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Motivation
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Landing zones for spacecraft must 

be pre-determined as “safe,” and can 

be far from areas of scientific 

interest
Curiosity’s error ellipse on Mars

(20 km minor, 25 km major axis)

Rocks on the Martian surface

http://www.nasa.gov/images/content/573652main_pia14294-anno-43_946-710.jpg

http://geology.isu.edu/wapi/Geo_Pgt/Mod09_Mars/images/VIEWFRMLANDER2VLFMOS21.gif



CubeSat Lander Concept
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• Landing hazard definition based on hypothetical CubeSat lander 

dimensions

• Hazards (obstacles and gradients) identified where the lander could land 

more than 15° off of vertical

• Scanning resolution of 10 cm selected to detect ~98% of potential hazards



Project Objectives

Success Levels:

1. Lidar sensor and scanning mechanism, mounted on a stationary 

platform, shall record correlated range and attitude measurements 

at a 0.1 m spatial resolution from a nadir distance of 14.1 m with a 

maximum 20° off nadir

2. System shall scan a known test scene and project measurements into 

a 3D point cloud

3. System shall scan a landing-zone mockup and analyze the 3D point 

cloud for hazards

4. System shall select a safe landing zone; if no safe landing zone is 

found, hazard definition will be loosened until a landing zone is found

610/13/16 Preliminary Design Review

Design, manufacture, and test a proof-of-concept light detection and 

ranging (lidar) scanning system for a landing spacecraft



Concept of Operations
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Functional Block Diagram

10/13/16 Preliminary Design Review 8



Functional Requirements
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FR1: The system shall implement a proof-of-concept landing assist system for a CubeSat

lander

DRs: 14.1 m range, 20° half angle, 0.1 m spatial resolution, 60 seconds

FR2: The on-board processor shall receive commands and data from a user-operated PC

FR3: The on-board processor shall command the sensor package, made up of the lidar and 

the scanning system 

FR4: The sensor package shall utilize lidar to obtain range measurements at known 

orientations

FR5: The sensor package shall transmit data to an on-board processor or DAQ

FR6: The on-board processor shall translate the range and attitude data into a three-

dimensional point cloud

FR7: The on-board processor shall analyze the 3D point cloud for hazards

FR8: The on-board processor shall select an acceptable landing site

FR9: The system shall generate output readable by the PC



BASELINE DESIGN
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Baseline Design Overview
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not to scale



Baseline Design: Lidar Sensor

Fixed-Beam Lidar

• Emits and detects laser pulses for range measurement in single 
direction

• Sensor does not change pointing direction
– Beam must be steered to scan planar surface

• Attitude and range measurements can be projected into a 3D 
topographic map
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Transmitted Beam

Reflected Beam Target Object

Transmitter

Receiver

Instrument

not to scale

https://www.quora.com/How-does-LIDAR-work



First Principle: Refraction
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Incident

Light Ray

• Prisms refract incident light at an angle

• Snell’s Law:



Multiple Refraction: Risley Prisms
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• This concept can be extended to 

multiple prisms

• Two adjacent prisms are called 

Risley prisms

• Controlling the orientation of 

these prisms allows the refracted 

ray to be directed



Risley Prisms
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Counter-rotation 

sweeps half-

sized circles 

Co-rotation 

sweeps full-

sized circles



Spiral Scan Pattern

• Risley prisms   polar coordinates
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Hardware Architecture Diagram
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Software
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Construct 

Topographic

map: performance 

well understood

Morphological Filter

to detect hazards: 

performance not 

well understood –

requires testing

Selection of

viable landing

zone: performance

well understood



Baseline Verification
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1. Create a mockup 

landing zone with 

hardware

2. Re-create the same 

landing zone in 

software

3. Scan the landing zone

4. Compare the output of 

the scan to the expected 

point cloud in software

Example map in software



CRITICAL PROJECT

ELEMENTS
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Critical Project Elements
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1. Hardware

2. Software

3. Test



BASELINE FEASIBILITY: 

HARDWARE
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Pointing Knowledge

Driving requirement: 10 cm spatial resolution
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20°

