Spring Final Review

Lockheed Martin
LLAMAS Team

satelLite ADCS fault MAnagement System

Dalton Anderson Andrew Levandoski Kristyn Sample
Daniel Greer Andrew Mezich Corwin Sheahan
Ben Hutchinson Samuel O’Donnell Pol Sieira

Kent Lee Zach Reynolds Zack Toelkes

Project Overview

Motivation

Single fault tolerance:

1. System should continue
uninterrupted during repair.

2. Fault should be classified
optimize the response strategy.

3. Faulty component should be
isolated to reduce propagation.

4. No single failure should disable
the system.

Separating the ADCS software
from fault management software
increases modularity of fault

testing, allowing for simpler and
less costly design.

www.nesdis.hoaa.gov/GOE9'—R—Series—5atellites

Mission Objective

* The team will develop a fault
management test bed which allows for
testing of fault management software by
fault injection into the attitude
determination and control system (ADCS)
of a mock-satellite (MockSat).

* The MockSat will be representative of the
GOES-16 satellite, capable of relaying
telemetry and fault data to a ground
station unit, allow user selection of faults,
and will be tested on a reduced-friction
TestTable.

Levels of Success

Level 1

Level 2

Level 3

TestTable

MockSat
Hardware

Fault Injection

Fault
Management

MockSat
Control

Comm/Data
Handling

Construct a TestTable to allow for 2D translation
dynamics with passive control, 1D rotation dynamics,
support weight of MockSat, stationary attitude reference

Power source, coarse orientation sensor, fine orientation
sensor, redundant reaction wheels, ADCS/fault injection
processor, data storage, 15 minute constant operating
time

Inject fatal operating fault into primary reaction wheel
after pre-determined time from testing start

Upon fault injection, the MockSat will recognize the
presence of the fault and enter a safe mode

Active planar rotational control with passive
translational control

Flight software and fault uploaded prior to testing,
telemetry data stored on-board MockSat, Ground Station
data analysis post-test

30 minute constant
operating time

Inject fatal operating
fault into fine sensor

Wired, real-time
telemetry and fault
injection

Moving attitude
reference, MockSat
attitude encoder

60 minute constant
operating time

Upon user command,
MockSat responds in a
way that maintains
operational integrity

Wireless, real-time
telemetry and fault
injection/management

Functional Requirements

The TestTable shall allow for two degrees of freedom in translation and one degree of

FR1 : e _ .
freedom in rotation in a low friction environment.
FRo The MockSat shall be equipped with an ADCS that replicates the 0.04 Hz bandwidth
response of the GOES-16 satellite to within +10%
R The MockSat shall have the ability to maintain a controlled attitude relative to a point of
3 reference within £2.5°
The system shall have the ability to introduce a fatal operating fault in either the
FR 4 MockSat’s primary reaction wheel or the fine orientation sensor (but not more than one
fault at a time).
The MockSat flight control software shall recover from a fatal operating fault in either the
FR 5 MockSat’s primary reaction wheel of the fine sensor (but not more than one fault at a

time).

Concept Of Operations (CONOPs)

* Test Initiation
* MockSat initializes and begins searching for target.

Ground Station Unit (GSU)

* Nominal Operation
* MockSat has acquired target and tracks motion to
within £2.5°.
* Faulted
* Fault Injection has introduced a fault that inhibits
the MockSat from tracking the target.
* Management of Fault

* Fault Management has detected and identified the
fault and relayed that information to the Ground
Station Unit.

* MockSat is in a faulted state and not maintaining
any attitude.

* Initiation of Recovery Sequence
* MockSat has regained attitude control and is
awaiting command to resume searching.
* Recovering
* MockSat has received command to resume
searching for target.
* Return to Nominal Operation

. Tarﬁet has re- acquired the target and is tracking to
within £2.5°. CONOPS (accelerated speed)

Design Description

Functional Block Diagram (FBD)

o o s e ===

: TestTable Legend
Stathn Sensory Data

N MockSat Commands —+

e Regulated Power
Tranc':elver e Process Flow
Actuator Array

Ground

—>
System Boundary ss =

Reaction Motor Reaction _10v

Wheel <€«> Controller(s) €«<>» Wheel < Hardwired
(Primary) (Backup) | Wireless Telemetry

GUI Subsystem
(Display & f Microcontroller \ i

Command) ; Ground

_ '_> Fault Injection—3 | ¢ - " Station Power

y Software - Components
A Flight Peripheral P .

110

Software Fault f~10Hz FM Hardware | Software

|
1
1
1
1
1
1
1
1
1
1
120V Management > " | Transceiver , :
\ S 1
I
1
1
1
i
1
1
1
1
I
1
I
I

Wall Software

Sensor Array
Fine Fine
Position Position
Sensor Sensor

Target Power Supply SV
Actuator Unit

‘ Power ; | Regulated Avionics
Reference Battery —»Conditioning g

Reference | Encoder
Source

\oltages

"Frictionless"
Environment

Arduino

Design Description — TestTable

Operation is similar to an air hockey table E—

keeping
apparatus

The majority of the TestTable is heritage
equipment from the TracSAT senior
project, with the following modifications:

« Half of the TestTable surface has Target reference
been taped-over.

Lifting capacity: ~glb — ~241b.
* Atable leveling mechanism has

been added.
* Station-keeping is accomplished e
via a removable bearing-block and — ‘ o
rigid shaft apparatus. | Leveling mechanism

* The target reference provides an

object for the MockSat to track Target reference
'] j actuator
optically. Testing suite

| 12” I

10

MockSat Final Design

* Center of Mass:

* Fine tuning of center of mass for
better rotational dynamics

¢ 1DOF Rotation:
* One degree of rotational

freedom to track target
* Redundancy:

* Allows for mission continuation
after single failure

Fine Field Of View (FOV) = 0.05°/pixel
Coarse Field Of View (FOV) = 0.16°/pixel
* Tracking:

* Using hue based cameras with 0.05
degree per pixel

* Redundancy:
. _ * Allows for mission continuation
Total Weight 11.4 /bm

- after single failure
MOI about Axis of Rotation 188.6 /b*in? ¢ Communication:

* Using UART to relay data from
ground station to MockSat

Width 12 in * Avionics

* Controller for pointing and
switching of components

Height 5.9 in

11

Design Description — Pixy Operation

' : r
& PixyMon €® COM4 (Arduino/Genuino Uno)
File Action Help

; -a o~ 2
&V o

Starting...
Detected 1:
block 0:
Detected 1:
block 0:
Detected 1:
block 0:
Detected 1:
block 0:
Detected 1:
block 0:
Detected 1:
block 0:
Detected 1:
block 0:

V| Autoscroll

Pixy functions based upon a Output information details location and
hue detection algorithm size of the detected object relative to
the Pixy's internal coordinate frame

Design Description — Pixy Field of View

* Pixy outputis related to pixels, control law needs angular distance
* Need relationship between pixels and angular distance

ot
[a—

2tan<%c)]

» Degrees per pixel () can be determined by the following equation— ¥ = arctan ! —

Pixy is capable of utilizing

Oc / different lenses.
(v
. — Coarse Sensor
'\K) 0(; - 750
\ Y = 0.16 °/pixel
dy dy Fine Sensor

0 = 20°
9 = 0.05°/pixel

13

Degree per pixel

Design Description — Fault Injection (FI)

What is a fault?

