

Test Readiness Review ASEN 4028 Spring 2018

Abdiel Agramonte-Moreno, Glenda Alvarenga, Thanh Cong Bui, Christopher Choate, Lauren Darling, Sergey Derevyanko, Cassidy Hawthorne, Abigail Johnson, Nick Thurmes, Jannine Vela, Taylor Way

KESSLER Test Readiness Review

She

Agenda

Kinesthetic Engineered Solution to Space Litter & **E**xhausted

Resources

<u>Overview</u>

- Project Purpose & Objectives
- Baseline Design & Functionality
- Critical Project Elements & Design Updates from Fall 2017
- <u>Schedule</u>
- Test Readiness
 - <u>Visual Processing</u>
 - <u>Controls</u>
 - Mechanical
 - Integration
- <u>Budget</u>

Project Overview

Project Overview

Software

Hardware

Integration

Budget

03/05/2018

KESSLER Test Readiness Review

3

She

Project Purpose

Project Motivation

Amount of orbital debris is set to triple by 2030 (More than 500,000 in orbit today). Consists of:

- Pieces of satellite components
- Satellites at EOL
- Malfunctioning satellites

03/05/2018

Sierra Nevada Corporation:

- 'Grappling' feature recognition with an RGB sensor
- Autonomously capture feature with robotic manipulator arm

 Project Overview
 Schedule
 Software
 Hardware
 Integration
 Budget

 KESSLER Test Readiness Review

Fig. 1 Space Debris 2013 Model [1]

Project Purpose

Project Statement

The KESSLER project will design a system that utilizes visual processing and a robotic arm to autonomously capture space debris. This project will be developed using heritage hardware from the CASCADE capstone project.

Level	Shortened Description
1	Identify Satellite, articulate arm to closest point on satellite
2	Identify features on satellite, capture feature via robotic arm
<u>3</u>	Identify keep out zone, articulate arm on collision avoidance path and capture feature.

Fig. 3 KESSLER Robotic arm and vision system in process of capturing satellite in LEO

<u>Baseline Design</u>

0. Demonstration Initiation

Robotic arm positioned in a neutral position and subjected to uniform lighting conditions.

Long & Short Range Cameras, and Robotic Arm feature COTS components. All other are fabricated by KESSLER.

Budget

Integration

03/05/2018

KESSLER Test Readiness Review

Fig. 5 KESSLER Design: Long Range Camera 2D and 3D image capture.

1. Identification of Feature

Kinect takes long range image and identifies a feature in Field of View (FOV).

Microsoft Kinect V2: 2D (RGB), 3D (IR) image capture

2. Primary Positioning

Robotic arm actuates to the relative position and orientation of the predetermined grappling feature (PGF)

Fig. 6 KESSLER Design: Relative positioning of Robotic arm near grappling location.

03/05/2018

Fig. 7 KESSLER Design: Short Range Camera for grappling location fine tuning.

3. Secondary Positioning

- ArduCam Mini takes secondary images to fine tune position of robotic arm
- Robotic arm actuates to the adjusted position and orientation of the PGF

Short Range RGB Camera & Prox Sensor on Robotic Arm Wrist

Budget

4. Capture

Fig. 8 KESSLER Design: Robot arm end-effector capturing antenna panel on Iridium Satellite.

Control software commands robotic claw to close on and capture PGF

Functional Block Diagram

11

Software Flow

Software Flow

Software Flow

Software Flow & Status

Critical Project Elements Overview

Three Critical Project Elements

CPE 1: Feature Recognition	KESSLER Project Objectives		
 Addresses Objectives 1 and 2 CPE 2: Control Systems Addresses Objective 3 and 4 CPE 3: Robotic Arm 	1. Take visual data confirming the target object is within FOV.	2. Identify pre-defined grappling feature.	
Addresses Objectives 4	3. Determine prediction path to feature location.	4. Autonomously capture the feature via robotic arm	
Project Schodula Software		Budget	

KESSLER Test Readiness Review

Hardware

Integration

Budget

Software

Schedule

Overview

Updates Since MSR

Technical

 Long Range camera mounting moved closer to origin of robotic arm base

Monetary

- \$914.36 has been spent since MSR
- Unplanned purchase of robotic arm components (~\$500)
 - Existing heritage robotic arm hardware integrated with Red Loctite, KESSLER efforts <u>could not</u> salvage all hardware Loctite in

 Fig. 10 Red Loctite Hardware Issues Encountered

 Hardware

 Integration

03/05/2018

KESSLER Test Readiness Review

Critical Path

Project Overview

Schedule

> Software

Hardware

Integration

Budget

03/05/2018

KESSLER Test Readiness Review

18

KESSLER SNC

Manufacturing/Component Dev. Electrical Component Ordering Electrical ICD Mechanical Drawing MGSE Component Ordering RA Component Manufacturing Satellite Manufacturing MGSE (Satellite) Manufacturing MGSE (Arm) Manufacturing MSR Cable Harnessing UNPLANNED RA Component Order Robotic Arm Integration Machining Ends AIAA Abstract

Component/Unit Testing

03/05/2018

Subsystem Testing

Integration Testing

Project Close-Out

KESSLER SNC

Manufacturing/Component Dev.

