

Spring Final Review ASEN 4028 Spring 2018

Abdiel Agramonte-Moreno, Glenda Alvarenga, Thanh Cong Bui, Christopher Choate, Lauren Darling, Sergey Derevyanko, Cassidy Hawthorne, Abigail Johnson, Nick Thurmes, Jannine Vela, Taylor Way

Agenda

Kinesthetic Engineered Solution to **S**pace Litter & **Exhausted** Resources

- Project Overview
- Design Description
- <u>Test Overview</u>
- <u>Test Results</u>
- Systems Engineering
- Project Management

Project Purpose

Project

Overview

Project Motivation

Amount of orbital debris is set to triple by 2030 (More than 500,000 in orbit today). Consists of:

- Pieces of satellite components
- Satellites at EOL
- Malfunctioning satellites

Sierra Nevada Corporation:

- Satellite feature recognition with an RGB sensor
- Autonomously capture feature with robotic manipulator arm

KESSLER Spring Final Review

Test

Overview

Fig. 1 Space Debris 2013 Model [1]

Design

Description

Project Purpose

Project Statement

The KESSLER project will design a system that utilizes visual processing and a robotic arm to autonomously capture space debris.

Level	Shortened Description
1	Identify Satellite, articulate arm to closest point on satellite
2	Identify features on satellite, capture feature via robotic arm
3	Identify keep out zone, articulate arm on collision avoidance path and capture feature.

Fig. 3 KESSLER Robotic arm and vision system in process of capturing satellite in LEO

04/23/2018

0. System Initialization

Robotic arm positioned in a neutral (suspended) position and subject to uniform lighting conditions.

Long & Short Range Cameras, and Robotic Arm feature COTS components. All other are fabricated by KESSLER.

Project

Management

04/23/2018

1. Identification of Feature

Arm actuates out of FOV of Kinect. Kinect takes long range image and identifies a feature in Field of View

Project

<u>Management</u>

Systems

Engineering

3. Capture

Control software commands robotic claw to close on and capture the feature.

Fig. 7 KESSLER Design: Robot arm end-effector capturing antenna panel on Iridium Satellite.

04/23/2018

Levels of Success

04/23/2018

KESSLER Spring Final Review

System Tolerance Stack-Up

Subsystem	Linear Error	Angular Error	Mapping
Controls	1 inch	1.4 degrees	Droop, Drift
Mechanical	0.2000 inches	1.2 degrees	Manufacturing & Encoder Error
Visual Processing	0.1575 inches (4mm)	5 degrees	Pixel Resolution
System	2 inches	10 degrees	Cumulative Error

04/23/2018

 Project Overview
 Design Description
 Test Overview
 Test Results
 Systems Engineering
 Project Management

 04/23/2018
 VESSLER Spring Final Review
 12

System Design

She

Functional Block Diagram

Software Flow

Software: Visual Processing ConOps

04/23/2018

KESSLER Spring Final Review

Software: Controls

04/23/2018

KESSLER Spring Final Review

Changes since TRR

Significant Change: Robotic Arm Redesign

- Recap at TRR
 - Heritage hardware had Red Loctite on critical arm components
 - Planned test for 'low loading' configuration

Project

Overview

 First final integrated arm test on March 23rd

Logistical Impact: 1.5 Weeks Delay in Critical Path (Robotic Arm Checkout Test)

Design

Description

Management

Engineering

Test

Overview

She

Changes since TRR

Significant Change: Robotic Arm Redesign

Post TRR

04/23/2018

- 'Low loading' test failed
- Turn table and first joint (total 3 actuators) failed
- Motors in first joint were replaced with high torque capacity motors
- Arm was shortened by 5 inches
- System configuration changed to remove gravitational load on turntable.
- Short range camera (redundant) was no longer required

Minor design adjustment for visual processing. The team worked over 200 hours over Spring Break

Fig. 11 & 12: Initial suspended configuration (left), final suspended design (right)

