Mapping Architecture Concept for Universal Landing Automation

MANUFACTURING STATUS REVIEW

Customer: Jeffrey Thayer & Brian Argrow, University of Colorado Boulder AES

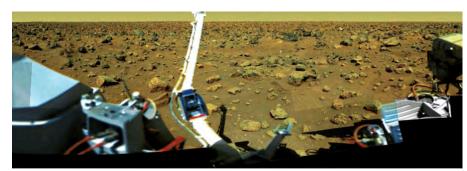
Faculty Advisor: Jay McMahon

Team Members:

Trevor Arrasmith, Brett Bender, Chris Brown, Nick Dawson, David Emmert, Bryce Garby, Russell Gleason, Matthew Hurst, Jared Levin, Ansel Rothstein-Dowden

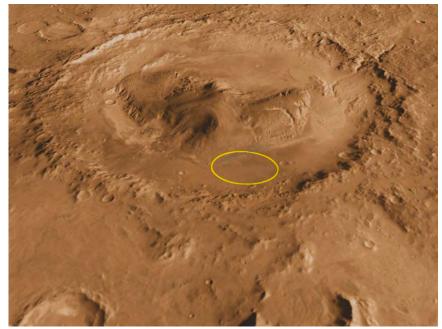
Agenda

Overview	Nick
Schedule	Nick
Manufacturing: Mechanical	Chris
Manufacturing: Electrical	Russell
Manufacturing: Software	Trevor
Budget	Nick



OVERVIEW

Motivation



Rocks on the Martian surface

http://geology.isu.edu/wapi/Geo_Pgt/Mod09_Mars/images/VIEWFRMLANDER2VLFMOS21.gif

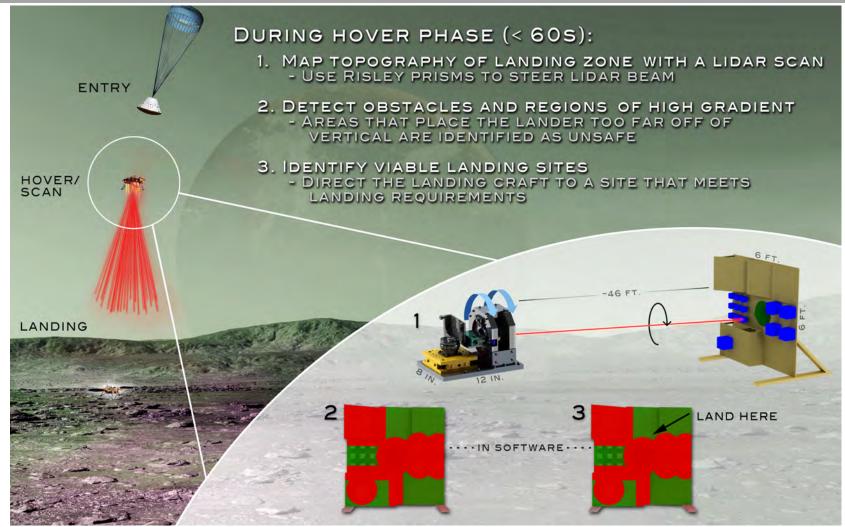
Landing zones for spacecraft must be pre-determined as "safe," and can be far from areas of scientific interest

Curiosity's error ellipse on Mars (20 km minor, 25 km major axis)

 $http://www.nasa.gov/images/content/573652 main_pia14294-anno-43_946-710.jpg$

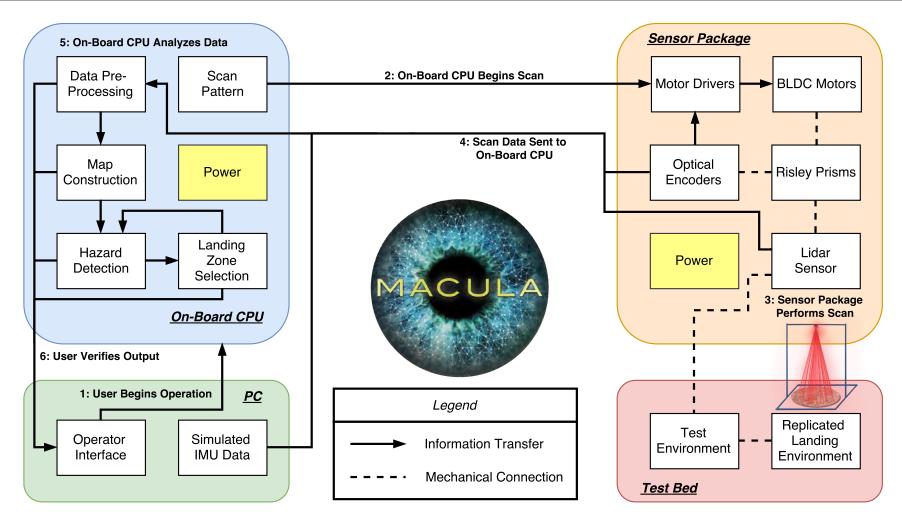
Project Objectives

Design, **manufacture**, and **test** a **proof-of-concept** light detection and ranging (lidar) **scanning system** for a landing spacecraft

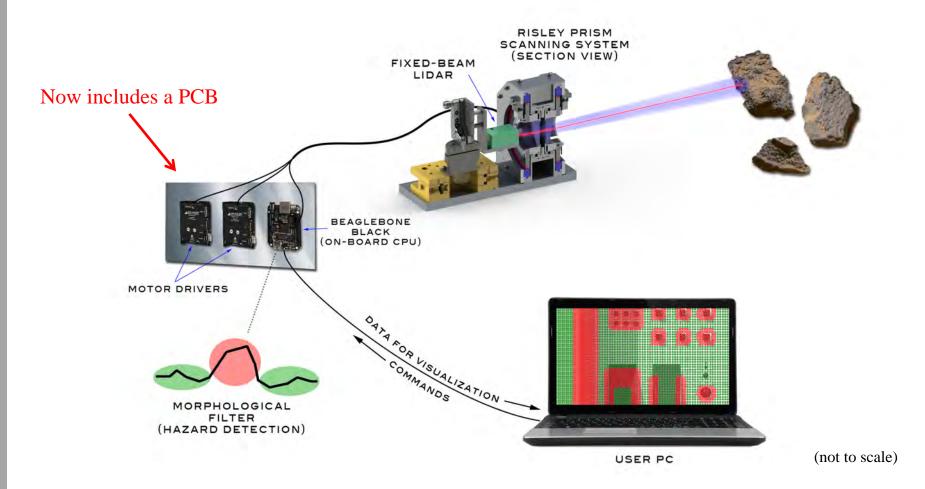

Success Levels:

- 1. Lidar sensor and scanning mechanism, mounted on a stationary platform, shall **record correlated range and attitude measurements** at a 0.1 m spatial resolution from a nadir distance of 14.1 m with a maximum 20° off nadir
- 2. System shall scan a known test scene and **project measurements into** a 3D point cloud
- 3. System shall scan a landing-zone mockup and **analyze the 3D point** cloud for hazards
- 4. System shall **select a safe landing zone**; if no safe landing zone is found, hazard definition will be loosened until a landing zone is found

Concept of Operations



Functional Block Diagram



Current Design Overview

Critical Project Elements

CDR Level CPEs:

- 1. Optics (obtaining range measurement)
 - Still a major CPE, driver of early testing effort
- 2. Risley Prism Control (achieve desired scan pattern)
 - Still a major CPE, driver of early manufacturing effort
- 3. Embedded System (sensor communication)
 - Significant progress
- 4. Manufacturing (quantity of work)
 - Significant progress

SCHEDULE

Schedule Overview

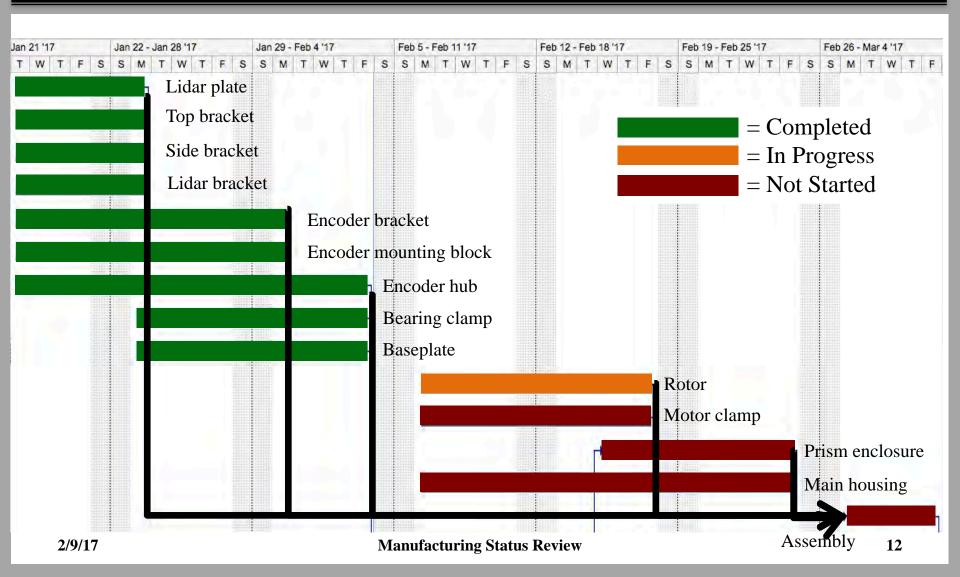
Major Task Groups:

Scanning System Manufacturing

Testbed Manufacturing

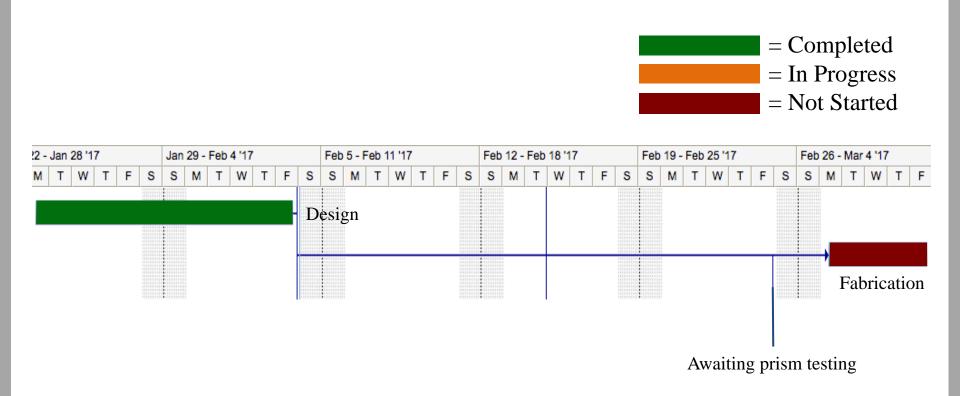
Electronics Integration

Software Implementation

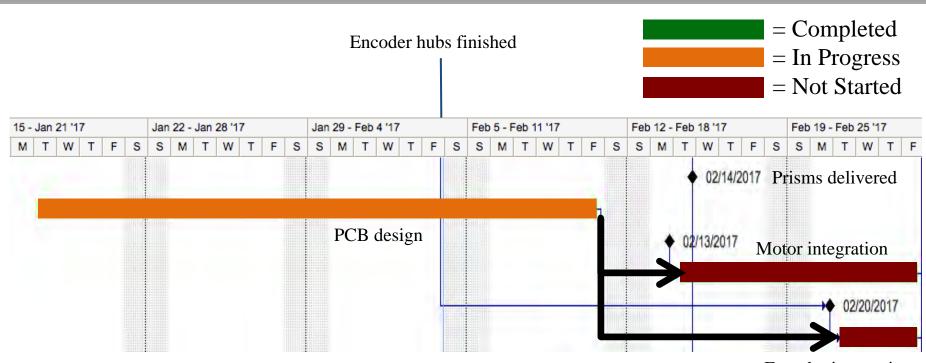

Testing

Deliverables

Scanning System Manufacturing

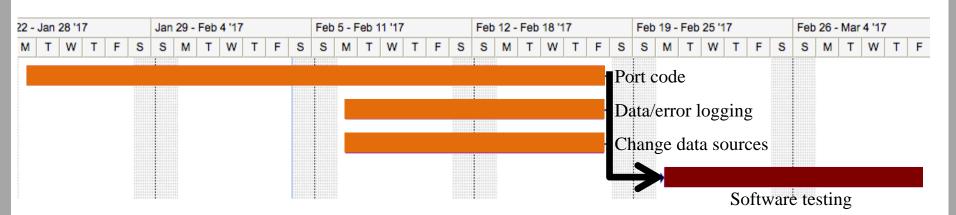


Testbed Manufacturing

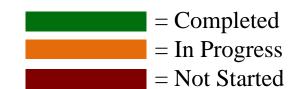


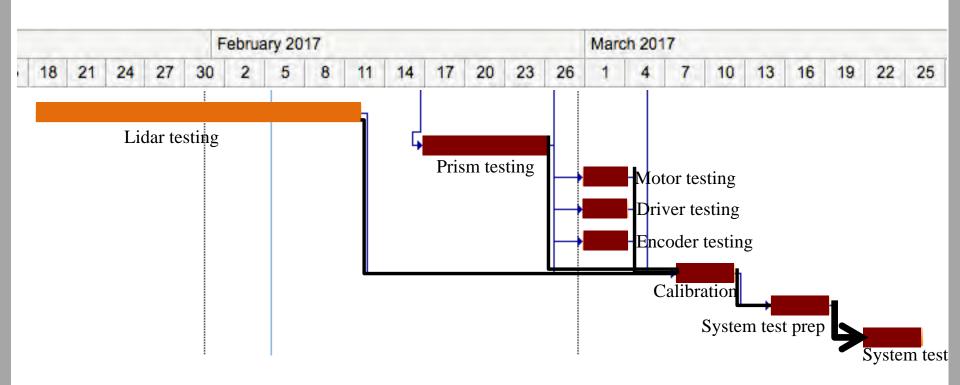
Electronics Integration



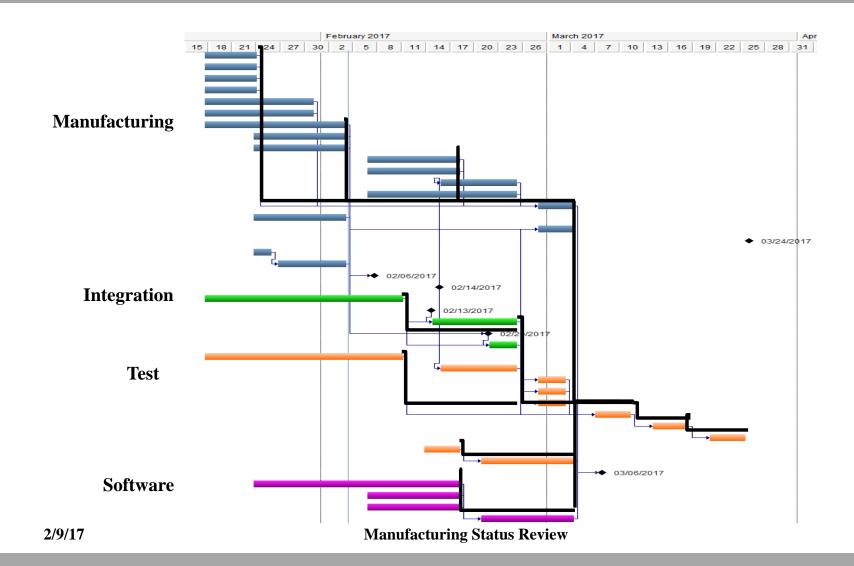

Encoder integration

Software Implementation



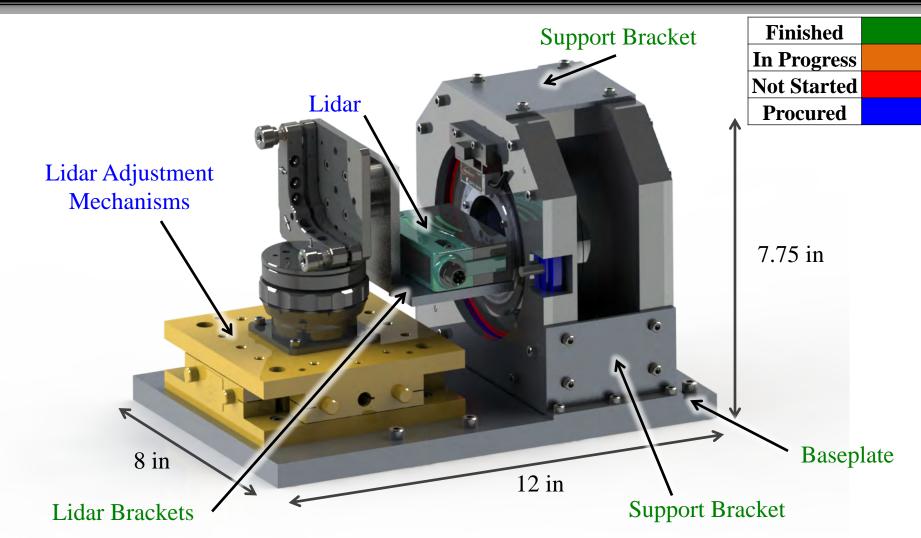


Testing



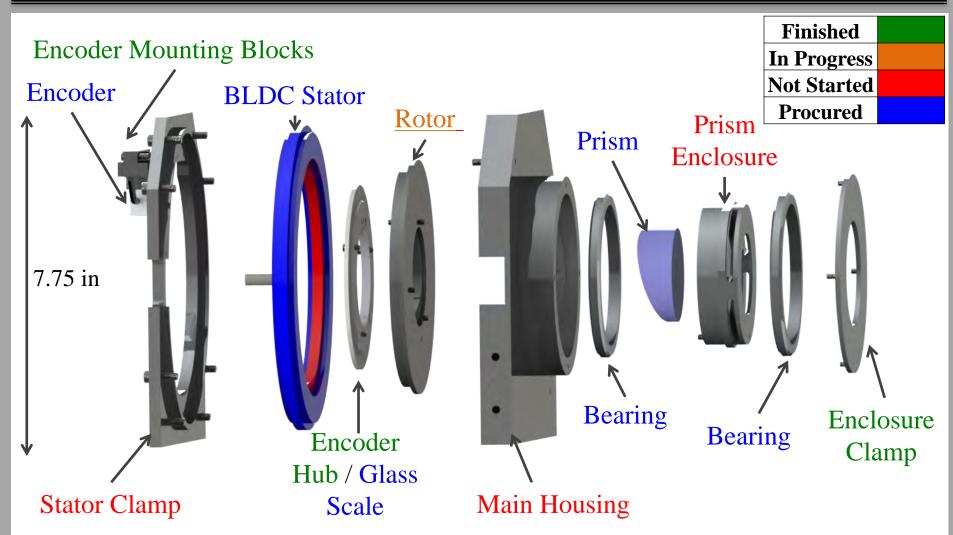
Schedule Overview

17



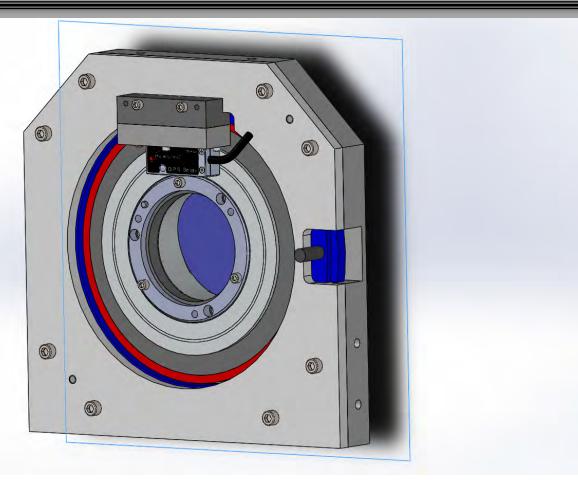
MANUFACTURING: MECHANICAL

Manufacturing Status



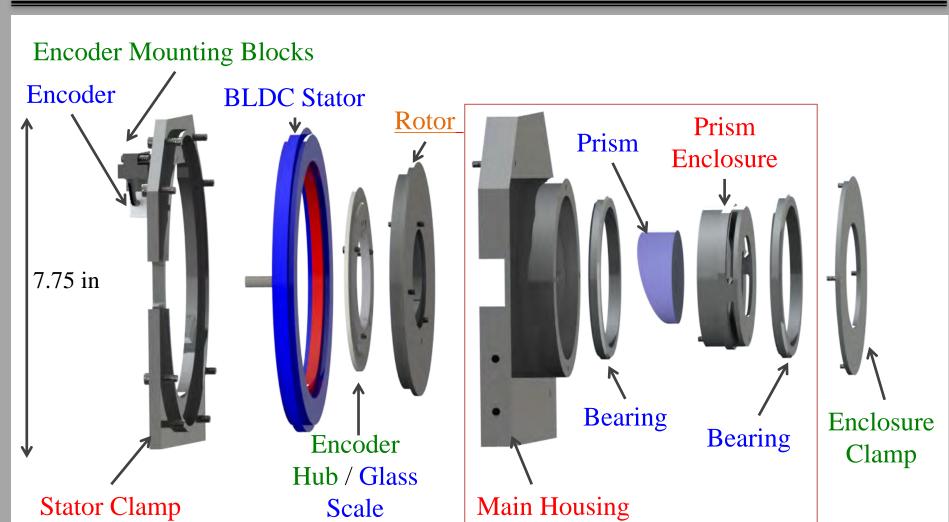
Manufacturing Status

Manufacturing Preparation



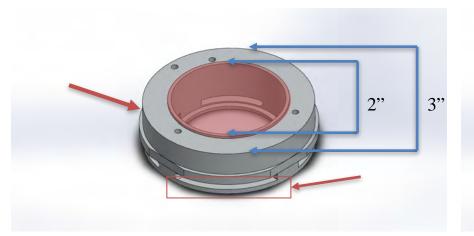
- All but one of the uncompleted parts are ready to be manufactured
 - All drawings completed
 - Required stock has been procured
 - Required tooling has been procured
 - Detailed manufacturing procedures are completed
- Prism enclosure requires additional design
 - Thermal expansion concerns
 - Allowable bearing preload
 - Finalization of features for UV curing epoxy application
 - Manufacturing cannot begin until 2/14