Component/Unit Testing

Motor Aliveness Spec Torque Test Position Control Joint Trajectory Torque Control Path Motion Constraints Path Object Avoidance Kinect Functionality Secondary Camera Functionality Image Capture Satellite in FOV Closest Point Plane Defintions

Subsystem Testing

Integration Testing

Project Close-Out

She

KESSLER SNC

Manufacturing/Component Dev.

Component/Unit Testing

Subsystem Testing

Robotic Arm Spec Torque Controls Check-Out Visual Processing Check-Out TRR

Integration Testing

Full System (VP & CTRL) Integration SPRING BREAK Testing Complete AES Symposium

Project Close-Out

SFR Presentation Efforts SFR SFR Feedback Review PFR Efforts PFR

03/05/2018

Test Readiness

She

System Level of Effort

03/05/2018

Test Readiness: Software

Software: Visual Processing CONPOPS

4. Identify planes of the satellite (solar panel and antenna)

5. Find the closest point of the closest plane

Level 1: location Level 2: location, orientation Level 3: location, orientation, point cloud

6. Package data for controls system

03/05/2018

Visual Processing Model

Visual Processing Subsystem Tests

D1.1 – The visual processing algorithm shall be capable of detecting a feature at a minimum distance of 20 inches D1.3 – The visual processing algorithm shall identify the position and orientation of an object in 3D space to within 4mm and +/- 5 degrees

Visual Processing Test Status

	Test	Planning	Environment	Execution	Reporting		
Most Critical	Define Planes						
	Locate Closest Point						
	Identify Satellite in FOV						
	Take Images						
Least Critical	 Define planes in debugging phase Identify satellite in FOV needs to be tested with full model (has been tested with small model) 						
Env Exe	cuted				Complete 03/09		
Rep Planne	Proj Overv 03/05/2018	ect view Schedule	e Software Hardware KESSLER Test Readiness Review	Integration Budget	29		

Define Closest Point on Planes Test Overview

Objective: Identify planes on the satellite model and identify closest point on plane Requirements/Models: D1.3 The visual processing algorithm shall identify the position (x,y,z) and orientation (Euler angles) of an object in 3D space to within +/-4mm and +/-5 degrees. Equipment/Facilities: 3D point cloud generated from Kinect

Procedure:

- Give MATLAB script 3D point cloud of satellite
- Run MATLAB script to find and define plane(s)
- 3. Visually confirm plane(s) have been properly isolated and defined

Output Data:

Closest point on plane

Integration

Budget

- Isolated plane(s)
- Orientation vector

Define Closest Point on Planes Test Results

Fig 12: 3D point cloud of satellite model

Fig 13: 3D point cloud of isolated plane with closest pt and robotic arm approach angle

Results

- Can isolate a plane from the Kinect point cloud
- Output of closest point to camera
- Defining orientation with vector between grappling point and center of plane
- Status: To be completed 03/09

Closest Point on Plane Model Validation

- MATLAB has camera calibration
- Took images of checkerboard of known size every 50 mm to determine error in Kinect
- MATLAB outputs maximum pixel error
- Maximum error in pixels is 1 mm

Fig 14: Example of calibration testing setup

Schedule

Project

Overview

Integration

Budget

Hardware

Software

Controls Model

Input	Target location from visual subsystem with max error 4 mm		
Path creation	Create path from initial location to target with max error 15 mm		
Actuate	Send commands to motors and wait to reach desired state with max error 13 mm		
Result	Reach target location with max total error 50 mm		
Project Overview	Schedule Software Hardware Integration Budget KESSLER Test Readiness Review 34		

Controls Subsystem Tests

F3: Robotic arm shall autonomously navigate to and secure one preselected grappling feature F2: The control algorithm shall define a path from the initial to the final end-effector location

Controls Test Status

	Test	Planning	Environment	Execution	Reporting
Most ritical	Arm Joints				
Least	Gripper				
	Motion constraints				
	Object avoidance				

Critical

• Object avoidance is level 3 success so is not a primary focus

Subsystem Testing Complete 03/20

Motion Constraints Test Overview

Objective: Verify the motions required are achievable by the actuators

Requirements/Models: D2.2 The robotic arm path shall be constrained by the arm's joint limitations

Equipment/Facilities: Path planning algorithm

- Create path to target location
- Compare path to known joint limits

Budget

- Joint angular velocity
- Joint torque output

Motion Constraints Test Results

Fig. 17 Commanded joint positions stay within required bounds for 7 joints.

Success, limits are obeyed

- Movelt! meets requirement to within 2 degrees from nominal
- Location error negligible
- Velocity vs. Time investigated
- Status: Complete
- Validation: Arm Joint Test

Red: Upper and Lower Position Bounds Blue: Commanded position

Arm Joint Test Overview

Objective: Move the robotic arm along a path

Requirements/Models: F3 Robotic arm will navigate to at least one preselected grappling feature

Equipment/Facilities: All arm actuators, PC, ROS Movelt! Software

Procedure:

- 1. Connect actuators to computer
- 2. Send objectives (commanded angle) to actuators
- 3. Monitor actuation state

Output Data:

• Position of actuator over time

Fig. 18 Arm Joint Test Setup and measurement methodology.

Arm Joint Test Results

Fig. 19 Initial joint position test results.

Results

- Can command actuators in sync
- Time to reach target errors bear investigation
- Errors extrapolate to ~23 mm position error
- Status: To be completed 03/09
- <u>Validation</u>: Encoder values incrementally checked to path provided by Movelt!