Critical Project Elements Overview

Three Critical Project Elements

CPE 1: Feature Recognition	KESSLER Project Objectives	
 Addresses Objectives 1 and 2 CPE 2: Control Systems Addresses Objective 3 and 4 CPE 3: Robotic Arm 	1. Take visual data confirming the target object is within FOV.	2. Identify pre-defined satellite feature.
Addresses Objectives 4	3. Determine prediction path to feature location.	4. Autonomously capture the feature via robotic arm
Project Design Test	Systems	Project

Overview

Description

KESSLER Spring Final Review

Overview

est Results

Engineering

Management

System Level of Effort

04/23/2018

Visual Processing

Test Overview

Visual Processing Model

Visual Processing Subsystem Tests

D1.1 – The visual processing algorithm shall be capable of detecting a feature at a minimum distance of 20 inches D1.3 – The visual processing algorithm shall identify the position and orientation of an object in 3D space to within 4mm and +/- 5 degrees

Objective: Identify planes on the satellite model and identify closest point on plane <u>Requirements/Models</u>: D1.3 The visual processing algorithm shall identify the position (x,y,z) and orientation (Euler angles) of an object in 3D space to within +/-4mm and +/-5 degrees. <u>Equipment/Facilities</u>: 3D point cloud generated from Kinect

Iridium satellite model

04/23/2018

Robotic

arm

Kinect V2 <u>Procedure</u>:

- 1. Give MATLAB script 3D point cloud of satellite
- 2. Run MATLAB script to find and define plane(s)
- 3. Visually confirm plane(s) have been properly isolated and defined

Output Data:

- Closest point on plane
- Isolated plane(s)
- Orientation vector

Closest Point on Plane Model Validation

- MATLAB has camera calibration
- Took images of checkerboard of known size every 50 mm to determine error in Kinect
- MATLAB outputs maximum pixel error

Fig 14: Example of calibration testing setup

Controls

Test Overview

Controls Model

Input	Target location from visual subsystem with max error 4 mm
Path creation	Create path from initial location to target with max error 15 mm
Actuate	Send commands to motors and wait to reach desired state with max error 13 mm
Result	Reach target location with max total error 50 mm
Project Overview	Design Description Test Overview Test Results Systems Engineering Project Management KESSLER Spring Final Review 30

Controls Subsystem Tests

F3: Robotic arm shall autonomously navigate to and secure one preselected satellite feature F2: The control algorithm shall define a path from the initial to the final end-effector location

31

Motion Constraints Test Overview

Objective: Verify the motions required are achievable by the actuators

Requirements/Models: D2.2 The robotic arm path shall be constrained by the arm's joint limitations

Equipment/Facilities: Path planning algorithm

Procedure:

- Create path to target location
- Compare path to known joint limits

Measured Data:

- Joint angle
- Joint angular velocity

Systems

Engineering

Project

Management

Arm Joint Test Overview

Objective: Move the robotic arm along a path

Requirements/Models: F3 Robotic arm will navigate to at least one preselected satellite feature

Equipment/Facilities: All arm actuators, PC, ROS Movelt! Software

Procedure:

- 1. Connect actuators to computer
- 2. Send objectives (commanded angle) to actuators
- 3. Monitor actuation state

Output Data:

• Position of actuator over time

Fig. 16 Arm Joint Test Setup and measurement methodology.

Controls Checkout Test Overview

Objective: Verify location of robotic arm after actuation

Requirements/Models: F3 Robotic arm shall autonomously navigate to at least one preselected satellite feature on the satellite.

Equipment/Facilities: Path planning algorithm, point cloud as from visual, integrated robotic arm

- Pass simulated target to Movelt!
- Follow generated path
- Compare true final location to target

Project

Managem<u>ent</u>

Measured Data:

- Calculated arm location
- Target arm location
- True arm location

Robotic Arm

Test Overview

Robotic Arm Checkout Test Overview

Objective: Verify that the robotic arm can withstand system loads in integrated configuration and interface with controls.

Requirements/Models: D3.1 The robotic arm shall execute commands given by the control subsystem Equipment/Facilities: Integrated Robotic Arm, MGSE, ROS enabled CPU, Hardware I&T Lead.