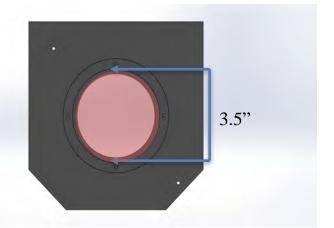
Critical Parts



2/9/17

Critical Parts




Critical Parts

• Interface

- Parts manufactured with excess material
- Measure the bearings, prisms, and relevant part diameter
- Remove material on the 0.001" and 0.0001" scale, measure and repeat
- Prism Installation: U.V. curing epoxy

Test Setup

- Construct a 6' × 6' landing zone mockup containing features of known dimensions
- Modular panels can be swapped and moved to any of nine locations
- Design is complete but construction will only occur if the lidar can get a return signal through the prisms

MANUFACTURING: ELECTRICAL/EMBEDDED SYSTEM

Overview

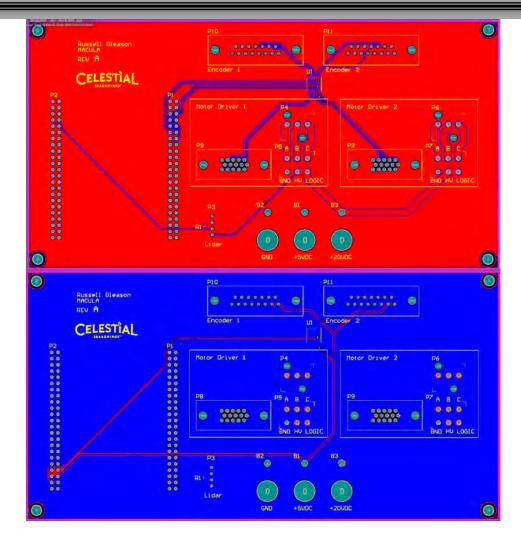
Required Tasks:

- PCB Design
 - Must provide communication between BeagleBone Black and encoders, drivers, lidar, and user PC
 - Must provide power to all systems
- PCB Population
 - Soldering of all components
- Integration of Embedded Systems

Changes Since CDR:

• RS485 → Ethernet

Completed Tasks



Completed Tasks

Remaining Work

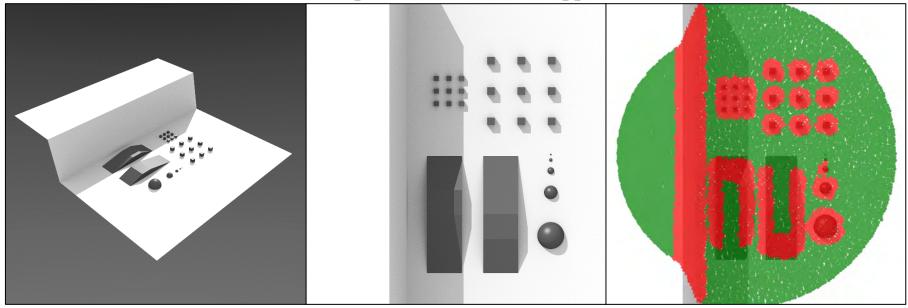
PCB Population

- Simple components must be procured
- Components must to soldered to board

Integration Plan

- PCB will be connected to BeagleBone Black as a shield
- Lidar, motor drivers, encoders, and user
 PC must then be connected to PCB

MANUFACTURING: SOFTWARE



Software: Completed Tasks

- Virtual scans performed in Blender allow for development and testing of hazard detection algorithms
- Hazards are found by looking at nearby height differences for each scanned point (Morphological Filter)

Hazard detection with expected uncertainties applied (after calibration)

Software: Still to Complete

• Algorithm speed improvements

- Initial test shows a need for 70% reduction in computation time
- Pre-computing distance matrices will provide a large speed improvement by reducing computations and eliminating threaded functions

Interfacing with hardware

- Implement logging of raw data
- Apply coordinate transformations to translate sensor data into 3D space
- The hazard detection algorithm already works with an incoming point stream; we just need to change the source of that data

BUDGET UPDATE

Component List

Component	Status	CDR Budge	t Actual Cost	Margin
Lidar	Received	0	0	0
Motors	Pending (2/15)	1658	1628 (Shipping TBD)	+30
Encoders OPS+Grating	Received	1170	1147.61	+22.39
Bearings	Received	753.96	340.75	+413.21
Motor Drivers	Planned	877	[1507.5]	-630.5
Risley Prisms	Pending (2/14)	246	336 (Shipping TBD)	-90
Metal Stock	Received	849.77	433.55	+416.22
Tooling	Received	812	527.15	+284.85
Retro-reflective Tape	Pending (1 ordered)	460.98	42.16 (1 of 9) [418.82]	0
Testbed Materials	Planned	0	[200]	-200
Misc. Materials	Planned	466	[466]	0
Total		7293.71	4455.22 [7047.54]	+246.17
Budget		8300	8300	

Breakdown

- Total budget: \$8300 (\$5000 dept., \$1000 UROP, \$2300 customer)
- Total spent: \$4455.22
- Remaining purchases: \$2592.32
- Estimated total spending: \$7047.54 (\$7293.71 at CDR)
- Estimated Final Margin: \$1252.46 (15.1%)

Acknowledgements

Advisor: Jay McMahon

<u>PAB</u>: James Nabity, Kaley Pinover, Brian Argrow, Bobby Hodgkinson, Matt Rhode, Trudy Schwartz, Bob Marshall, Josh Stamps, Jelliffe Jackson

Active Remote Sensing Lab: Jeff Thayer, Rory Barton-Grimley, Bobby Stillwell

Computational and Mechanical Geometry Lab: John Evans, Luke Engvall, Joseph Benzaken

Dale Lawrence

Blue Canyon Technologies: Steve Steg, Matt Carton, Bryce Peters

Pepperl+Fuchs: Michael Turner

QUESTIONS?

Backup Master

Main:

<u>Purpose and Objectives</u>

FBDs

Design Overview

CPEs

FRs

Lidar

Prisms

Scan

Motors

Motor Drivers

Encoders

Controllers

Microcontroller

Calibration

Risks

Verification and Validation

Planning

Backup:

References

Cubesat Lander Concept

Requirements

Lidar Sensor

Retroreflection

Risley Prisms

Prism Mounting

Prism Positions: Forward

Problem

Prism Positions:

Backward Problem

System Assembly

Drawings

Material Analysis

Risk Analysis

Hardware Trades

Prism Control

Calibration Testing

Software

BeagleBone

Measurements

Encoder Integration

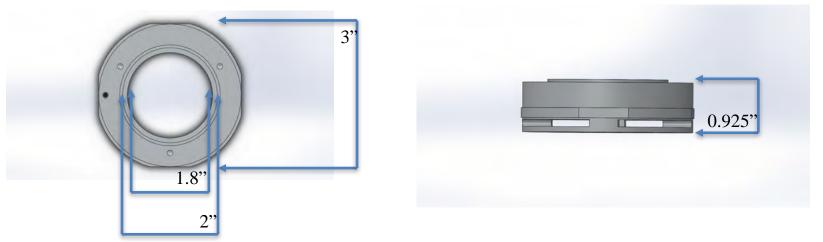
Communication

Power

Connections

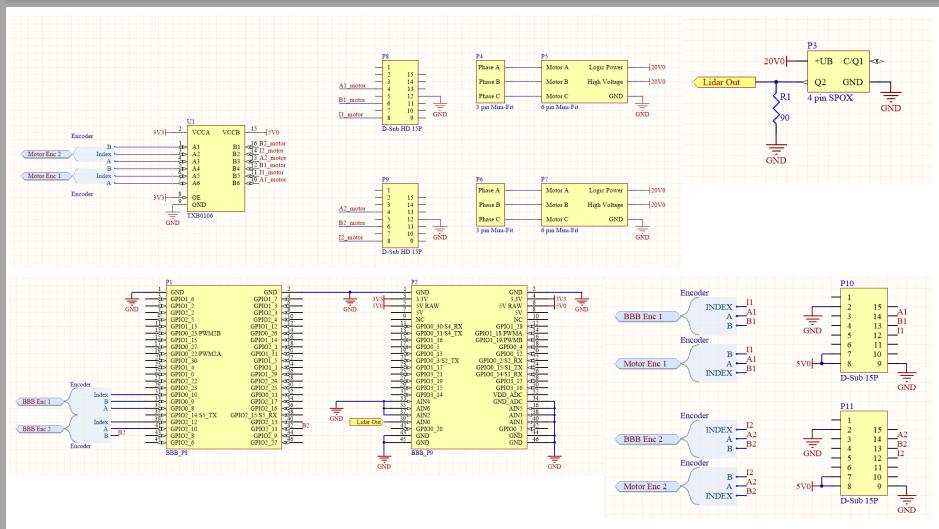
Verification and Validation

Budget

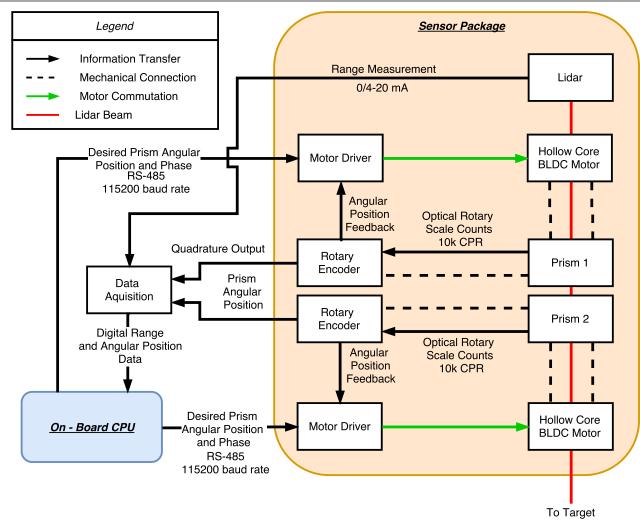


Critical Parts

• Prism Enclosure


- Housing and interface for prisms
- Manufactured on CNC mill from square stock
 - Stock will be squared, creating points of reference
 - Can manufacture up to 1° for re-clamps

Backup



Hardware Architecture Diagram

References

"AMG Series Optical Mounts & Gimbals." Aerotech. Aerotech Inc., n.d. Web. 22 Sept. 2016. https://www.aerotech.com/product-catalog/gimbals-and-optical-mounts/amg.aspx.

Berg, Mark . Computational Geometry: Algorithms and Applications. Berlin: Springer, 2008. Print.

By FAS — March 23, 2016. "Federation Of American Scientists -." Federation Of American Scientists. N.p., n.d. Web. 24 Sept. 2016.

Cryan, Scott, and Christian, John A. "A Survey of LIDAR Technology and its Use in Spacecraft Relative Navigation." AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, 19-22 Aug. 2013. Web.

Dunbar, Brian. "Lidar Atmospheric Sensing Experiment (LASE): Measuring Water Vapor, Aerosols and Clouds." NASA. NASA, 21 Nov. 2004. Web. 24 Sept. 2016.

Folger, Jean. "Why Curiosity Cost \$2.5 Billion." Investopedia, LLC. 5 Sept. 2012. Web.

Hughes, T. J. R, J. Cottrell A., and Y. Bazilevs. "Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement." Computational Methods in Applied Mechanics and Geometry 194.39-41 (2005): 4135-195. Web.

Gonzales, Rafael C. Digital Image Processing. 3rd ed. N.p.: Pearson Education International, n.d. Print.

"LeddarTech Launches LeddarVu, a New Scalable Platform Towards High-Resolution LiDAR." PR Newswire Association LLC. Quebec City, 7 Sept. 2016. Web.

References

"LiDAR, Laser Scanners and Rangefinders." RobotShop, Inc. 2016. Web. http://www.robotshop.com/en/lidar.html >

Lynch, Andrew, and Kai Focke. "Beam Manipulation: Prisms vs. Mirrors." Photonik International (n.d.): n. pag. Mar. 2009. Web. 20 Sept. 2016. http://www.edmundoptics.com/globalassets/resources/articles/beam-manipulation-prisms-vs-mirrors-en.pdf.

"Puck LiDAR: Our Lightest Yet." Velodyne LiDAR, Inc., 2016. Web. http://velodynelidar.com/vlp-16-lite.html

"Round Wedge Prisms." Round Wedge Prisms. THORLABS, n.d. Web. 20 Sept. 2016. https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=147.

Saniee, Kamron. "A Simple Expression for Multivariate Lagrange Interpolation." SIAM (2007): n. pag. Web.

Schwarze, Craig. "A New Look At Risley Prisms." Photonics Spectra (n.d.): n. pag. Photonics Media, June 2006.
Web. 20 Sept. 2016.

Shan, Jie, and Charles Toth K. Topographic Laser Ranging and Scanning: Principles and Processing. Boca Raton: CRC/Taylor & Francis Group, 2009. N. pag. Print.

Shewchuk, J. "What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint)." University of California at Berkeley 73 (2002).

References

"Technology Overview." Advanced Scientific Concepts, Inc. 2015. Web. http://www.advancedscientificconcepts.com/technology/technology.html

Wilsenack, Frank. "Defense & Security." Detecting and Tracking Thin Aerosol Clouds. SPIE, 12 Oct. 2012. Web. 24 Sept. 2016.

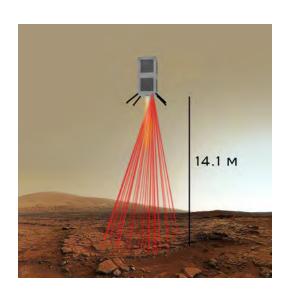
Y. Bazilevs et al., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg. (2009), doi:10.1016/j.cma.2009.02.036

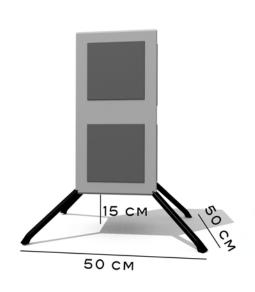
Riemersma, Thiadmer. "Candela, Lumen, Lux: the equations." CompuPhase, 2016. Web.

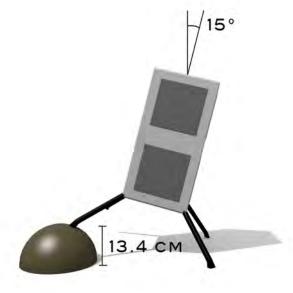
"Standard Test Method for Coefficient of Retroreflection of Retroreflective Sheeting Utilizing the Coplanar Geometry." ASTM International, Designation E 810-03, 2016. PDF.

"Pepperl+Fuchs VDM 28 Photoelectric Sensor Datasheet." Pepperl+Fuchs, 2016. PDF.

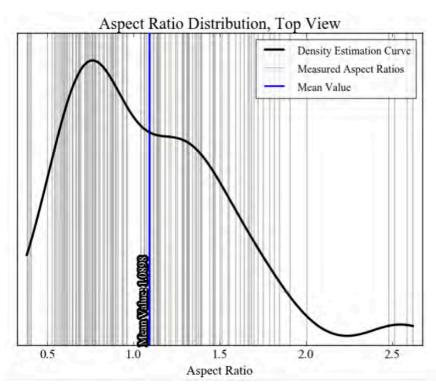
"Reflexite Daybright V92 Conspicuity Sheeting." Reflexite America, 2006. PDF.


BACKUP: GENERAL CONCEPT



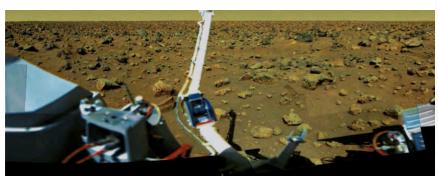

CubeSat Lander Concept

- Landing hazard definition based on hypothetical CubeSat lander dimensions
- Hazards (obstacles and gradients) identified where the lander could land more than 15° off of vertical
- Scanning resolution of 10 cm selected to detect ~98% of potential hazards

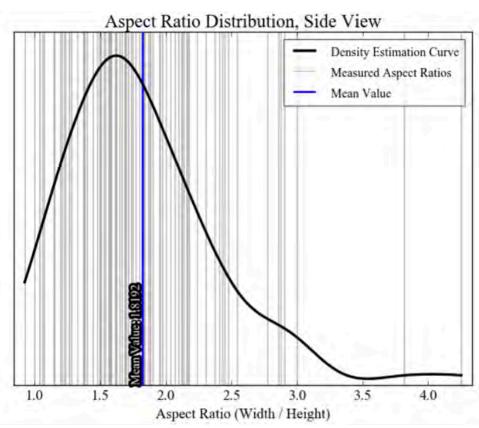


Top View Martian Rock Analysis

Top view of Martian surface

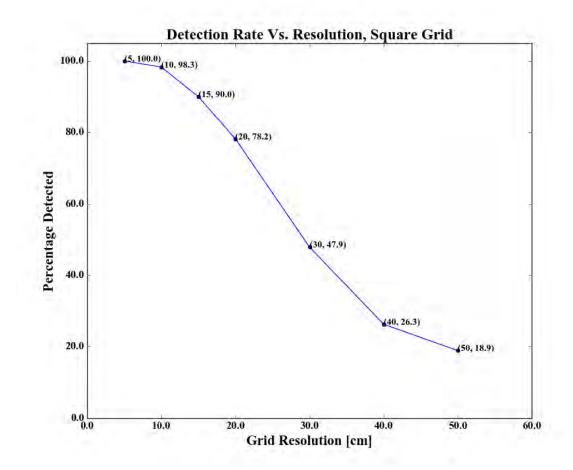


Aspect ratio distribution

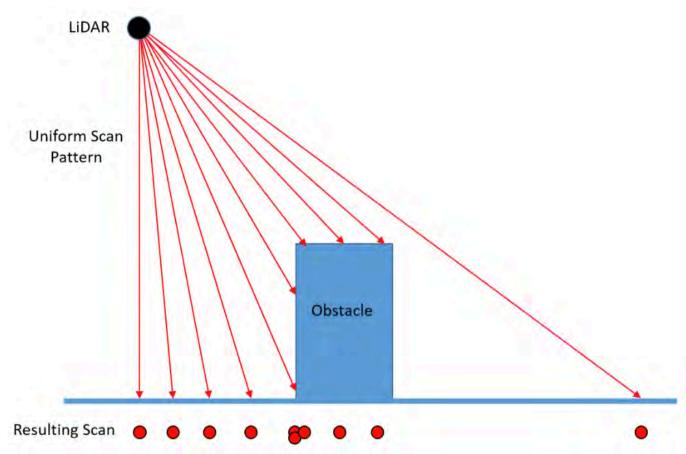


Side View Martian Rock Analysis

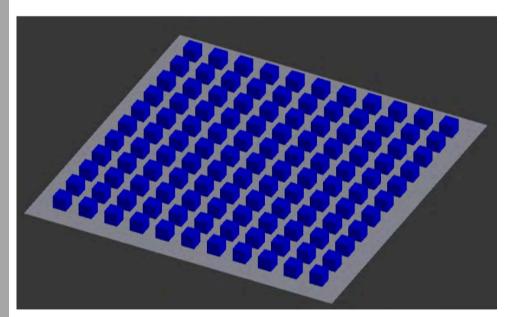
Side view of Martian surface


Aspect ratio distribution

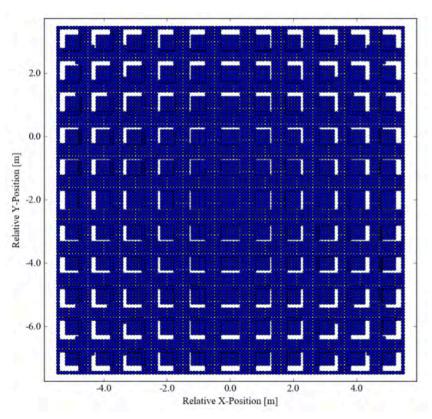
Resolution Requirement


- Statistical analysis of rock size/aspect ratios on Mars
- Created a software map of a characteristic landing surface
- Monte Carlo simulation with different scan resolutions
- Determine probability of aliasing over a hazard (failure) vs. scan resolution

Shadowing



Visualization of shadowing effects



Maximum Scan Angle

Blender visualization of a test scene

Resulting points with lidar scan

BACKUP: DESIGN REQUIREMENTS

- 1. The system shall analyze a potential landing zone for a 12U cubesat.
 - 1.1. The system shall scan up to a half-angle of 20° off of nadir.
 - 1.2. The system shall scan from a nadir range of 14.1 m.
 - 1.3. The system shall scan with a resolution of better than 0.1 m.
 - 1.3.1. The error in this resolution shall be less than 0.05 m in the plane of the scan area.
 - 1.4. The system shall complete the scan and analysis in less than 60 seconds.
 - 1.4.1. The system shall complete the scan in less than 50 seconds.
 - 1.4.2. The system shall complete the analysis in less than 10 seconds.

- The on-board processor (OBP) shall receive commands and data from a user-operated PC (UPC).
 - 2.1. The OBP shall execute a main driver routine.
 - 2.1.1. While executing the main driver, the OBP shall receive a "ready" command from the UPC.
 - 2.1.2. After a "ready" command is received, the OBP shall receive a "start command from the UPC.
 - 2.1.3. During operation (after a "start" command) the system shall receive a "stop" command from the UPC.
 - 2.1.3.1. Upon receiving a "stop" command, the system shall stop operation (cut power to the lidar and the motors) within 1 second.

- 2. The on-board processor (OBP) shall receive commands and data from a user-operated PC (UPC).
 - 2.2. Outside of the main driver, the OBP shall receive and store data from the UPC.
 - The OBP shall receive and store in memory a list of Risley Prism orientations for the desired scan.
 - 2.2.2. The OBP shall receive and store in memory a list of simulated IMU values for the spacecraft.
 - 2.2.2.1. These IMU data shall be a Direction Cosine Matrix (DCM) for the system at each scan time, relative to the scan surface.
 - 2.2.3. The OBP shall retain memory while powered and unpowered.
 - 2.2.4. The OBP shall be programmable so that stored data and routines can be modified through the interface with the UPC.