Controls Checkout Test Overview

Objective: Verify location of robotic arm after actuation

Requirements/Models: F3 Robotic arm shall autonomously navigate to at least one preselected grappling feature on the satellite.

Equipment/Facilities: Path planning algorithm, point cloud as from visual, integrated robotic arm

- Pass simulated target to Movelt!
- Follow generated path
- Compare true final location to target

Budget

- Calculated arm location
- Target arm location
- True arm location

Test Readiness: Hardware

> Software

Inte

Budget

03/05/2018

KESSLER Test Readiness Review

42

Robotic Arm Actuator Testing

Fig. 21 Actuator Diagram

Comprised of Two Tests for Acceptance

- Static Test: Sustained Load
- Dynamic Test: Load Actuation

Hardware Test Status

Static Test Overview

Sic

<u>Objective</u>: Critical load bearing actuators are able to support calculated max. gravitational static loads without entering alarm mode.

<u>Requirements/Models</u>: Actuator shall be able to statically support calculated loads at max. gravitational torque for 10 to 20 min.

Equipment:MX-106T Turntable (1) H, MX-34T DA (3) H, MX-64T (5), vice, 5" girder, ROS (&

CPU). Criteria: Simulated Load Pass – Actuator supports load for 17 min. Actuator without entering alarm mode • Fail: Actuator enters alarm mode Vice and Measured Data: Fixture Actuator H&S, Deflection Angle Buffer 1. Place 3. Record 2 Fasten load 5" Girder actuator on test start/finish temp on actuator. fixture (10/20min)Fig. 22 Actuator Test Setup Project Schedule Software Hardware Integration **Budget Overview** KESSLER Test Readiness Review 03/05/2018 45

Static Test Results

Actuator	Stall Torque (oz.in.)	Test Torque (oz.in)	Design FOS	Test FOS	Pass/Fail
1 (MX-106T)	1,420	900	1.7	1.5	Pass
3 (MX-64T DA)	1,030	375	3.7	2.7	Pass
5 (MX-64T)	1,030	375	5.7	2.7	Pass

Observations:

MX-64T heated up twice as facts as the MX-64T at the same load. This does not impact mission performance

Dynamic Test Overview

Objective: Critical load bearing actuators are able to actuate calculated max. operational loads without entering alarm mode.

<u>Requirements/Models</u>: Actuator shall be able to actuate calculated loads up to a commanded angular position a min. of 3 trials.

Equipment:MX-106T Turntable (1) H, MX-34T DA (3) H, MX-64T (5), vice, 5" girder, ROS (&

CPU). Criteria: Simulated Load Pass – Actuator actuates load a min. of 3 trials without entering alarm mode. Actuator • Fail: Actuator enters alarm mode or is unable Vice and to actuate load. Fixture Measured Data: Buffer Actuator H&S, Deflection Angle 1. Place 3.Command 5" Girder 2. Fasten load actuator on angular on actuator. test fixture position (3x)Fig. 23 Actuator Test Setup Project Schedule Software Hardware Integration **Budget Overview** KESSLER Test Readiness Review 03/05/2018 47

Dynamic Test Model

<u>MX-64T</u>

- Max Test Torque: 2.65 Nm (375 oz.in.)
- Max Test speed: 30 RPM

-	Unit	Data
Weight	g	135
Dimension	mm	40.2 x 61.1 x 41
Gear Ratio	type/material	200:1 (Spur/Metal)
Network		TTL / RS-485
Position Sensor (resolution)		Contactless Absolute Encoder (360°/ 4096)
Motor	1.144	Maxon Motor
Operation Voltage	v	10~14.8
Stall Torque	N.m	6.0 at 12V
Stall Current	A	4.1 at 12V
No Load Speed	RPM	63 at 12V

Schedule

X-'	1061	lurntab	le (1),	H		
	Max	Experie	nced	Torque:	6	Nm

- (900 oz.in.)
- Max Operational Speed: ~1 RPM

	Unit	Data
Weight	g	153
Dimension	mm	40.2 x 65.1 x 46
Gear Ratio	type/material	225:1 (Spur/Metal)
Network		TTL/RS-485
Position Sensor (resolution)		Contactless Absolute Encoder (360°/ 4096)
Motor	1.14	Maxon Motor
Operation Voltage	V	10~14.8
Stall Torque	N.m	8.4 at 12V
Stall Current	Α	5.2 at 12V
No Load Speed	RPM	45 at 12V

Integration

<u>MX-106T (4)</u>

Budget

- Max Test Torque: 3.18 Nm (450 oz.in.)
- Max Test Speed: ~30 RPM

03/05/2018

Project

Overview

KESSLER Test Readiness Review

Hardware

Software

Dynamic Test Results

Actuator	Stall Torque (oz.in.)	Test Torque (oz.in)	Design FOS	Test FOS	Pass/Fail
1 (MX-106T)	1,420	900	1.7	1.5	Fail
3 (MX-64T DA)	1,030	375	3.7	2.7	Pass
5 (MX-64T)	1,030	375	5.7	2.7	Pass

Observations:

- MX-106T Turntable was unable to actuate test load; arm orientation during Turntable roll will be changed in order to ease strain on actuator.
- Nominal Operational Speed (64T, 106T): 10–25 RPM.

Test Readiness: Integration

Schedule

Hardware

Integration

Budget

KESSLER Test Readiness Review

50

Final Integration Test Overview

Objective: Verify that the Control Subsystem can take inputs from Visual Processing and command the arm

Requirements/Models: D1.4 - The visual system shall be capable of communicating with the control system

D3.2 Final position and orientation of end-effector shall have a total system error no greater than 2 inches and 10 degrees.

