Preliminary Design Review

Lockheed Martin
LLAMAS Team

Dalton Anderson Andrew Levandoski Kristyn Sample
Daniel Greer Andrew Mezich Corwin Sheahan
Ben Hutchinson Samuel O’Donnell Pol Sieira
Kent Lee Zach Reynolds Zack Toelkes
1.0 Project Overview, CONOPS, & FBD

2.0 Baseline Design

2.1 TestTable
Andrew M.

2.2 MockSat
Andrew M.

2.3 Fault Injection and Management
Corwin S.

3.0 Critical Project Elements (CPEs)

3.1 Fault Management and Injection System

3.1.1 Reaction Wheel Fault
Corwin S.

3.1.2 Sensor Faults
Pol S.

3.2 ADCS

3.2.1 Sensors
Dalton A.

3.2.2 Actuators
Zach R.

3.2.3 Controls
Dalton A.

4.0 Status Summary, Plan of Action
Kristyn S.

5.0 Q & A
LLAMAS
Project Statement

• The team will develop a fault management test bed which allows for testing of fault management software by fault injection into the attitude determination and control system (ADCS) of a mock-satellite (MockSat).

• The MockSat will be representative of the GOES-16 satellite, capable of relaying telemetry and fault data to a ground station unit, allow user selection of faults, and will be tested on a reduced-friction TestTable.
ADCS: Station Keeping—CDD Changes

- New Station Keeping Design
 - Bearing on top plate of MockSat
 - Rod inserted into bearing which achieves Station Keeping
- In CDD, trade study resulted in a tie between magnetic ring and string attachment
- After discussion with PAB, magnetic ring idea was dismissed
 - Difficulty of implementation higher than expected
 - Difficulty of modeling, feasibility
- String idea was developed further
 - Realized torsion in string will impact dynamics
 - Will have pendulum dynamics
Concept of Operations (CONOPs)

MockSat

On-Board:
- Power
- Controller
- Fine + Coarse Orientation Sensor
- Reaction Wheels
- RF Receiver/Transmitter

1 ft. diameter

Ground Station Unit (GSU)

TestTable

Processor (PID Control Law)

C = Control Law
A = Actuator
P = Plant
CS = Course Sensor
FS = Fine Sensor

* ADCS Sampling Frequency on order of 10 Hz
1. Test initiation and startup

1.1 Ground station unit (GSU) activates MockSat.

1.2 MockSat scans surroundings for the reference target.

1.3 MockSat maintains orientation relative to reference target once acquired to ± 2.5 degrees.
2. **Fault Injected by User**

2.1 User selects fault to inject from list of options on GSU and sends command to fault injection system.

2.2 Fault injection, on Micro-Controller Unit (MCU), system initiates fault.

2.3 Injected fault prevents ADCS system from meeting nominal pointing requirements.
3. Fault Management

3.1 Fault management software on MockSat detects, characterizes, and identifies the fault.

3.2 Fault management software alerts user to presence and type of fault.
4. Recovery

4.1 Fault management software initiates recovery sequence.

4.2 Satellite returns to nominal operation.
1.0 Project Overview, CONOPS, & FBD

2.0 Baseline Design

2.1 TestTable
Andrew M.

2.2 MockSat
Andrew M.

2.3 Fault Injection and Management
Corwin S.

3.0 Critical Project Elements (CPEs)

3.1 Fault Management and Injection System

3.1.1 Reaction Wheel Fault
Corwin S.

3.1.2 Sensor Faults
Pol S.

3.2 ADCS

3.2.1 Sensors
Dalton A.

3.2.2 Actuators
Zach R.

3.2.3 Controls
Dalton A.

4.0 Status Summary, Plan of Action
Kristyn S.

5.0 Q & A
LLAMAS
Baseline Design – TestTable

Functional Requirement: *The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.*

Air table:

- Creates a cushion of air under the MockSat by forcing air through small holes in the table perpendicular to the table surface.

- By raising the MockSat off the table surface, friction is drastically reduced.

- Allows for translation in [X,Y] and rotation about [Z].
1.0 Project Overview, CONOPS, & FBD
 Kristyn S., Zach R.

2.0 Baseline Design
 2.1– TestTable
 Andrew M.
 2.2– MockSat
 Andrew M.
 2.3– Fault Injection and Management
 Corwin S.

3.0 Critical Project Elements (CPEs)
 3.1 – Fault Management and Injection System
 3.1.1 Reaction Wheel Fault
 Corwin S.
 3.1.2 Sensor Faults
 Pol S.
 3.2– ADCS
 3.2.1 Sensors
 Dalton A.
 3.2.2 Actuators
 Zach R.
 3.2.3 Controls
 Dalton A.

4.0 Status Summary, Plan of Action
 Kristyn S.

5.0 Q & A
 LLAMAS
Baseline Design – MockSat

Functional Requirements:

- The MockSat shall be equipped with an attitude determination and control system (ADCS) that replicates the 0.04 Hz bandwidth response of the GOES-16 satellite to within ±10%.
- The MockSat shall have the ability to maintain a controlled attitude relative to a point of reference within ±2.5°.
1.0 Project Overview, CONOPS, & FBD
Krisyn S., Zach R.

2.0 Baseline Design

2.1 TestTable
Andrew M.

2.2 MockSat
Andrew M.

2.3 Fault Injection and Management
Corwin S.

3.0 Critical Project Elements (CPEs)

3.1 Fault Management and Injection System

3.1.1 Reaction Wheel Fault
Corwin S.

3.1.2 Sensor Faults
Pol S.

3.2 ADCS

3.2.1 Sensors
Dalton A.

3.2.2 Actuators
Zach R.

3.2.3 Controls
Dalton A.

4.0 Status Summary, Plan of Action
Kristyn S.

5.0 Q & A
LLAMAS
Baseline Design – Fault Injection & Management System

Functional Requirements:

• The system shall have the ability to introduce a fatal operating fault in either the MockSat’s primary reaction wheel, the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time).