- The OBP shall command the sensor package (SP).
 - The OBP shall control power (on or off) to the lidar sensor.
 - 3.2. The OBP shall control power (on or off) to the motors.
 - 3.3. The OBP shall send commands to the motor drivers.
 - The OBP shall read the data file of Risley prism orientations to send to the motors.
 - 3.3.2. The desired prism orientations must be updated at least once every 10 ms.

- The SP shall use a fixed-beam lidar sensor to obtain range measurements.
 - 4.1. The lidar shall operate within a range of 12 m 15 m.
 - 4.2. The lidar shall have a range error with a standard deviation of less than 2.5 cm at all ranges between 12 m and 15 m.

- 5. The SP shall have control over the lidar beam direction using two Risley prisms.
 - 5.1. The Risley prisms shall be capable of actuating the beam across the entire scan area.
 - 5.1.1. The Risley prisms together shall be capable of deflecting the lidar beam by at least 20° from nadir.
 - 5.2. The Risley prisms shall be individually controlled in order to direct the lidar beam.
 - 5.2.1. The Risley prism actuation system shall be capable of producing sufficient torque to achieve 15 rad/s^2.
 - 5.2.2. The Risley prism actuation system shall be capable of producing angular rates between 0 rad/s and 10 rad/s.
 - 5.3. After system calibration, the lidar shall have a cross-range error with a standard deviation of less than 2.5 cm for all locations in the scan area.
 - 5.3.1. The sum of two standard deviations plus the radius of the beam spot shall not exceed 5 cm at any point in the scan area.
 - 5.3.2. The Risley prism orientations shall be known to within 0.1° about the axis of rotation.

- 5. The SP shall have control over the lidar beam direction using two Risley prisms.
 - 5.4. The SP shall not inhibit the lidar sensor from receiving a return signal.
 - 5.4.1. The Risley prism receiver field of view shall be less than 50% obscured.
 - 5.4.2. The transmissivity of the Risley prisms shall allow for a beam return of at least 90% strength, assuming a perfect specular retroreflection from the target.
 - 5.4.2.1. The Risley prisms shall be covered with an anti-reflective coating appropriate for the lidar wavelength.
 - 5.4.3. The Risley prism actuation system shall not impede the optical path of the lidar beam for any orientation within the scan area.

- The OBP shall receive data from the SP.
 - 6.1. The OBP shall read and save the lidar range measurement to memory every 10ms.
 - 6.1.1. The output of the lidar sensor shall be converted into a voltage.
 - 6.1.2. The voltage shall be readable by the OBP Analog to Digital Converted (ADC).
 - 6.1.2.1. The ADC shall have a resolution of at least 12 bits.
 - 6.2. The OBP shall read the prism orientation measurements.
 - 6.2.1. The OBP shall read the quadrature output of the each encoder continuously to translate into a count.
 - Each count shall be translated into an absolute angular position of each prism.
 - 6.2.2. Each prism orientation shall be saved to memory every 10ms.
 - 6.3. The lidar range measurement and prism orientations shall be correlated such that prism orientations from t=0 match with lidar ranges from t=5ms.

- 7. The OBP shall project the SP data into a three-dimensional (3D) point-cloud.
 - The OBP shall translate the prism orientations into a location (origin) for the outgoing lidar beam.
 - 7.2. The OBP shall translate the prism orientations into a direction vector for the outgoing lidar beam.
 - 7.3. The OBP shall project the range measurement along the computed direction vector, then add this to the computed origin to find a point in an intermediate cartesian frame relative to the lidar emitter.
 - 7.4. The OBP shall rotate the point in the intermediate frame into an inertial frame using the simulated IMU data.
 - 7.5. These calculations shall occur as the scan is being completed.

- 8. The OBP shall analyze the 3D point-cloud to identify hazardous locations.
 - 8.1. The OBP shall begin analysis once the scan points have reached a distance of 0.45 meters from nadir.
 - 8.2. The OBP shall process a scan point by finding all points within the error-compensated lander footprint range, then computing the maximum height difference between of all these points. A safe point is one where this difference does not exceed the error-compensated hazard height.
 - 8.3. The points shall be analyzed in the order in which they arrive.
 - 8.4. A point shall be analyzed if and only if it is the next point in the queue and the distances from nadir of the most recently found points has exceeded the sum of the distance of the queued point from nadir and its error-compensated lander footprint range.

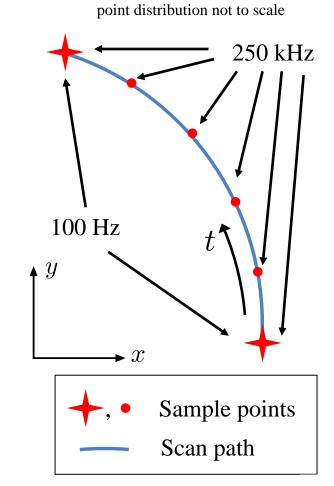
- The OBP shall select an acceptable landing site.
 - 9.1. The OBP shall identify the first computed safe point as the acceptable landing site.

- 10. The OBP shall generate output readable by the UPC.
 - 10.1. The OBP shall generate health and status information readable by the PC in real time.
 - 10.1.1. The OBP shall provide a status message to the UPC once per second while the system is driver is running.
 - 10.1.1.1. The status message shall be "off" if the system is running the driver but is not ready or running.
 - 10.1.1.2. The status message shall be "warming up" if the system has received the "ready" command but has not yet completed the ready sequence.
 - 10.1.1.3. The status message shall be "ready" if the system has completed the ready sequence after receiving the "ready" command.
 - 10.1.1.4. The status message shall be "running" if the system is executing the scan. This message shall be time-stamped relative to the receipt of the "start" command.
 - 10.1.1.5. The status message shall be "analyzing" if the system has completed the scan but not the analysis. These messages shall be time-stamped with relative to the receipt of the "start" command.
 - 10.1.1.6. The status message shall be "complete" if the system has completed the scan and analysis. This message shall be time-stamped relative to the receipt of the "start" command.
 - 10.1.1.7. After a "complete" message is displayed, the system status shall be reset to "off."
 - 10.1.1.8. The status message shall be "stopped" if the operation was terminated with the "stop" command. This status shall remain in effect until the driver is restarted.

- The OBP shall generate output readable by the UPC.
 - 10.1. The OBP shall generate health and status information readable by the PC in real time.
 - 10.1.2. The health and status information shall appear on the terminal of the UPC once per second.
 - The OBP shall save raw sensor outputs to memory.
 - The OBP shall save lidar sensor measurements to memory.
 - 10.2.2. The OBP shall save prism orientation measurements to memory.
 - The OBP shall save translated beam attitudes to memory.
 - 10.4. The OBP shall save x, y, and z coordinates for each point to memory.
 - The OBP shall save a SAFE/UNSAFE designation to memory for each point.
 - 10.6. The OBP shall save the coordinates of the selected landing site to memory.
 - 10.7. The saved data for each point shall be correlated.
 - 10.8. The saved data shall be readable on the UPC outside of the driver routine.

Lidar Sensor Sampling

Pepperl+Fuchs VDM28:


 COTS sensor that meets requirements and budget constraints

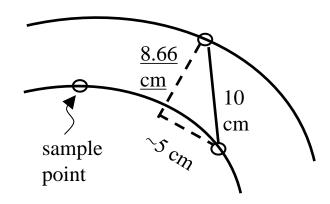
Sensor shortcomings:

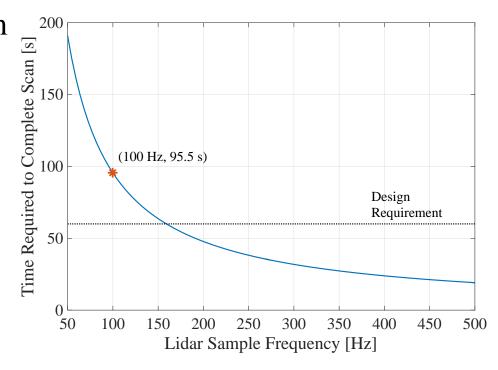
- 100 Hz sampling frequency
- Time-averages over 10 ms (takes 2500 samples in that interval)

Possible solution:

- Custom-built sensor with higher sampling frequency and no timeaveraging
 - Cost estimate: ~\$10,000

Lidar Sensor Sampling




Resolution

- Spiral Spacing: 8.66 cm
- Arc-point Spacing: 10 cm

Minimum frequency

- Total points: 9,550
- $f_{min} = 159 \text{ Hz}$

Scan Time vs. Scan Resolution

0.1 m spatial resolution at 14.1 m nadir range with 20° maximum scan angle

Scan process completed in less than 60 seconds

Problem: These two closely coupled objectives cannot be completed concurrently due to financial limitations on the lidar sensor

Lidar Wavelength

Feasibility for MACULA

• Test surface can be constructed with white diffuse paint or white retroreflective tape

Why this sensor was selected

- Meets budget and accuracy constraints
- Test surface can be constructed to fit sensor

Benefits of Using 660 nm

• Visible spectrum (verification)

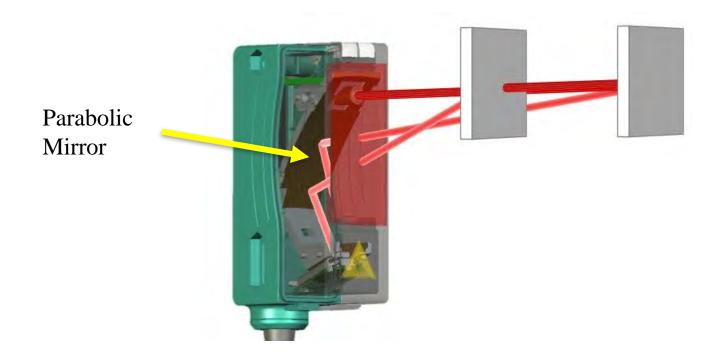
Lidar Wavelength

- Per **FR1**, MACULA is proof-of-concept system for CubeSat lander
 - Wavelength can be selected for custom-built sensors
 - Implemented systems will choose wavelength based upon landing surface

http://pics-about-space.com/asteroid-surface?p=1

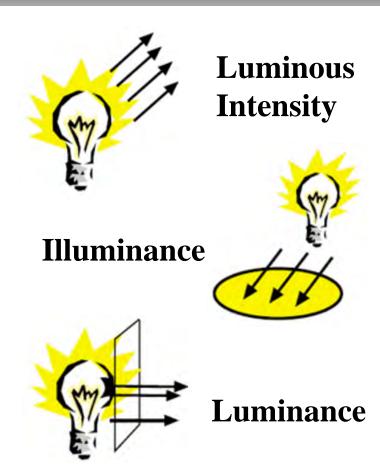
http://pics-about-space.com/planet-mars-surface?p=1

Laser Wavelength vs. Cost


- Red lasers are the most common and cheapest to manufacture
- Laser colors other than red require specialized crystals with rare-earth elements such as Neodymium
 - These extra components can drive up the cost of other color lasers (yellow, blue, green) to dozens of times the cost of a red laser
- These colors can have better reflection on certain surfaces, but do not provide a general advantage over red lasers

Detector Functionality

- Parabolic mirror to collect diffuse returns
- Specular returns do not disperse

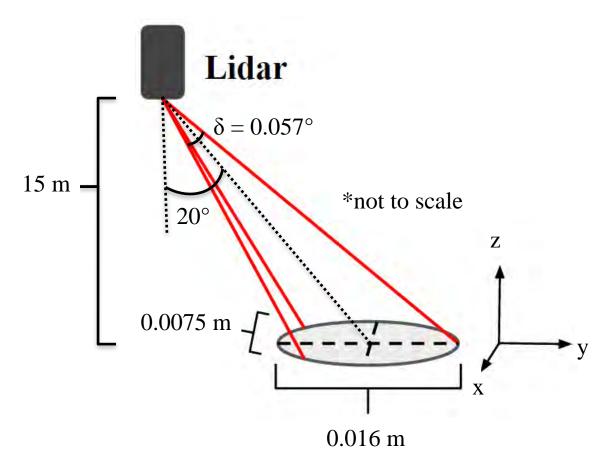


Retroreflection

- Luminous Intensity
 [candela] Quantity of
 luminous flux in given
 direction
- Illuminance [lux] –
 Measure of concentration
 of luminous flux falling
 on surface
- Luminance [candela/m²]

 Measure of flux emitted from or reflected by a uniform surface

http://www.konicaminolta.com/instruments/knowledge/light/concepts/04.html

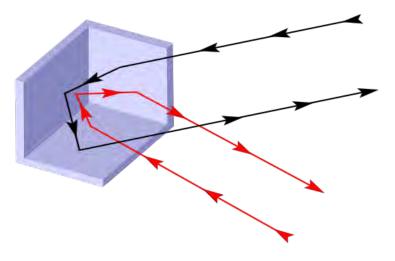


Retroreflection

Laser Emitter

- Pulse: < 4 nJ
- Pulse length: 5 ns
- Beam divergence:
 - $-\delta = 0.057^{\circ}$
- Luminous Intensity:
 - 4.24e7 candela
- Illuminance on surface (15 m, 20° from nadir)
 - 1.89e5 lux

Retroreflection



Reflexite Daybright V92

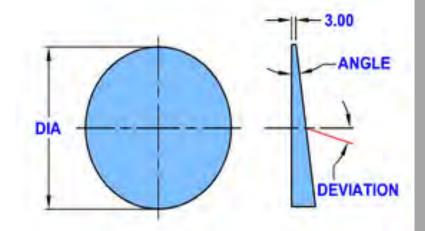
Observation Angles	Entrance Angles	White
0.2 °	-4 °	460
	30°	250
0.5 °	-4 °	100
	30 °	65

- Luminance of return:
 - 1.23e7 candela/m²
- Luminance of Pepperl+Fuchs datasheet tests (90% Kodak White):
 - 1.70e5 candela/m²

Prismatic Retroreflector

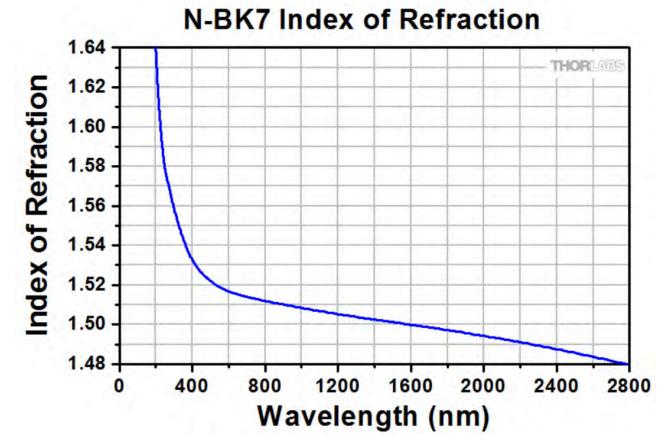
https://en.wikipedia.org/wiki/Retroreflector

Risley Prism Specs


- Suitable for wide range of wavelengths
 - 450 nm 2000 nm
- Coatings available for 660 nm
 - Reflectance of about 1%, resulting in above 90 % transmissivity
- Cost:
 - \$100 each uncoated
 - Additional \$5 for coated

Prism Specifications

- Ross Optical P-WRC059
 - Diameter: 5.08 cm
 - 10° Maximum Beam Deviation (per prism)
 - Wedge Angle: 18° 8′
 - Angle Error: ± 30 arc seconds
 - Material: N-BK7 Grade A fine annealed
 - Transmission: 91% at 660 nm
 - Density: 2.51 g/cm³
 - Thermal Expansion: $7.1 \times 10^{-6} \ \mathrm{K}^{-1}$
 - Thi.. LJge Thickness: 3mm
 - Dimensional Tolerance ± 0.1 mm



Index of Refraction


• N-BK7 has variable index of refraction

Coating Reflectance

0.0 -

300

400

Wavelength (nm)

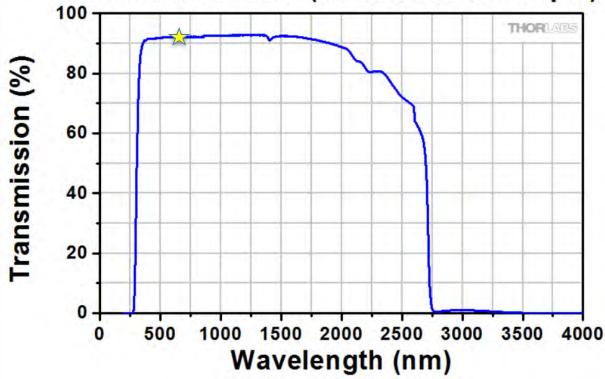
600

500

THORUSES

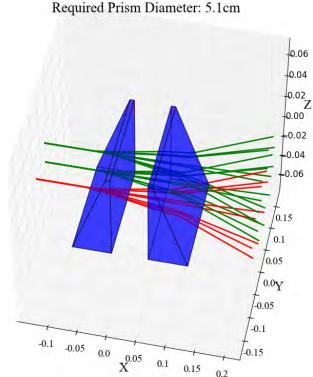
800

700



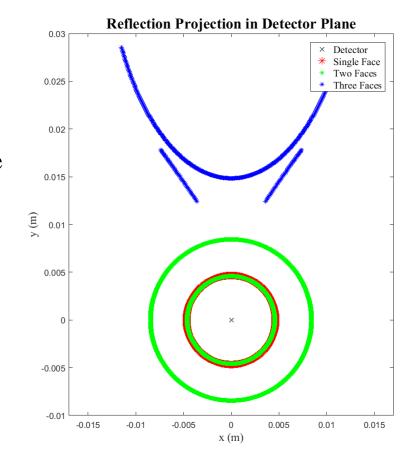
Prism Attenuation

• Material: N-BK7 Grade A fine annealed



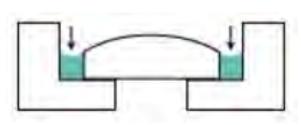
Prism Diameter

- Beam lines calculated for eight rotations of the prisms (rotated together to produce maximum deflection angle)
- Transmitter and two points on the edge of the receiver are projected straight and their refractions are calculated for each of the prism rotations
 - This is only part of the receiver field of view. The lidar is placed to maximize what the receiver can see, without clipping the transmitter
- Prism diameter based on the farthest point from the center axis for any beam on any prism face
- Resulting distance is divided by 0.9 to produce the prism diameter (for best refraction results from the prism)
- Modeled as blocks for ease of plotting only.
 Reported size is the diameter

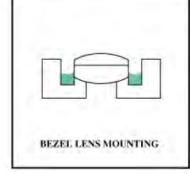


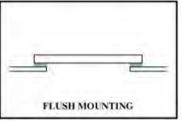
Reflection Analysis

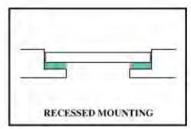
- Possible Risk: Reflections off prisms trigger lidar false returns.
- Reflections were analyzed to determine if they would hit detector.
- This risk can be mitigated by moving lidar away from prisms.



UV Cured Epoxy


- Upon curing, surface of epoxy exposed to UV light shrinks forming a meniscus
- Various techniques can be utilized to minimize stress upon shrinkage.
- Internal Barrel Button Bond method selected. Allows for slip fit and minimal shrinkage stress.



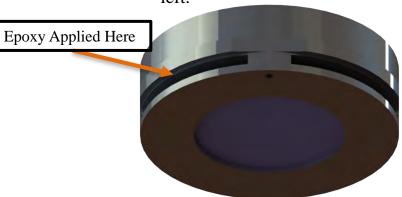

Epoxy Shrinkage shown on the right. Epoxy mounting techniques shown on the left.

https://www.norlandprod.com/techrpt s/techniques.html

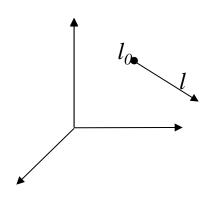
Epoxy Selection

Selected UV Cured Epoxy: Thorlabs NOA81

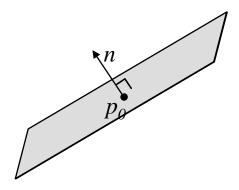
- Shrinkage: 1.5 %
- Tensile Strength: 4000 psi
- Glass to Metal bond strength: Excellent
- Cost: \$33.5
- Amount per bottle: 1 oz
- Recommended Curing Intensity:
 - $>2 \text{ mW/cm}^2$ @ 365 nm


Mounting Stress Analysis

- Allowable Shear Stress: 1000 psi
- Estimated Area Exposed to Epoxy: 0.47 in²
- Allowable Torque: 470 lb-in or 53.10 Nm
- Maximum Torque Supplied by Motors: 1 Nm
- Very low chance of failure



Epoxy Shrinkage shown on the right. Epoxy mounting techniques shown on the left.