* Anything that causes the mock-satellite to not meet the desired attitude to +2.5°

* An induced increase in friction in a reaction wheel, simulating a bad bearing or failing reaction
wheel

* A constant bias in pointing angle introduced in the fine attitude determination sensor, causing a
systematic error in the pointing of the satellite

14

Design Description — Fault Injection (FI)

Reaction
Desired Plant Reference
Position II I "":‘]’:"nf:““" Actuator (MockSat) Position

Digital Camera q Fine Digital
Fault Injection X Camera
a
O
o
} S
E Coarse
Digital
Camera
Reaction Wheel Digital Camera (Pixy)

* An additional friction term is subtracted from the * Takes AB calculated from the number of pixels between
commanded torque from the PID control to represent the reference target centroid and the center of the camera
increase friction in the reaction wheel FOV*

* Faulted torque is then converted to a PWM signal and sent « 8° is added to AB to lie to the control law about the

to motor controller position of the reference target

* This will cause a constant offset in pointing accuracy

*center of camera FOV is lined up with MockSat pointing
centerline

)

Design Description — Fault Management (FM)

- - = 1
main_Script.ino faultManagement.c
es
@’ " e

There are 6 states of operation

1. Nominal nol yes l
2. Faulted Fault check 3
- . . wheel (RW cdeofR:ecoverto
3. Waiting for Ground Station Unit . alse
Fault check ey & ISRECOVEring dam
(el it chec l

4. Initiate Recovery Sequence
5. Recovering
6. Recovered

Initiate
Recovery

Is fault e isFaulted to
true

detected?

* Inputs considered to identify state of nol
system:
* position of MockSat relative to target (from : el Set
isRecovering 2= 4 isRecovering

W J'
Set isRecovering

yes J' to true

multiple sensors)
* reaction wheel speed

to false

Shut off primary
C commanded tOquG no reaction wheel

control

Major Design Changes — MockSat Angular Position Encoder

What changed:

Changed from a 16 bit digital
encoder to a dual channel Gray
code encoder with 5oo pulses per
revolution.

Why:

The digital encoder communicated
over 16-bit SPI, which proved
difficult to integrate with the GSU's
LabVIEW software. The HEDS

encoder was still capable of the Old Encoder: New Encoder:
resolution needed to achieve FR 3. MPU 6000 HEDS 5505 Ao6
0.05° resolution 0.18° resolution

17

Major Design Changes — Reaction Wheels

What changed:

Reaction Wheel dimensions were modified to
increase moment of inertia (MOI).

Why:

This decision was made to try to reduce how
quickly the motors saturate.

This change decreases the angular
acceleration for a given torque, thus reducing
the time to saturation. This helped achieve the
level 3 testing time of an hour.

Old MOil: New MOI:
0.0035 gm? 0.047 gm?

18

Critical Project Elements

Critical Project Elements — Encoders

* Encoders are critical as they are the primary method for V&V for four out of five functional
requirements.

* Removed encoder from reference target actuator. Utilizing stepper motor data to determine
position.

* Encoder on MockSat changed since TRR due to communication compatibility issues.

o ofezeo o] =
I]

Deduce position
of the target
given the stepper
motor's step size
and the number
of steps taken

Compare encoder
data to target location
to derive pointing
accuracy

20

Critical Project Elements — Communications and Data
Handling

Communications is a critical element because it is required for analysis of test data and has proved to
be more difficult than expected

Internal communications from sensors to Arduino and Arduino to motor controllers were more
difficult than expected

* The use of SPI communications was foreign and time consuming

* Structuring communication to the motor controller to prevent unexpected disabling took many
trials of testing

Wireless communications used to isolate dynamics of MockSat and provide fault injection and
recovery commands

LabVIEW used to verify real-time data throughout tests and send commands to MockSat, as well as
save data for post-test analysis

21

Critical Project Elements — Software

* The ultimate goal of the project is the development of the FI/FM software
* Additional software facilitates the testing of the FI/FM software

* ADCS software to handle sensor inputs and command motors

* Communication protocols for wireless communications

* Software integration had a higher than expected time cost that delayed project
progress

» Software development allows for future flexibility for injecting and detecting new
faults

22

Test Overview and Results

Testing Environment

Preliminary Testing Procedure:

Fully charge LiPo battery
Level TestTable*: Adjust set screws on TestTable until
MockSat does not translate across table

* *Detailed leveling of TestTable in backup slides
Set up black backdrop to ensure Pixy cameras do not
pick up erroneous light sources
Set up Ground Station Unit*

* *Detailed Ground Station Unit set up in backup

slides

Power on MockSat and TestTable

Zero MockSat and LabView: Laser attached to reference
target arm, once MockSat begins tracking, laser lines up
with center line of all 3 Pixy cameras, "zero" button is
clicked on LabView

Tests conducted:

N oupw N

Pointing Accuracy Test

Bandwidth Response Test

Fault Injection Test: Fine Pixy Sensor
Fault Management Test: Fine Pixy Sensor
Fault Injection Test: Reaction Wheel
Fault Management Test: Reaction Wheel
PID Verification Test

24

TestTable Friction Quantification

Purpose:
Determine frictional losses due to TestTable and

station keeping apparatus for refinement of control
law

Requirement Validated:

DR 1.3.1: The frictional damping coefficient (p)
between the MockSat and the TestTable during
nominal operation shall be no greater than 1.5
Ibm-in-sec?

Expectation:
Determining “Frictional Damping Coefficient” value

Method*:

1.) Clear LabView

2.) Turn TestTable on and hold MockSat in place so it
does not rotate

3.) Perturb MockSat enough for multiple rotations to
ensue

4.) Allowed for MockSat to rotate until rotation in the
same direction stopped.

5.) Analysis of this data gave the exponential time
decay of the Mocksat's angular velocity.

*Ran the test g times in a row for consistency

25

TestTable Friction Quantification — Results

Results:

e u=s5.105lbm-in%-sec?, considerably
higher than anticipated

e Original predicted value was estimated
using higher angular velocities than
the MockSat operating regime

e Lower MockSat angular velocities
produce larger and much more
unpredictable coefficient values

TestTable Friction Tests

Importance:

e Does not satisfy DR1.3.1, p<1.5
lbm-in?-sec?

e Requirement was poorly defined using
data from outside our operational range . . .

e Proper value still necessary for control Biele)
system tuning

S

Wfit = 5.105 [lbm in®
it — 9- =

26

Model Validation — Motors

Purpose: Motor Validation

Determine if commanded torque from PID
controller is being applied by the motors

Method:
1.) Turn on the MockSat ADCS without turning on + 0 =6.34 deg
the air for the TestTable + 0 =5.38 deg
2.) Record the commanded torque and RW speed y 6 = 2.71 deg
3.) Compute the “commanded RW speed” and ' . - 0 =0.10 deg
compare results = e | .+ 0= -251deg
' : - 6 = —-3.45 deg
Results: 0 = —6.68 deg

Motors are delivering commanded torques to
within 2%.

What we are seeing: -1000
Known offset is inserted into model. MockSat
adjusted to offset and torques to correct position
are taken and compared to model data.

0 2 3
time [s]

27

Pointing Accuracy Test

Purpose:
* Determine pointing accuracy of the MockSat

and compare to project requirement

* Large and small perturbations enacted
on MockSat were done by physically rotating
the MockSat out of the fine sensor FOV so
coarse sensor took over

Requirements Validated:
FR 3: Ability to maintain controlled attitude
pointing within an accuracy of + 2.5°

Expectation:

* MockSat will track the reference target to
within the + 2.5° pointing window when
reference target is stationary

* The MockSat will be disturbed to outside of
the + 2.5° pointing accuracy and is expected to
regain nominal pointing accuracy

Method:

1.) MockSat is actively tracking stationary target

2.) Manually perturb* MockSat a small/large amount

3.) Wait for MockSat to actuate back until the target and
Pixy cameras are visually inline

4.) Confirm in LabView data that MockSat encoder data is
within + 2.5° of the target data. This is done by comparing
MockSat encoder data and target step command data**

*Large and small perturbations enacted on MockSat were
done by physically rotating the MockSat out of the fine
sensor FOV so coarse sensor took over

**Target step command data being outputted through
LabView is reading values of zero due to the fact that the
target is stationary for this test

Pointing Accuracy Test — Results

MockSat Pointing Accuracy Test
Results:
The pointing accuracy test shows manual
disturbances of the MockSat and the
regaining of pointing accuracy within +2.5°.