(attitude uncertainty 

exaggerated to show effect) 
δ

• Total attitude uncertainty must 

give rise to projected error of 

less that 5 cm so that 

uncertainties do not overlap

• Pointing knowledge is most 

critical hardware requirement

• Total uncertainty is a 

combination of each component 

uncertainty



Lidar Sensor Selection
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Pepperl+Fuchs VDM28
• FR4: The sensor package shall utilize lidar to obtain range measurements 

at known orientations

Cost: ~$500

Sampling Frequency: 100 Hz

Wavelength: 660 nm



Lidar Sensor Selection

Pepperl+Fuchs VDM28:

• COTS sensor that meets 
requirements and budget constraints

Sensor shortcomings:

• 100 Hz sampling frequency

• Time-averages over 10 ms (takes 
2500 samples in that interval)

Possible solution:

• Custom-built sensor with higher 
sampling frequency and no time-
averaging
– Cost estimate: ~$10,000
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250 kHz

100 Hz

point distribution not to scale

Sample points,

Scan path



Risley Prism Feasibility

• Suitable for wide range of wavelengths 

– 450 nm - 2000 nm

• Coatings available for 660 nm

– Reflectance of about 1%, resulting in above 90 % 

transmissivity

• Cost:

– $100 each uncoated

– Additional $5 for coated
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Design

Requirement

Ideal Scan Pattern

Resolution

• Spiral Spacing: 8.66 cm

• Arc-point Spacing: 10 cm

Minimum frequency

• Total points: 9,550

• = 159 Hz
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Scan process 

completed in less 

than 60 seconds

0.1 m spatial resolution at 

14.1 m nadir range with 20°

maximum scan angle

Scan Time vs. Scan Resolution

10/13/16 Preliminary Design Review 28

Problem: These two closely coupled objectives cannot 

be completed concurrently due to financial limitations on 

the lidar sensor



Scan Pattern Feasibility
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Solution: Perform two system-level tests:

1. Verify that the sensor package can obtain measurements with the required 

resolution in a longer period of time

2. Verify the ability of the system to perform a 60-second scan/analysis, even 

though the required resolution cannot be met

Resolution requirement test:

• Lidar frequency: 100 Hz

• Point spacing (exterior): 2.5 cm

• Exterior spiral arc length: 32.32 m

• Time to complete scan: ~12 min

• Maximum prism angular acceleration

• Required angular velocity: 

4.6536 rpm

• Maximum prism angular acceleration:

4.8e-6 rad/s2

Time requirement test:

• Spiral spacing of 8.66 cm gives 59 

total spirals

• Time: 50 seconds (leaving margin 

for analysis)

• Required lidar frequency: 382 Hz

• Required angular velocity:      

71.0763 rpm

• Maximum prism angular acceleration:

3.76e-6 rad/s2



Direct Drive Conceptual Design
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Stator Clamp
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Direct Drive Conceptual Design
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Collapsed View

1.65 inches

7 inches



Direct Drive Conceptual Design
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Collapsed View

Stator 

Clamp

Rotor

BLDC Stator 

Main Housing

Bearings

Prism

Prism

Enclosure

Enclosure 

Clamp 
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BLDC 

Magnet 

Manufactured
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Sources of Error

Sources of Error

Lidar:

– Translational deviations                    +/- 0.030 in (ALL directions)

– Rotational deviations +/- 0.05°

– Beam divergence                               0.06°
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Must be Calibrated 

System InherentExpected Final

Uncertainty 



Sources of Error

Prisms:

– Uncertainty in wedge angle                +/- 0.008°

– Uncertainty in index of refraction      +/- 0.000277 
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Acceptable / Easily Mitigated 

Must be Calibrated  

Expected Final Uncertainty 



Sources of Error

Prisms:

– Uncertainty in angular position           +/- 0.1°

– Deviation from parallelism                 +/- 0.05°

– Translational deviations         

X:   +/- 0.050 in Y:    +/- 0.025 in Z:  +/- 0.025 in
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Acceptable / Easily Mitigated 