Point l_0 is associated with direction l

Point p_0 and normal n define a plane

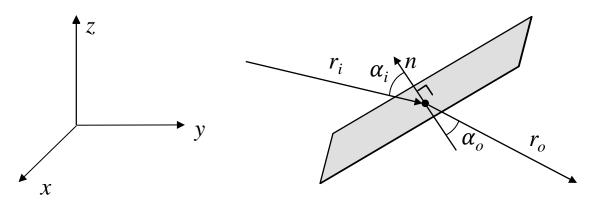
- Line l intersects the plane p at $l_0 + \frac{n \cdot (p_0 l_0)}{l \cdot p} * l$
- The distance travelled between l_0 and p_0 is $\frac{n \cdot (p_0 l_0)}{l \cdot p} * ||l||$

This reduces to Snell's

Law in 2 dimensions if

coordinates such that

our new x and y lie in


the plane formed by r_i

and *n*. The equations

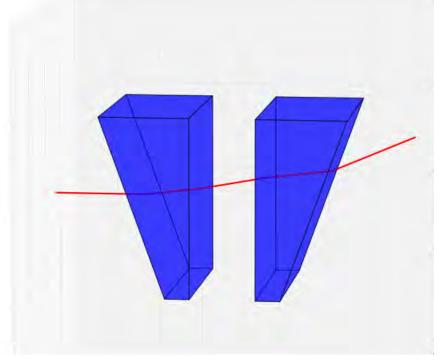
are shown below

we transform

Snell's Law in 3 dimensions

$$T = (\hat{n} \quad v \quad n \times v), \qquad v = -(r_i - r_i \cdot (-n))$$

$$R = \begin{pmatrix} \cos(\Delta\alpha) & \sin(\Delta\alpha) & 0 \\ -\sin(\Delta\alpha) & \cos(\Delta\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \Delta\alpha = \alpha_o - \alpha_i = \sin^{-1}\left(\frac{n_i}{n_o}\sin(\alpha_i)\right) - \alpha_i$$
$$\alpha_i = \cos^{-1}\left(\frac{r_i \cdot n}{||r_i|| \cdot ||n||}\right)$$


$$r_o = T \cdot R \cdot T^{-1} r_i$$

By propagating in between prism faces and through material interfaces we can trace the ray

path

Topographic Map

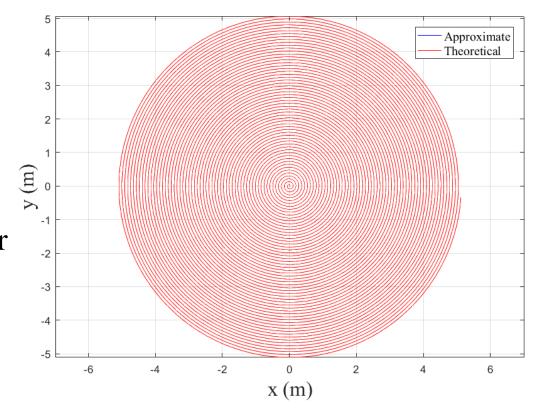
$$R = r - e - n(d'_1 + d'_2) - \frac{d_p}{\cos \beta_{1_o}}$$

$$P_{xyz} = R \cdot l_{2_o} + p_{2_o}$$

$$P_n = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} P_{xyz}$$

$$P = DCM_{IMU} \cdot P_n + \begin{pmatrix} 0 \\ 0 \\ 15\cos(20^\circ) \end{pmatrix}$$

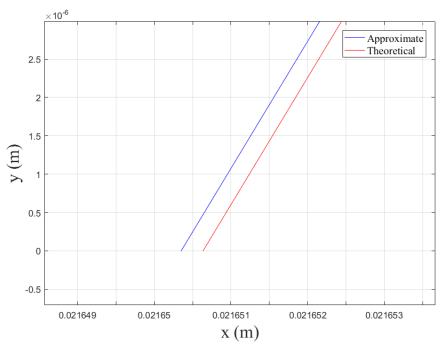
- *r* Lidar return
- e Distance between lidar and first prism
- d_p Prism separation
- n Prism refractive index
- d' Distance travelled within prism
- l Direction vector
- *p* Position vector
- β Angle between beam and optical axis



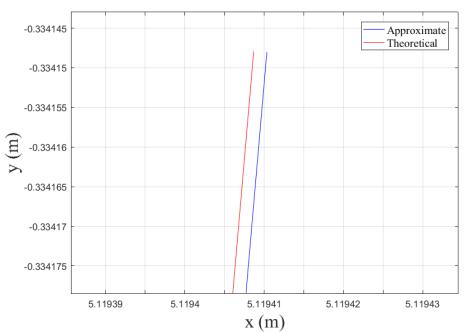
Scan Pattern to Prism Angles

- Radial component of points determined by prism offset angle
- Once offset angle is determined, theta component is found by rotating prisms together
- Prism angles can be found numerically for all points in scan

Theoretical vs. Approximated Spiral



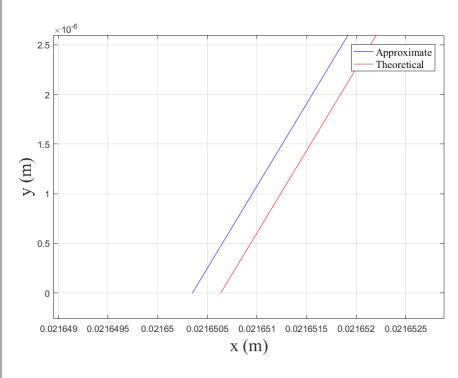
Scan Pattern Approximation



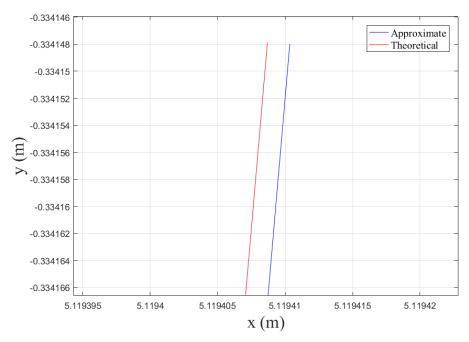
Time Scan:

Scan Center:

Scan Edge:



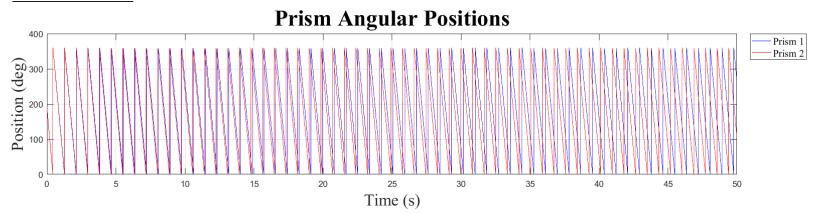
Scan Pattern Approximation

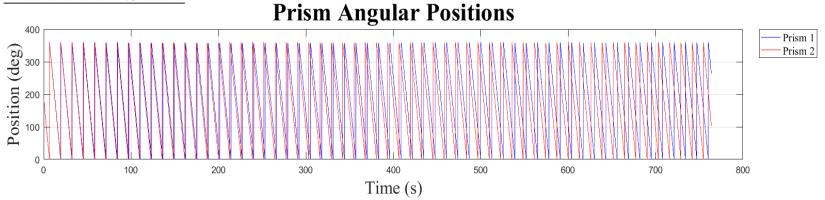


Resolution Scan:

Scan Center:

Scan Edge:

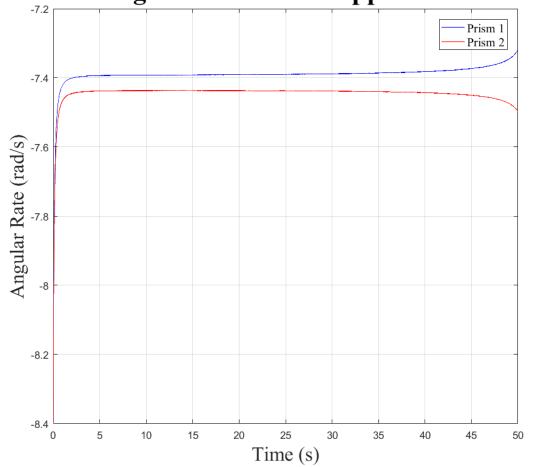



Prism Positions

Time Scan:

Resolution Scan:

Motor Rates


Time Scan:

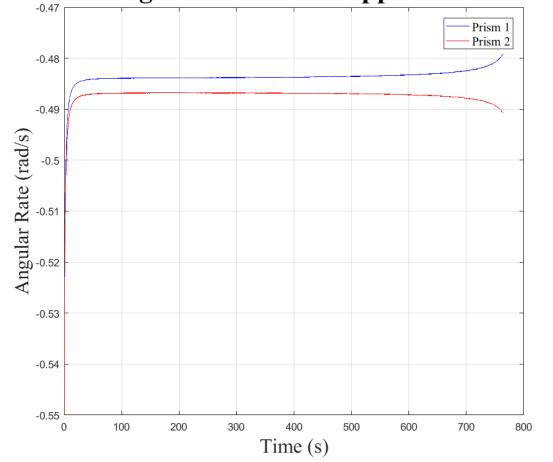
• Min Rate: 7.34 rad/s

• Max Rate: 8.46 rad/s

• Max Accel: 14.36 rad/s²

Prism Angular Rates over Approximate Scan

Motor Rates

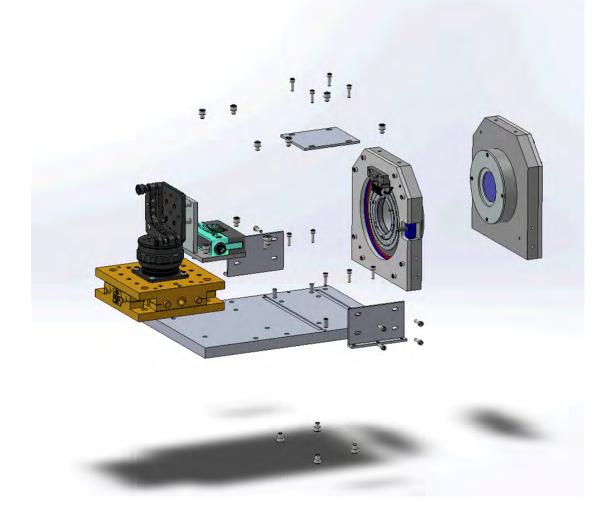

Resolution Scan:

• Min Rate: 0.48 rad/s

• Max Rate: 0.55 rad/s

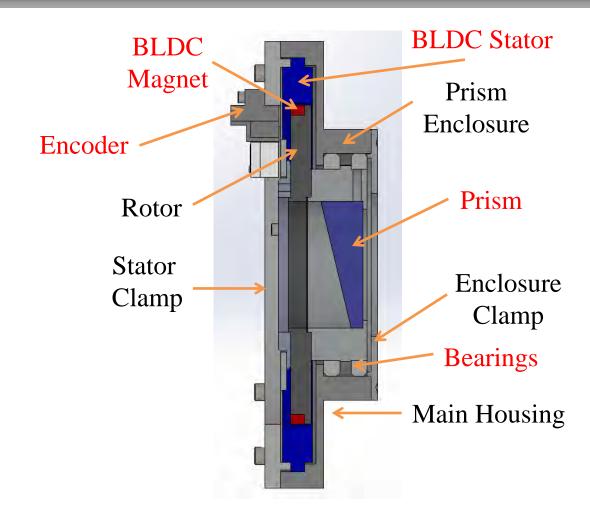
• Max Accel: 0.047 rad/s²

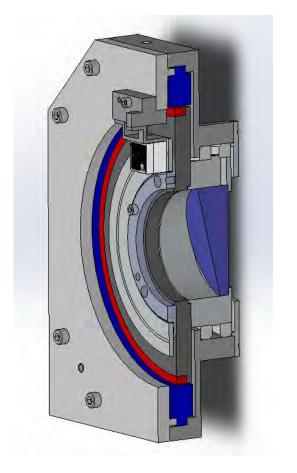
Prism Angular Rates over Approximate Scan