Importance:

* This satisfies FR 3 and gives a baseline for
future tests of fault injection and
management.

* We have to know how well the system
works in optimal conditions to
understand when the system is faulted.

Disturbance 1

o
j<P]
]
(=70}
o
<
[=19)
=)
=
g
@]
A
2
48]
09}
ad
[}
o
=

Disturbance 2

Bandwidth Response Test

Purpose:
Determine bandwidth response to verify it meets

customer functional requirement

Requirements Validated:
FR 2: ADCS replicates 0.04 Hz bandwidth response
of the GOES-16 satellite to within +10%

Expectation:
The MockSat’s should traverse 63.2% of any
perturbation in 3.98 seconds +10%.

Method:

1.) MockSat is actively tracking stationary target

2.) Physically rotated MockSat >8° to left *

3.) Let MockSat actuate back until visually the MockSat was inline
with the target

4.) Just as the pointing accuracy test, we compared the MockSat
encoder data with the target step command data and confirmed the
MockSat was within + 2.5°

: . 1 :
5.) Equation to measure bandwidth: fz,, = py Tau is measured

from time of maximum disturbance (>8° off center to 63.2% back to
zero line as defined in test plan)

*Multiple tests were done to confirm bandwidth response, physically
rotating the MockSat a certain amount was chosen arbitrarily as long
as the rotation amount resulted target being out of the FOV of the
fine sensors

30

Bandwidth Response Test — Results

Bandwidth Response Verification

Results: 1
A " Dl 0.042H
 Data for the same test now shows the ,,\ fi pr= 2
bandwidth of this pointing response. I

_ 1 _ 03¢
 The pointing angle and the time it takes fow, = g7 = 0.039H 2

to reach the desired angle are used to
determine the bandwidth, which was
found to meet our requirement of
0.04 Hz within £10%

L)
L)
.
)
.
L)
1

1
.

i
B
E
13
|
|
|
|
|
|

Importance:
Satisfying FR 2, 0.04 Hz within £10%

D
—
[=14]
-
<
[=10)
-
o
+—
g
or—
O
A
+2
48]
@9}
=4
Q
o
P

40
Time [s]

Purpose:
Demonstrate the ability to inject, detect, and recover

from a fault in the fine orientation sensor

Requirements Validated:

FR 4: System shall have the ability to introduce a
single fatal operating fault into the fine orientation
sensor

FR 5: MockSat control flight software shall recover
from a fatal operating fault into the fine orientation
sensor

Expectation:

Once the fault is injected into the fine FOV sensor,
the MockSat will demonstrate a shift from pointing
at the targets center to pointing about 8° away from
the target

After fault has been detected and mitigated by
switching to a secondary orientation sensor, the
MockSat will reacquire the target and return to
nominal pointing of +2.5°

FI/FM Test: Digital Camera (Pixy) Bias

Method*:

1.) MockSat is actively tracking stationary reference target
2.) Command is given from LabView to inject* bias of 8° into
primary fine sensor (Pixy) pointing angle

3.) Observe pointing angle in LabView increase to roughly 8°
away from stationary reference target position. The
MockSat, will attempt to actuate to the false position fed
into the control law

4.) Fault management will alert GSU of detection and type of
fault. Then, user gives command to recover.

5.) Fault management initiates recovery sequence and return
to nominal pointing angle is observed. Recovery is
accomplished by switching to a redundant fine sensor to
track the stationary reference target.

*Injection is done by taking the AB output by the Pixy and

adding a bias of 8° before feeding AB to the control law. This
is only done if commanded by GSU.

32

FI/FM Test: Digital Camera (Pixy) Bias — Results

Results:
* After fault injection was initiated via GSU

command, MockSat drifted to ~ 7°
outside of nominal pointing

Fault is detected by fault management
system and is allowed to fault for 5o
seconds

Fault is then mitigated by switching
control to a redundant fine orientation
sensor, and returns to nominal pointing
requirement of + 2.5°

Importance:

Verifies part of FR 4 (causes fatal
operating fault in fine orientation sensor)
Verifies part of FR 5 (regains nominal
operation after fatal operating fault in
fine orientation sensor)

o
<
[
oo
=
<
e
a
& e
+
=
o=
O
ol
+~
<
w2
~4
<
o
~

Pixy FI/FM Test

Fault is observed to
avoid false-positives

Time [s]

33

FI/FM Testing: Reaction Wheel Friction

Purpose:
Demonstrate the ability to inject, detect, and

recover from a fault in the primary reaction wheel

Requirements Validated:

FR 4: System shall have the ability to introduce
a single fatal operating fault into the primary
reaction wheel

FR 5: MockSat control flight software shall
recover from a fatal operating fault into the
primary reaction wheel

Expectation:

Once the fault is injected into the primary
reaction wheel, the MockSat will experience
uncontrolled motion, causing off-nominal
performance

After fault has been detected and mitigated,
the MockSat will reacquire the target and
return to nominal pointing of +2.5°

Method*:

1.) MockSat is actively tracking stationary reference target
2.) The system is allowed to nominally track within the +2.5°
for 40 seconds

3.) Once hitting the 40 second mark, a timed fault is injected
into the primary reaction wheel causing the MockSat to
behave unpredictably

4.) After faulting for 10 seconds, a timed recovery switches
command to the secondary reaction wheel

5.) The secondary reaction wheel actuates the MockSat back
within +2.5° pointing accuracy

6.) The pointing accuracy of the MockSat is monitored using
the encoder mounted to the station keeping shaft and saved
using Labview

*Note that detection of the reaction wheel fault was not

possible with current hardware. Recovery was instead
triggered on a timer (see step 4)

34

FI/FM Testing: Reaction Wheel Friction — Results
Results: Reaction Wheel FI/FM Test

* Unable to detect reaction wheel fault

* Increasing the friction torque caused the
MockSat to point ~85° off of reference

* Aftertimertriggers a command to
recover, MockSat control switches to
secondary reaction wheel and regains
nominal pointing of +2.5°

%
$ %
s
&

.,.-". Fault is observed to
avoid false-positives

Importance:

* Verifies part of FR 4 (causes fatal
operating fault in primary reaction
wheel)

* Verifies part of FR 5 (regains nominal
operation after fatal operating fault in
primary reaction wheel)

o
—
o0
-
<
20
OE
A4S
OE
O
aw
+~
e,
N
-4
)
=

Fault Injected
Fault Mitigated

35

FM Test: Unable to Accurately Detect Reaction Wheel Friction
Reaction Wheel Speed vs Time for A® = 2.71°

Method: 500

1.) Fixed chkSat at po.mtln.g of ~2.7° Y P—

off ta I’QEt without running air table Predicted by Commanded Torque
(MockSat fixed) z

rad/

FaN
(@)
o

2.) Recorded commanded control
torque, reaction wheel speed, and time

440

Results:

* Noise in reaction wheel speeds from
Hall effect sensors of approximately
+ 6 rad/s (std. dev. from centerline of
3.0 rad/s)

* Prevents accurate differentiation to
find instantaneous angular
acceleration and torque