D5.1 – The KESSLER system shall have an individual operation time duration of 17 +/- 2 minutes

Equipment/Facilities: VICON Laboratory, Integrated Robotic Arm, Scaled Iridium Satellite, 2X MGSEs, Lighting Mechanism

Final Integration Test Setup

Fig. 24 Final Integration Test Setup

Procedure:

- 1. Setup Lighting Mechanism & KESSLER System
- 2. Calibrate VICON via Wand
- 3. Position Markers on End Effector
- 4. Run Demonstration
- 5. Record Test Outputs

Test Outputs:

- Position/Orientation of End-Effector
- Position/Orientation of Feature
- Torque Measurement of Claw Actuator

Final Integrated Test Results

- Anticipated Results
 - Single operation to take just under 3 minutes
 - Visual Processing: ~2 minutes
 - Controls: ~0.25 seconds
 - Arm Movement: ~30 seconds
 - Results come from unit tests
 - Conduct collision avoidance to within 2 inches of Iridium Satellite Structure
 - End-Effector Position & Orientation
 - 0.72 inches and 3.1 degrees between Visual System output and End Effector position measured by VICON
 - Results come from error stack up

Final Integrated Test Status

Test	Planning	Ground Support	Execution	Reporting
Final Test				

- Scaled Iridium Satellite has been assembled
- Satellite MGSE has been assembled
- KESSLER team has access to VICON Laboratory
- System testing will begin when Visual Processing and Controls Checkouts are complete

Testing Complete 04/18

Summary & Current Status

Schedule

Starting	
Budget	\$5,000.00
Subsystem Co	sts
Mechanical	\$1,606.89
Electrical	\$226.97
Test & Safety	\$826.03
Controls	
(Software)	\$0.00
Visual	
Processing	\$250.45
Misc.	\$6.75
Total Cost	\$2,917.09
Remaining	
Budget	\$2,082.91
	Updated: 3/4/2018

Project

Overview

Subsystem	Overall Status
Mechanical	Waiting for CrustCrawler arm parts
Electrical	Waiting for CrustCrawler arm parts
Test & Safety	All items obtained
Controls (Software)	N/A
Visual Processing	All items obtained
Misc.	N/A
Current Status: Most C yet delivered. One item	CrustCrawler items shipped but not n backordered.
	Updated: 3/4/2018
Software Hardwa	are Integration Budget

Updated Cost Plan

03/05/2018

Starting Budget			\$5,000.00
Subsystem Costs			
	Previously Spent	Potential Future Expenses	Notes on Potential Future Expenses
Mechanical	\$1,606.89	\$316.00 + \$12.65 S&H	MX-64T servo, AX-12A servos (2), Wrist to Dual Gripper Adapter SCHEDULE RISK REDUCTION
Electrical	\$226.97	\$0.00	
Test & Safety	\$826.03	\$100.00	Various tools
Controls (Software)	\$0.00	\$0.00	
Visual Processing	\$165.12	\$0.00	
Misc.	\$6.75	\$0.00	
Total Cost (Previou	us & Future)		\$3,260.41
Remaining Budget	t		\$1,739.59
STATUS: 35% of	allowed budget re	maining	Updated: 2/28/2018
	Project Overview Sch	edule Software	Hardware Integration Budget

KESSLER Test Readiness Review

57

SNG[®] Thank You! Questions?

KESSLER Test Readiness Review

Back-up Reference

- <u>Section 1</u>
- <u>Section 2</u>
- <u>Section 3 VP</u>
- <u>Section 3 CTRL</u>
- <u>Section 3 MECH</u>
- <u>Section 3 ELEC</u>
- <u>Section 3 INTEG</u>
- Section 4

Des	sign Functionality
	Project Assumptions
	Description
	Target object is in-front & within reach of the robotic arm; this entails that this scenario is valid
	if the target object and the chase vehicle are in the same orbit and in proximity to each other.
	Target object is stationary with respect to the chase vehicle (robotic arm base plate); this
	entails that this scenario is valid (in an orbital case)if the target object is 3-axis stabilized (or the
	chase vehicle has matched rotation at one axis if 2-axis stabilized).
	Chase vehicle operations (target and capture) occurs during Sun-soak in an average Lower
	Earth Orbit (LEO); this entails that lighting conditions are not in the scope of KESSLER.
	KESSLER mission will be demonstrated in a controlled test environment (1G & atmosphere).
	KESSLER will not design the "chase vehicle's" system; this entails that electrical power system,
	command & data handling, attitude determination & control, etc. will not be in the scope of
	the KESSLER project.
	Main characteristics of the KESSLER mission include antennas, solar panel joints, and bus
	structure supports.