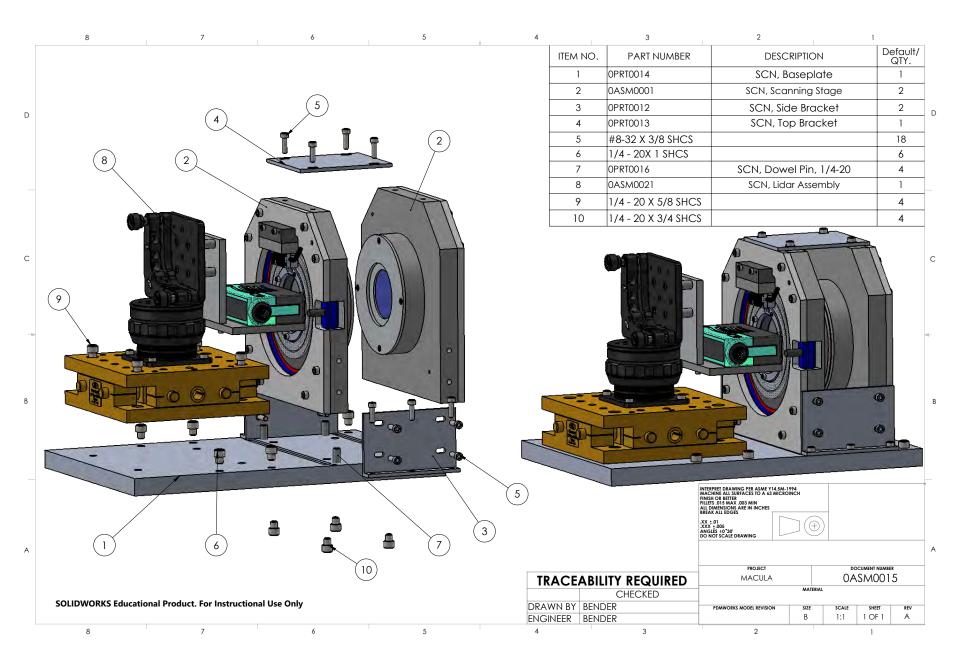


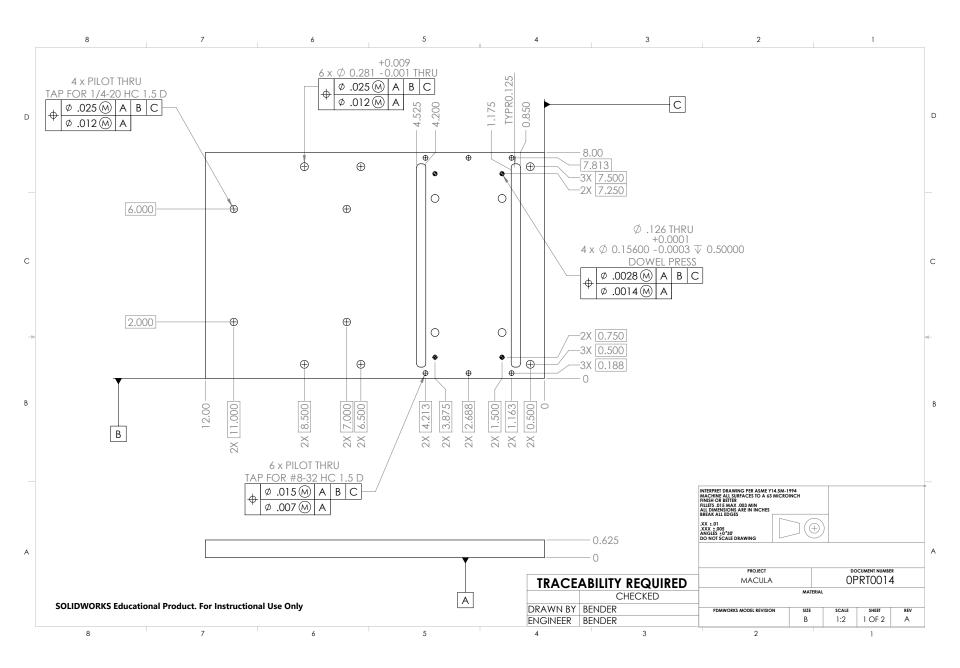
BACKUP: SYSTEM ASSEMBLY

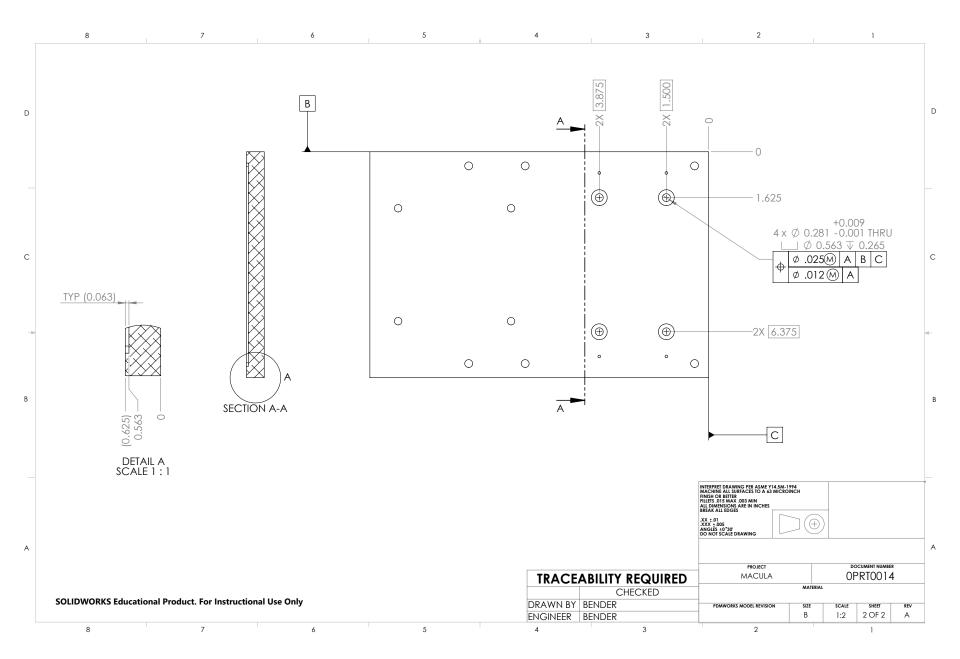
Movie

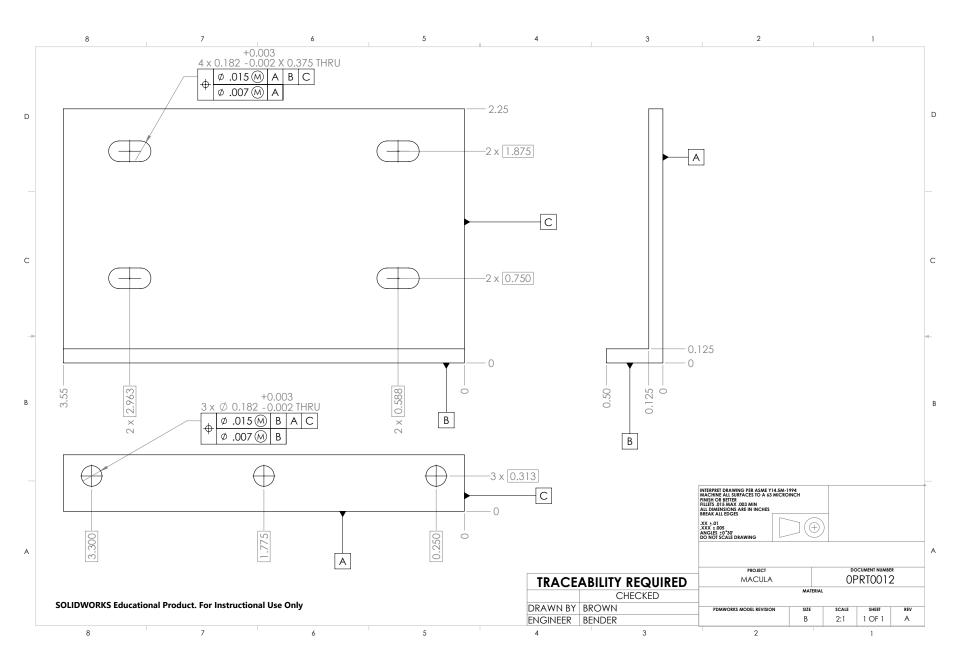


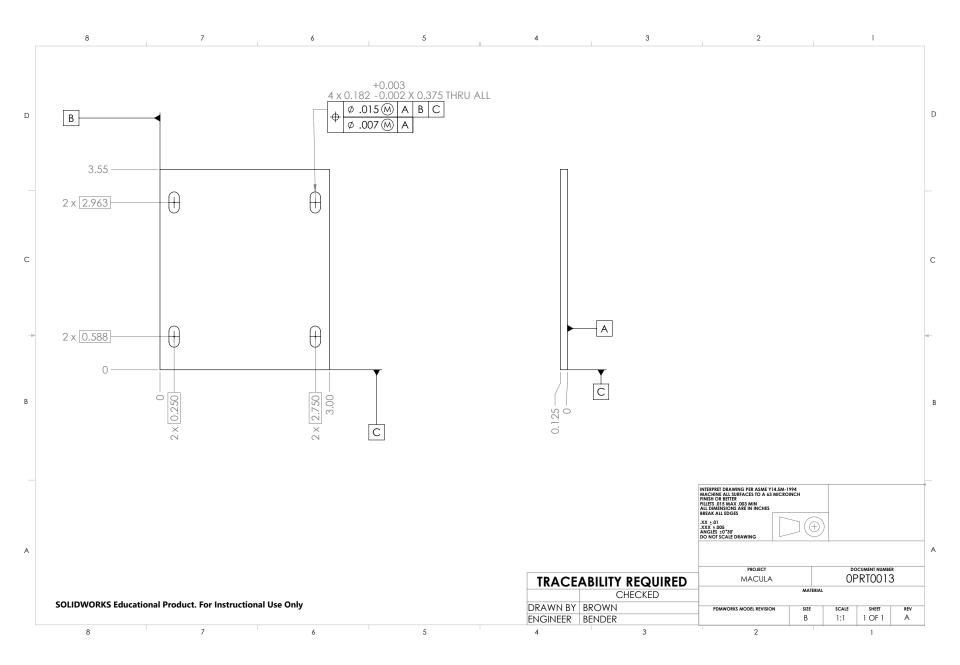


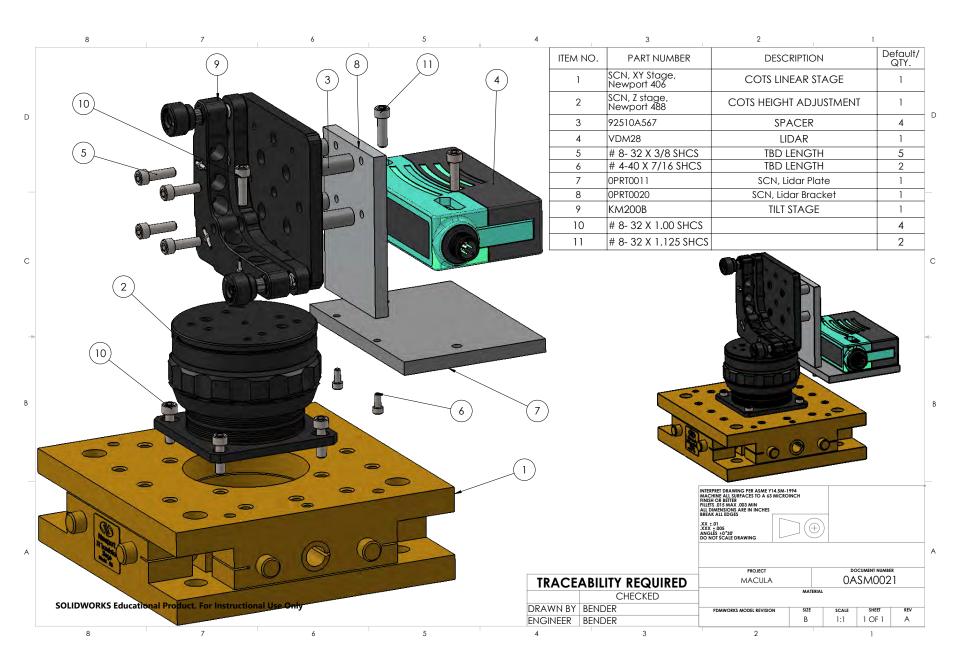


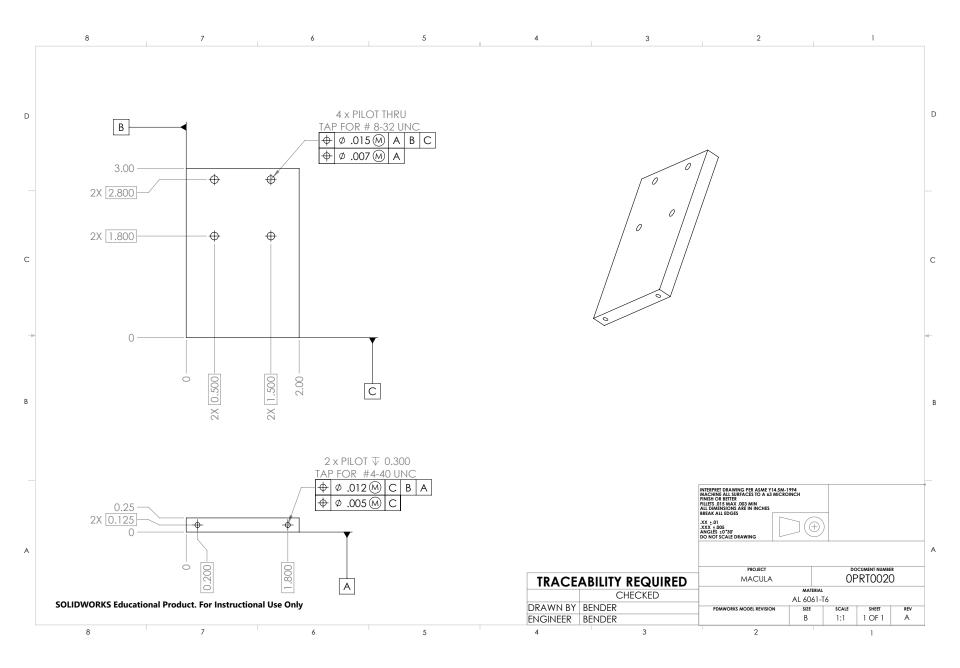

Scanning Stage

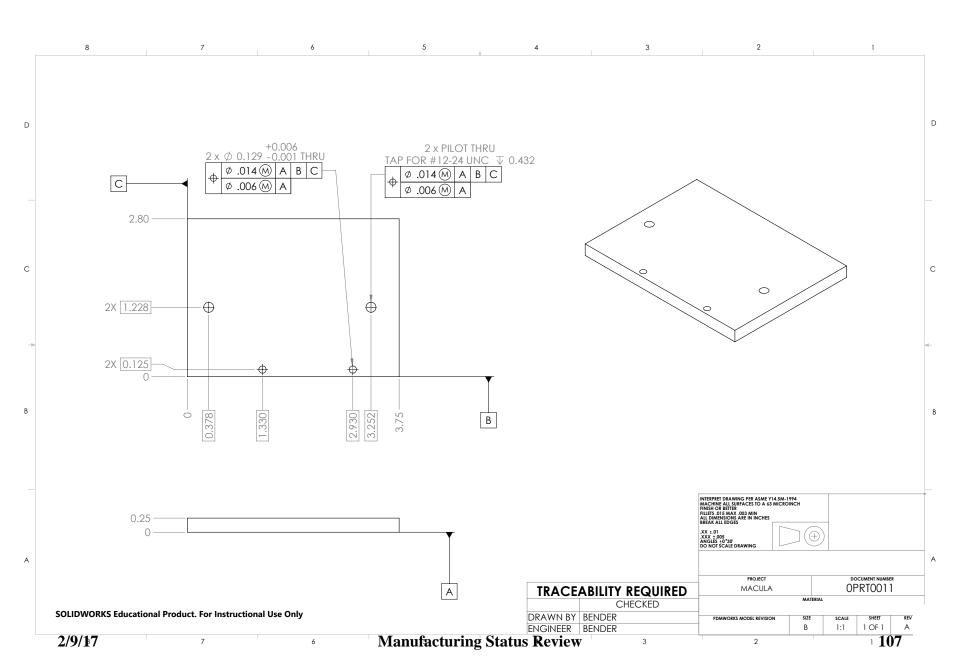


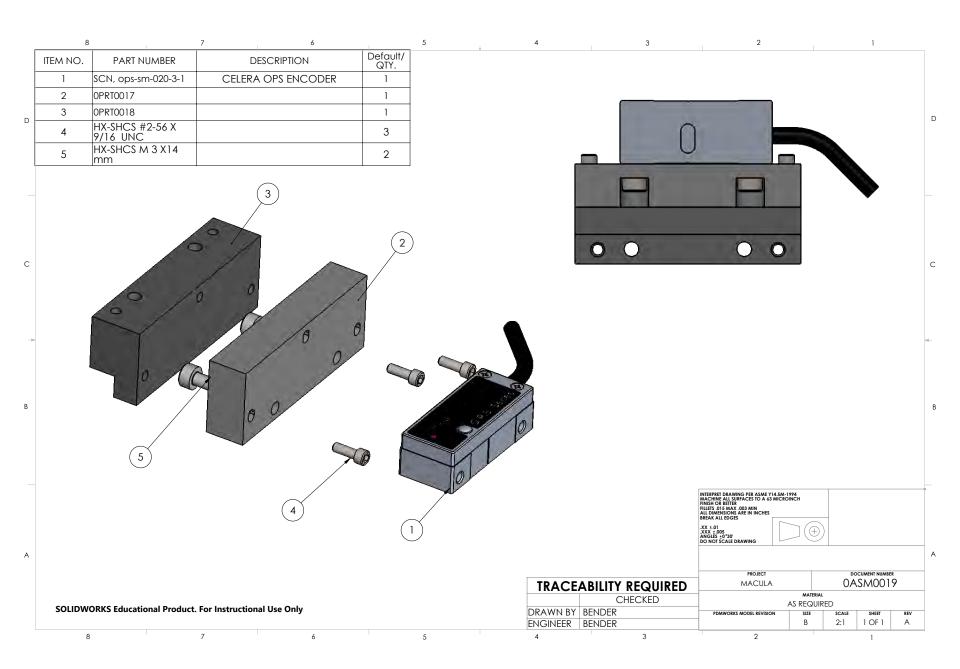


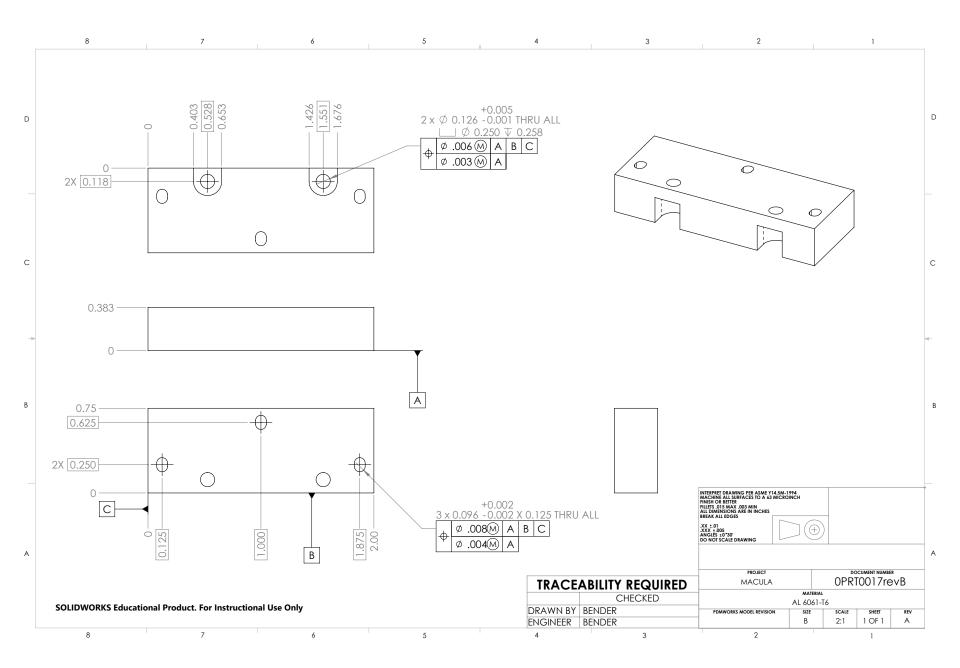


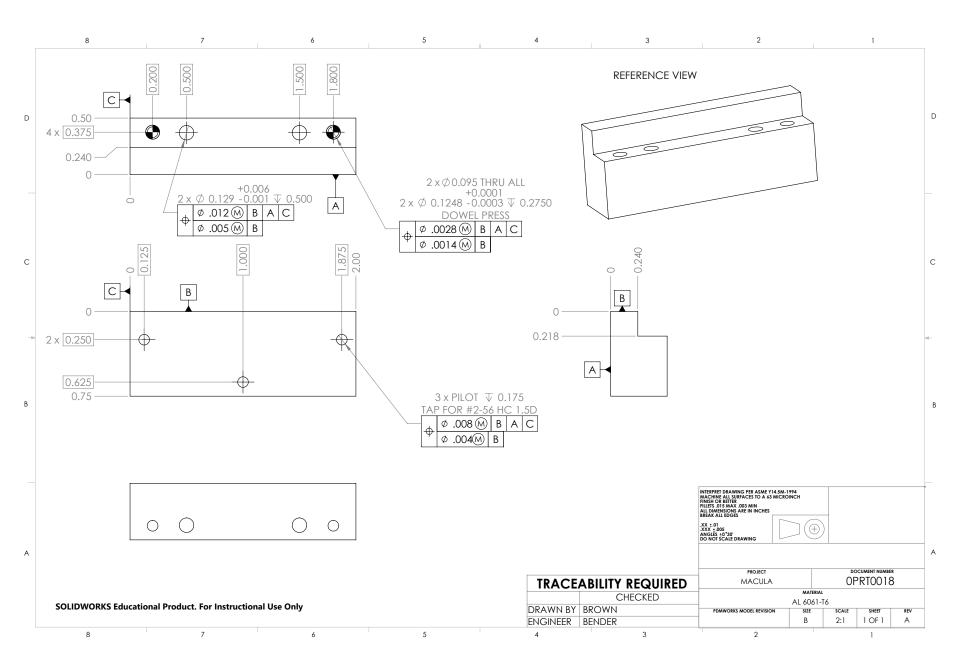


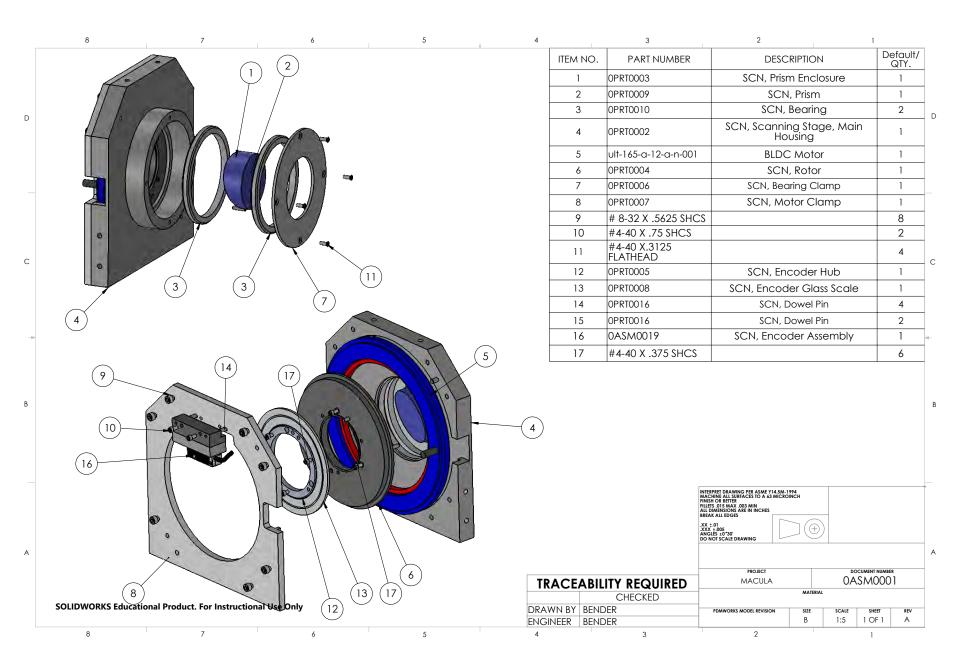


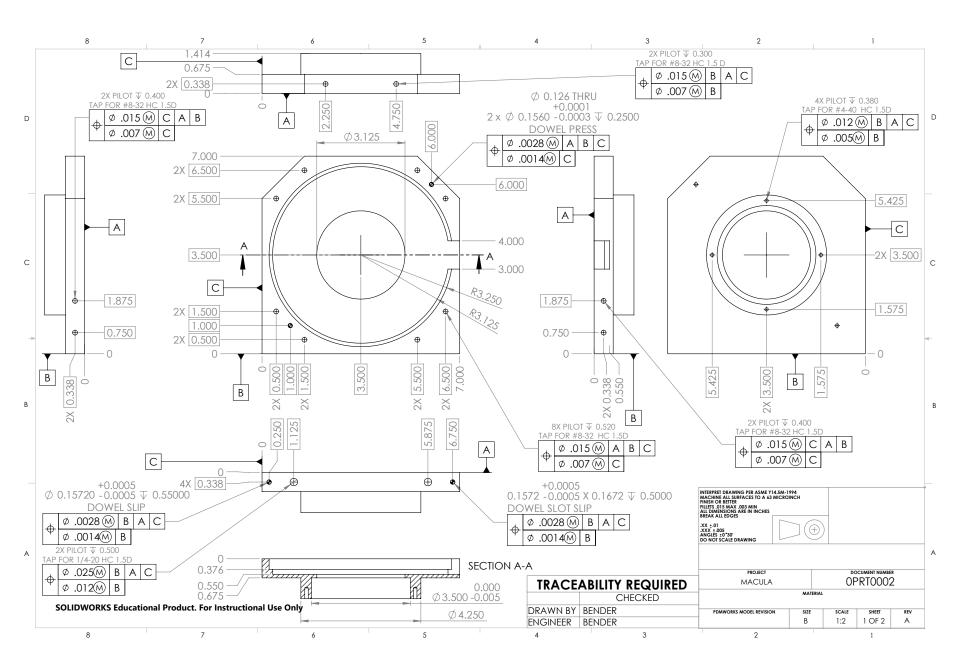


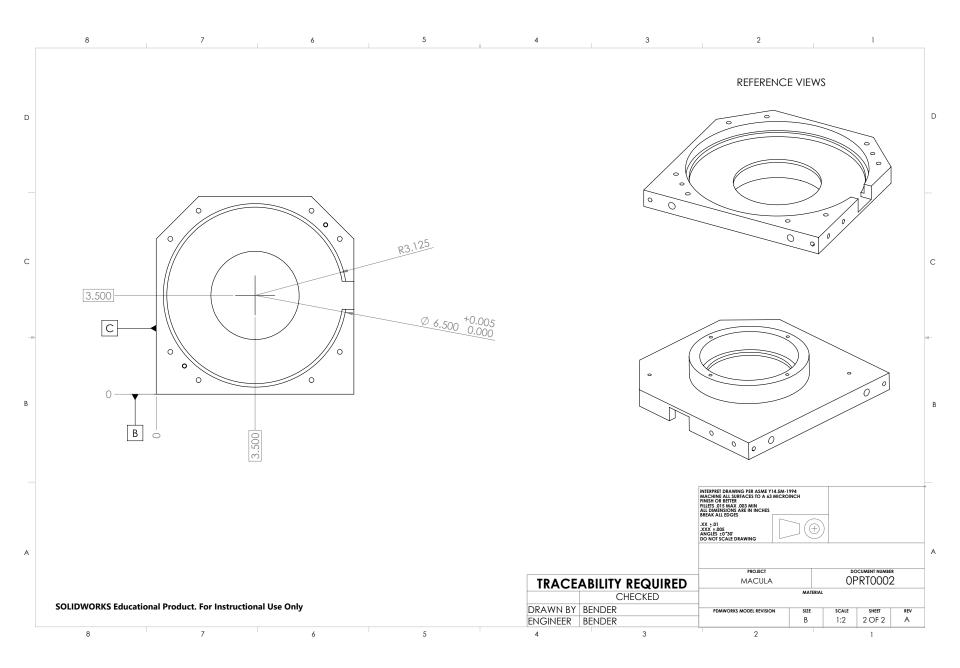


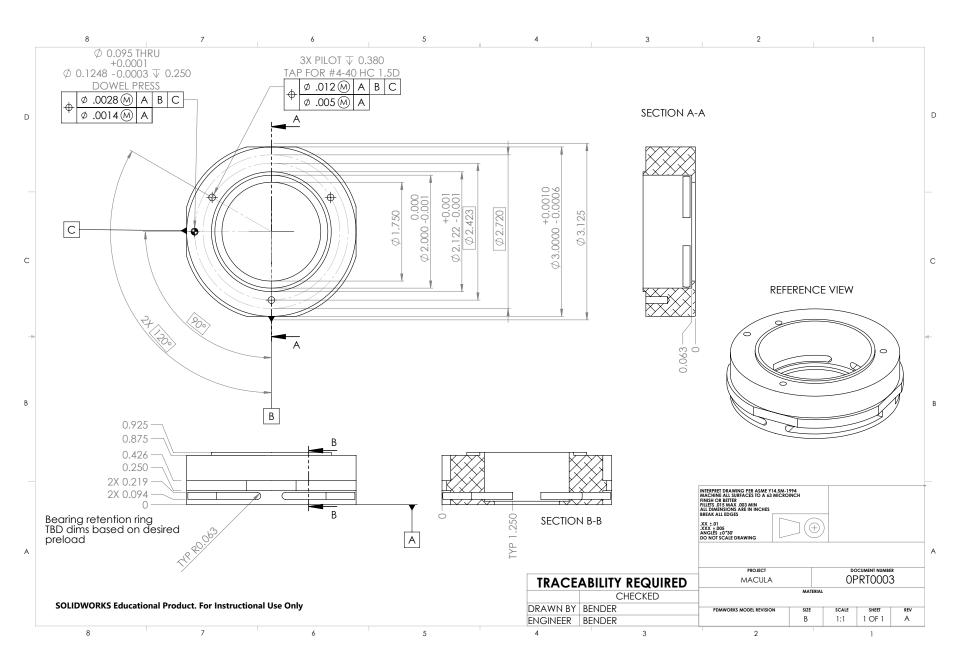


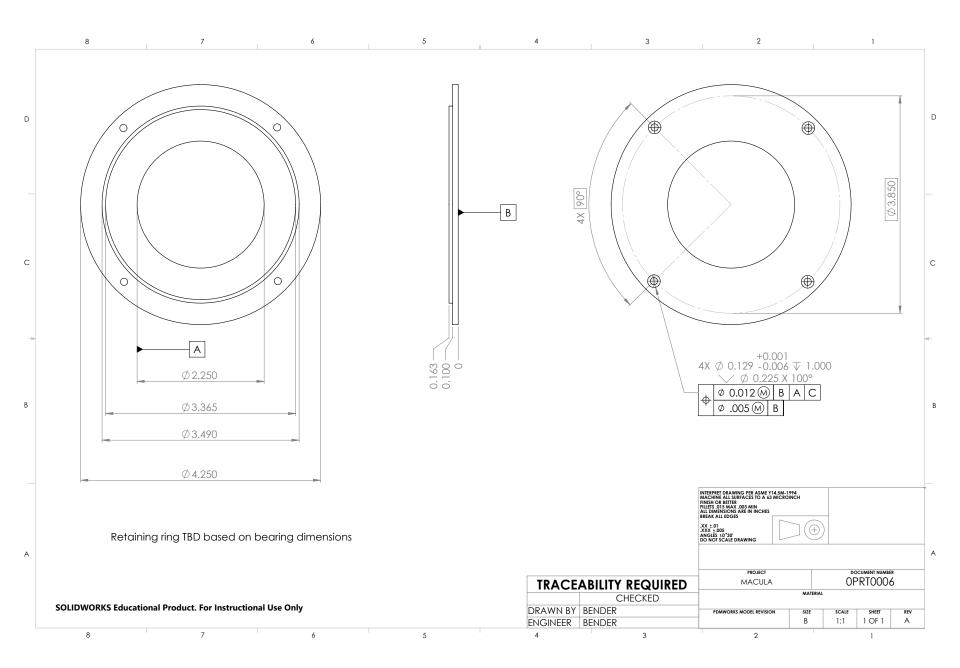


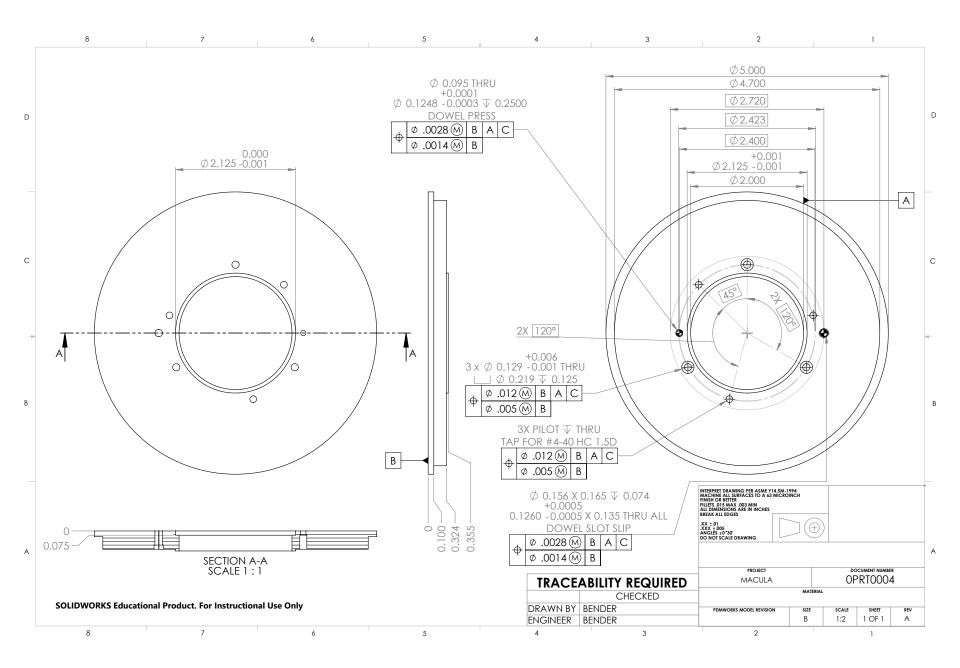


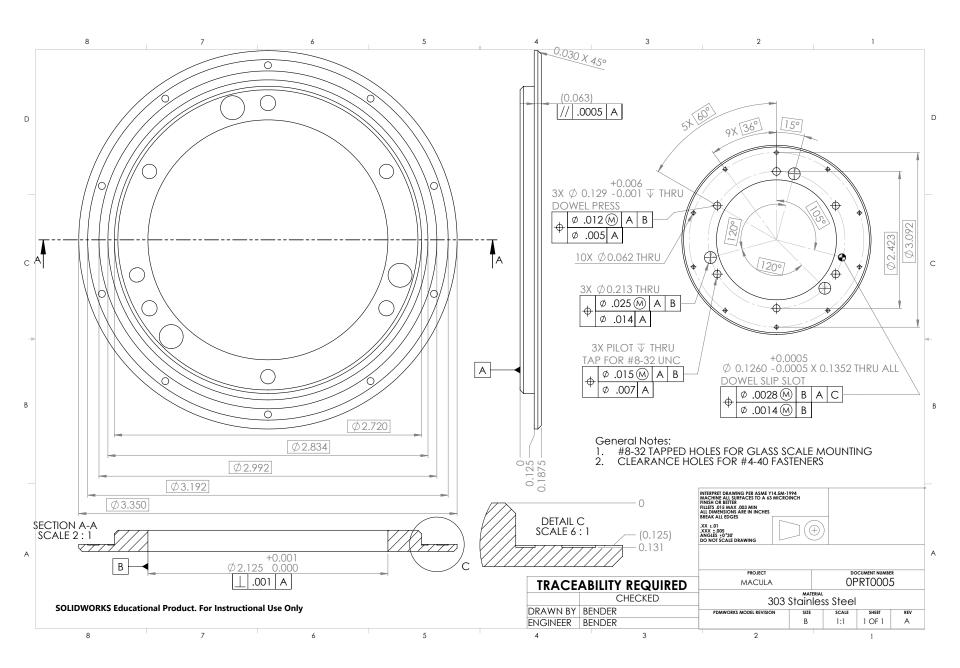


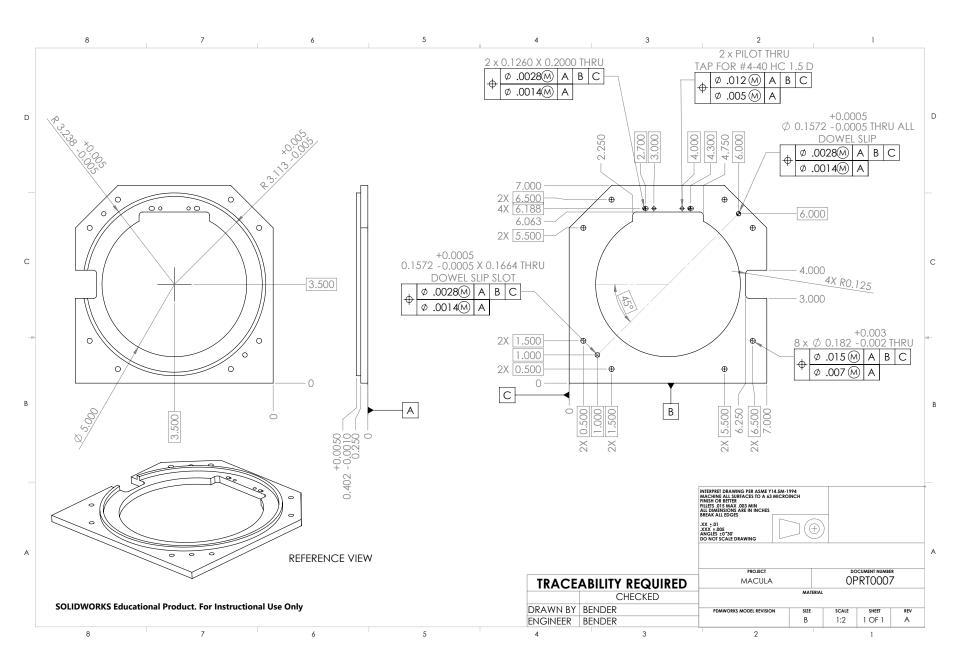


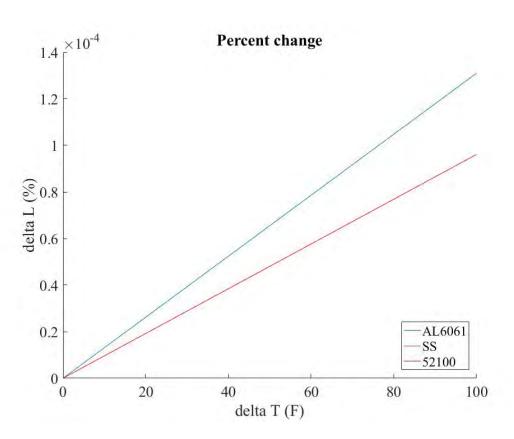











BACKUP: MATERIAL ANALYSIS

Thermal

• Linear Thermal Expansion: $\Delta l = l_0 \alpha (T_f - T_o)$

Thermal Expansion Coefficients

•
$$\alpha_{al}=$$
 13.1 $\frac{\mu in}{inF}$

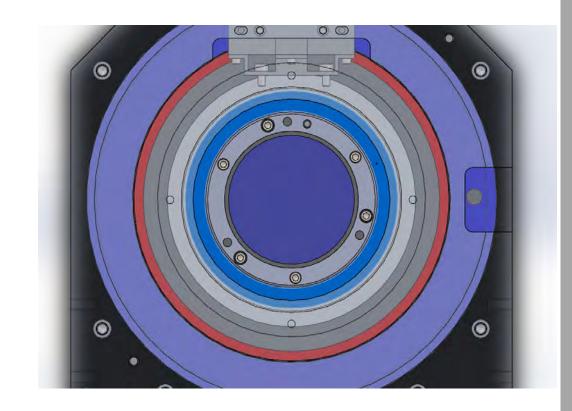
•
$$\alpha_{ss}=$$
 6.61 $\frac{\mu in}{inF}$

•
$$\alpha_{52100} = 9.61 \frac{\mu in}{inF}$$

Max error (5°F)

- 0.003806°
- 2.5% of error budget

Mechanical


• Steel dowel pin

$$-V_{max} = 7117 \text{ N}$$

$$-\tau_{allow} = 246 \, \mathrm{Nm}$$

$$-\tau_{max} = 1.26 \text{ Nm}$$

$$-FOS = 202$$

BACKUP: HARDWARE TRADE STUDIES

Position Sensor Trade Study

Metric	1	2	3	4	5
Resolution	≥ 0.15°	≥ 0.075°	≥ 0.0375°	≥ 0.0187°	≥ 0.0094°
Interface/Decoding	Not a common on chip peripheral	-	-	-	Common on chip peripheral
Cost per	≥ \$600	≥ \$500	≥ \$400	≥ \$300	≥ \$200

	Weight	Absolute	Incremental	Sin Cos In- cremental	Rotary Poten- tiometer	Resolver
Resolution	50%	3	4	5	1	3
Interface	40%	-1	5	I	5	1
Cost	10%	2	2	2	5	Î.
Sum	100%	2.1	4.2	3.1	3.0	2.0

Encoder Trade Study

Metric	1	2	3	4	5
Cost	≥ \$1400	≥ \$1200	≥ \$1000	≥ \$800	≥ \$600
Immunity to Environment	Knocked out by a slight breeze	Constant Interference	Innately exposed scanning head	Innately shrouded scanning head	Impervious
Design Flexibility	Any change requires replacing both scanning head and scale	Diameter change requires replacing both scanning head and scale	Scale change requires replacing both scanning head and scale	-	Scanning head and scale may be changed in- dependently of each other, diameter only affects scale

	Weight	OPS Series	IncOder Series	Lika SMR Series	Heidenhain
Cost	40%	5	3	5	i
Immunity to Environment	30%	3	5	2	4
Design Flexibility	30%	5	2	5	5
Sum	100%	4.4	3.3	4,1	3.1

Motor Driver Trade Study

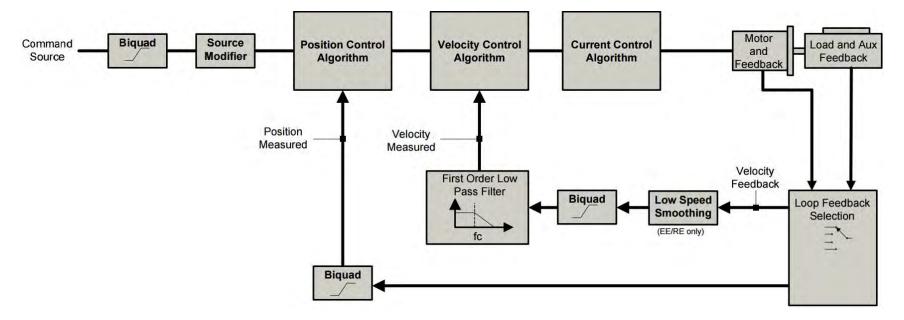
Metric	1	2	3	4	5
Cost	≥ \$500	≥ \$400	≥ \$300	≥ \$200	≥ \$100
Development Time	Build board, create control law, tuning	-	Create control law, then tune	-	Just tuning
Modes of control	Torque / Current	-	Velocity, Torque / Current	-	Position, Velocity, Torque / Current
Commutation / Feedback	Hall effect	-	Sensor-less	-	Encoder Feedback

	Weight	Custom	AMC Servo Drivers	TI BLDC Motor Controllers	ST Eval Boards
Cost	10%	5	2	5	5
Development Time	40%	1	5	3	3
Modes of control	20%	5	5	3	5
Commutation / Feedback	30%	5	5	3	5
Sum	100%	3.4	4.7	3,2	4.2

Microcontroller Trade Study

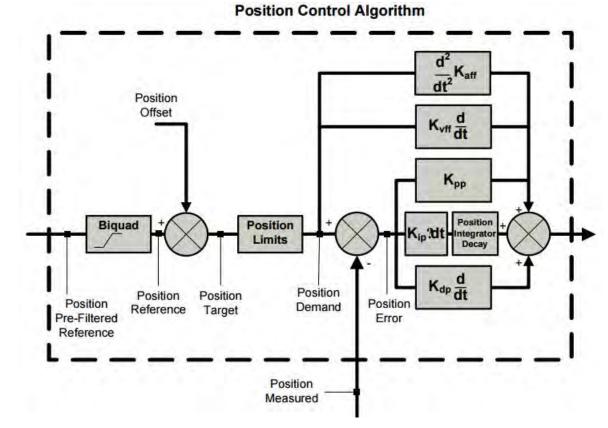
Metric	1	2	3	4	5
Cost	≥ \$500	≥ \$400	≥ \$300	≥ \$200	≥ \$100
Development Time	Build board from scratch	-	Bare Metal C	Has an OS or a third party application to ease development	OS, can use previously written Python scripts
Peripherals	Does not have any needed	Has only ADC	Has ADC, and UART	Has ADC, UART, USB/Ethernet	Has ADC, UART, USB/Ethernet, quadrature decoders