• The MockSat flight control software shall recover from a fatal operating fault in either the MockSat’s primary reaction wheel, the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time) by regaining nominal operation.
Fault Injection:
- Fault Injection lies in software
- Injection system can modify:
 - Command torque to reaction wheel
 - Data streams from coarse sensor
 - Data streams from fine sensor
- Injection receives commands via comms from GSU to initiate fault injection

Fault Management:
- Fault Management system lies in software
- Fault Management detects faults by examining data streams
- Management can control power to:
 - Attitude actuators
 - Attitude sensors
- Management alerts GSU of fault detection via comms, fixes fault by switching to redundant components
1.0 Project Overview, CONOPS, & FBD
2.0 Baseline Design
 2.1– TestTable
 2.2– MockSat
 2.3– Fault Injection and Management
3.0 Critical Project Elements (CPEs)
 3.1 – Fault Management and Injection System
 3.1.1 Reaction Wheel Fault
 3.1.2 Sensor Faults
 3.2– ADCS
 3.2.1 Sensors
 3.2.2 Actuators
 3.2.3 Controls
4.0 Status Summary, Plan of Action
5.0 Q & A
CPE-Fault Injection and Management System: Overview

• In order to meet functional requirements for fault injection, the injection system needs to:
 • Inject at least one fault into each of: the reaction wheel, the coarse sensor, and the fine sensor

• In order to meet functional requirements for fault management, the management system needs to:
 • Detect and classify faults in each of: the reaction wheel, the coarse sensor, and the fine sensor
 • Regain nominal operation. Do not need "bump-less" switching or high performance recovery.
Friction is a common and near inevitable fault in the reaction wheels of space systems.

Fault injection system creates apparent friction in software only:
- This DOES NOT physically increase the friction in the reaction wheel, but rather it makes the fault management ADCS systems "see" increased friction.

Injects fault into reaction wheel by:
- Subtracting off nominal friction
- Adding induced friction function

Nominal Friction function:
\[\tau_f = f(\omega) \]

Induced friction function:
\[\hat{\tau}_f = \hat{f}(\omega) \]
Fault Management: Reaction Wheel Friction

Model:

- Governing Equation:
 \[\sum \tau = I \alpha \text{ (1-DOF)} \]
- Nominal friction:
 \[\tau_c - \tau_f = I \alpha \]
- Induced Friction:
 \[\tau_c - \hat{\tau}_f = I \hat{\alpha} \]

Detection:

- Fault Management Process:
 1) Read output wheel speed
 2) Calculate induced friction from governing equation
 \[\hat{\tau}_f = I \hat{\alpha} - \tau_c \]
 3) Compare vs model. If friction is above threshold value, then fault exists in system

Feasibility Example:

- ASEN 3200 spin module data used to create nominal friction function
- Induced friction function used to inject fault
- Modeled using governing equation and Matlab's ode45 solver
- Friction in system is greater than threshold value, therefore this is feasible
1.0 Project Overview, CONOPS, & FBD
Kristyn S., Zach R.

2.0 Baseline Design
 2.1 TestTable
Andrew M.
 2.2 MockSat
Andrew M.
 2.3 Fault Injection and Management
Corwin S.

3.0 Critical Project Elements (CPEs)
 3.1 Fault Management and Injection System
 3.1.1 Reaction Wheel Fault
Corwin S.
 3.1.2 Sensor Faults
Pol S.
 3.2 ADCS
 3.2.1 Sensors
Dalton A.
 3.2.2 Actuators
Zach R.
 3.2.3 Controls
Dalton A.

4.0 Status Summary, Plan of Action
Kristyn S.

5.0 Q & A
LLAMAS
Fault Injection and Management System: Sensors

The question is “how many pixels would need to go ‘hot’ for enough bias in the sensor to flag a fault?”
After injecting fault, will the faulty positions given by the fine and coarse sensor be large enough to detect a fault?

FBD of sensor system with fault injection and fault management systems
Yes! Based off project requirements only 1 fault needs to be injected into the fine and coarse sensor.

This fault is up to the team to decide. The size of the fault can always be increased to resemble a larger pixel failure. This is feasible.
1.0 Project Overview, CONOPS, & FBD

2.0 Baseline Design

2.1 TestTable
Andrew M.

2.2 MockSat
Andrew M.

2.3 Fault Injection and Management
Corwin S.

3.0 Critical Project Elements (CPEs)

3.1 Fault Management and Injection System

3.1.1 Reaction Wheel Fault
Corwin S.

3.1.2 Sensor Faults
Pol S.

3.2 ADCS

3.2.1 Sensors
Dalton A.

3.2.2 Actuators
Zach R.

3.2.3 Controls
Dalton A.

4.0 Status Summary, Plan of Action

5.0 Q & A

LLAMAS
CPE – Attitude Determination and Control System

• Elements of ADCS
 • Station Keeping
 • Sensors
 • Bandwidth of system
 • Capability of actuators

• Why attitude control is a CPE:
 • ADCS is fundamental to the ability to test fault management. It provides a nominal state that can prove fault management works as intended before and after a fault is injected
ADCS: Sensors

Target Pointing Window
Fine Attitude Sensor Field of View $[10^\circ, 25^\circ]$
Coarse Attitude Sensor Field of View $[40^\circ, 75^\circ]$

θ

MockSat

Target VPS

$d \in [0.0027, 0.0533] \text{ m}$

$r \in [0.30, 0.60] \text{ m}$

$w = 2r \tan \left(\frac{\theta}{2} \right)$
ADCS: Sensors

Fine Camera Resolution:

\[\Xi_f = \frac{\max(w_f)}{L_{\text{min}}} = 98 \text{ pixels} \]

Coarse Camera Resolution:

\[\Xi_c = \frac{\max(w_c)}{L_{\text{min}}} = 337 \text{ pixels} \]

In addition to meeting the resolution requirements, the PIXY features onboard image processing at a rate of 50 FPS. It relays the location and size of detected objects over a range of output types, allowing it work with any chosen processor, while staying well above the bandwidth requirements.
1.0 Project Overview, CONOPS, & FBD
Kristyn S., Zach R.