Must be Calibrated  

Expected Final Uncertainty 



Predicted Performance
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Scanning System Concept
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Lidar

Optics Board

1st Scanning Stage
2nd Scanning Stage

Rotary Encoder 

Glass Scale

Manufactured

Procured

Provided Resource

8 in

8 in



Below components fit needs:

Motor Driver: DZRALTE-020L080
• Incremental Encoder Input

Encoder: OPS Incremental Rotary Encoder
• Quadrature output, 0.002209° resolution

Microcontroller: BeagleBone Black
• 12 bit ADC, quadrature decoders, USB, Ethernet, UART, 512 MB 

DDR3L  

Embedded System
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Driving BLDCs
– Position Feedback

Lidar analog output
– ADC

Communication with user PC

Memory to store point cloud

Position Feedback: Encoder 

• 0.1° Resolution

• Incremental

• Absolute



BASELINE FEASIBILITY:

SOFTWARE
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Blender Lidar Simulator

• Blender is an open-source program for 3D modeling

• Projects points onto any arbitrary face or object to 

simulate a lidar scan

• Can extract 3D data by running Python scripts within 

Blender

10/13/16 Preliminary Design Review 40

Example Blender artwork



Blender Lidar Simulator

• Scan pattern is defined on the plane of the ground, and projected 

backward onto a sphere centered on the lidar (Blender camera)

• The pattern is then projected outward from the lidar location onto 

the modeled map

• A Python script exports the point cloud to a CSV file
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Hazard Detection Algorithms

Morphological Filter

• Identifies hazards by height differences between neighboring 

points

• Time to run on laptop: 0.31 sec for 10 cm grid
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Time Estimates
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Estimated time:

0.33 s

Estimated time:

0.026 s

Estimated time:

0.31 s

Estimated total time for software elements

when run in Python on a personal laptop:

about 0.666 s

Analysis shows that the BeagleBone will run

~10.24 times slower (6.83 s). Given our 10 s 

margin, we will be well within the time 

requirement even after porting to the 

microprocessor. More computationally 

expensive functions may be written  in C for 

speed improvements.



BASELINE FEASIBILITY:

TEST
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Modularity

• At 14.1 m nadir
– Area = 82.36 m2

– Diameter = 10.24 m
• This would be large and 

cumbersome to move

• Alternate method
– 2 m × 2 m test bed

– Scan at nadir position
• Verify algorithm output only at nadir

– Scan at 20˚ slant angle
• Verify algorithm output only at slant 

angle

– Together, this verifies full 
capability
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10.24 m

14.1 m



Test Orientation

• Vertical

– Directly matches system implementation

• Horizontal

– Simpler logistically and less dangerous

– Does not sacrifice ability to verify requirements

– Opens up testing locations
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Locations

• Balch Fieldhouse

- Length = 72.0 m

- Height = 14.8 m

4710/13/16 Preliminary Design Review

• RECUV Lab

- Length = 21.7 m

- Height = 9.5 m



FEASIBILITY RECAP
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Feasibility Summary

Feasibility Shown Next Steps

Hardware • Lidar sensor capabilities

• Risley prism scanning and scan pattern

• Bounding of error

• Embedded systems

• Power requirements

• Prove motor control feasibility

• Confirm negligibility of thermal 

effects

• Finalize integration of scanning

components

• Design optomechanical adjustment 

methods

• Design passive seating alignment 

features

Software • Detection of hazards

• Completion of computations in 

required time

• Implement real-time computations 

with incoming point stream

• Propagate uncertainties in hazard 

detection

Testing • Utility of multiple potential locations

• Orientation and scale of test

• Secure full-scale test location
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BUDGET & SCHEDULE
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Budget
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Gantt Chart

margin

lidar
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Gantt Chart

margin

mechanical
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Gantt Chart

margin

software

test
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Gantt Chart

margin

documentation

finance
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Top View Martian Rock Analysis
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Top view of Martian surface

Aspect ratio distribution



Side View Martian Rock Analysis
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Side view of Martian surface