* Would need more accurate
measurement device to measure | 15)
applied torque or reaction wheel Time (s)
speed

w
o
o

I—G
D
o»
o

w2

r—
P,
)

-

=
=
Q

e

+
Q
4y

o

FM Test: Unable to Accurately Detect Reaction Wheel Friction
RW Torque vs Time for A® = 2.71°

—MethOd: » Measured Torque
1.) Used numerical differentiation of wess Commanded Torque
reaction wheel speed to determine
angular acceleration

2.) Multiplied angular acceleration by
MOI to determine measured torque

Results:

* Thereis no way to accurately predict
applied torque using measured
reaction speeds from Hall effect
sensors, due to noise

f . . Avg. Commandéd Torque: 1.33 mNm
* Prevents us from comparing sensed ’ Avg. Measured Torque: 1.283650 mNm

and expected friction torque in order Std. Dev. Measured Torque: 80.52 mNm-
to detect a fault

1.5
Time (s)

37

Control Model Validation

Results: Predicted vs Experimental MS Response
Modeled and experimental behavior is very
similar

Problem:

Major discrepancy between model gains and
those tuned experimentally

9(‘11)(1 - Hnulf """" “Oex

Model Experimental

0.0056

5.2724E-6
1.3279

Potential Explanation:

* Temporal unit in experimental control law
integration

* PID discretization error

* Improper characterization of friction near .
zero RPM (operational speeds) ‘ 200 100 600 200

* Unmodeled effects: table bias, air
disturbance, etc.

time [s]

Requirements Met/Unmet

39

Systems Engineering

Systems Engineering

Initial Trade Studies:

* Testing Platform
In accordance DR 1.1.
Crucial in obtaining a frictionless surface for
rotation of MockSat.
¢ Communications and Data Handling
Pivotal to ensuring component integration.

* Actuators
In accordance DR 2.1.
What will drive the rotation of the MockSat to
obtain pointing accuracy.
e Sensors
In accordance DR 3.1.1, 3.2.1.

What MockSat uses to determine target location
and relay position change data.

Station Keeping
In accordance DR 1.2.1.
Identifying the most efficient way to ensure the
movement of MockSat is rotational.

Controls
In accordance with FR 2, 3.
Allows MockSat slew to and settle on target within the
bounds of .04 Hz

FI/FM
In accordance FR 4.
Identifies architecture of the software for injecting and
managing the fault. (method)

Encoder
In accordance DR 2.2
What ensures we are pointing at the target to validate all
data

41

Systems Engineering

* Objectives laid out by customer was to design a testbed to perform fault management testing of a
satellite representative of the GOES-16 satellite, specifically the bandwidth response of 0.04 Hz

* FR 2 was derived from customer objective

* The remaining functional requirements were derived internally to satisfy customer objectives
* FR1-to provide environment for testing and allow for future iterations on current design
* FR 3-to demonstrate working ADCS system that can be faulted
* FR 4 & 5—to demonstrate fault management testbed works

42

Systems Engineering

Functional Requirement 1 - Test Table:

* TestTable was necessary to provide a low friction environment in order to isolate system dynamics
* TestTable provided method for station keeping, mimicking the actual operation of GOES-16

* TestTable was portable, complying with OSHA Two-Man Lift Criteria

Functional Requirement 2 - 0.04 Hz Bandwidth Response:
* MockSat ADCS was required to replicate GOES-16 control system performance
* ADCS system utilized redundant reaction wheels to actuate pointing commands

Functional Requirement 3 - + 2.5° Pointing Accuracy:
* MockSat was equipped with a single coarse sensor, and redundant fine sensors
* Pointing accuracy was used to verify recovery from injected faults

43

Systems Engineering

Functional Requirement 4 - Fault Injection:

* The system had the ability to inject fatal operating faults into both the fine sensor and the primary
reaction wheel

* Fine sensor was faulted by introducing a bias into the data stream

* Reaction wheel was faulted by simulating an induced friction of 5.5 times the natural coulomb
friction in the motor

Functional Requirement 5 - Fault Management:

* Fault management software had the ability to detect off nominal system performance

* After detecting fault, management software was able to switch to the redundant component
allowing the system to return to nominal performance

bt

Systems Engineering - Risk

Original 3 major risks:

Overall good assessment of
the types of risks predicted in
the final stages. All three were
a fight to the end.

Other than ADCS, the other
risks should have been moved
to a higher severity to drive a
more extensive mitigation
plan.

* Main impact would allow for
a padded timeline for
integrating components.

For risk mitigation originally
predicted see backup slides

Risk Matrix — Mitigated Risks

Very Likely

Likely

Possible

Unlikely

Very
Unlikely

Negligible

Minor

Moderate

Significant

Severe

Severity

1. Lack of torque resolution

2. Fault Management Implementation

3. ADCS Integration

Initial risk w/mitigation analysis

45

Systems Engineering - Risk

Plan: Proper motor selection,
accurate torque
characterization.

Evaluation: Selection and
characterization done well, due
to risk mitigation.

: Excess
trouble came from needing
large torques at small, precise
increments. Also adjustments
to RRW moment of inertia
delayed testing timeline.

Plan: Create a fault management
architecture that attempts to solve
the modularity aspect.

Evaluation: Biggest issue with
faults came from a lack of time
more then code modularity.

: Being able to
insert the fault software and spend
the time needed to work out the
kinks in line with the master code
file. Integration time is biggest
factor, everything else can be
worked around

Plan: Careful system integration and
understanding of communication
protocols.

Evaluation: Component
communication was the biggest issue
presented in the project.

: Ensuring the similar
communication types and sizes from
data sheets should be an added
forethought when selecting
components.

Systems Engineering — Lessons Learned

1. Getonthe same page!
* Every step of the way relate data between subgroups so changes can be related across all components.

2. Putinthe engineering analysis.
* Model the environment the part will be subjected to and the tolerances needed to thrive.
* Double check with other people to ensure nothing is left out and the environment is valid.

3. Getthe groundwork done.
* Each part needs to be characterized properly, to include data packages for output analysis. Tinkering
with component should not only be accepted but highly encouraged.
4. Allow for 3x the tolerances you expect.
* Allthe analysis in the world doesn’t prepare for real time testing and strains from other systems.
* Creating tolerance margin gives flexibility in other changes to system that may effect each component
differently
5. Getitinto system integration as soon as possible.

* Where everything gets worked out, just requires time and diligence, be flexible.
47

Project Management

Project Management — Lessons Learned

* Everything will take longer than anticipated
« "2m5" Rule: should use this to overestimate the time needed based on
experience
* Communication is important in every aspect of development
* Between customer and team to develop project requirements and progress
* Between subsystems to ensure compatibility
* Between team members to foster efficient progress

49

Project Management - Budget

*Discrepancies derive from:
*Purchase of extra
motors to test two
different families of
motors
*Borrowing
communication
components
*Identified at TRR to buy
down risk. Money spent on
additional:
* Motor Controllers
*Motor Adaptors
*PCBs

$4,000.00
$3,500.00
$3,000.00
$2,500.00
$2,000.00
$1,500.00
$1,000.00

$500.00

LLAMAS Budget

$1,692.75
\

$1.10686 $650.00

$3.660.23

0 Budgeted B Spent

Project Management —Work Hours

Industry cost analysis:
* Total Hours = 4,644.5
* Cost per Hour = $30.77

* Total Hour Cost = $142,941.5
* Materials Cost = $3,660.23

* Project Cost = $146,601.8

600

500

400

300

200

100

Total Hours per Week

Fall Week 4

Week 5

Week 6
Week 7
Week 8
Week g
Week 10

Week 11

Week 12

Week 13 (Fall Break)

Week 14

Week 15

Week 16

Spring Week 1

Week 2

Week 3
WA
Week 5

Week 6
Week 7

Week 8
Week g
Week 10

51

Week 11 (Spring Break)

Week 12

Week 13

LLA
MAS Team

52

Backup Slides

Design Description — Fault Injection

* What s a fault?