2.0 Baseline Design
2.1 TestTable
Andrew M.
2.2 MockSat
Andrew M.
2.3 Fault Injection and Management
Corwin S.

3.0 Critical Project Elements (CPEs)
3.1 Fault Management and Injection System
3.1.1 Reaction Wheel Fault
Corwin S.
3.1.2 Sensor Faults
Pol S.
3.2 ADCS
3.2.1 Sensors
Dalton A.
3.2.2 Actuators
Zach R.
3.2.3 Controls
Dalton A.

4.0 Status Summary, Plan of Action
Kristyn S.

5.0 Q & A
LLAMAS
ADCS: Actuators

• Assume that torque imparted on reaction wheel is matched by equal and opposite torque on MockSat

\[|\tau_{RW} | = I_{RW} * |\alpha_{RW} | = I_{Sat} * |\alpha_{Sat} | = |\tau_{Sat} | \]

• Know approximate MOI of MockSat and maximum angular acceleration, gives maximum torque necessary for reaction wheel
 • Allows selection of motor based on torque requirements
ADCS: Actuators

- Find max torque of MockSat based on pointing requirements
- Properties needed to solve:

\[\tau = \text{Time Constant} = \frac{1}{2\pi f_b} = \frac{1}{2\pi \times 0.04} = 3.98 \text{ seconds} \]

- Approximate Moment of Inertia (MOI) from CAD model
- Step command angle of 75 degrees based off of coarse sensor FOV
ADCS: Actuators

• Find max torque of MockSat based on pointing requirements

\[\theta = A_o \left(1 - e^{-\frac{t}{\tau}} \right) \Rightarrow \theta'' = \alpha = -\frac{A_o}{\tau^2} e^{-\frac{t}{\tau}} \]

• Step command: \(A_o = 75^\circ = 1.31 \) radians
• Time constant: \(\tau = 3.98 \) seconds
• MOI: \(I = 0.022 \text{ kg}\cdot\text{m}^2 \)
• Therefore \(\alpha_{\text{max}} = 0.083 \text{ rad/s/s} \)
• Max torque needed to rotate MockSat: \(\tau_{\text{mock}} \)

\[\tau_{\text{mock}} = I \cdot \alpha_{\text{max}} = 1.8 \text{ mNm} \]
ADCS: Actuators

- Bearings with low Coefficients of Friction (COF)
 - Cylindrical roller bearing, COF \(\sim 0.0010\) (1)
 - Self Aligning ball bearing, COF\(\sim 0.0015\) (2)
 - Can realistically achieve coefficient of friction \(< 0.002\)

- Need to show actuators can overcome internal bearing friction for worst case

- \(\tau_F\): Torque needed to overcome friction of bearing

- \[\tau_F = \frac{P\mu d_{inner}}{2} = \frac{5 \text{ kg} \times 9.81 \frac{\text{m}}{\text{s}^2} \times 0.002 \times 0.0254 \text{ m}}{2}\]

- \(\tau_F = 1.2 \text{ mNm} \quad \leftarrow \text{Maximum possible torque to overcome for bearing}\)
ADCS: Disturbance Torque

• Find maximum disturbance torque introduced by airflow between TestTable and MockSat

 • Maximum angular acceleration measured using Tracker Video Analysis

 • $I = 0.037 \text{ kg m}^2$

 • Average alpha = 0.0308 rad/s/s

\[\tau_{\text{Disturbance}} = 1.14 \text{ mNm} \]
The maximum upper bound torque needed for the worst case in the Station Keeping design required by motor:

\[\tau_{max} = \tau_F + \tau_{Mock} + \tau_{Disturbance} \]

\[\tau_{max} = 1.2 \text{ mNm} + 1.8 \text{ mNm} + 1.14 \text{ mNm} \]

\[\tau_{max} = 4.14 \text{ mNm} \leftrightarrow \text{Max torque needed by motor} \]

Rated continuous torque is: 7.59 mNm

Overcoming torques from bearing friction, disturbances, and torque needed to rotate MockSat is feasible.
1.0 Project Overview, CONOPS, & FBD

2.0 Baseline Design
 2.1 TestTable
 2.2 MockSat
 2.3 Fault Injection and Management

3.0 Critical Project Elements (CPEs)
 3.1 Fault Management and Injection System
 3.1.1 Reaction Wheel Fault
 3.1.2 Sensor Faults
 3.2 ADCS
 3.2.1 Sensors
 3.2.2 Actuators
 3.2.3 Controls

4.0 Status Summary, Plan of Action

5.0 Q & A
Governing Equation of Plant Dynamics:

\[I \ddot{\theta} + \dot{\theta} \times (I \dot{\theta}) = M \]