Aspect ratio distribution



Resolution Requirement
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• Statistical analysis of rock 

size/aspect ratios on Mars

• Created a software map of 

a characteristic landing 

surface

• Monte Carlo simulation 

with different scan 

resolutions

• Determine probability of 

aliasing over a hazard 

(failure) vs. scan resolution



Shadowing
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Visualization of shadowing effects



Maximum Scan Angle
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Blender visualization of a test scene

Resulting points with lidar scan



Success Levels
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Success Levels
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Functional Requirements 1, 2
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Functional Requirements 3, 4
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Functional Requirements 5, 6, 7
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Functional Requirements 8, 9
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Lidar Sensor Trade Study
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Lidar Sensor Trade Study
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Scanning System Trade Study
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Scanning System Trade Study
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Scanning System Trade Study
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Hazard Detection Algorithm 

Trade Study
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Hazard Detection Unit Tests
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Slanted plane with no obstacles Flat plane with cube in center



Hazard Detection Unit Tests
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Flat plane with cube not in center Flat plane with array of spaced cubes



Hazard Detection Unit Tests
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Cliff



Hazard Detection Unit Test
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Grid pattern

Problems

• Prisms lend well to polar

• Difficult to control

• Complete stop often

Solution

• Square grid almost identical 

to equilateral triangle grid
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Concentric Circles

Advantages

• Equilateral triangles best capture gradients

• Grid can be represented easily as circles

• Circles are co-rotations of prisms

Disadvantages

• Requires traversal between
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circles



Spirals

Solution: Spirals

• Closely capture concentric circles

• Able to conform to resolution requirements

• Proven method

Issues
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• Velocity and alpha 

spike towards center



Beam Steering Equations
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Beam Steering Equations

Variables

• : Angular deviation from prism

• : apex angles

• : refractive index

• : Prism rotation angle

• : clock angle

• P: distance to nadir point

• : Apex angle
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Beam Steering Equations

Assumptions

• Thin prism approximation

– First order analysis

– , (q = 1,2)
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Beam Steering Equations
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First order approximation



Beam steering equations

• Take the partials of the beam steering equations
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Azimuth Angle

93

𝑎

y

Variables

• a: Nadir scan height

• b: Maximum radius

• : Azimuth angle

• y: Radius over time
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Clock Angle

94

Variables

• l: arch length

• y: radius over time

• : Clock angle

10/13/16 Preliminary Design Review

y

l



Motor Rate Equations

• We can relate the rates of the beam attitude to 

the prism angular velocities to find motor rates
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Resolution Requirement Test
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Risley Prism Rotation Rates:

Maximum rate: 4.6653 rpm

Minimum rate: 4.6419 rpm

Maximum acceleration: 

4.7988e-6 rad/s2

Spiral angular velocity: 4.6536 rpm 



Time Requirement Test
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Risley Prism Rotation Rates:

Maximum rate: 71.0881 rpm

Minimum rate: 71.0647 rpm

Maximum acceleration:

3.7575e-6 rad/s2

Spiral angular velocity: 71.0763 rpm



Accelerations: Time Tests
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Accelerations: Resolution

10/13/16 Preliminary Design Review 99



Torque Required

Solidworks estimate for moment of inertia for rotating components:  

2.776 lbmin2 = 0.00599 slug ft2

From maximum angular acceleration required 

and T = Iα  (use 2I for margin)

Tmax =  is on the order of 10-8 lb ft for both system level tests

This shows that the torque required for phasing is practically

negligible 

Any motor will be essentially unloaded during scanning 

process
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Motor Control
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• From research: BLDC used for adjustable 
speed or precise precision control

• Position control performance difficult to 
estimate without full system parameters and 
detailed numerical modeling

• Need work to prove feasibility, currently 
showing establishment

• If control is not achievable on small scale (α) 
MOI can be increased or scan pattern can be 
analyzed with more phasing



Preliminary Control 

Concept
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Retroreflector Feasibility

• Luminous Intensity 
[candela] – Quantity of 
luminous flux in given 
direction

• Illuminance [lux] –
Measure of concentration 
of luminous flux falling 
on surface