Design Flexibility	Component changes requires a different mi- crocontroller	-	Component changes requires additional chips to handle them, but can interface with microcon- troller	Program FPGA to adapt	Easy to adjust to component changes

	Weight	Custom	BeagleBone Black	Pi Series	MyRio	ZedBoard
Cost	15%	4	5	5	1	3
Development Time	30%	1	5	5	4	5
Peripherals	40%	5	5	3	5	5
Design Flexibility	15%	5	3	3	4	3
Sum	100%	3.65	4.7	3.9	3.95	4.4


BACKUP: MOTOR/PRISM CONTROL

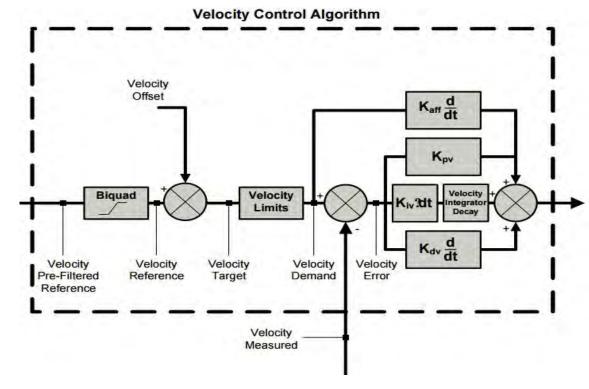
Control Loop

- Built in feedback control
- Primary positional or velocity control



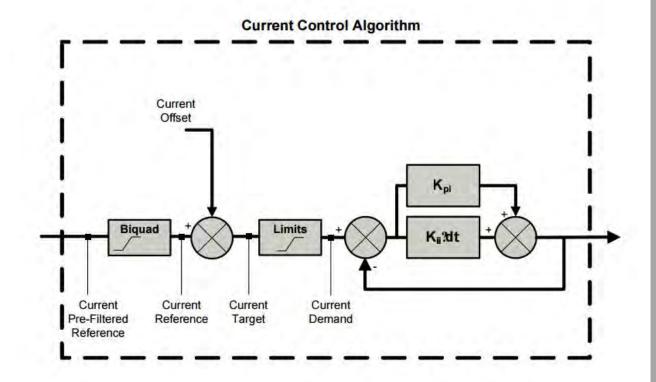
Position Control

- P.I.D control
- Feedforward acceleration and velocity



Position around Velocity

- Used when position trajectory must be tracked closely
- Feed forward gains added for better tracking

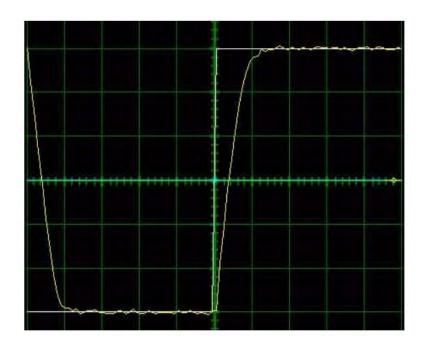


Position around Torque

Point-to-point applications

Tuning

- Performed with a motor installed into system
- Oscilloscope
 - 1-3Hz square wave
 - Channel one: Position Target
 - Channel two: Position Measured
- Gains initialized to zero

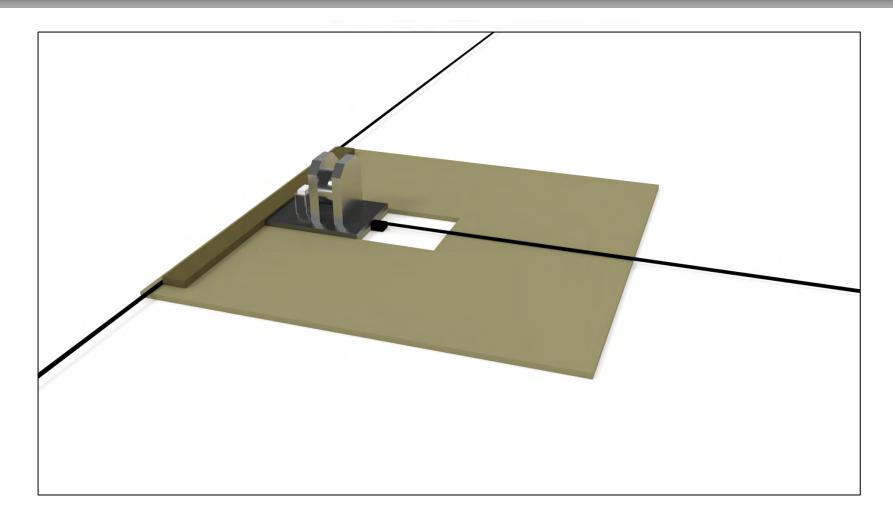

$$-0 \le Kp \le 0.5$$

$$-0 \le Ki \le 9.766$$

$$-0 \le Kd \le 0.0008$$

$$-0 \le Kv \le 0.0008$$

$$-0 \le Ka \le 8 x$$



BACKUP: CALIBRATION

Test Plan: Calibration (Close-up)

Theodolite

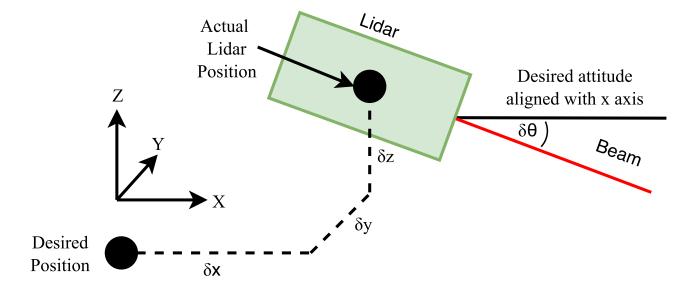
What does it do?

 Determines vertical and horizontal angles of surveyed

How does it work?

- Plumb bobs ensures that it is vertical relative to the surveying point
- Internal bubble level ensures that it is level relative to the horizon
- Graduated circles allow for horizontal and vertical angles of surveyed object to be measured

Sources of Error

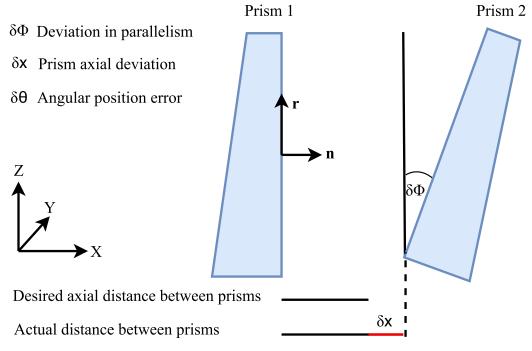


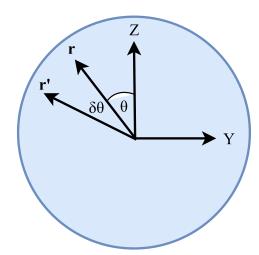
Sources of Error

Must be Calibrated System Inherent

Lidar:

- Translational deviations
- Rotational deviations
- Beam divergence


Sources of Error

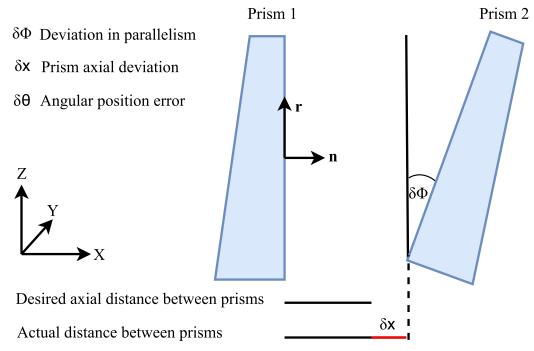


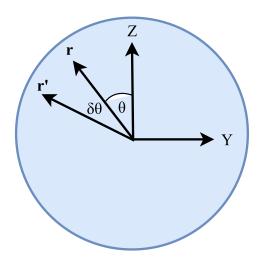
Prisms:

- Uncertainty in wedge angle
- Uncertainty in index of refraction

Acceptable / Easily Mitigated
Must be Calibrated

Prism normal vector ideally aligned with x axis


Sources of Error



Prisms:

- Uncertainty in angular position
- Deviation from parallelism
- Translational deviations

Acceptable / Easily Mitigated
Must be Calibrated

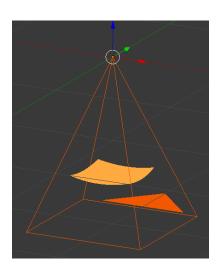
Prism normal vector ideally aligned with x axis

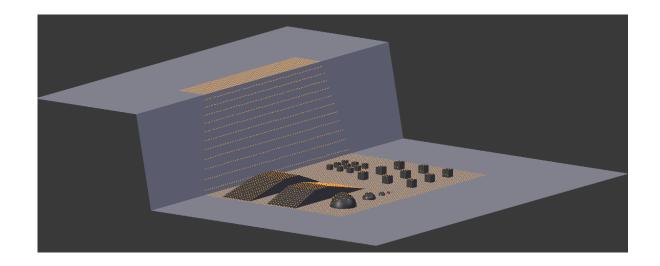
BACKUP: SOFTWARE/ALGORITHM


Blender Lidar Simulator

- Blender is an open-source program for 3D modeling
- Projects points onto any arbitrary face or object to simulate a lidar scan
- Can extract 3D data by running Python scripts within Blender

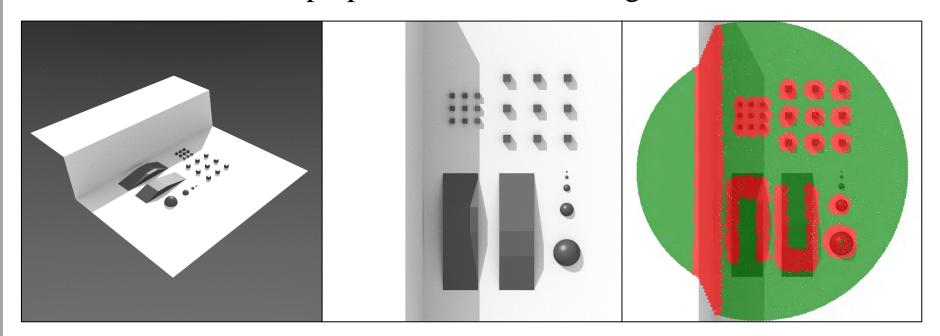
Example Blender artwork





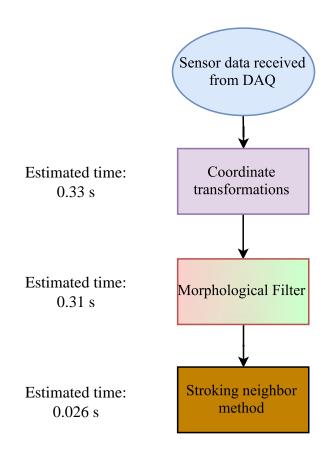
Blender Lidar Simulator

- Scan pattern is defined on the plane of the ground, and projected backward onto a sphere centered on the lidar (Blender camera)
- The pattern is then projected outward from the lidar location onto the modeled map
- A Python script exports the point cloud to a CSV file



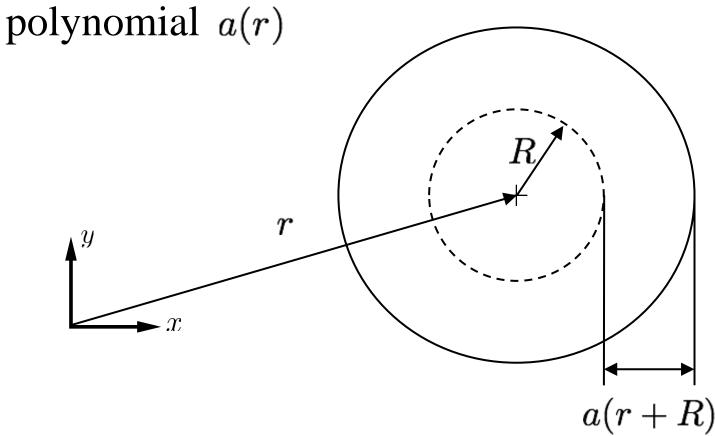
Hazard Detection Algorithms

Morphological Filter


- Identifies hazards by height differences between neighboring points
- Time to run on laptop: 0.31 sec for 10 cm grid

Time Estimates

Estimated total time for software elements when run in Python on a personal laptop: about **0.666 s**


Analysis shows that the BeagleBone will run ~10.24 times slower (**6.83 s**). Given our 10 s margin, we will be well within the time requirement even after porting to the microprocessor. More computationally expensive functions may be written in C for speed improvements.