#

님

Design Functionality

Functional Requirements

Req. ID	Requirement	Verification Method
<u>F1</u>	The visual processing algorithm shall identify the surface of a satellite in the primary camera's (RGB) field of view (FOV) and within the robotic arm's reach.	Imaging Analysis & Visual Inspection
<u>F2</u>	Control algorithm shall define a path to the location of a grappling feature.	Path Simulation (Experimental vs. Theoretical Location)
<u>F3</u>	Robotic arm shall autonomously navigate to at least one preselected grappling feature on the satellite.	Demonstration/Test
<u>F4</u>	The KESSLER system shall have a total mission time no greater than 53 minutes .	Timing Analysis
<u>F5</u>	KESSLER shall execute a total of 3 end to end process operations and succeed at least twice within the total mission time.	Demonstration/Test

Design Requirements

REF ID	Description	Verification Method
D1.1	The visual processing algorithm shall be capable of detecting a feature at a minimum distance of 20 inches.	Demonstration/Test
D1.2	The visual processing algorithm shall be capable of identifying the main characteristics of a satellite with a level of confidence greater than or equal to 75%.	Image Analysis
D1.3	The visual processing algorithm shall identify the position (x,y,z) and orientation (Euler angles) of an object in 3D space.	Image Analysis
D1.4	The visual system shall be capable of communicating with the control system.	Demonstration/Test

Design Requirements

REF ID	Description	Verification Method
D2.1	The end-effector position and orientation shall be determined in 3D space to within +/- 13mm and +/- 5 degrees.	Demonstration/Test
D2.2	The robotic arm path shall be constrained by the arm's joint limitations	Demonstration/Test

Design Requirements

REF ID	Description	Verification Method
D3.1	The robotic arm shall receive commands from the control system	Demonstration/Test
D3.2	Grappling features shall be representative of features on the Iridium Satellite form factor	Inspection Test
D3.3	Robotic arm shall execute path defined by control algorithm	Demonstration/Test
D3.4	End effector shall have a full deployable range of 9 inches.	Demonstration/Test
D3.5	The arm shall be capable of capturing feature at a finite displacement of 30inch arm radius, \pm 180 degree roll, in x,y,z, and roll	Demonstration/Test

Level 1 Success Criteria

Table 1: Level 1 Success Criteria

Identification	Processing	Command Execution
Identify at least two surfaces with varying depths in 3D space.	Identify the distance between the closest point of the satellite and the base of the robotic arm (± 4mm).	Demonstrate end-effector can move to closest point and actuate while facing the parallel plane.

*Three categories decoupled to ensure there is no dependency when meeting mission success criteria

Level 2 Success Criteria

Table 2: Level 2 Success Criteria

Identification	Processing	Command Execution
Identify grappling feature recognition on target satellite.	Determine grappling feature location and orientation to within ± 4mm & ± 5 degrees.	Grapple feature in parallel plane to within ± 90 degree of end-effector roll angle.

*Three categories decoupled to ensure there is no dependency when meeting mission success criteria

Level 3 Success Criteria

Table 3: Level 3 Success Criteria

Identification	Processing	Command Execution
Identify collision feature on target satellite.	Define keep-out zone to within ± 4mm of collision feature surface, and select grappling feature that causes the smallest collision risk.	Grapple feature in perpendicular plane (demonstrate additional Degree of Freedom).

*Three categories decoupled to ensure there is no dependency when meeting mission success criteria

System Level Tolerance Stack-Up

Subsystem	Linear Error	Angular Error	Mapping
Controls	1 inch	1.4 degrees	Droop, Drift
Mechanical	0.2000 inches	1.2 degrees	Manufacturing & Encoder Error
Visual Processing	0.1575 inches (4mm)	5 degrees	Pixel Resolution
System	2 inches	10 degrees	Cumulative Error

03/05/2018

KESSLER Test Readiness Review

77 *

4J

Take Images Test Overview

Objective: Use the Microsoft Kinect V2 to capture a 2D image and 3D point cloud

<u>Requirements</u>: D1.1 The visual processing algorithm shall be capable of detecting a feature at a minimum distance of 20 inches

KESSLER Test Readiness Review

Equipment: Microsoft Kinect V2, green screen, lighting equipment, satellite model, volume of 7'x7'x7'

03/05/2018

- Set up green screen and lighting equipment
- Set up Kinect and plug into computer
- Run MATLAB script to capture images

Budget

Save 2D image and 3D point cloud

• 3D point cloud

Take Images Test Results

Fig #: Output 2D image from Kinect

Fig #: Output 3D point cloud from Kinect

Status: Complete, ready to be repeated

Identify Satellite in FOV Test Overview

Objective: Confirm that there is a satellite in the FOV of the Kinect

<u>Requirements</u>: O1 Take visual data (via picture) confirming the target object (satellite) is in KESSLER's Field of View (FOV)

Equipment: Pre-created image database of satellite and 2D image of satellite from Kinect

- Take an image of the satellite model
- 2. Run MATLAB code to find image
- Confirm if match if found or not
- Number of matches between images

Budget

80

Identify Satellite in FOV Test Results

Description of results

- Every point match found with 99% confidence
- Minimum of 3 matches needed
- Each test image resulted in a match
- Future work: update test for full satellite model
- Status: To be updated 03/05

Locate Closest Point Test Overview

Objective: Locate the closest point with respect to the Kinect of the satellite or an isolated feature

Requirements: D1.3 The visual processing algorithm shall identify the position (x,y,z) and orientation (Euler angles) of an object in 3D space to within +/-4mm and +/-5 degrees.