• Luminance [candela/m2] 
– Measure of flux emitted 
from or reflected by a 
uniform surface
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Luminous 

Intensity

Illuminance

Luminance

http://www.konicaminolta.com/instruments/knowledge/light/concepts/04.html



Retroreflector Feasibility
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Laser Emitter

• Pulse: < 4 nJ

• Pulse length: 5 ns 

• Beam divergence: 
– δ = 0.057°

• Luminous 
Intensity:
– 4.24e7 candela

• Illuminance on 
surface (15 m, 20°
from nadir)
– 1.89e5 lux

δ = 0.057°

*not to scale

0.016 m

0.0075 m

x

y

z
20°

15 m



Retroreflector Feasibility
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https://en.wikipedia.org/wiki/Retroreflector

Reflexite Daybright V92

• Luminance of return: 
– 1.23e7 candela/m2

• Luminance of Pepperl+Fuchs
datasheet tests (90% Kodak 
White): 
– 1.70e5 candela/m2

Prismatic Retroreflector



Lidar Wavelength

Feasibility for MACULA

• Test surface can be constructed with white 
diffuse paint or white retroreflective tape

Why this sensor was selected

• Meets budget and accuracy constraints

• Test surface can be constructed to fit sensor

Benefits of Using 660 nm

• Visible spectrum (verification)

10/13/16 Preliminary Design Review 106



Lidar Wavelength

• Per FR1, MACULA is proof-of-concept system for 

CubeSat lander

– Wavelength can be selected for custom-built sensors

– Implemented systems will choose wavelength based upon 

landing surface
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http://pics-about-space.com/planet-mars-surface?p=1http://pics-about-space.com/asteroid-surface?p=1



Laser Wavelength vs. Cost

• Red lasers are the most common and cheapest to 
manufacture

• Laser colors other than red require specialized 
crystals with rare-earth elements such as Neodymium

– These extra components can drive up the cost of other color 
lasers (yellow, blue, green) to dozens of times the cost of a 
red laser

• These colors can have better reflection on certain 
surfaces, but do not provide a general advantage over 
red lasers
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Detector Functionality

• Parabolic mirror to collect diffuse returns

• Specular returns do not disperse
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Parabolic 

Mirror



Prism Specifications

• Ross Optical P-WRC059
– Diameter: 5.08 cm

– 10° Maximum Beam Deviation (per 
prism)

– Wedge Angle: 18° 8´

– Angle Error: ± 30 arc seconds

– Material: N-BK7 Grade A fine 
annealed
• Transmission: 91% at 660 nm

• Density: 2.51 g/cm³

• Thermal Expansion: 7.1 × 10−6 𝐾−1

– Thin Edge Thickness: 3mm

– Dimensional Tolerance ± 0.1 mm
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Index of Refraction

• N-BK7 has variable index of refraction
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Coating Reflectance
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Error due to Reflections

• Lidar beam may reflect off prism surfaces into 

detector

To reduce this effect:

• Prisms can be coated

• Detector can be shielded

• System can be aligned such that reflections 

off prisms are angled away from detector
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Prism Attenuation

• Material: N-BK7 Grade A fine annealed
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Prism Diameter
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• Beam lines calculated for eight rotations of the 
prisms (rotated together to produce maximum 
deflection angle)

• Transmitter and two points on the edge of the 
receiver are projected straight and their 
refractions are calculated for each of the prism 
rotations
– This is only part of the receiver field of view. The 

lidar is placed to maximize what the receiver can see, 
without clipping the transmitter

• Prism diameter based on the farthest point from 
the center axis for any beam on any prism face

• Resulting distance is divided by 0.9 to produce 
the prism diameter (for best refraction results 
from the prism)

• Modeled as blocks for ease of plotting only. 
Reported size is the diameter



Embedded System

Microcontroller

• Requirements

– TTL to RS-485/232 for Motor Drivers¹

– Two quadrature decoders¹

– One 12 bit minimum ADC¹

– UART, Ethernet, or USB  PC communication

– FPU

– 1 MB RAM (10 k points at 12 bytes each + hazard 

map and program margin)

• BeagleBone Black Rev C.1²
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Motor Drivers