Project

Managem<u>ent</u>

Test Overview

Visual Processing & Controls Integration

Kinect V2

Fig. 19 Kinect V2 and Robotic Arm Reference Frame

- Convert Kinect frame to arm frame with DCM
 - $\Psi = \pi/2$ rad
 - $\Theta = -\pi/2$ rad
 - $\Phi = 0$ rad
- Must account for physical distance between Kinect center and arm center
 - X offset = 0 cm
 - Y offset = -4.873 cm
 - Z offset = 22.77 cm
- Output visual processing data is now centered at arm base in arm coordinate frame

Visual Processing & Controls Integration

Kinect V2 MATLAB toolbox not supported in Linux (ROS platform)

- Challenges
 - Calibration of Kinect V2 in ROS to overlay RGB on point cloud
 - Automatically done in MATLAB
 - Transformation matrix rotations
 - Additional physical offsets needed in Linux than in MATLAB
 - Difficult to debug visual code in full integration

System Integration: Timing

F4.0 - KESSLER shall have a total mission time no greater than 53 minutes, based off the average LEO orbital period

- One end-to-end operation must be executed in less than 17 minutes
 - Within one mission phase three attempts will be made (2 must succeed)

Prior to Integration	Initial Integration	Optimized Integration			
 Visual Processing not yet integrated to ROS End-to-End operation: ~5min 	 Continuous data streaming from Kinect V2 (24 MB/s) End-to-End operation: 11min 	 Execute a single image capture (RGB & IR) End-to-End operation: 3.5min 			
Project Overview Design Description Test Overview Systems Engineering Project Management					

KESSLER Spring Final Review

Final Integration Test Overview

Fig. 20 Kinect V2 and Robotic Arm Reference Frame

04/23/2018

Facility:

Vicon Laboratory

Equipment:

- 2 MGSEs (Robotic Arm, Scaled Iridium Satellite)
- 7 DOF Robotic Arm
- Computer
- Cameras (Microsoft Kinect V2 and ArduCAM Mini)

Special Features:

- Robotic arm suspended in a neutral gravity position
- Lazy Susan aids the manipulation of satellite orientation
- Green Screen below satellite MGSE to mitigate shadow issues

Final Integration Test Overview

Objective: Verify that the Control Subsystem can take inputs from Visual Processing and command the arm

Requirements/Models: D1.4 - The visual system shall be capable of communicating with the control system

D3.2 Final position and orientation of end-effector shall have a total system error no greater than 2 inches and 10 degrees.

D5.1 – The KESSLER system shall have an individual operation time duration of 17 +/- 2 minutes

Equipment/Facilities: VICON Laboratory, Integrated Robotic Arm, Scaled Iridium Satellite, 2X MGSEs, Lighting Mechanism

04/23/2018

KESSLER Spring Final Review

Final Integration Test Setup

Fig. 21 Final Integration Test demonstrating feature capture.

Facility:

Vicon Laboratory

Procedure:

- 1. Setup KESSLER System
- 2. Calibrate VICON via Wand
- 3. Position Markers on End Effector
- 4. Run Demonstration
- 5. Record Test Outputs

Special Features:

- Position/Orientation of End-Effector
- Position/Orientation of Feature
- Torque Measurement of Claw

Visual Processing

Test Results

Define Closest Point on Planes Test Results

Fig 22: 3D point cloud of satellite model

Fig 23: 3D point cloud of isolated plane with closest pt and robotic arm approach angle

Results

- Can isolate a plane from the Kinect point cloud
- Output of closest point to camera
- Defining orientation with vector betweencapture point and center of plane

Closest Point on Plane Model Validation

47

Project

Management

Test Results

Motion Constraints Test Results

Fig. 25 Commanded joint positions stay within required bounds for 7 joints.

Results

- Limits successfully obeyed
- Movelt! meets requirement to within 2 degrees from nominal
- Location error negligible
- Velocity vs. Time investigated
- Status: Complete
- Validation: Arm Joint Test

Arm Joint Test Results

Fig. 26 Initial joint position test results.