Equipment: 3D point cloud from Kinect (depth error < 2mm)

- Give MATLAB script 3D point cloud
- Run MATLAB script to identify location (x, y, z) of closest point of satellite or

Budget

Confirm location of closest point

Measured Data:

Location (x, y, z) of closest point

Locate Closest Point Test Results

Description of results

- Visually confirm closest point has been output
- Next step: camera calibration to prove error < 4mm
- Maximum error of Kinect depth sensor < 2mm
- Status: Complete

She

Camera Calibration

- Perform camera calibration on Kinect
 - Define possible pixel warping due to distance
- Take images of a checkerboard
- Determine differences between actual positions and measured positions
- Plot results to determine offset of Kinect

Fig #: Example of calibration testing setup

How the Kinect Works

https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/

- Projected Structured Patterned Scene
- Distance between each dot is known
- Depth is determined from disparity
 - Offset of the Captured Pattern to the knows projected pattern
- Depth computations are performed on the Prime Sense's PS1080 chip
- The actual pattern is distorted to a pin cushion shape and varies brightness.
- The pattern is composed of a 3×3 repetition of a 211 x 165 spot

https://www.anandtech.com/show/4057/microsoft-kinect-the-anandtech-review/2

pattern, totaling to 633 x 495 spots, a number quite similar to VGA resolution.

- The pattern is additionally 180°-rotation invariant.
- Given a specific angle between emitter and sensor, depth can be recovered from simple triangulation. Expand this to a predictable structure, and the corresponding image shift directly relates to depth.

03/05/2018

Capturing the IR Data Stream

• Kinect sensor returns 16 bits per pixel infrared data with a resolution of 640 x 480 as an color image format, and it supports up to 30 FPS.

Diffraction grating

 In optics, a diffraction grating is an optical component with a periodic structure that splits and diffracts light into several beams travelling in different directions. The directions of these beams depend on the spacing of the grating and the wavelength of the light so that the grating acts as the dispersive element. The relationship between the grating spacing and the angles of the incident and diffracted beams of light is known as the grating equation.

https://abhijitjana.net/2013/01/11/get-the-ir-stream-and-control-the-ir-emitter-kinect-for-windows-sdk/

https://en.wikipedia.org/wiki/Diffraction_grating https://www.edmundoptics.com/resources/faqs/optics/diffraction-gratings/what-is-the-grating-equation/

03/05/2018

03/05/2018

Gripper Test Overview

Objective: Grip with sufficient force to secure feature

<u>Requirements/Models</u>: D3.7 End effector shall capture and secure object without compromising its structural integrity. D3.7.1 The end effector shall not produce a grappling torque greater than 1.5Nm on the PGF.

EQUIPMENT/FACILITIES: AX-12A actuator with attached claw, Force sensor connected with Arduino

Object Avoidance Test Overview

Objective: Avoid collision with external objects during movement

<u>Requirements/Models</u>: F2 Control algorithm shall define a path from the initial to final end-effector position and orientation.

EQUIPMENT/FACILITIES: Path planning algorithm, point cloud as from visual

Overview

Procedure:

- 1. Produce path to target location
- 2. At each path point check closest point to arm
- 3. Compare closest point to arm dimensions

Integration

Measured Data:

- Arm location
- Distances from arm to collision point

Budget

03/05/2018

KESSLER Test Readiness Review

Hardware

R

Actuator Dynamic Testing - Results

<u>MX-64T Wrist (6)</u>

<u>MX-28T (7), H</u>

Actuator Dynamic Testing - Results

Actuator Preliminary Testing - Results

MX-64T DA (2)										
Trial #	Calculated Torque (oz.in.)	Measured Torque (oz.in.)	Measured Weight (oz)	Load Deflection (deg)	Final Actuator Position (deg)	Change in Actuator Position (deg)	Change in Commanded Position (deg)	Actuator Position Error (%)	Time (s)	Actuator Velocity (rev/min)
1.1	225	222.5	44.5	-5	24	29	29	0	0.23	234.7
1.2	-			-5	24	29	29	0	0.22	232.7
1.3	-	-	-	-5.5	26	31.5	31	1.61	0.22	230
2.1	325	333	66.7	-7	29	36	35	2.86	0.4	142.8
2.2				-6	24	30	30	0	0.4	142.5
2.3				-6	24	30	30	0	0.4	141.1
3.1	375	372.5	74.5	-4	23	27	28	3.57	0.27	175.6
3.2			-	-5.5	24	29.5	30	1.67	0.29	174.7
3.3			-	-6	23.5	29.5	29	1.72	0.3	172.8
Comments	ctuator performed as expected without is:	sues.								

MX-106T B Pitch (6*)								terres and the		- Contraction (1997)
Trial #	Calculated Torque (oz.in.)	Measured Torque (oz.in.)	Measured Weight (oz)	Load Deflection (deg)	Final Actuator Position (deg)	Change in Actuator Position (deg)	Change in Commanded Position (deg)	Actuator Position Error (deg	Time (s)	Actuator Velocity (deg/s)
1.1	350	357.5	71.5	mistrial	mistrial	mistrial	mistrial	mistrial	mistrial	mistrial
1.2	12		-	-3	27	30	29	3.45	0.22	279.6
1.3	1-2	-		-6	26	32	31	3.23	0.25	291.2
1.4	14			-5	25	30	31	3.23	0.22	266.5
2.1	400	401	80.2	-5	23.5	28.5	29	1.72	0.24	268.5
2.2				-6	24	30	30	0	0.22	281.5
2.3	-			-6	28	34	35	2.86	0.26	255.2
3.1	450	451.5	90.3	-6	22	28	29	3.45	0.26	236.6
3.2	- 1			-6	17	23	23	0	0.22	248.4
3.3	1-5	14		-9	27	36	35	2.86	0.28	225.1
Comments										
1.1	Mistrial	Actuator not commanded to correct angle								