• Requirements
– 12 V @ 1 A

– Three Phase Brushless DC

– Position Control  Encoder Feedback

• DZRALTE-020B080²

Incremental Rotary Encoder

• Requirements

– Quadrature output with index

– 0.1° Resolution

– OPS Rotary Encoder²

1: May be a breakout board

2: Fits the requirements but need a trade 

study for actual selection



Power Requirements

• BeagleBone: 5 V 1 A max 500 mA normal operation – Can 
be powered by USB powers the TTL to RS485

• Motors and Motor Drivers: 12 V 1 A per pair

• VDM28: 10-30 V 100 mA max load current 20 mA max 
output current loop

• Encoder: 5 V 120 mA – can be powered by the BeagleBone; 
will require more than the USB can provide

• Need two 12 V 1 A power supply and one 5 V 1.5 A for 12 
minutes.

• Total Wattage: 32.7 W

• Total Energy: 23,544 J
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BeagleBone Black Rev C.1
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Expansion Header P8 Pinout
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Expansion Header P9 Pinout
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VDM28

• Laser Class 2  Do not stare into the beam

• 0.2 m to 15 m

• 660 nm wavelength

• 1 mrad beam divergence  <15 mm diameter spot at 15 m

• 10 ms response time; 250,000 Hz repetition rate, 5 ns pulse

• 30 VDC 100 mA max switching current

• Accuracy: ± 25 mm absolute; < 5 mm repeat 

• 0/4 mA – 20 mA output
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Resolution for a 12 Bit ADC

(15 m - 0.2 m) / 2^12 = 3.613 mm



OPS Encoder

• Quadrature output and index

• 163k cycles per revolution  0.002209° resolution

• Maximum output frequency per channel: 5 MHz 

• 30.67 revolutions per second maximum

• 5 V DC @ 120 mA

10/13/16 Preliminary Design Review 122



OPS Encoder Mounting 

Side
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OPS Encoder Mounting Top
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OPS Encoder Alignment
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DPRALTE-020B080

• Communication: RS-485/232 / Modbus RTU 

• Modes of Operation: Current, Hall Velocity, Position, Velocity

• 20-80 VDC 10 A, 20 A peak

• Command Sources: ±10 V Analog, 5 V Step and Direction, 

Encoder Following, Over the Network, Sequencing, Indexing, 

Jogging

• Max Encoder Frequency: 5 MHz pre-quad

• Position and Velocity Loop Sample Time: 100 μs

• Commutation: Sinusoidal, Trapezoidal
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DZRALTE-012L080

• Communication: RS-485/232 / Modbus RTU 

• Modes of Operation: Current, Hall Velocity, Position, Velocity

• 20-80 VDC 6 A, 12 A peak

• Command Sources: ±10 V Analog, 5 V Step and Direction, Encoder Following, 

Over the Network, PWM and Direction, Sequencing, Indexing, Jogging

• Max Encoder Frequency: 5 MHz pre-quad

• Position and Velocity Loop Sample Time: 100 μs

• Commutation: Sinusoidal, Trapezoidal
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DZRALTE-020L080

• Communication: RS-485/232 / Modbus RTU 

• Modes of Operation: Current, Hall Velocity, Position, Velocity

• 10-80 VDC 12 A, 20 A peak

• Command Sources: ±10 V Analog, 5 V Step and Direction, Encoder Following, 

Over the Network, PWM and Direction, Sequencing, Indexing, Jogging

• Max Encoder Frequency: 5 MHz pre-quad

• Position and Velocity Loop Sample Time: 100 μs

• Commutation: Sinusoidal, Trapezoidal
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Communication Between 

Microcontroller and PC

• UART – 115200 bits / sec

• USB 2.0 – 480 Mbits / sec (high speed)

• Ethernet/IP – 10/100/1000 Mbits /sec

Controller-PC communication layer agnostic to protocol
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UART

• Will require an FTDI

• 115200 bits/s

• 8 data bits per packet

1 start and 1 stop

• 11520 bytes/s
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Ethernet data rate feasibility