* A fault is anything that causes the mock-satellite to not meet the desired attitude. This can
result from bad data collection or malfunctions in hardware. In this system, there are two
simulated faults: One is an induced increase in friction in a reaction wheel, simulating a bad
bearing or failing reaction wheel. Second is a constant bias in pointing angle introduced in an
attitude determination sensor, making the satellite point away from the desired direction.

* Fault Injection
e Reaction Wheel Fault

o Reaction wheels operate by commanding a torque to reach a desired pointing angle.
This known torque is then fed to the motor with an additional commanded friction
torque via fault injection.

* Pixy Fault

o Pixy data relays position of the reference target. Fault injection forces a constant bias

of this position and causes the MockSat to consistently lead or follow the reference
target.

54

Test Procedure

55

Leveling

1.) Move TestTable to desired location where testing will take place and support TestTable wood
block so it doesnt move

2.) Use Iphone level feature and adjust table set screws to achieve rough level approximation
3.) Ensure MockSat is disconnected from station keeping apparatus

4.)h'l_'urnC<|)n air supply and observe direction MockSat translates since exact leveling has not been
achieve

5.) Adjust set screws again till MockSat remains in position for no less than 5 seconds (does not
rotate/translate on TestTable)

6.) Reintegrate MockSat with station keeping apparatus

7.) Use acrylic spacers to set distance between MockSat and bearing block which ensures the
two are parallel which ensures the rod is perpendicular to the MockSat bearing block

8.) Tighten station keeping apparatus down
9.) Connect encoder

Ground station (Hardware)

1.) Plug MYRIO into power and computer USB
2.) Plug breadboard into channel A of the MYRIO
3.) Make following connections:

 Arduino TX into breadboard RX

Arduino RX into breadboard TX

Ground Arduino to ground breadboard

Channel A on encoder to DIO11 on breadboard

Channel B on encoder to DIO12 on breadboard

Ground on encoder and breadboard

Arduino digital pin 2 to brown wire on ribbon cable to stepper motor
Arduino digital pin 3 to red wire of the same ribbon cable

4.) Plug 34-pin ribbon cable from XBee to channel B of MYRIO
5.) Plug stepper motor into power supply (24V)

57

Ground station (Software)

* 1.) Press "do nothing" on starting wizard after MYRIO is plugged in
* 2.) Open up "NI LabView 32-bit" application

e 3.) Click on file name "LLAMAS GROUND STATION.lvproj"

* 4.) In explorer window: right click on the MYRIO and press connect
e 5.) Click "+" and then click on "LLAMAS GROUND STATION"

* 6.) Run VI using arrow in top left

* 7.) Input data

TestTable Friction Quantification: Results

Results:

e p=s5.105lbm-in2-sec-1, considerably
higher than anticipated

e Original predicted value was estimated
using higher angular velocities than
the MockSat operating regime

e Lower MockSat angular velocities produce
larger and much
more unpredictable coefficient values

Importance:
e SatisfiesFR1, p<1.5lbm-in2-sec-1
e Value necessary for control system tuning

TestTable Friction Tests

time (s)

Triall
Trial2
Trial3
Trail4
Fit

Reaction Wheel Torque Test

Reaction Wheel Speed vs Time for A©= -2.51 deg Reaction Wheel Torque vs Time for A©= -2.51 deg

Measured * Measured Torque
Predicted by Commanded Torque Commanded Torque

%)
——
Ee]
@©
-
go]
@
®
a
wn
©
®
=
c
o
—
5}
©
15}
o

Avg. Commanded Torque: -1.23 mNm
Avg. Measured Torque: -1.001817 mNm
Std. Dev. Measured Torque: 103.29 nNm

1.5 2 25 3
Time (s)

Reaction Wheel Torque Test

Reaction Wheel Speed vs Time for A©= -3.45 deg Reaction Wheel Torque vs Time for A©= -3.45 deg

Measured * Measured Torque
Predicted by Commanded Torque Commanded Torque

@
——
©
©
| =
S—
©
[«}]
(5]
Q.
n
©
[«}]
.g
C
S
o
(o]
©
5]
@

Avg. Commanded Torque: -1.69 mNm
Avg. Measured Torque: -1.487326 mNm
Std. Dev. Measured Torque: 96.25 nNm

1 1 1 1

15 2 25 3
Time (s)

Reaction Wheel Torque Test

Reaction Wheel Speed vs Time for A©= 5.38 deg Reaction Wheel Torque vs Time for A©= 5.38 deg

Measured * Measured Torque
Predicted by Commanded Torque Commanded Torque

)
——
ge)
@©
-
geo)
5]
5]
a
wn
©
5]
=
c
o
.
O
@©
5]
04

Avg. Commanded Torque: 2.64 mNm
Avg. Measured Torque: 2.546288 mNm
Std. Dev. Measured Torque: 123.36 nNm

(=2}
wn
o

62

Reaction Wheel Torque Test

Reaction Wheel Speed vs Time for A©= 6.34 deg Reaction Wheel Torque vs Time for A©= 6.34 deg

Measured * Measured Torque
Predicted by Commanded Torque Commanded Torque

_—
%)
S
Eo]
©
—
po]
@
@
Q.
w
=
®
=
c
o
'
5}
©
15}
o

Avg. Commanded Torque: 3.10 mNm
Avg. Measured Torque: 2.980497 mNm
Std. Dev. Measured Torque: 117.84 nNm

1 1 1

1.5 2 25
Time (s)

Reaction Wheel Torque Test

Reaction Wheel Speed vs Time for A©= -6.68 deg Reaction Wheel Torque vs Time for A©= -6.68 deg

Measured Measured Torque
Predicted by Commanded Torque Commanded Torque

_—
%)
S
ge)
©
-
g
@
@
a
n
©
®
=
c
o
et
O
©
o5}
(04

Avg. Commanded Torque: -3.28 mNm
Avg. Measured Torque: -3.086598 mNm
Std. Dev. Measured Torque: 114.38 nNm

1 1 1 1

15 2 25 3
Time (s)

Reaction Wheel Torque Test

Reaction Wheel Speed vs Time for A©= 0.10 deg

Measured
Predicted by Commanded Torque

)
——
go)
©
-
geo)
@
®
a
n
©
®
S
c
o
D
&}
©
®
[0

Reaction Wheel Torque vs Time for A©= 0.10 deg

Measured Torque
Commanded Torque

Avg. Commanded Torque: 0.05 mNm
Avg. Measured Torque: 0.319684 mNm
Std. Dev. Measured Torque: 102.41 nNm

1 1 1 1

15 2 25 3
Time (s)

Risk Assessment

Likelihood

Very Likely

Likely

Possible

Risk Matrix

Unlikely

Very Unlikely

Negligible

Minor

Moderate

Significant

Severe

Severity

1. Lack of torque resolution

2. Fault Management Implementation

3. ADCS Integration

66

Risk Assessment — Mitigation

Cause: Motors do not have Effect: Unable to provide
adequate torque resolution commanded torque to meet
pointing requirements

Risk Mitigation

Action: Proper motor ~ Success Criteria: Pointing
selection, accurate requirements satisfied

torque characterization New Risk Level:

Marginal

Risk Mode:
Technological

Risk Assessment — Mitigation

Cause: Tailoring a consistent Effect: Fault management system
specific response to a generalized does not work on different sensors
suite of hardware and actuators