04/23/2018

Results

- Can command actuators in sync
- Time to reach target errors bear investigation
- Errors extrapolate to ~23 mm position error
- Status: Complete
- <u>Validation</u>: Encoder values incrementally checked to path provided by Movelt!

Test Results

Robotic Arm Checkout Results

Preliminary Test Conducted on 03/23 FAILED

Fig. 27: Robotic Arm Checkout Test attempt 1.

Fig. 28: Actuator 1 and 2&3 (DA)

KESSLER Spring Final Review

- Designed FOS was above 1.5 which provided confidence in design.
- After further investigation manufacturer recommends operation FOS closer to 5. (not all datasheets showed this recommendation)

obotic Arm Checkout Test	failed.	Actuator 1 FOS	Actuator DA FOS			
		1.6	1.7			
*Stall torque is the maximum instantaneous and static torque. ROBOTIS recommends that your robot or project uses 1/5 or less of the stall						
torque to create stable motions.			from manufacturer			
Project D Overview Des	Test Coription	Results Systems Engineering N	Project lanagement			

04/23/2018

52

Robotic Arm Checkout - Rework

- Steps Taken:
 - Replace Dual Actuators (2 & 3) with higher torque
 - Shorten arm by ~5 inches
 - Suspend arm to remove gravitational load on turn table
- Implications on system
 - Full MGSE redesign
 - Visual processing database required to be recreated with 'top down' view of satellite

This was all done in 1.2 weeks (starting in Saturday 03/24)

Project

Overview

Design

Description

04/23/2018

KESSLER Spring Final Review

Robotic Arm Checkout Test Results

Management

04/23/2018

KESSLER Spring Final Review

Engineering

 Project Overview
 Design Description
 Test Overview
 Test Results
 Systems Engineering
 Project Management

 04/23/2018
 KESSLER Spring Final Review
 55

Final Integration Results

Fig. 31: Integrated position vs. Truth Data from VICON in every dimension

- Final Level 1 Integration confirmed that Visual and Controls were integrated •
- Test was conducted on April 16th. Trial runs were taken after transformation matrices and offsets were fine tuned
- Controls Checkout was done during integration tests by using the point from visual as the point to which controls would navigate to
- Final Allowable Error was 2 inches (50.8 mm), a range represented by the red error bars 0
- For all trials except trial 3 in the x position, requirements were met

Final Integration Results

- Average error was 32 mm, <u>below</u> our 2 inch (50.8 mm) requirement
- 8 out of 9 trials were successful, leading to an over 90% certainty that we met or exceeded our 66% success rate requirement
- Predicted error in TRR, assuming that error would be a result of the cumulative visual and controls errors was 0.72 inches (18.3 mm)
- Higher than predicted error was caused by lingering imperfections in the transformation matrices and offsets
- Test confirmed that our Level 1 Requirement of navigation the end effector to the closest point on the satellite was met

Fig. 32: Total error in integrated position vs. Truth Data from VICON

Final Integration Results

- Level 2 required final orientation to be within 10 degrees
- Average errors were:
 - 4.94 degrees in the roll
 - 12.50 degrees in the yaw
 - 11.67 degrees in the pitch
- Roll was the only result that consistently met the requirement
- As of April 16th partial Level 2 success has been achieved.
 - System is able to autonomously capture predetermined satellite feature
 - Orientation exceeds required error bounds in two
 of three Euler angles

Fig. 33: Errors in Rotation angle between Arm and VICON

Systems Engineering

Sic

Systems Engineering V

Concept of Operations

Lessons Learned:

- Well defined scope by
- Enabled development of requirements that are feasible to verify and

Requirement Definition

O1: Take visual data (via picture) confirming the target object (satellite) is in KESSLER's Field of View (FOV)

O2: Identify pre-selected satellite features (PGF's) on the target object which has an unknown position and orientation

O3: Determine a path to PGF(s)

Project

Overview

O4: Autonomously capture the PGF(s) on the target object via the robotic arm

Design Description Overview

Test Results

KESSLER Spring Final Review

Lessons Learned:

