3%)	868 (3.7%)	6 (0.03%)	0.048%
Nadir 3	22997 (97.7%)	537 (2.3%)	2 (0.008%)	0.016%
Edge 1	5505 (93.6%)	298 (5.1%)	80 (1.4%)	2.3%
Edge 2	5597 (94.8%)	275 (4.7%)	35 (0.6%)	0.97%
Edge 3	5324 (90.3%)	493 (8.4%)	79 (1.3%)	2.2%