IPv4

Max Ethernet packet 1518 bytes 

68 bytes of UDP overhead (with IP and Ethernet frames)

1472 bytes left for data  60 measurements per packet

1512 byte total packet size

100 Mb/s: 8127 frames/sec * 1512 bytes/frame =  

12.288 Mbytes/s

1000 Mb/s: 81274 frames/sec * 1512 bytes/frame = 

122.8 Mbytes/s
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Ethernet UDP Overhead
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Ethernet UDP Overhead
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USB Data Rate Feasibility

• Universal Serial Bus Specification Revision 2.0

21 measurements for the 

maximum data payload 

produces a 508-byte data 

payload

Speeds should be over 50 

million bytes a second

10/13/16 Preliminary Design Review 134



USB 2.0
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USB 2.0
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Drawings
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Drawings
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Drawings
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Drawings
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Helical Gears

Pros

• Less noise at high speeds than more 
traditional spur gears

• Cheap to manufacture

• High machine efficiency

Cons

• Higher noise than other motor types

• Large gears necessary for use with 
prisms

• Backlash hinders change of torque 
direction

• Limited in terms of size

• Requires low torque conversions
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Belt & Pulley Motors
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Pros

• Shafts do not need to be axially 
aligned

• Damps noise and vibration

• High tolerance for misalignment

Cons

• Higher speeds reduce belt lifespan

• Slip and stretch reduces control 
capability for prisms

• Continuous adjustments needed to 
account for belt wear and stretch

• Performance decreases with closely 
spaced shafts



Rotational Concept

Direct drive with brushless DC motors

Advantages over other rotational concepts

Hollow Core for optical path

Fast and precise positioning or rate control

No backlash, hysteresis, or elasticity

Can be operated at both low (1 rpm or less), 

and high (up to 50000 rpm) 

Simple two-part design

Stator 

Rotor 
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Angular Position 

Measurement

Rotary Glass Scale Encoder

– Size: 1.26 x 0.53 x 0.35 inches

– Accuracy: +/- 3.9 arc-sec

– Max Speed: 1600 rpm

– Output: Standard A quad B with index

– 163k CPR

Optical over magnetic provides required accuracy
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Motor Driving
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Two  COTS Digital Servo Drives

Drive motors based on position control

Accept angular position data from  

rotary encoders

Support “electrical gearing” to control the 

phase of the prisms

Digital Servo Driver With 
Mounting Card



SENSITIVITY ANALYSIS

(BACKUP)
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Prism Axial Rotation

Ground scan distribution due to rotary encoder errors
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Prism Face Parallelism

Ground scan distribution due to prism mounting rotation 

and wedge angle
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Two-Axis Prism Rotation

Ground scan distribution due to combined axial and 

crosswise rotations
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Axial (X) Prism Placement

Ground scan distribution due to prism placement along 

the beam axis
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Y-Z Plane Prism Placement

Ground scan distribution due to prism placement on the 

plane normal to the beam
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Transmitter 3D Placement

Ground scan distribution due to prism placement on the 

plane normal to the beam
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Beam Divergence

Spot size of laser beam on ground plane
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Sources of Error: Derivation

Sources of Error

Lidar:

– Translational deviations                    +/- 0.030 inch (ALL directions)

• Tolerance stack-up between lidar stand, main baseplate, and lidar fastening 

method (0.005 inch assumed for all machine cut faces, 0.020 inch assumed 

for fastening slop)

– Rotational deviations +/- 0.05°

• Error that must be achieved to meet required projected error based on Monte Carlo 

results. A test must be developed that can calibrate this error

– Beam divergence                               0.06°

10/13/16 Preliminary Design Review 154

Must be Calibrated 

System InherentExpected Final

Uncertainty 



Sources of Error

Prisms:

– Uncertainty in wedge angle                +/- 0.008°

Manufacturer specification: error is acceptable, and we would have 

no hope of measuring the wedge angle without auxiliary optical 

equipment

– Uncertainty in index of refraction      +/- 0.0002

This uncertainty can be bounded by the expected error of the index of refraction of air