She

Actuator Testing - Results

MX-106T Turntable (1)								
Trial	Stall Torque (oz.in)	Design Torque (oz.in.)	Test Weight (oz)	Design FOS	Test FOS	RPM	T - after	delta position, commanded (deg)
1	1,420	840	180	1.7	1.58	1	fail	30
2	1000 - 11 <u>6</u> 17 - 1100		the second second	1	12	1	fail	30
3					-	1	fail	30
Notes	Alternative solutions will be tested			-				
MX-64T DA (3)	C C							
Trial	Stall Torque (oz.in)	Design Torque (oz.in.)	Test Weight (oz)	Design FOS	Test FOS	RPM	delta position, commanded (deg)	Pass/fail
1	1,030	280	75	3.67	2.75	25	30	pass
2		-	2.00	-	-	10	30	fail
3		-	-	- A.	-	5	30	fail
4		-			.	5	90	pass
5		-	<u> </u>	- 14	-	10	90	pass
6	1		-		-	25	90	pass
MX-64T (5)								
Trial	Stall Torque (oz.in)	Design Torque (oz.in.)	Test Weight (oz)	Design FOS	Test FOS	RPM	delta position, commanded (deg)	Pass/fail
1	1,030	180	75	5.72	2.75	25	30	pass
2				4	-	10	30	pass
3			4	1.201	4.	5	30	fail
4		-	-	14	-	5	90	pass
5				-	-	10	90	pass
6		-	4	-	-	25	90	pass
03/05/201	8		KESSLER	Test Readine	ess Revie	W		95

Actuator Testing - Results

Actuator	Stall Torque (oz.in.)	Design Torque (oz.in.)	Test Torque (oz.in)	Test Weight (oz.)	Design FOS	Test FOS	T - initial (deg)	T - 10/20 (deg C)
MX-106T Turntable (1)	1,420	840	900	180	1.7	1.58	32	63 @10 mins
MX-64T DA (3)	1,030	280	375	75	3.67	2.75	30	60
MX-64T (5)	1,030	180	375	75	5.72	2.75	26	75

Sharp Infrared Proximity Short Range Sensor

• 16.5 ms ± 3.7 ms data acquisition rate

Electrical Hardware Block Diagram

Short Range Camera (src) and Proximity Sensor: Harnessing for communication and integration with microcontroller.

Microcontroller: USB to MicroUSB, expected location central to PC.

Long Range Camera: External DC Power Supply and USB cord management

Arm Assembly: Anchors for SRC harnessing, removal of heritage force cells, re-harnessing of heritage actuator 3pin connectors.

Expected Challenge:

Verifying SRC harnessing provides reliable connectivity and does not impede arm, execution.

Electronics Hardware Housing and Integration

- Short Range Camera, Microcontroller received
- Proximity Sensor received
- Long Range Camera heritage

ArduCam Uno

Power

- 3.3 to 5 VCC and GND
- SPI
 - Issues capture command; ArduCam waits for new frame and buffers the entire image data to the frame buffer, sets completion flag bit

• I2C

 Interacts directly with the OV2640 image sensor

03/05/2018

KESSLER Test Readiness Review

101

System Ground Support Equipment

Scaled Iridium Satellite MGSE

Robotic Arm MGSE

Rail

- Robotic Arm MGSE is movable and has adjustable height
- Moving the robotic arm MGSE around the Scaled Iridium Satellite MGSE simulates different approaches

Budget

Scaled Iridium Satellite will be kept stationary

Integration

03/05/2018

KESSLER Test Readiness Review

Hardware

VICON

- VICON is a system of cameras that measures the position and orientation of an object marked with markers
- Has an accuracy of 1mm when measuring stationary objects
- VICON is able to measure objects in motion at 120 fps, but we will not use this functionality
- VICON data is <u>only truth data</u>. KESSLER will not use VICON for operation, only for conformation

Visualization of VICON cameras around an object

03/05/2018

RIFLE lab

RIFLE has 18 VICON cameras

 Positions of the cameras are adjustable to maximize visibility to the measured object

She

Final Integration Test Procedure

- 1. Green Screen, Lighting System and VICON will be set up. VICON will be calibrated.
- 2. Iridium satellite and Robotic Arm MGSE's will be set up. The approach of the arm will be varied by changing the position of the Robotic Arm MGSE.
- 3. KESSLER will begin operation:

Project

Overview

- Visual Processing Algorithm will find closest point of Satellite (Level 1) or closest plane (Level 2 and 3). Then it will pass position (Level 1), orientation (if Level 2), and avoidance point cloud (if Level 3)
- Controls Algorithm will generate a path to the point given to it by Visual Processing, while avoiding collision (if Level 3).
- Controls Algorithm will output commands to arm, and arm shall execute path made by controls. End Effector will end up at a point (and orientation if Level 2) initially output by the Visual System.
- Position of end effector will now be measured with VICON

Schedule

- Claw will actuate and grip target (if Level 2 and 3). System will be inspected to ensure that claw has gripped the target, and torque of claw will be measured
- 4. KESSLER will finish operation. Time of Operation is recorded.