Simplifies in 1D:

\[I \ddot{\theta} = M \]

\[I \ddot{\theta} = M_{rw}(t) - \tau(t) \]

\[I \ddot{\theta} = u(t) - \tau(t) \]

\[M_{rw} \equiv u(t) \]

\[\theta \quad \text{MockSat pointing angle} \]

\[I \quad \text{MockSat inertia} \]

\[M \quad \text{Net torque on the MockSat} \]

\[M_{rw} \quad \text{Control torque of reaction wheel} \]

\[\tau \quad \text{Disturbance torques} \]
ADCS: Controls

Assuming PD Control:

\[I\ddot{\theta} + K_d\dot{\theta} + K_p\theta = K_p\theta_c - \tau(t) \]

\[\Theta(s) = \frac{K_p}{s^2 I + K_d s + K_p} \Theta_c(s) - \frac{1}{s^2 I + K_d s + K_p} T(s) \]

\[\Theta(0) = \Theta_c(0) - \frac{1}{K_p} T(0) \]

Steady State Error

PID Control: (integral control eliminates steady state error)

\[I\ddot{\theta} + K_d\dot{\theta} + K_p\theta + \int_0^t \theta(t')dt' = K_p\theta_c - \tau(t) \]

\[\Theta(s) = \frac{K_p}{s^2 I + K_d s + K_p + \frac{K_i}{s}} \Theta_c(s) - \frac{1}{s^2 I + K_d s + K_p + \frac{K_i}{s}} T(s) \]

Feasible

Not Feasible
1.0 Project Overview, CONOPS, & FBD

2.0 Baseline Design
 2.1 TestTable
 2.2 MockSat
 2.3 Fault Injection and Management

3.0 Critical Project Elements (CPEs)
 3.1 Fault Management and Injection System
 3.1.1 Reaction Wheel Fault
 3.1.2 Sensor Faults
 3.2 ADCS
 3.2.1 Sensors
 3.2.2 Actuators
 3.2.3 Controls

4.0 Status Summary, Plan of Action

5.0 Q & A
Summary: Feasibility

<table>
<thead>
<tr>
<th>Functional Requirements</th>
<th>Feasibility Shown</th>
<th>Next Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.</td>
<td>Air Table</td>
<td>Evaluate TracSAT air table, determine if it can be used.</td>
</tr>
<tr>
<td>2. The MockSat shall be equipped with an attitude determination and control system (ADCS) that replicates the 0.04 Hz bandwidth response of the GOES-16 satellite to within 10%.</td>
<td>ADCS Control</td>
<td>Begin structural design process.</td>
</tr>
<tr>
<td>3. The MockSat shall have the ability to maintain a controlled attitude relative to a point of reference within ±2.5°.</td>
<td>ADCS Sensors and Actuators</td>
<td>Evaluate programming and integration of sensors, determine exact size of reaction wheel</td>
</tr>
<tr>
<td>4. The system shall have the ability to introduce a fatal operating fault in either the MockSat’s primary reaction wheel, the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time).</td>
<td>Fault Injection</td>
<td>Model full control dynamics with fault injection. Characterize reaction wheel friction. Determine size of sensor bias.</td>
</tr>
<tr>
<td>5. The MockSat flight control software shall recover from a fatal operating fault in either the MockSat’s primary reaction wheel, the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time) by regaining normal operation.</td>
<td>Fault Management</td>
<td>Model full control dynamics with fault management. Examine reaction wheel switching procedure.</td>
</tr>
</tbody>
</table>
Summary: Finance Budget

<table>
<thead>
<tr>
<th>Expense</th>
<th>Category</th>
<th>Expense Amount</th>
<th>Budget Remaining</th>
<th>Margin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmel SAM E70</td>
<td>Microcontroller</td>
<td>$50.00</td>
<td>$4,950.00</td>
<td>100%</td>
</tr>
<tr>
<td>Battery</td>
<td>Power</td>
<td>$90.00</td>
<td>$4,860.00</td>
<td>98%</td>
</tr>
<tr>
<td>Bearings</td>
<td>Structure</td>
<td>$50.00</td>
<td>$4,810.00</td>
<td>97%</td>
</tr>
<tr>
<td>Materials</td>
<td>Structure</td>
<td>$500.00</td>
<td>$4,310.00</td>
<td>87%</td>
</tr>
<tr>
<td>Mems Gyro</td>
<td>Sensors</td>
<td>$20.00</td>
<td>$4,290.00</td>
<td>87%</td>
</tr>
<tr>
<td>Motor Controller</td>
<td>Actuators</td>
<td>$100.00</td>
<td>$4,190.00</td>
<td>85%</td>
</tr>
<tr>
<td>Motors</td>
<td>Actuators</td>
<td>$1,000.00</td>
<td>$3,190.00</td>
<td>64%</td>
</tr>
<tr>
<td>Pixy</td>
<td>Sensors</td>
<td>$210.00</td>
<td>$2,980.00</td>
<td>60%</td>
</tr>
<tr>
<td>Power Regulator</td>
<td>Power</td>
<td>$200.00</td>
<td>$2,780.00</td>
<td>56%</td>
</tr>
<tr>
<td>Reaction Wheel</td>
<td>Actuators</td>
<td>$60.00</td>
<td>$2,720.00</td>
<td>55%</td>
</tr>
<tr>
<td>Reference Source</td>
<td>Structure</td>
<td>$60.00</td>
<td>$2,660.00</td>
<td>54%</td>
</tr>
<tr>
<td>Wiring</td>
<td>Power</td>
<td>$150.00</td>
<td>$2,510.00</td>
<td>51%</td>
</tr>
<tr>
<td>Xbee</td>
<td>Communication</td>
<td>$20.00</td>
<td>$2,490.00</td>
<td>50%</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>$2,510.00</td>
<td>$2,490.00</td>
<td>50%</td>
</tr>
</tbody>
</table>