Risk Mitigation

Action: Create afault Success Criteria: End up
management with a fault management

architecture that architecture that is
attempts to solve the applicable to other projects
modularity aspect

New Risk Level:
Marginal

Risk Mode:
Technological

Risk Assessment — Mitigation

Cause: Breakdown of Effect: ADCS loss of control
communication between any of the
ADCS components

Risk Mitigation

Action: Careful system Success Criteria: ADCS Old Risk Level:
integration and shares and responds to data Marginal

understanding of as anticipated
communication

protocols Risk Mode:
Technological

Risk Assessment — Post-Mitigation

Likelihood

Very Likely

Likely

Possible

Risk Matrix

Unlikely

Very Unlikely

Negligible

Minor

Moderate

Significant

Severe

Severity

1. Lack of torque resolution

2. Fault Management Implementation

3. ADCS Integration

70

Major Trade Studies

Major aspects of the project deemed most
important at the beginning of the project:

* TestTable

* Sensors
 Station Keeping
* MCU

The TestTable and Station Keeping were critical as
they influenced the conditions that the system
would operate in. The sensors would determine
how accurately the MockSat would perform and
what kind of faults could be injected. The MCU is
responsible for ensuring that all the software
required for MockSat operation completes in
time.

71

Systems Engineering — Trades: TestTable

* FR1: The TestTable shall allow for two degrees of freedom in
translation and in one degree of freedom in rotation in a low friction

environment.

* Design Options: Air Table, Ice Table, Air Bearings

72

Systems Engineering — Trades: TestTable

Air Table

lce Table

Air Bearing

Supporting air provided by
table (no tanks on-board
MockSat)

Heritage, can be reused
from previous projects

Melting ice provides thin
layer of water to reduce
surface friction

COTS air bearings available

Testing area limited to table
Steady air and power supply
Must be leveled

MockSat electronics must be water-
resistant

Requires large sub-freezing storage
area

Testing must be conducted in cold
environment

Air provided by on-board HP air tanks
Requires extremely smooth surface
Minimum 3 air bearings necessary

Systems Engineering — Trades: TestTable

Criterion Weight | Air Ice Air

Table | Table | Bearing Score

Test Duration

Cost

Manufacturing Required

Heritage
Simplicity

Logistics

Criteria
Does not fulfill requirement
Barely fulfills requirement
Marginally fulfills requirement
Fulfills requirement

Fulfills requirement well

Most desirable

74

Systems Engineering — Trades: Station Keeping

Air Table

lce Table

Air Bearing

Supporting air provided by
table (no tanks on-board
MockSat)

Heritage, can be reused
from previous projects

Melting ice provides thin
layer of water to reduce
surface friction

COTS air bearings available

Testing area limited to table
Steady air and power supply
Must be leveled

MockSat electronics must be water-
resistant

Requires large sub-freezing storage
area

Testing must be conducted in cold
environment

Air provided by on-board HP air tanks
Requires extremely smooth surface
Minimum 3 air bearings necessary

Control Model (where does this go)

16 = —ﬂ;‘é + u(t)

L, Compute net torque on the

MockSat from encoder data

(1) Analyze friction data from initial test
(2) Fit best friction coefficient assuming

Temp = TmoToRs

. (1) Compare typ from MS to that
computed in Simulink

(2) Confirm T.yp = Tyorors Via static
tests.

Simulation with Experimental Gains

g
o
o
7))
x -
3
=

10
time (s)

10
time (s)

77

Design Requirements and Satisfaction — Fault Injection

and Management

* FR 4 —The system shall have the ability to introduce a fatal
operating fault in either the MockSat’s primary reaction wheel or
the fine orientation sensor (but not more than one fault at a time).

* FR 5 —The MockSat flight control software shall recover from a

fatal operating fault in eit

ner the MockSat's primary reaction wheel

or the fine orientation sensor (but not more than one fault at a

time) by regaining norma

operation.

DR&S — Fault Injection

Reaction Wheel Fault Injection
main.cpp - sendCmd.cpp

Send
outputs to
actuator

rwinjection.cpp

s

I Actuator | j/'i'i/isPrimaryRWactive\gf\\ no ~

L “__ cmdToFaultRW _— Te = Te |
injection < 5>

Send command
to
motorcontroller

Return

Calculate
induced friction
TAC — Tc - ff

Return f c

Flowchart for reaction wheel (RW) fault injection

* Reaction wheel fault replicates increased reaction wheel
friction by modifying commanded torque

* Increased friction prevents nominal operation, introducing

fatal operating fault

Fine Sensor Fault Injection

Fine sensor 1
interrupt trigger

if cmdToFaultSensor

interrupts.cpp

Exit
Flowchart for fine attitude sensor fault injection

* Introduce offset bias in fine sensor data
* Bias is constant due to interrupt limitations
* This bias causes the satellite to have pointing bias,
preventing nominal operation, introducing fatal
operating fault
79

Design Requirements and Satisfaction — Fault Injection

and Management

Satisfied

* FR 4 —The system shall have the ability to introduce a fatal
operating fault in either the MockSat’s primary reaction wheel or
the fine orientation sensor (but not more than one fault at a time).

* FR 5 —The MockSat flight control software shall recover from a

fatal operating fault in eit

ner the MockSat's primary reaction wheel

or the fine orientation sensor (but not more than one fault at a

time) by regaining norma

operation.

80

Design Requirements and Satisfaction — Fault Management

o~ faultManagement.cpp
. yes
»<_ isFaulted ‘ cmdToRecover

o ol

' | Faultcheck @ |

reaction Set

wheel (RW) cmdToRecover to

] ‘L : false
Fault check sRecovering
sensors
LA ' {

27N . Set Recovery

y 'Is faut . Y®S isFaulted
~._detected? - to true

’ Set isFaulted to
no l false

Z ~._ yes Set
_isRecovering isRecovering

to false Set isRecovering
yes to true
Shut off
reaction wheel

power

Fault Management Flow Chart: Nominal Operation

Possible MockSat operational
states are:

1. Nominal operation

2. Faulted

3. Waiting for Ground Station
Unit (GSU)

4. Initiate Recovery Sequence

5. Recovering

6. Recovered

81

Design Requirements and Satisfaction — Fault Management

Possible MockSat operational

! faultManagement.c
y ¥ R ‘ states are:
» < isFaulted - cmdToRecover . .
g 1. Nominal operation

[] :a(::lt{heck ' Set 2 . Fa U |tEd

reaction

wheel (RW) - cmdToRecover to

false 3. Waiting for Ground Station
” Unit (GSU)
X ol ||| 4. Initiate Recovery Sequence
. Recovering

5
Alert GSU 6. Recove I'Ed

!