Level 1 Level 2 Level 3

03/05/2018

KESSLER Test Readiness Review

Hardware

Integration

Budget

Software

Final Integration Test Objectives

Verify Functional Requirements:

- The visual processing algorithm shall identify the position and orientation of a satellite.
- . Control algorithm shall define a path from the initial to final end-effector position and orientation.
- . Robotic arm shall autonomously navigate to at least one preselected grappling feature on the satellite.
- 4. KESSLER shall have a total mission time no greater than 53 minutes, based off the average LEO orbital period.
 - . KESSLER shall execute a total 3 end to end process operations and succeed at least twice within the total mission time.

System Reliability

D5.0: KESSLER shall execute a total 3 end to end process operations and succeed at least twice within the total mission time.

- To execute this requirement reliably (>90% success), KESSLER as a system must have a success rate in individual tests (R) of 79%. Found with $R^3 + 3(1 R)R^2 = 0.9$
- Bimodal Distribution, $P(X = x) = (nCs)R^{s}(1-R)^{n-s}$, can be used to quantify success rate.
- Using this approach can cut down on number of tests required to be confident in results.

How certain we can be that KESSLER has over 79% reliability based on consecutive successful trials

Mechanical Expenses

Item (Name)	Price (per unit, without tax)	Quantity	ltem Total	Shipping, Handling, and any other fees	Status	Legend
MX-106T	\$552.00	1	\$552.00	\$12.65	Delivered/Completed	Delivered/Co
MX-64T Wrist	\$364.00	1	\$364.00	\$0.00	Delivered/Completed	
2.5" Girder	\$23.00	2	\$46.00	\$0.00	Delivered/Completed	Shipped
MX-64/106 To MX-28 Adapter	\$11.99	2	\$23.98	\$0.00	Delivered/Completed	Backordered
Singleaxismount	\$15.00	3	\$45.00	\$0.00	Delivered/Completed	
12in. (30.48cm) 3-pin wire extension	\$9.49	3	\$28.47	\$0.00	Delivered/Completed	
5" Girder	\$29.00	1	\$29.00	\$9.80	Shipped	
Fasteners (various)	\$64.31	1	\$64.31	\$13.63	Delivered/Completed	
AX Dual Gripper kit (no servo)	\$69.00	1	\$69.00	\$12.65	Backordered	
FR08-H101	\$29.90	1	\$29.90	\$0.00	Shipped	
FR05-H101K	\$29.90	1	\$29.90	\$0.00	Shipped	
FR07-H101	\$27.90	1	\$27.90	\$0.00	Shipped	
MX-28T (servo only)	\$219.90	1	\$219.90	\$0.00	Shipped	
Stanley Organizer	\$14.40	2	\$28.80	\$0.00	Delivered/Completed	Updated: 3/4/2018
Project Overview	Schedule	Mech.		Elec. Soft	tware: Software: Northware: Visual	Budget

d

red/Completed

R

03/05/2018

Electrical Expenses

Item (Name)	Price (per unit, without tax)	Quantity	Item Total	Shipping, Handling, and any other fees	Status	Legend	
						Delivered/Completed	
Braided Sleeving	\$7.39	1	\$7.39	\$0.00	Delivered/Completed	Shinnod	
Cable Ties & Mounts	\$9.49	1	\$9.49	\$0.00	Delivered/Completed	Shipped	
Micro USB Cable	\$9.99	1	\$9.99	\$0.00	Delivered/Completed		
8 signal wires for cam	\$0.10	16	\$1.60	\$0.00	Completed	Backordered	
shrink wrap	\$0.10	16	\$1.60	\$0.00	Completed		
crimps	\$0.16	16	\$2.56	\$0.00	Completed		
USB2Dynamixel	\$49.90	1	\$49.90	\$0.00	Shipped		
AX-12/18A 12V 6Amp Power							
Supply	\$89.00	1	\$89.00	\$0.00	Shipped		
AX-12/18A Power Supply							
Harness	\$25.00	1	\$25.00	\$0.00	Shipped		
Arducam Uno Board	\$14.99	1	\$14.99	\$0.00	Delivered/Completed		
Short Range Prox Sensor	\$13.95	1	\$13.95	\$0.00	Shipped		
JST 3Pin Connector	\$1.50	1	\$1.50	\$0.00	Shipped		

Updated: 3/4/2018

KESSLER Test Readiness Review

R

Test & Safety Expenses

KESSLER Test Readiness Review

Visual Processing Expenses

ltem (Name)	Price (per unit, without tax)	Quantity	Item Total	Shipping, Handling, and any other fees	Status	Legend	
ArduCAM Mini	\$25.99	1	\$25.99	\$0.00	Delivered/Completed	Delivered/Complete	
Arduino Zero	\$39.00	1	\$39.00	\$3.69	Delivered/Completed	Delivered/Completed	
Lighting	\$48.22	2	\$96.44	\$0.00	Delivered/Completed	Shinnod	
Green screen	\$26.99	1	\$26.99	\$0.00	Delivered/Completed	Shipped	
Green screen						Backordered	
stand	\$32.50	1	\$32.50	\$0.00	Delivered/Completed	Dackordered	
Gold spray							
paint	\$6.76	1	\$6.76	\$0.00	Purchased/Completed		
Silver spray							
paint	\$6.76	1	\$6.76	\$0.00	Purchased/Completed		
Black spray							
paint	\$5.76	1	\$5.76	\$0.00	Purchased/Completed		
White spray							
paint	\$3.28	2	\$6.56	\$0.00	Purchased/Completed		
					Updated: 3/4/2018		

R