Remaining Budget: $2,510.00

Margin: 50%
Total MockSat Mass Budget

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Component</th>
<th>Quantity</th>
<th>Estimated Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Base</td>
<td>1</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>Reaction Wheel Mounts</td>
<td>2</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Bearing Mount</td>
<td>1</td>
<td>480</td>
</tr>
<tr>
<td>ADCS</td>
<td>Reaction Wheel Disks</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Motors</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Fine Sensors</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Coarse Sensors</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>IMU</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Processor(s)</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Motor Controllers</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>EPS</td>
<td>Batteries</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Misc</td>
<td>Wires</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Bearing</td>
<td>1</td>
<td>300</td>
</tr>
</tbody>
</table>

Total Estimated Mass: 4870 g
Summary: Power Budget

MockSat Power Budget

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Draw (W)</th>
<th>Voltage Rating (V)</th>
<th>Current Draw (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>5</td>
<td>24</td>
<td>0.208</td>
</tr>
<tr>
<td>Micro-Controller (Atmel SAM E70)</td>
<td>0.54</td>
<td>3.6</td>
<td>0.15</td>
</tr>
<tr>
<td>Xbee Comm System</td>
<td>0.432</td>
<td>3.6</td>
<td>0.12</td>
</tr>
<tr>
<td>Pixy Camera (3)</td>
<td>1.4</td>
<td>10</td>
<td>0.14</td>
</tr>
<tr>
<td>MEMS Gyro</td>
<td>0.018</td>
<td>5</td>
<td>0.0036</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>0.902</td>
</tr>
</tbody>
</table>

- This results in a maximum current draw of 0.902 A
- Accounting for losses and margin, a 2 Ah battery can be used
- It is easy and inexpensive to find a battery of this size
1.0 Project Overview, CONOPS, & FBD

2.0 Baseline Design
 2.1 TestTable
 2.2 MockSat
 2.3 Fault Injection and Management

3.0 Critical Project Elements (CPEs)
 3.1 Fault Management and Injection System
 3.1.1 Reaction Wheel Fault
 3.1.2 Sensor Faults
 3.2 ADCS
 3.2.1 Sensors
 3.2.2 Actuators
 3.2.3 Controls

4.0 Status Summary, Plan of Action

5.0 Q & A

Kristyn S., Zach R.
Andrew M.
Andrew M.
Corwin S.
Corwin S.
Pol S.
Dalton A.
Zach R.
Dalton A.
Kristyn S.
LLAMAS
Backup Slides
Schedule

November

CDR

Model Refinement

Continue evaluation of current TracSat airtable

Component Selection

December

Fall Break

High fidelity model - system dynamics

Detailed MockSat design

Fault Management Design

Presentation Slides

Core Task

Subtasks

Firm Deadline

Dependency
CONOPs: Quantify 5mm/s target speed

From bandwidth requirement
\[
\tau = \frac{1}{2\pi f_b} = \frac{1}{2\pi (0.04)} \approx 4 \text{ s}
\]

Can get a representative
\[
\omega_{avg} = \frac{0.63\theta_c}{\tau} = \frac{0.63 \left(\frac{75\pi}{180} \right)}{\tau} \approx 0.2 \text{ rad/s}
\]

The radius is known, therefore
\[
v_{max} = \omega_{avg} r_{max} \approx 10 \text{ cm/s}
\]

Dropping 1.5 orders of magnitude
\[
v_{target} \approx 5 \text{ mm/s}
\]
Baseline Design – TestTable

Functional Requirement: *The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.*

Air table:

- Creates a cushion of air under the MockSat by forcing air through small holes in the table perpendicular to the table surface.
- By raising the MockSat off the table surface, friction is drastically reduced.
- Allows for translation in [X,Y] and rotation about [Z].

\[
\dot{V}_{\text{req}} = n_{\text{holes}} A_{\text{hole}} \frac{2 m_{\text{MS}} g}{\rho_{\text{air}} A_{\text{MS}}}
\]

- \(n_{\text{holes}} = \text{number of holes}\)
- \(A_{\text{hole}} = \text{hole area (1)}\)
- \(m_{\text{MS}} = \text{MockSat mass}\)
- \(\rho_{\text{air}} = \text{air density}\)
- \(A_{\text{MS}} = \text{MockSat base area}\)
- \(\dot{V}_{\text{req}} = \text{volumetric flow rate}\)
Baseline Design – TestTable

Functional Requirement: The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.

Air table:
• Assumptions: steady, incompressible flow.

• Dynamic pressure of air flowing through the table and impacting the underside of the MockSat provides the force to lift the MockSat off the table surface.

• The pressure difference between the static pressure of the air source and ambient is assumed to be small, therefore \(p_0 \approx p_a \).

\[
\sum F_x = (p_0 - p_0)A_x = 0
\]
\[
\sum F_y = (p_0 - p_0)A_y = 0
\]
\[
\sum F_z = (p_0 + q - p_0)A_z = qA_z = mg
\]
Baseline Design – TestTable

Functional Requirement: *The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.*

Investigation of potential losses:

- **Boundary layer formation**
 - The hydrodynamic entry length $L_h \approx 37.5”$ is much greater than the thickest table material being considered (1/2 ” polycarbonate plastic).
 - Therefore the flow can be assumed to be uniform.

- **MockSat cg location**
 - A couple moment will be introduced if the cg of the MockSat is not positioned over the geometric center of the MockSat baseplate.
 - This will cause the MockSat to move in the direction of the cg displacement.
 - Bounding translation resolves this issue.