Set < O\ 1o
isRecovering isRecovering <_RW failure? >
to false : : F
Set isRecovering

ye; J, I to true

Fault check »<isRecovering
sensors) 4

" lIsfault isFaulted
~._detected? to true

Shut off
reaction wheel
power

Fault Management Flow Chart: Faulted 82

Design Requirements and Satisfaction — Fault Management

main.cpp faultManagement.cpp

1

1

1 . yes
<_ isFaulted =

1

no

Fault check
reaction
wheel (RW

Fault check
sensors

Set
Is fault isFaulted
detected? to true
Set
isRecovering isRecovering
to false

Fault Management Flow Chart: Waiting for Ground Station

Shut off
reaction wheel
power

Return

< . ho
<cmdToRecover -

yes

Set
cmdToRecover to
false

Initiate
Recovery
Set isFaulted to
false
Set isRecovering
to true

Possible MockSat operational
states are:
1. Nominal operation
2. Faulted

3. Waiting for Ground Station
Unit (GSU)

4. Initiate Recovery Sequence
5. Recovering
6. Recovered

Design Requirements and Satisfaction — Fault Management

faultManagement.cpp

1
main.cpp :
1

.

es
Fault check
reaction
wheel (RW

Set
isFaulted
to true

Shut off
reaction wheel
power

Return

Fault Management Flow Chart: Initiate Recovery Sequence

" isFaulted >~ cmdToRecover

yes l

‘Set
cmdToRecover to
false

Initiate
Recovery

\ 4

Set isFaulted to
false

|

Set isRecovering
to true

Possible MockSat operational
states are:
1. Nominal operation
2. Faulted
3. Waiting for Ground Station
Unit (GSU)

4. Initiate Recovery Sequence

5. Recovering
6. Recovered

Design Requirements and Satisfaction — Fault Management

AN faultManagement.cpp
T yes ‘
<_ isFaulted cmdToRecover

ol

| Faultcheck
reaction
__wheel (RW) |

Fault check
sensors

l

Y

"‘Isfault Y03

“_detected?

no

yes
isRecovering

< isRecovering >

no

Set
isFaulted
to true

Set
isRecovering
to false

Shut off
reaction wheel
power

Fault Management Flow Chart: Recovering

yes

Set
cmdToRecover to
false

Initiate
Recovery
Set isFaulted to
false
Set isRecovering
to true

Possible MockSat operational
states are:
1. Nominal operation
2. Faulted
3. Waiting for Ground Station
Unit (GSU)
4. Initiate Recovery Sequence

. Recovering

5
6. Recovered

Design Requirements and Satisfaction — Fault Management

I
main.cpp '

l il faultManagement.cpp
. v e yes ‘
»<_ isFaulted cmdToRecover

i

Fault check |

reaction et

wheel (RW) cmdToRecover to

‘ {' : false
Fault check sRecovering
sensors

S | Set Recovery

_lsfaut . YeS isFaulted
~_detected? to true

Set isFaulted to
no false

z .. yes Set
~_isRecovering > isRecovering

___tofalse Set isRecovering
yes to true
Shut off
reaction wheel

power

Fault Management Flow Chart: Recovered

Possible MockSat operational
states are:

1. Nominal operation

2. Faulted

3. Waiting for Ground Station
Unit (GSU)

4. Initiate Recovery Sequence

. Recovering

5
6. Recovered

86

Design Requirements and Satisfaction — Fault Management
RW Recovery

1. Upon fault detection, shut off

power to primary RW
Initiate > 2. Enter a safe mode until primary
Recovery sensor fault? RW slows to ensure consistent

dynamics
3. GSU initiates command to

turn on power to :ev;g(i:: S&";gg recover
reaction wheel 2 sengor 2 4. Switch power and control to

secondary RW
faultManagement.cpp Sensor Recove ry

1. Upon fault detection, enter
safe mode and wait for GSU

switch command
direction to
reaction wheel 2

command
2. GSU initiates command to
Recovery Flowchart
recover
3. Switch control to secondary
Pixy

87

Software: Main Loop

‘ Initiali . ! .
“ “ * Main loop for software operation, runs

indefinitely

Copy state

data to * Copy current state from all sensors at

memory

the beginning of each iteration to
ensure data consistency across a loop
iteration

Send
telemetry
data

Main.cpp logic flowchart
pp 109 88

Design Requirements and Satisfaction — Fault Management

s fault timer yes
active?
faultManagement.cpp
Return fault
detected

Fault checking algorithm flowchart

* Only detect persistent faults
* Use same detection method for RW and fine sensor
* This allows for code re-use, ideally to other systems

Design Solution — Software: Class Diagram

control.cpp

Runs control
algorithm

main.cpp
Runs all ACDS/FM/FI

]

l

sendCmd.cpp

Formats torque
command to send to
reaction wheel motor

controller

sendTelemetry.cpp

organizes and sends
telemetry data to GSU via
comms.cpp

faultManagement.cpp

Fault detection and recovery for
both reaction wheel actuators and
Sensors

]

!

rwinjection.cpp

Calculates
augmented injection
torque to mock
increased friction

Interrupts.cpp

Asynchronous data
acquisition, faults
sensors

Class diagram showing major classes/programs, their functions, and their interactions with other software modules

comms.cpp
Provides functions for
sending wireless
communications

powerControl.cpp
Offers control for power to
ADCS elements

Global Data

stores all data that is
handled by
interrupts

Fault Injection: Reaction Wheel Friction

* Friction isa common and near inevitable
fault in the reaction wheels of space

1/1 * Faultinjection system creates apparent

friction in software only
* This DOES NOT physically increase the
friction in the reaction wheel, but
rather it makes the fault management
ADCS systems "see" increased friction
* Injects fault into reaction wheel by:
* Subtracting off nominal friction
* Adding induced friction function
* Nominal Friction function:

T = flw)

* Induced friction function:

A\

FBD for induced reaction wheel friction a e
7 = f(w)

01

Fault Management: Reaction Wheel Friction
Model: Detection: Feasibility Example:

Coqrgparing sensed friction torque vs nominal and threshold

~T "f.measured
~ ~ Tt threshold

T, .
f,nominal

Reaction wheel dynamics

G : : Comparison between model and actual
* Governing Equation:

E = o (LDOF) Fault Management Process: - (rad/s)
1) Read output wheel speed _
5) Calculate induced friction * ASEN 3200 spin module data used to create
* Nominal friction: from governing equation nominal friction function
T. —Tr = |l N ~ * Induced friction function used to inject fault
¢ f Tf — IQ{ — TC * Modeled using governing equation and
o 3) Compare vs model. If friction I;/Ifat!.abs.odezf soI.ver B shold
* Induced Friction: : * Friction in system is greater than thresho
is above threshold value, then Y 9
T. — ,l’i - IC? Fauli axiciolie - ' value, therefore this is feasible
C f = Y 92

CPE — Fault Injection and Management System:
Actuators

Tnet = INet torque on reaction wheel
T. = Commanded torque

7¢ = Torque due to friction, nominal
I, = Reaction wheel moment of inertia
reaction wheeraynamics (w = Reaction wheel angular acceleration

Tnet — Te — Tf = 1wy
s = fw)

93

CPE — Fault Injection and Management System:
Characterizing Reaction Wheel Friction

Stribeck * Friction in reaction wheels is combination of
Viscous, Coulomb, with some initial Stribeck
friction near angular velocities of zero

~—¢<— Viscous

Coulomb W

Representative friction torque curve of
reaction wheel

Source: Carrara, Vlademir, and Hélio Koiti Kuga. “Estimating Friction Parameters in Reaction Wheels for Attitude
Control.” Mathematical Problems in Engineering, vol. 2013, 12 May 2013. 94

CPE — Fault Injection and Management System:
Reaction Wheel Friction Failure

* Hard failures in reaction wheels are caused by an increase in Coulomb friction.

t‘ﬂdbﬂ (mN‘m) tfm.on (mN'm)

Dry Friction Viscous Coefficient
Increase Increase

Left: Increase in Coulomb friction. Right: Increase in Viscous friction

Source: Hacker, Johannes M, et al. Reaction Wheel Friction Data-Processing Methodology and On-Orbit Experience. AIAA, Aug.
2014. 95

CPE — Fault Injection and Management System:
Reaction Wheel Friction Failure

=-3.43x 107 mN-m/RPM T _=-3.56 x 10"* mN-m/RPM ° Actual On_orbit data Of fa|||ng

-3.24 x 107 mN-m/RPM : Cone = =4.24 x 107 mN-m/RPM

-3.34 x 107 mN-m/RPM *2 ' _ ave ™ % 10" mN-avREM I’eaCtlon Wheel

o = H0.36 mN-m P "y 2 % : .~ <7.79 mN-m
2 o R (AT S :
-1.34 mN-m ’ : 4 ! - 6.60 mN-m

I
049 mNam S " N I P * Hard failure occurs at g mN-m
lim = +100 RPM n = 4250 RPM . . :
B’ E above nominal, with nominal
static friction of 0.85 mMN-m
 Use this scaling for fault
detection threshold in our
system.