Error Compensation

We fit the semimajor axis of the error ellipse to a

BACKUP: BEAGLEBONE

BeagleBone Black Rev C.1

	Fe	ature		
	Sitara AM	3358BZCZ100		
Processor	1GHz, 2000 MIPS			
Graphics Engine	SGX530 3D, 20M Polygons/S			
SDRAM Memory	512MB DI	DR3L 800MHZ		
Onboard Flash	4GB, 8bit E	mbedded MMC		
PMIC	TPS65217C PMIC regula	ator and one additional LDO.		
Debug Support	Optional Onboard 20-p	in CTI JTAG, Serial Header		
Power Source	miniUSB USB or DC Jack	5VDC External Via Expansion Header		
PCB	3.4" x 2.1"	6 layers		
Indicators	1-Power, 2-Ethernet,	4-User Controllable LEDs		
HS USB 2.0 Client Port	Access to USB0, C	lient mode via miniUSB		
HS USB 2.0 Host Port	Access to USB1, Type A Socket, 500mA LS/FS/HS			
Serial Port	UART0 access via 6 pin 3.3V TTL Header. Header is populated			
Ethernet	10/1	00, RJ45		
SD/MMC Connector	microSD, 3.3V			
	Reset Button			
User Input	Boot Button			
	Power Button			
Video Out	16b HDMI, 1280x1024 (MAX) 1024x768,1280x720,1440x900 .1920x1080@24Hz			
video Out	1024x/68,1280x/20,1440x900_1920x1080@24Hz w/EDID Support			
Audio		Interface, Stereo		
	Power 5V, 3.3V, VDD ADC(1.8V)			
	3.3V I/O	on all signals		
Expansion Connectors	McASP0, SPI1, I2C, GPIO(69 max), LCD, GPMC, MMC1, MMC2, 7			
Expansion connectors	AIN(1.8V MAX), 4 Timers, 4 Serial Ports, CANO,			
	EHRPWM(0,2),XDMA Interrupt, Power button, Expansion Board ID			
	(Up to 4 c	an be stacked)		
Weight	1.4 oz (3	39.68 grams)		
Power	Refer to	Section 6.1.7		

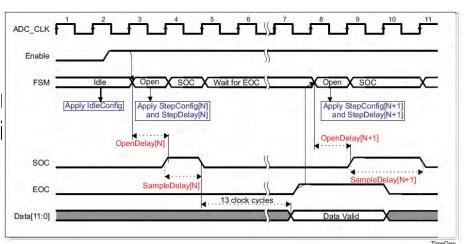
Expansion Header P8 Pinout

PIN 1,2	PROC	NAME	MODE0	MODE1	MODE2	MODE3 GND	MODE4	MODE5	MODE6	MODE7
3	R9	GPIO1 6	gpmc_ad6	mmc1 dat6						gpio1[6]
4	T9	GPIO1_7	gpmc_ad7	mmc1_dat7						gpio1[7]
5	R8	GPIO1_2	gpmc_ad2	mmc1_dat2		11				gpio1[2]
6	T8	GPIO1_3	gpmc_ad3	mmc1_dat3						gpio1[3]
7	R7	TIMER4	gpmc_advn_ale		timer4					gpio2[2]
8	17	TIMER7	gpmc_oen_ren		timer7					gpio2[3]
9	T6	TIMER5	gpmc_be0n_cle		timer5					gpio2[5]
10	U6	TIMER6	gpmc_wen		timer6					gpio2[4]
11	R12	GPIO1_13	gpmc_ad13	lcd_data18	mmc1_dat5	mmc2_dat1	eQEP2B_in		pr1_pru0_pru_r30_15	gpio1[13]
12	T12	GPI01_12	gpmc_ad12	Lcd_data19	mmc1_dat4	Mmc2_dat0	Eqep2a_in		pr1_pru0_pru_r30_14	gpio1[12]
13	T10	EHRPWM2B	gpmc_ad9	lcd_data22	mmc1_dat1	mmc2_dat5	ehrpwm2B			gpio0[23]
14	T11	GPIO0_26	gpmc_ad10	lcd_data21	mmc1_dat2	mmc2_dat6	ehrpwm2_tripzone_in			gpio0[26]
15	U13	GPIO1_15	gpmc_ad15	lcd_data16	mmc1_dat7	mmc2_dat3	eQEP2_strobe		pr1_pru0_pru_r31_15	gpio1[15]
16	V13	GPIO1_14	gpmc_ad14	lcd_data17	mmc1_dat6	mmc2_dat2	eQEP2_index		pr1_pru0_pru_r31_14	gpio1[14]
17	U12	GPI00_27	gpmc_ad11	lcd_data20	mmc1_dat3	mmc2_dat7	ehrpwm0_synco			gpio0[27]
18	V12	GPI02_1	gpmc_clk_mux0	lcd_memory_clk	gpmc_wait1	mmc2_clk			mcasp0_fsr	gpio2[1]
19	U10	EHRPWM2A	gpmc_ad8	lcd_data23	mmc1_dat0	mmc2_dat4	ehrpwm2A			gpio0[22]
20	V9	GPI01_31	gpmc_csn2	gpmc_be1n	mmc1_cmd		1 22 2 2	pr1_pru1_pru_r30_13	pr1_pru1_pru_r31_13	gpio1[31]
21	U9	GPIO1_30	gpmc_csn1	gpmc_clk	mmc1_clk	11		pr1_pru1_pru_r30_12	pr1_pru1_pru_r31_12	gpio1[30]
22	V8	GPIO1_5	gpmc_ad5	mmc1_dat5						gpio1[5]
23	U8	GPI01_4	gpmc_ad4	mmc1_dat4				:		gpio1[4]
24	V7	GPI01_1	gpmc_ad1	mmc1_dat1						gpio1[1]
25	U7	GPIO1_0	gpmc_ad0	mmc1_dat0			4			gpio1[0]
26	V6	GPIO1_29	gpmc_csn0							gpio1[29]
27	U5	GPIO2_22	lcd_vsync	gpmc_a8				pr1_pru1_pru_r30_8	pr1_pru1_pru_r31_8	gpio2[22]
28	V5	GPIO2_24	lcd_pclk	gpmc_a10				pr1_pru1_pru_r30_10	pr1_pru1_pru_r31_10	gpio2[24]
29	R5	GPIO2_23	lcd_hsync	gpmc_a9			ji	pr1_pru1_pru_r30_9	pr1_pru1_pru_r31_9	gpio2[23]
30	R6	GPIO2_25	lcd_ac_bias_en	gpmc_a11						gpio2[25]
31	V4	UART5_CTSN	lcd_data14	gpmc_a18	eQEP1_index	mcasp0_axr1	uart5_rxd		uart5_ctsn	gpio0[10]
32	T5	UART5_RTSN	lcd_data15	gpmc_a19	eQEP1_strobe	mcasp0_ahclkx	mcasp0_axr3		uart5_rtsn	gpio0[11]
33	V3	UART4_RTSN	lcd_data13	gpmc_a17	eQEP1B in	mcasp0_fsr	mcasp0_axr3		uart4_rtsn	gpio0[9]
34	U4	UART3_RTSN	lcd_data11	gpmc_a15	ehrpwm1B	mcasp0_ahclkr	mcasp0_axr2		uart3_rtsn	gpio2[17]
35	V2	UART4_CTSN	lcd_data12	gpmc_a16	eQEP1A_in	mcasp0_aclkr	mcasp0_axr2		uart4_ctsn	gpio0[8]
36	U3	UART3_CTSN	lcd_data10	gpmc_a14	ehrpwm1A	mcasp0_axr0			uart3_ctsn	gpio2[16]
37	U1	UART5_TXD	lcd_data8	gpmc_a12	ehrpwm1_tripzone_in	mcasp0_aclkx	uart5_txd		uart2_ctsn	gpio2[14]
38	U2	UART5 RXD	lcd data9	gpmc a13	ehrpwm0 synco	mcasp0_fsx	uart5 rxd		uart2 rtsn	gpio2[15]
39	T3	GPI02_12	lcd_data6	gpmc_a6		eQEP2_index		pr1_pru1_pru_r30_6	pr1_pru1_pru_r31_6	gpio2[12]
40	T4	GPIO2_13	lcd_data7	gpmc_a7		eOFP2_strobe	pr1_edio_data_out7	pr1_pru1_pru_r30_7	pr1_pru1_pru_r31_7	gpio2[13]
41	T1	GPIO2_10	lcd_data4	gpmc_a4		eQEP2A_in		pr1_pru1_pru_r30_4	pr1_pru1_pru_r31_4	gpio2[10]
42	T2	GPI02_11	lcd_data5	gpmc_a5	11	eQEP2B_in	1	pr1_pru1_pru_r30_5	pr1_pru1_pru_r31_5	gpio2[11]
43	R3	GPIO2_8	lcd_data2	gpmc_a2		ehrpwm2_tripzone_in		pr1_pru1_pru_r30_2	pr1_pru1_pru_r31_2	gpio2[8]
44	R4	GPIO2 9	lcd data3	gpmc a3		ehrpwm0 synco		pr1_pru1_pru_r30_3	pr1_pru1_pru_r31_3	gpio2[9]
45	R1	GPIO2_6	lcd_data0	gpmc_a0	1-1	ehrpwm2A	1	pr1_pru1_pru_r30_0	pr1_pru1_pru_r31_0	gpio2[6]
46	R2	GPIO2_7	lcd_data1	gpmc_a1		ehrpwm2B		pr1_pru1_pru_r30_1	pr1_pru1_pru_r31_1	gpio2[7]

Expansion Header P9 Pinout

PIN 1,2 3,4 5,6 7,8 9	PROC	NAME	MODE0	MODE1	MODE2	MODE3 GND DC_3.3V VDD_5V SYS_5V PWR_BUT	MODE4	MODE5	MODE6	MODE7
10	A10					SYS_RESETn				
11	T17	UART4_RXD	gpmc_wait0	mii2_crs	gpmc_csn4	rmii2_crs_dv	mmc1_sdcd		uart4_rxd_mux2	gpio0[30]
12	U18	GPIO1_28	gpmc_be1n	mii2_col	gpmc_csn6	mmc2_dat3	gpmc_dir		mcasp0_aclkr_mux3	gpio1[28]
13	U17	UART4_TXD	gpmc_wpn	mii2_rxerr	gpmc_csn5	rmii2_rxerr	mmc2_sdcd		uart4_txd_mux2	gpio0[31]
14	U14	EHRPWM1A	gpmc_a2	mii2_txd3	rgmii2_td3	mmc2_dat1	gpmc_a18		ehrpwm1A_mux1	gpio1[18]
15	R13	GPI01_16	gpmc_a0	gmii2_txen	rmii2_tctl	mii2_txen	gpmc_a16		ehrpwm1_tripzone_input	gpio1[16]
16	T14	EHRPWM1B	gpmc_a3	mii2_txd2	rgmii2_td2	mmc2_dat2	gpmc_a19		ehrpwm1B_mux1	gpio1[19]
17	A16	I2C1_SCL	spi0_cs0	mmc2_sdwp	12C1_SCL	ehrpwm0_synci	pr1_uart0_txd			gpio0[5]
18	B16	I2C1_SDA	spi0_d1	mmc1_sdwp	I2C1_SDA	ehrpwm0_tripzone	pr1_uart0_rxd			gpio0[4]
19	D17	I2C2_SCL	uart1_rtsn	timer5	dcan0_rx	I2C2_SCL	spi1_cs1	pr1_uart0_rts_n		gpio0[13]
20	D18	I2C2_SDA	uart1_ctsn	timer6	dcan0_tx	I2C2_SDA	spi1_cs0	pr1_uart0_cts_n		gpio0[12]
21	B17	UART2_TXD	spi0_d0	uart2_txd	I2C2_SCL	ehrpwm0B	pr1_uart0_rts_n		EMU3_mux1	gpio0[3]
22	A17	UART2_RXD	spi0_sclk	uart2_rxd	I2C2_SDA	ehrpwm0A	pr1_uart0_cts_n		EMU2_mux1	gpio0[2]
23	V14	GPI01_17	gpmc_a1	gmii2_rxdv	rgmii2_rxdv	mmc2_dat0	gpmc_a17		ehrpwm0_synco	gpio1[17]
24	D15	UART1_TXD	uart1_txd	mmc2_sdwp	dcan1_rx	I2C1_SCL	V - 1	pr1_uart0_txd	pr1_pru0_pru_r31_16	gpio0[15]
25	A14	GPI03_21*	mcasp0_ahclkx	eQEP0_strobe	mcasp0_axr3	mcasp1_axr1	EMU4_mux2	pr1_pru0_pru_r30_7	pr1_pru0_pru_r31_7	gpio3[21]
26	D16	UART1_RXD	uart1_rxd	mmc1_sdwp	dcan1 tx	I2C1_SDA		pr1_uart0_rxd	pr1_pru1_pru_r31_16	gpio0[14]
27	C13	GPI03 19	mcasp0 fsr	eQEP0B in	mcasp0_axr3	mcasp1_fsx	EMU2 mux2	pr1 pru0 pru r30 5	pr1_pru0_pru_r31_5	gpio3[19]
28	C12	SPI1 CS0	mcasp0_ahclkr	ehrpwm0_synci	mcasp0_axr2	spi1_cs0	eCAP2 in PWM2 out	pr1 pru0 pru r30 3	pr1_pru0_pru_r31_3	gpio3[17]
29	B13	SPI1_D0	mcasp0_fsx	ehrpwm0B		spi1_d0	mmc1_sdcd_mux1	pr1_pru0_pru_r30_1	pr1_pru0_pru_r31_1	gpio3[15]
30	D12	SPI1_D1	mcasp0_axr0	ehrpwm0_tripzone		spi1_d1	mmc2_sdcd_mux1	pr1_pru0_pru_r30_2	pr1_pru0_pru_r31_2	gpio3[16]
31	A13	SPI1_SCLK	mcasp0_aclkx	ehrpwm0A		spi1_sclk	mmc0_sdcd_mux1	pr1 pru0 pru r30 0	pr1_pru0_pru_r31_0	gpio3[14]
32						VADC				
33	C8					AIN4				
34						AGND				
35	A8					AIN6				
36	B8					AIN5				
37	B7					AIN2				
38	A7					AIN3				
39	B6					AINO				
40	C7					AIN1				
	D14	CLKOUT2	xdma_event_intr1		tclkin	clkout2	timer7_mux1	pr1_pru0_pru_r31_16	EMU3 mux0	gpio0[20]
41#	D13	GPIO3 20	mcasp0 axr1	eQEP0 index	IGRITI	Mcasp1_axr0	emu3	pr1_pru0_pru_r30_6	pr1 pru0 pru r31 6	gpio3[20]
	C18	GPI00_7	eCAP0_in_PWM0_out	uart3_txd	spi1_cs1	pr1_ecap0_ecap_capin_apwm_o	spi1_sclk	mmc0_sdwp	xdma_event_intr2	gpio0[7]
42@	B12	GPIO3_18	Mcasp0 aclkr	eQEP0A in	Mcaspo axr2	Mcasp1 aclkx	opri_oon	pr1 pru0 pru r30 4	pr1_pru0_pru_r31_4	gpio3[18]
43-46	UIZ	01 100_10	INICASPO_ACINI	GOLL OF III	micaspo_axiZ	GND		pri pruo pru 150 4	pri pruu pru 151 4	gpioorio

BACKUP: MEASUREMENTS

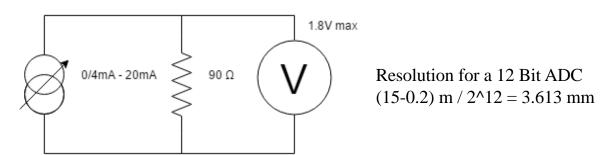


Measurement Timing

Lidar range and beam attitude measurements shall be taken within one microsecond.

- 15 ADC clocks per sample
 625 ns full conversion
- Reading the quadrature decode registers may be accomplished i this time (~4 ns)

Full measurement time is limited by the ADC



Lidar Measurement

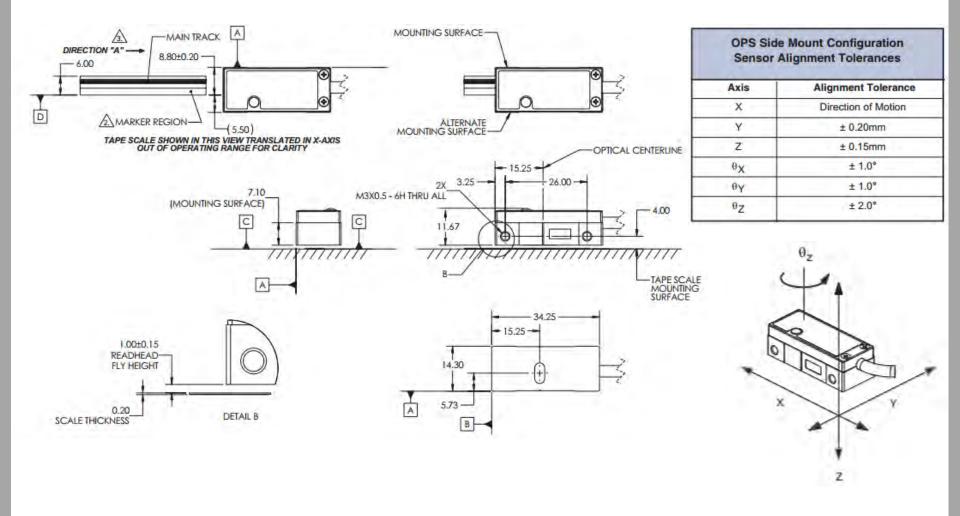
The lidar shall send range data to the on-board processor or DAQ

- The lidar produces a 0/4 mA to 20 mA current loop based off of the range between two set points A and B.
- A 90 ohm resistor is used to turn this into a 1.8 V max signal which is read on the microcontroller's ADC

Quadrature Decoding

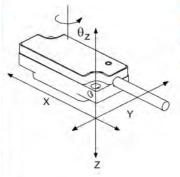
The beam attitude measurement shall be sent to the on-board processor or DAQ.