- **Irregular surfaces**
 - The thickness of the air cushion will determine manufacturing tolerances for making the table surface and underside of the MockSat flat.

\[Re = \frac{\rho u L}{\mu} \rightarrow \frac{\rho_{\text{air}} \left(\frac{2m_{\text{MS}} g}{\sqrt{\rho_{\text{air}} A_{\text{MS}}}} \right) t_{\text{table}}}{\mu_{\text{air}}} \text{ for } t_{\text{table}} = \frac{1}{2}” \]

\[L_{h,\text{laminar}} = .05(Re)d_{\text{hole}} \approx 37.5” \text{ for } d_{\text{hole}} = \frac{1}{32}” \]
Baseline Design – TestTable

Functional Requirement: The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.

Investigation of potential losses:

• Boundary layer formation
 o The hydrodynamic entry length $L_r \equiv 37.5''$ is much greater than the thickest table material being considered (1/2" polycarbonate plastic).
 o Therefore the flow can be assumed to be uniform.

• MockSat cg location
 o A couple moment will be introduced if the cg of the MockSat is not positioned over the geometric center of the MockSat baseplate.
 o This will cause the MockSat to move in the direction of the cg displacement.
 o Bounding translation resolves this issue.

• Irregular surfaces
 o The thickness of the air cushion will determine manufacturing tolerances for making the table surface and underside of the MockSat flat.

\[
\begin{align*}
\sum F_x & \rightarrow 0 \\
\sum F_z & \rightarrow qA_{MS} = m_{MS}g \\
\sum M_{cg} & \rightarrow m_{MS}g(\Delta x) \\
\sum F_x & \rightarrow qA_{MS} \sin \phi = m_{MS}a_x \\
\sum F_z & \rightarrow qA_{MS} \cos \phi = m_{MS}g \\
\sum M_{cg} & \rightarrow 0
\end{align*}
\]
Baseline Design – TestTable

Functional Requirement: The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.

Investigation of potential losses:

• Boundary layer formation
 o The hydrodynamic entry length \(L_h \approx 37.5" \) is much greater than the thickest table material being considered (1/2 " polycarbonate plastic).
 o Therefore the flow can be assumed to be uniform.

• MockSat cg location
 o A couple moment will be introduced if the cg of the MockSat is not positioned over the geometric center of the MockSat baseplate.
 o This will cause the MockSat to move in the direction of the cg displacement.
 o Bounding translation resolves this issue.

• Irregular surfaces
 o The thickness of the air cushion will determine manufacturing tolerances for making the table surface and underside of the MockSat flat.
Current MockSat Structural Design

- Total Mass = 4.2194986 kilograms
- Moment of Inertia about axis of rotation = 0.0218676 kg*m²
- Structure and Baseplate Material = AL 6061, density = 2.7 g/cm³
- Reaction Wheel Material = Brass, density = 8.4 g/cm³
- Bearing Material = Stainless Steel, density = 7.7 g/cm³
Baseline Design – Fault Injection & Management System: Overview

- In order to recover from faults, use redundant components to enable switching upon fault detection

Using two reaction wheels, one for redundancy to replicate Honeywell HR-18 reaction wheels

Using three digital imagers, one for redundancy to replicate Sodern HYDRA Star Tracker
CPE – Fault Injection and Management System: Actuators

\[\tau_{net} = \text{Net torque on reaction wheel} \]
\[\tau_c = \text{Commanded torque} \]
\[\tau_f = \text{Torque due to friction, nominal} \]
\[I_\omega = \text{Reaction wheel moment of inertia} \]
\[\alpha_\omega = \text{Reaction wheel angular acceleration} \]

\[\tau_{net} = \tau_c - \tau_f = I_\omega \alpha_\omega \]
\[\tau_f = f(\omega) \]
CPE – Fault Injection and Management System: Actuator Injection

- Nominal reaction wheel dynamics:
 \[
 \dot{\omega} = \int \frac{1}{I} (\tau_c - f(\omega))
 \]

- With forcing function:
 \[
 \hat{f}(\omega) = \text{Friction injection function}
 \]
 \[
 \dot{\omega} = \int \frac{1}{I} (\tau_c - (-f(\omega) - \hat{f}(\omega)) - f(\omega))
 \]

- The modified wheel speed due to the fault injection will be read by the fault management system as if it is the actual actuation of the system in response to the commanded torque.
CPE – Fault Injection and Management System: Characterizing Reaction Wheel Friction

- Friction in reaction wheels is combination of Viscous, Coulomb, with some initial Strubeck friction near angular velocities of zero

CPE – Fault Injection and Management System: Reaction Wheel Friction Failure

- Hard failures in reaction wheels are caused by an increase in Coulomb friction.

CPE – Fault Injection and Management System: Reaction Wheel Friction Failure

- Actual on-orbit data of failing reaction wheel
- Hard failure occurs at 5 mN-m above nominal, with nominal static friction of 0.85 mN-m
- Use this scaling for fault detection threshold in our system.

Left: Nominal Friction Data. Right: Increase in Coulomb friction causing hard failure

Fault management has access to commanded torque as well as reaction wheel angular velocity at discrete time steps. Calculate angular acceleration of the wheel by:

$$\hat{\alpha}_\omega = \frac{\Delta \omega}{\Delta t}$$

Then, calculate the system friction by:

$$\hat{T}_f = \tau_c - I_\omega \hat{\alpha}_\omega$$

This is then compared versus a threshold friction torque of 4 times the nominal static friction torque present in the reaction wheel.

If the system friction calculated by fault management is above this threshold value, characterize as a fault.
Used data from ASEN 3200 to examine nominal friction in this system.