Kv,
K
Noao
By
E..

i

3
Total Friction (mN-m)

'y
z
S
g
=2
-
=
|
=
=

»

10}

-5, 5 ¥ oo e 15 .
3000 22000 -1000 0 <1000 +2000 +3000 |, _';0“” 2000 1000 0 —l:'(m 'ZI(K)U +31'm()
RW Speed (RPM) RW Speed (RPM)

Left: Nominal Friction Data. Right: Increase in Coulomb friction causing hard failure

Source: Hacker, Johannes M, et al. Reaction Wheel Friction Data-Processing Methodology and On-Orbit Experience. AIAA, Aug.
2014. 96

CPE — Fault Injection and Management System:
Actuator Management

Fault management has access to commanded torque as well as reaction wheel angular velocity at
discrete time steps. Calculate angular acceleration of the wheel by:

JANSS,
a,, = —
3 AN

Then, calculate the system friction by:
=

This is then compared versus a threshold friction torque of 4 times the nominal static friction torque
present in the reaction wheel.

If the system friction calculated by fault management is above this threshold value, characterize as a
fault

97

CPE — Fault Injection and Management System:
Example Analyzing 3200 Reaction Wheels

Torque profile of ASEN 3200 Spin Modules

T
c

—*- Tolant
—— Tf
— Fitted T line

Used data from ASEN 3200 to examine
nominal friction in this system.
Constant commanded torque of 0.5 N-
m

Data file contained time stamps every
0.1 s with commanded torque and
wheel speed.

From this data, the friction torque
present as a function of angular velocity
was calcucated.

Then, a linear fit of this data was made
to determine an approximate nominal
friction torque as a function of angular
velocity.

CPE — Fault Injection and Management System:
Analyzing 3200 Reaction Wheels

* Triggering a fault — Example using ASEN 3200 Spin Module data

0 hslqminal friction torque in ASEN 3200 spin module reaction wheels

0.45

047

*

* Raw Data
Curve fit

: rélo_minal friction torque in ASEN 3200 spin module reaction wheels

* Raw Data
Curve fit
Failure Friction

w (rad/s)

Requirements Flow-down

1. TheTestTable shall allow for two degrees of freedom in translation and one degree of freedom in
rotation in a low friction environment.

1.1. The TestTable shall allow for unrestricted rotation of the MockSat about its axis normal to the
plane of the TestTable.

1.2 The TestTable shall allow for translation along two orthogonal axes within a designated portion of
the plane of the TestTable surface

1.2.1 The TestTable shall utilize a station-keeping mechanism to restrict the translation of the
MockSat to less than 1.0 inch.

1.3 The TestTable shall support the weight of the MockSat whilst providing a reduced friction surface.

1.3.1 The total rotational friction between the MockSat and the TestTable during nominal
: in2
operation shall be no greater than 1.5 22

1.4 The TestTable shall comply with OSHA Two-Man Lift Criteria
1.4.1 The TestTable shall occupy a volume no greater than 72 x 72 x 28 inches.

1.4.2 The TestTable shall weigh no more than 100 pounds

100

Requirements Flow-down

2. The MockSat shall be equipped with an attitude determination and control system (ADCS) that
replicates the 0.04 Hz bandwidth response of the GOES-16 satellite to within 10%.

2.1. The MockSat shall be equipped with two reaction wheels for rotational control.

2.1.1. The MockSat reaction wheels shall be scaled/tuned to simulate the response of GOES-16
about its max MOI.

2.1.2. The MockSat reaction wheels shall be capable of responding to user fault injection.
2.2. MockSat shall have a sensor to provide rotational data.

101

Requirements Flow-down

3. The MockSat shall have the ability to maintain a controlled attitude relative to a point of reference within +2.5°.
3.1. The MockSat shall be equipped with a sensor array to determine its orientation.

3.1.1. The MockSat shall have a coarse sensor to provide a wide field of view and get fine sensor in range.

3.1.2. The MockSat shall have a fine sensor to determine attitude with an accuracy of +2.5°,
3.1.3. The MockSat shall maintain pointing accuracy for no less than 30 seconds.

102

Requirements Flow-down

4. The system shall have the ability to introduce a fatal operating fault in either the MockSat’s primary reaction wheel,
the coarse orientation sensor, or the fine orientation sensor (but not more than one fault at a time).

4.1. The fault injection system shall not cause permanent damage to the ADCS system
4.2. The fault injection system shall wait for user command from the ground station to initiate fault injection.

4.2.1. The ground station unit shall allow the user to initiate a choice of reaction wheel fault, coarse sensor
fault, or fine sensor fault.

4.2.1.1. The fault injection system shall create a sensed increase in friction torque of 5.5 times
the natural coulomb friction in the reaction wheel.

4.2.1.1.1. The fault shall be injected as a feedback loop living on the microcontroller,
4.2.1.2. The coarse and fine sensor shall be injected with a fault capable of introducing an error as

a position bias.
4.2.2. The ground station unit shall be able to send a command for fault initiation to the fault injection
system.

4.3. The fault injection system shall be able to be deactivated by user command.
4.3.1. The ground station unit shall allow the user to deactivate the fault injection system
4.3.2. The ground station unit shall be able to send a command to deactivate the fault injection system.

103

Requirements Flow-down

5. The MockSat flight control software shall recover from a fatal operating fault in either the MockSat’s primary reaction wheel or the fine
orientation sensor (but not more than one fault at a time) by regaining normal operation.

5.1. There shall exist in software a fault management system to handle fault detection and identification.
5.1.1. The fault management system shall have the ability to detect a fatal operating fault from the reaction wheel.
5.1.2. The fault management system shall have the ability to detect a fatal operating fault from the coarse attitude sensor.
5.1.3. The fault management system shall have the ability to detect a fatal operating fault from the fine attitude sensor.
5.1.4. The fault management system shall be independent of the fault injection system existence.

5.1.5. The fault management system shall classify the location of the fault (either reaction wheel, coarse attitude sensor, or
fine attitude sensor).

5.1.6 The fault management system shall recover nominal operation of the satellite in the presence of a fault.
5.1.5.1. The fault management system shall be able to communicate with the power regulation board.
5.1.5.2. The fault management system shall be able to control power to the primary reaction wheel.
5.1.5.3. The fault management system shall be able to control power to the secondary reaction wheel.
5.1.5.4. The fault management system shall be able to switch sensing to a secondary attitude sensor.

5.1.6. The fault management system shall alert the ground station operator that a fatal fault has occurred.

5.1.6.1. The fault management system shall be able to alert the ground station operator to the type of fault that has
occurred.

5.1.6.2. The fault management system shall be able to communicate with the Ground Station Unit

104

References

[1] Chapel, J. (2014). Guidance, Navigation, and Control Performance for the GOES-R Spacecraft.
Porto, Portugal. ESA

[2] Rozelle, D. The Hemispherical Resonator Gyro: From Wineglass to the Planets

[3] Hubble Space Telescope Hot and Cold Pixels. Space Science Telescope Institute.
http://www.stsci.edu/hst/nicmos/performance/anomalies/hotcoldpix.html

105

http://www.stsci.edu/hst/nicmos/performance/anomalies/hotcoldpix.html