- The BeagleBone Black has quadrature decoders that interface directly with the OPS optical encoders
- Taking measurements is as simple as reading each counter



BACKUP: ENCODER INTEGRATION

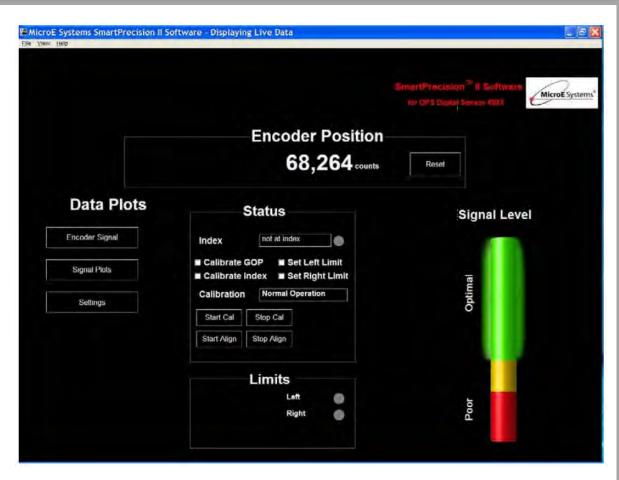
OPS Encoder Mounting Side


OPS Encoder Mounting Top

Wide Alignment Tolerances

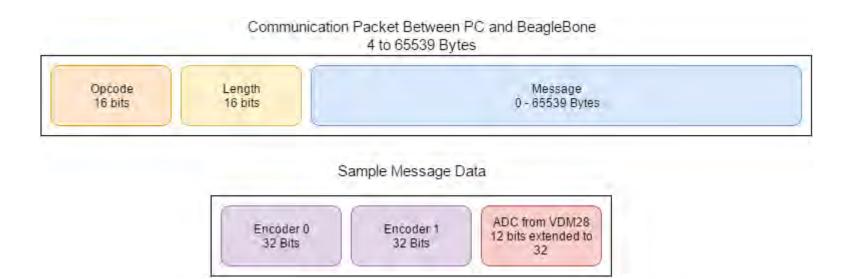
OPS Top Mount Configuration Sensor Alignment Tolerances		
Axis	Alignment Tolerance	
х	Direction of Motion	
Y	± 0.20mm	
Z	± 0.15mm	
θX	± 1.0°	
θγ	± 1.0°	
θZ	± 2.0°	

Sensor Size & Weight (top mount sensor)


Height	Width	Length
0.35[8.93mm]	0.53 [13.49mm]	1.26 [32.00mm]
Weight	6g (without cable	e)

OPS Encoder Alignment

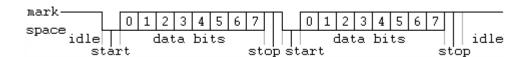
BACKUP: COMMUNICATION



Communication Between Microcontroller and PC

- UART 115200 bits / sec
- USB 2.0 480 Mbits / sec (high speed)
- Ethernet/IP 10/100/1000 Mbits /sec

Controller-PC communication layer agnostic to protocol



UART

- Will require an FTDI
- 115200 bits/s
- 8 data bits per packet1 start and 1 stop
- 11520 bytes/s

Ethernet data rate feasibility

IPv4

Max Ethernet packet 1518 bytes

68 bytes of UDP overhead (with IP and Ethernet frames)

1472 bytes left for data → 60 measurements per packet

1512 byte total packet size

100 Mb/s: 8127 frames/sec * 1512 bytes/frame =

12.288 Mbytes/s

1000 Mb/s: 81274 frames/sec * 1512 bytes/frame =

122.8 Mbytes/s

Ethernet UDP Overhead

Fast Ethernet (IEEE 802.3u) - UDP

Maximum Ethernet frames and data throughput rate calculations.

Fast Ethernet (IEEE 802.3u) Frame Structure with UDP Datagram MAC Peamble Start Frame Destination MAC Address Source MAC Address (Optional) Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or Length Payload - Network PDU (Protocol Data Unit) Frame Check Sequence Or

Inter-Frame Gap (960 nanoseconds or 12 Octets)

Frame Check

Sequence

60 - 1514 (VLAN: 64 -1518) Octets

Inter-Frame Gap (960 nanoseconds or 12 Octets)

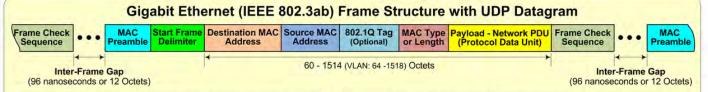
Fast Ethernet Frame Component Size With UDP Datagram

with OD	P Datagram			
Frame Component	Component Size			
MAC Preamble	7 Octets of: 10	7 Octets of: 10101010		
Start Frame Delimiter	1 Octet of: 1	1 Octet of: 10101011		
Destination MAC Address	6 Octets			
Source MAC Address	6 Octets	6 Octets 4 Octets (Optional)		
802.1Q VLAN TAG ID (Optional)	4 Octets (Optio			
MAC Type or Length	2 Octets	2 Octets		
MTU	IP Header	20 Octets		
(Maximum Transmission Unit)	UDP Header	8 Octets		
Payload 8	Data/Padding	18 - 1472 Octets		
Network PDU Protocol Data Unit:	Total:	46 - 1500 Octets (Max: 1504 - VLAN)		
Frame Check Sequence (CRC	4 Octets			
Inter-Frame Gap • • •	12 Octets (96	12 Octets (960 nanoseconds)		
Total Physical Frame Size:	84 - 1538 Octets (Max: 1544 -VLAN			

Fast Ethernet Maximum Frame and Data Throughput Rate Calculation with UDP Datagram

Rate Term	Value
Fast Ethernet Bit Rate	100 Mbit/sec -or- 100Mb/sec
Fast Ethernet Bit Time	10 nanoseconds (.00000001 seconds
1 Octet (Byte)	8 Bits
Max Octet Rate	(100Mb/sec)/((8 Bits) = 12,500,000 Octets/sec
Max Frame Rate (84 Octet Frames) Min Packet (60 Bytes + 4 Bytes CRC)	(100Mb/sec)/((8 Bits)*(84 Octets/Frame)) = 148,810 Frames/sec (FPS)
Max UDP Data Rate (84 Octet Frames) Min UDP Packet (60 Bytes + 4 Bytes CRC)	(148,810 Frames/sec)*(18 Bytes/Frame) = 2,678,571 Bytes/sec
Max Frame Rate (1538 Octet Frames) Max Packet (1514 Bytes + 4 Bytes CRC)	(100Mb/sec)/((8 Bits)*(1538 Octets/Frame)) 8,127 Frames/sec (FPS)
Max UDP Data Rate (1538 Octet Frames) Max UDP Packet (1514 Bytes + 4 Bytes CRC)	(8,127 Frames/sec)*(1472 Bytes/Frame) = 11,963,589 Bytes/sec
Max Fast Ethernet Frame Bandwidth Max Packet (60 Bytes + 4 Bytes CRC) Max Packet (60 Bytes)	(148,810 Frames/sec)*(64 Bytes/Frame) = 9,523,840 Bytes/sec (9.082641 MiB/s) (148,810 Frames/sec)*(60 Bytes/Frame) = 8,928,600 Bytes/sec (8.514977 MiB/s)
Max Fast Ethernet Frame Bandwidth Max Packet (1514 Bytes + 4 Bytes CRC) Max Packet (1514 Bytes)	(8,127 Frames/sec)*(1518 Bytes/Frame) = 12,336,786 Bytes/sec (11.765276 MiB/s) (8,127 Frames/sec)*(1514 Bytes/Frame) = 12,304,278 Bytes/sec (11.734274 MiB/s)

*** Note 1: Units - M: 1,000,000 Mi: 1,048,576



Ethernet UDP Overhead

Gigabit Ethernet (IEEE 802.3ab) - UDP

Maximum Ethernet frames and data throughput rate calculations.

Gigabit Ethernet Fr With UDF	ame Compor P Datagram	nent Size	
Frame Component	Component Size 7 Octets of: 10101010		
MAC Preamble			
Start Frame Delimiter	1 Octet of: 10	101011	
Destination MAC Address	6 Octets 6 Octets 4 Octets (Optional)		
Source MAC Address			
802.1Q VLAN TAG ID (Optional)			
MAC Type or Length	2 Octets		
MTU	IP Header	20 Octets	
(Maximum Transmission Unit)	UDP Header	8 Octets	
Payload 3	Data/Padding	18 - 1472 Octets	
Network PDU Protocol Data Unit:	***Total:	46 - 1500 Octets (Max: 1504 - VLAN)	
Frame Check Sequence (CRC)	4 Octets		
Inter-Frame Gap • • •	12 Octets (96 r	nanoseconds)	
Total Physical Frame Size:	84 - 1538 Oct	ets (Max: 1544 -VLAN)	

Rate Term	Value
Gigabit Ethernet Bit Rate	1000 Mbit/sec -or- 1000Mb/sec
Gigabit Ethernet Bit Time	1 nanosecond (.000000001 seconds)
1 Octet (Byte)	8 Bits
Max Octet Rate	(1000Mb/sec)/((8 Bits) = 125,000,000 Octets/sec
Max Frame Rate (84 Octet Frames) Min Packet (60 Bytes + 4 Bytes CRC)	(1000Mb/sec)/((8 Bits)*(84 Octets/Frame)) = 1,488,095 Frames/sec (FPS)
Max UDP Data Rate (84 Octet Frames) Min UDP Packet (60 Bytes + 4 Bytes CRC)	(1,488,095 Frames/sec)*(18 Bytes/Frame) = 26,785,714 Bytes/sec
Max Frame Rate (1538 Octet Frames) Max Packet (1514 Bytes + 4 Bytes CRC)	(1000Mb/sec)/((8 Bits)*(1538 Octets/Frame)) = 81,274 Frames/sec (FPS)
Max UDP Data Rate (1538 Octet Frames) Max UDP Packet (1514 Bytes + 4 Bytes CRC)	(81,274 Frames/sec)*(1472 Bytes/Frame) = 119,635,891 Bytes/sec
Max Gigabit Ethernet Frame Bandwidth Max Packet (60 Bytes + 4 Bytes CRC) Max Packet (60 Bytes)	(1,488,095 Frames/sec)*(64 Bytes/Frame) = 95,238,080 Bytes/sec (90.876031 MiB/s) (1,488,095 Frames/sec)*(60 Bytes/Frame) = 89,285,700 Bytes/sec (85,149477 MiB/s)
Max Gigabit Ethernet Frame Bandwidth Max Packet (1514 Bytes + 4 Bytes CRC) Max Packet (1514 Bytes)	(81,274 Frames/sec)*(1518 Bytes/Frame) = 123,373,932 Bytes/sec (117.658550 MiB/s) (81,274 Frames/sec)*(1514 Bytes/Frame) = 123,048,836 Bytes/sec (117.348515 MiB/s)

^{***} Note 1: IEEE 802.3ab - Gigabit Ethernet over copper twisted-pair cabling.

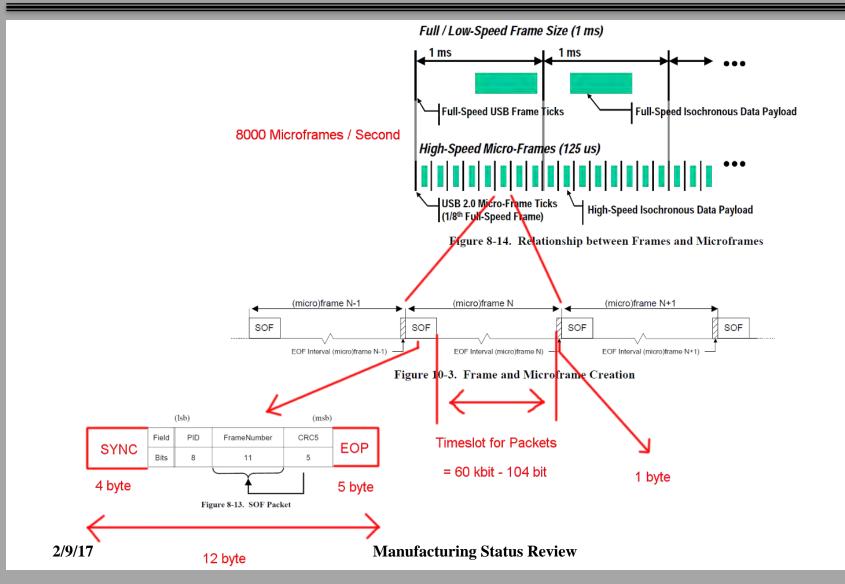
^{***} Note 2: Gigabit Ethernet allows for larger MTUs (Jumbo or Super Jumbo Frames).

^{***} Note 3: Units - M: 1,000,000 Mi: 1,048,576

USB Data Rate Feasibility

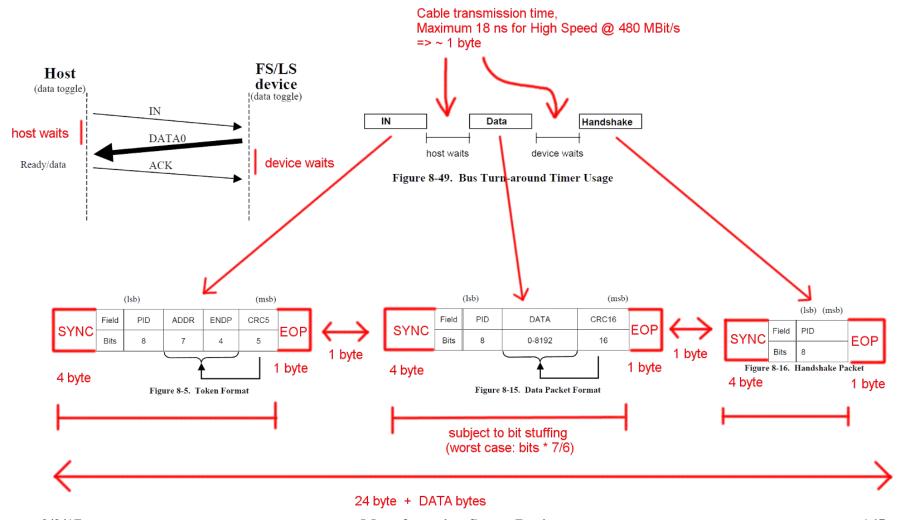
Universal Serial Bus Specification Revision 2.0

Table 5-10. High-speed Bulk Transaction Limits


Protocol C	(3x4 SYNC bytes, 3 PID bytes, 2 EP/ADDR+CRC bytes, 2 CRC16, and a 3x(1+11) byte interpacket delay (EOP, etc.))				
Data Payload	Max Bandwidth (bytes/second)	Microframe Bandwidth per Transfer	Max Transfers	Bytes Remaining	Bytes/ Microframe Useful Data
1	1064000	1%	133	52	133
2	2096000	1%	131	33	262
4	4064000	1%	127	7	508
8	7616000	1%	119	3	952
16	13440000	1%	105	45	1680
32	22016000	1%	86	18	2752
64	32256000	2%	63	3	4032
128	40960000	2%	40	180	5120
256	49152000	4%	24	36	6144
512	53248000	8%	13	129	6656
	60000000				7500

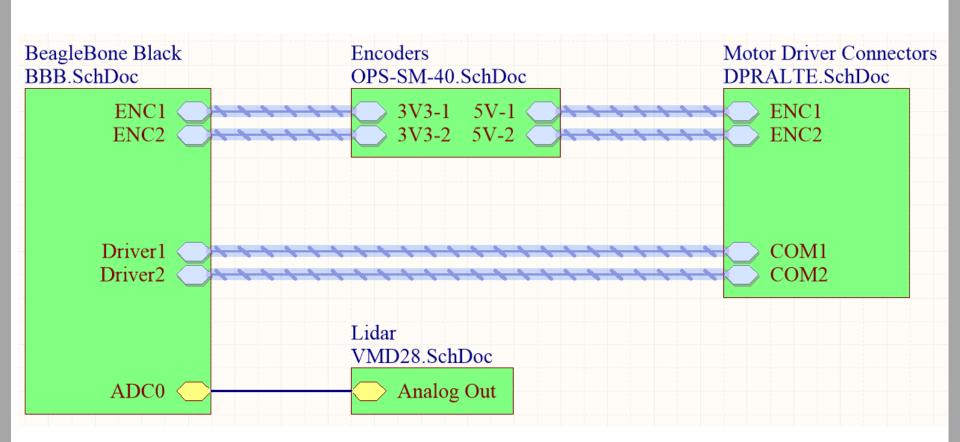
21 measurements for the maximum data payload produces a 508-byte data payload Speeds should be over 50 million bytes a second

USB 2.0



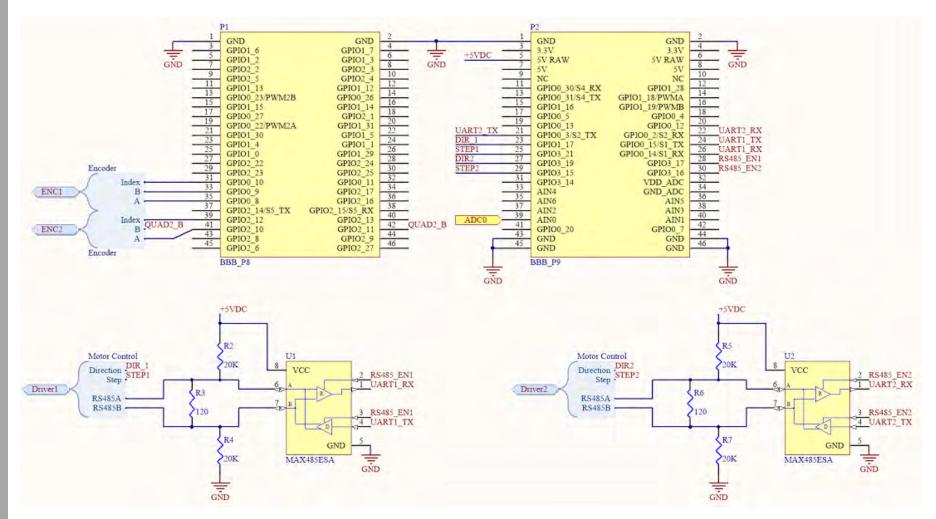
USB 2.0

Power

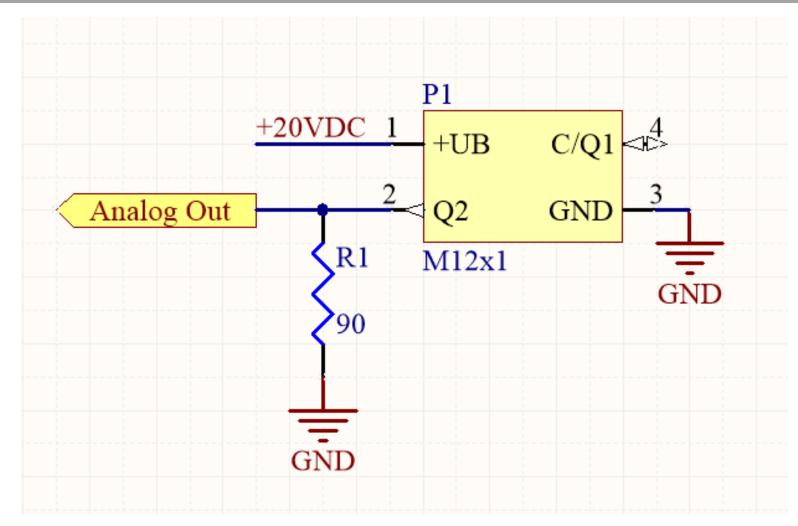

Power supplies: Components that require power: **USB** BeagleBone TTL to RS485 User PC **Encoders** Level Shifter + 5 V DC **Motor Drivers** Motors + 25 V DC

Lidar

Top Level Connections



BeagleBone Connections



Lidar Connections

BACKUP: VERIFICATION AND VALIDATION

Artec Eva Lite 3D Scanner

Specifications

- 3D resolution: 0.5 mm
- 3D point accuracy: 0.1 mm

Output

 Creates a SOLIDWORKS file of the scanned object/surface

Scan Pattern Feasibility

Solution: Perform two system-level tests:

- 1. Verify that the sensor package can obtain measurements with the required resolution in a longer period of time
- 2. Verify the ability of the system to perform a 60-second scan/analysis, even though the required resolution cannot be met

Resolution requirement test:

- Lidar frequency: 100 Hz
- Point spacing (exterior): 2.5 cm
- Exterior spiral arc length: 32.32 m
- Time to complete scan: ~12 min
- Maximum prism angular acceleration
- Required angular velocity:

4.6536 rpm

• Maximum prism angular acceleration: 4.8e-6 rad/s²

<u>Time requirement test:</u>

- Spiral spacing of 8.66 cm gives 59 total spirals
- Time: 50 seconds (leaving margin for analysis)
- Required lidar frequency: 382 Hz
- Required angular velocity:71.0763 rpm
- Maximum prism angular acceleration: 3.76e-6 rad/s²

Test Setup (Lidar)

- Receive return through glass
 - Shoot lidar through panes of glass and use oscilloscope to determine if the lidar is receiving a return
- Range, error and precision
 - Over a timespan on 60 sec, consistent measurements with accuracy of +/- 5 cm must be taken
- Reflective tape
 - Measure signal return accuracy, consistency, and strength from surface with and without retro-reflective tape
- Sample Frequency
 - Using an oscilloscope, determine time (in milliseconds) between range measurements

Test Setup (Prisms)

- Must be able to turn beam 20°
 - Mount prisms parallel to lidar, manually rotate prisms and verify 20° beam divergence
- Returns through glass
 - If the lidar does not receive returns through glass,
 replace the glass with coated prisms and repeat
 trials

Test Setup (Encoders)

- Determine functionality of hardware
 - Connect encoders to microprocessor and motors
 - Manually move motor to verify functionality of encoders
 - This is just to test connectivity and verify that communication is working properly

Test Setup (Motors)

- Motor functionality
 - Connect motors to motor drivers and provide any arbitrary commands, verify response happens
- All required motor rates must be achievable
 - Once motor, encoder, driver, and microprocessor system is fully integrated
 - Command to maximum rate of 71 rpm and hold for 50 sec
 - Command to minimum rate of 4 rpm and hold for 13 min
- Time to accelerate to desired motor rates
 - Given motor rate commands, verify motor accelerations are within desired bounds from encoder output analysis

Test Setup (Motor Drivers)

- Given any input the drivers must change the position of the motors
 - This can be visually verified
- Verify that command accuracy of 0.1° can be met
 - Can verify commanded vs actual by manually comparing commanded angle and actual angle
 - Can more accurately verify by comparing computational models of prism rotation, given a single motor angle displacement, against encoder positions
 - Measuring initial and final laser position physically and predictively in software

Test Setup (Software)

- Unit tests
 - x, y, z coordinate rotation
 - Read in IMU data, prism positions, and range
 - Combine to produce range measurement
 - Actual hazard output should match expected
 - Expected generated by software mockup
 - Generate health and status reports
 - Output results