- Constant commanded torque of 0.5 N\-m
- Data file contained time stamps every 0.1 s with commanded torque and wheel speed.

From this data, the friction torque present as a function of angular velocity was calculated.

Then, a linear fit of this data was made to determine an approximate nominal friction torque as a function of angular velocity.
CPE – Fault Injection and Management System: Analyzing 3200 Reaction Wheels

• Triggering a fault – Example using ASEN 3200 Spin Module data
In order to switch from one reaction wheel to another, the frictional torque of reaction wheel 1 must be classified as it will be a disturbance torque in the system.

Reaction wheel switch does not need to be bumpless. For the purpose of this project a longer recovery is sufficient.
CPE – Fault Injection and Management System: Sensors

GOES-16 also uses redundant SSIRUs containing hemispherical resonator gyros (shown in the figure below), however in 16 million hours of use one has never failed. [2]

- "The three-head SODERN Hydra Star Tracker is used for attitude measurements, with two heads operating continuously and one serving as a cold spare." [1]
- Star measurements from the multiple heads are combined within the star tracker software to produce a “fused” attitude estimate from the 2 optical heads. [1]
- “Ground processing of the sequence telemetry simply compares the attitude based upon IMU gyro propagation to the attitude from the star tracker, and computes an estimate of the alignment errors from that data. Alignment corrections are then uplinked to the spacecraft." [1]
Fault Injection and Management System: Sensors

Subtle example of hot pixels

Extreme example of hot pixels
CPE – Fault Injection and Management System: Sensors

- "Hot pixels are pixels with excessive charge compared to the surrounding pixels." [3]

- Hot pixels show up when camera sensor gets hot during long exposure. [4]

- Energetic particles impact charged-coupled device producing hot pixels. [4]
Fault Injection and Management System: Sensors

- Fault is recreated by manipulating output sensory data
- θ from model, fine sensor, and coarse sensor are compared
- From comparison, fault in fine sensor or coarse sensor is identified and classified
- Data from faulted sensor ignored and responsibilities shifted to redundant sensor
ADCS: Station Keeping

Functional Requirement 3:

• *The MockSat shall have the ability to maintain a controlled attitude relative to a point of reference within ± 2.5 degrees*

• Purpose of station keeping is to limit translation, focus on rotation dynamics

• Need to keep friction low between bearing and MockSat, maintain rotational dynamics

Rod inserted into bearing
CPE – Fault Injection and Management System: Sensors

Fine Attitude Sensor Field of View \([10^\circ, 25^\circ]\)

\[w = 2r \tan \left(\frac{\theta}{2} \right) \]

\[L \equiv \frac{\text{meters}}{\text{pixel}} \]

With 640 pixels wide and \(\theta = 21^\circ\):

We would need 178 pixels to view a standard light bulb with a width of 60 mm.
Attitude Control: Motors

- 3 mNm step requirement
- Worst case scenario
- Well within tolerances
- VERY conservative
- Options for smaller torque/speed operational ranges
Attitude Control: Motors

- Maxon Motors USA
- Stronger option
- EC brushless
- 6,9,12,24 V
- 5W
- 2-5 mNm or 5-10 mNm rated
- Price: 80-220 USD
- 200 N static axial shaft load
- Hall sensors for speed control
Attitude Control: Motors

- Maxon Motors USA
- Finer attitude control
- EC brushless
- 4 V
- 0.2 W
- 0.25 mNm rated
- Price: 200 USD
- 20 N static axial shaft load
- Hall sensors for speed control
Attitude Control: Motor Controller

- Maxon Motors USA
- EC motors up to 48W
- Hall sensor (EC motor)
- Open & closed loop control
- 46.8 KHz PWM clock
- 5mV resolution
- 8-24 V operating voltage
- Price point: 50 USD
Attitude Control: Sensors

Pointing Windows:

\[w = 2r \tan \left(\frac{\theta}{2} \right) \]

Target Size:

Target Variable \(X_t \)
Fine Sensor Variable \(X_f \)
Coarse Sensor Variable \(X_c \)

Nomenclature

\[L \equiv \frac{\text{meters}}{\text{pixel}} \]

\[L_{\text{min}} = 0.0027 \frac{m}{\text{pix}} \]

Assume at least 10 pixels across target window

Minimum meter per pixel ratio

\[w_t \in [0.0266, 0.0509] \ m \]
\[w_f \in [0.0533, 0.2587] \ m \]
\[w_c \in [0.2219, 0.8953] \ m \]
Attitude Control: Sensors - Pixy Specs

Pixy CMUcam5

- 204 dual core MHz Processor
- UART serial, SPI, I2C, USB Buses
- Digital and Analog Output
- 640x480 8-bit grayscale at 50 FPS
Attitude Control: Sensors - Pixy Alternative

OpenMV M7 Camera

- 216 MHz Processor
- 54 Mbs SPI Bus
- I2C, Can, and TX/RX Buses
- Built in ADC/DAC
- 640x480 8-bit grayscale at 30 FPS
Microcontroller

Atmel SAM E70
• Atmel Studio
• Price: 40 USD
• Scripted Programming
• Familiar among team

NI myRIO-1900
• NI LabVIEW
• Price: 535 USD
• Graphical programming
• Steeper Learning Curve
Final MCU considerations