The prism material is less susceptible to temperature gradients or deviations from 

isotropicity than air
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Acceptable / Easily 

Mitigated 

Must be Calibrated  
Expected Final Uncertainty 



Sources of Error

Prisms:

– Uncertainty in angular position           +/- 0.1°

This error stems directly from error in encoder measurement 

(0.001°), and error in the orientation of the prism relative to its 

defined reference on the encoder glass scale

– Deviation from parallelism                 +/- 0.05°

These deviations will result from seating tolerances during 

integration

Accurate seating methods and calibration must bring this error 

source to within 0.05°
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Acceptable / Easily 

Mitigated 

Must be Calibrated  

Expected Final 

Uncertainty 



Sources of Error

Prisms:

– Translational deviations         

X:   +/- 0.050 inch Y:    +/- 0.025 inch Z:  +/- 0.025 inch

X: axial tolerance stack-up in rotational components (0.005 inch for all 

faces)  

Y: concentricity tolerance tolerance stack-up

Z: concentricity tolerance and main housing outer dimension tolerance 

stack-up
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Acceptable / Easily 

Mitigated 

Must be Calibrated  

Expected Final 

Uncertainty 



Error Mitigation Methods

Lidar

Translational and rotational deviations can be calibrated using optical 

testing
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Error Mitigation Methods

Lidar

Translational and rotational deviations can be calibrated using optical 

testing
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Error Mitigation Methods

Prisms Parallelism Deviations

Translational deviations can be accounted for by increasing prism size

Deviations in parallelism will be reduced using seating methods that are 

improved from standard fastening methods

Remaining deviations will require mechanical adjustment mechanisms (yet to 

be designed) to align the prisms within requirement
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Relevant Frames
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Relevant Vectors

10/13/16 Preliminary Design Review 162



Frame Transformations
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where



Hazard Detection 

Algorithms

Simple Filter

• Identifies safe/unsafe points 

purely by their height value

• Mainly used as a baseline 

comparison
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Hazard Detection 

Algorithms

Point Displacement Filter

• Identifies hazards where 

scanned points are far away 

from their expected 

location (on a flat plane)
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Simulated Lidar Scan

• Simple terrain map with obstacles, 

made in Blender

• Simulated lidar scans at 10 cm 

resolution and outputs 3D point 

cloud

• Point cloud is fed to hazard 

detection algorithms to test their 

feasibility
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Blender Lidar Simulator
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• Uncertainties in the Blender point projection are much smaller than 

they will be for the physical system

– Comparison of defined scan pattern to re-projected ground scan shows an 

average error of less than 2 micrometers over a 14.1 meter distance



Stroking
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stroking

Stroking bloats object boundary contours



Voronoi Diagrams
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https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euclidea

n_Voronoi_diagram.svg/2000px-Euclidean_Voronoi_diagram.svg.png

A Voronoi diagram shows the 

cells whose edges are defined 

as the locus of points 

equidistant from their nearest

neighbors. Algorithms for 

computing such a diagram are 

readily available. Calculating 

the area of the of the cells may 

be accomplished by 

triangulation, with areas of 

triangles calculated by Heron’s 

formula 

https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euclidean_Voronoi_diagram.svg/2000px-Euclidean_Voronoi_diagram.svg.png


Centroid Finding
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In the continuous setting for a 2D object with area 

In the discrete setting

Where     is the area of a Voronoi Diagram block



Nearest Neighbor
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Nearest neighbor algorithms identify points close to a center



Stroking Neighbor
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Stroking Neighbor:

1) Strokes the hazard map to find safe sites for lander center

2) Computes the centroids of these regions

3) Finds the nearest centroid to nadir



Computation Time

• Simple Filter:

– Extremely fast but very poor performance

– Time to run on laptop: 0.035 seconds for 10 cm grid

• Morphological Filter:

– Finding neighboring points is an expensive operation, O(n2)

– Time to run on laptop: 0.31 seconds for 10 cm grid

• Point Displacement Filter

– Also requires a distance matrix to find neighboring points

– Time to run on laptop: 1.78 seconds for 10 cm grid
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Full Budget
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