<table>
<thead>
<tr>
<th>MCU</th>
<th>CLK</th>
<th>GPIO</th>
<th>ADC</th>
<th>DAC</th>
<th>RAM</th>
<th>ROM</th>
<th>Peripherals</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmel SAM E70</td>
<td>300 MHz</td>
<td>144</td>
<td>24 ch. 12-bit 2 Msp</td>
<td>2 ch. 12-bit 1 Msp/ch</td>
<td>384kB</td>
<td>2 MB</td>
<td>SPI, UART/USART, I2C, USB</td>
<td>32 bit FPU, Comparator</td>
</tr>
<tr>
<td>NI myRIO-1900</td>
<td>667 MHz</td>
<td>24</td>
<td>500 kS/s, 12 bit</td>
<td>345 kS/s, 12 bit</td>
<td>256 MB DDR3</td>
<td>512 MB</td>
<td>SPI, PWM, Quadrature, I2C, UART</td>
<td>FPGA, Dual core, Wireless capable</td>
</tr>
</tbody>
</table>
-3 dB cutoff frequency is 0.04 Hz
- All components of the ADCS are well within bandwidth of the controller
 - ATMEL SAM E70 – 300 Mhz
 - Maxon motor controller – 100 kHz
 - Pixy – 10 Hz – 2.5 Decades above Bandwidth
Requirements Flow-down

1. The TestTable shall provide for 3DOF dynamics in a reduced-friction environment.
 1.1. The TestTable shall allow for two degrees of freedom in translation and one degree of freedom in rotation.
 1.1.1. The TestTable shall allow for simultaneous, unrestricted translation along two orthogonal axes within a designated portion of the plane of the TestTable surface.
 1.1.2. The TestTable shall allow for unrestricted rotation of the MockSat about its axis normal to the plane of the TestTable surface.
 1.2. The TestTable shall support the weight of the MockSat whilst providing for a reduced-friction surface.
 1.2.1. The maximum frictional force between the MockSat and the TestTable during operation shall be no greater than 1% of the maximum frictional force between a block of a representative MockSat material (i.e. aluminum) of a similar mass as the MockSat and a plate of a representative TestTable material (i.e. polycarbonate).
 1.3. The TestTable shall comply with OSHA Two-Man Lift criteria.
 1.3.1. The TestTable shall occupy a volume no greater than 72 x 72 x 28 inches.
 1.3.2. The TestTable shall weigh no more than 100 pounds.
2. The MockSat shall be equipped with an attitude determination and control system (ADCS) that replicates the 0.04 Hz bandwidth response of the GOES-16 satellite to within 10%.
 2.1. The MockSat shall be equipped with two reaction wheels for rotational control.
 2.1.1. The MockSat reaction wheels shall be scaled/tuned to simulate the response of GOES-16 about its max MOI.
 2.1.2. The MockSat reaction wheels shall be capable of responding to user fault injection.
 2.2. MockSat shall have a sensor to provide rotational data.
3. The MockSat shall have the ability to maintain a controlled attitude relative to a point of reference within ±2.5°.
 3.1. The MockSat shall be equipped with a sensor array to determine its orientation.
 3.1.1. The MockSat shall have a coarse sensor to provide a wide field of view and get fine sensor in range.
 3.1.2. The MockSat shall have a fine sensor to determine attitude with an accuracy of ±2.5°.
 3.1.3. The MockSat shall maintain pointing accuracy for no less than 30 seconds.
Requirements Flow-down

4. The system shall have the ability to introduce a fatal operating fault in either the MockSat’s primary reaction wheel, the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time).

4.1. The fault injection system shall not cause permanent damage to the ADCS system

4.2. The fault injection system shall wait for user command from the ground station to initiate fault injection.

4.2.1. The ground station unit shall allow the user to initiate a choice of reaction wheel fault, coarse sensor fault, or fine sensor fault.

4.2.1.1. The fault injection system shall create a sensed increase in friction torque of 5.5 times the natural coulomb friction in the reaction wheel.

4.2.1.1.1. The fault shall be injected as a feedback loop living on the microcontroller.

4.2.1.2. The coarse and fine sensor shall be injected with a fault capable of introducing an error as a position bias.

4.2.2. The ground station unit shall be able to send a command for fault initiation to the fault injection system.

4.3. The fault injection system shall be able to be deactivated by user command.

4.3.1. The ground station unit shall allow the user to deactivate the fault injection system

4.3.2. The ground station unit shall be able to send a command to deactivate the fault injection system.
Requirements Flow-down

5. The MockSat flight control software shall recover from a fatal operating fault in either the MockSat’s primary reaction wheel, the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time) by regaining normal operation.

5.1. There shall exist in software a fault management system to handle fault detection and identification.

5.1.1. The fault management system shall have the ability to detect a fatal operating fault from the reaction wheel.

5.1.2. The fault management system shall have the ability to detect a fatal operating fault from the coarse attitude sensor.

5.1.3. The fault management system shall have the ability to detect a fatal operating fault from the fine attitude sensor.

5.1.4. The fault management system shall be agnostic of the fault injection system existence.

5.1.5. The fault management system shall classify the location of the fault (either reaction wheel, coarse attitude sensor, or fine attitude sensor).

5.1.6. The fault management system shall recover nominal operation of the satellite in the presence of a fault.

5.1.6.1. The fault management system shall be able to communicate with the power regulation board.

5.1.6.2. The fault management system shall be able to control power to the primary reaction wheel.

5.1.6.3. The fault management system shall be able to control power to the secondary reaction wheel.

5.1.6.4. The fault management system shall be able to switch sensing to a secondary attitude sensor.

5.1.6. The fault management system shall alert the ground station operator that a fatal fault has occurred.

5.1.6.1. The fault management system shall be able to alert the ground station operator to the type of fault that has occurred.

5.1.6.2. The fault management system shall be able to communicate with the Ground Station Unit.
References

 http://www.stsci.edu/hst/nicmos/performance/anomalies/hotcoldpix.html