- Well defined requirements lead to fluidity later in the project
- Main driver for design developments
- Communication with customer

Issues:

- De-integration issues due to Red Loctite
- FOS Recommendation Lessons Learned:
- Thorough knowledge of heritage hardware
- Importance of spec sheet
 inspection

Component Fabrication

Issues:

Schedule slip due to • procurement delay

Lessons Learned:

Technical developments to be done in parallel

Subsystem Tests

Issues:

- Difficulties with plane detection
- Failure of actuators while in config.
- Higher FOS on actuators
 required

Lessons Learned:

- Image capture crucial for VP
- Need for stronger actuators
- Need for a gravity neutral MGSE

Project

Management

 Time and funds to be biggest risk mitigator

04/23/2018

KESSLER Spring Final Review

65

KESSLER Spring Final Review

- Difficulty of transformation matrix
- **Complication with Linux** integration

Lessons Learned:

- Doublecheck manufacturer assumptions about coordinate frames
- Development of both algorithms in
- Communication among subsystems is crucial

Project

66

04/23/2018

Key Trades

Integration of Software

Rationale

- No use of heritage software
- Powerful platform for robotics
 with various features

Implications

- Nontrivial learning curve
- Ease of algorithm integration

Hardware Lifetime

Rationale

- Unknown status of heritage hardware
- Differing FOS requirement of design than CASCADE

Implications

- Schedule slip
- Reallocation of budget

Project Management

 Project Overview
 Design Description
 Test Overview
 Test Results
 Systems Engineering
 Project Management

 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018
 04/23/2018

Project Management Approach

Prior to Project Bazaar	Post Project Selection	Fall 2017	Spring 2018
 Contacted peers from previous labs Voted on highest technical interests Conducted skill survey 	 Sub-milestone definition with Team Buy-In Weekly reviews with advisor and customer 	 Subsystem design reviews leading into course reviews Reviewed by customer, advisor and some PAB 	 Multiple subsystem working hours 4-8 hour shifts with ~7/11 team members present
Team Dynamic & Skill Versatility >> Project Topic	'Milestone Driven' PM Approach based on Course Structure	Subsystem Autonomy with PM & SE collaborative oversight.	All hands on deck as we approached integration efforts.

Presentation 'content reviews' held Thursdays prior to Monday submissions. Upon feedback received we met with PAB to help rectify / clarify any issues.

Project Management Success

- Team Dynamic
 - Adaptive and versatile to unexpected technical issues
 - Always had a positive attitude
- Full Level 1 and Partial Level 2 Success met
- AIAA Student Conference Win
 - Acquired travel funds for 10 team members

Fig. 40: KESSLER Team Technical Discussion

70

Project Management Difficulties

- Lack of previous coursework in robotics and visual processing
- Actuator supplier FOS specification vs recommendation
- Heritage hardware and Red Loctite
 - Customizing the previous hardware was very difficult
 - Arm de-integration for actuator testing delayed progress
 - Project expenses increased by 160%
 - Schedule delayed by a total of one month due to unforeseen orders
 - Back-order and shipping delays added more uncertainty
 - Team was required to work over spring break to close the schedule

CDR Cost Plan vs. Actual Cost

CDR Cost Plan

Subsystem	Cost	
Visual Processing	\$516.00	
Mechanical	\$757.00	
Software Control	\$0.00	
Ground & Test Support	\$675.00	
Electrical	\$670	
Misc	\$0.00	
% Margin	15%	
Total Projected Cost	\$3,010	
Project Design Test Overview Description Overview		

Actual Cost

Subsystem	Cost
Visual Processing	\$296.24
Mechanical	\$3,357.97
Software Control	\$0.00
Ground & Test Support	\$826.03
Electrical	\$236.56
Misc.	\$77.98
Total Cost	\$4,794.78
Remaining	\$205.22 (4.1%)
	Updated 4/19/2018
Test Results Systems	Project Management

04/23/2018

KESSLER Spring Final Review
CDR Cost Plan vs. Actual Cost

Planned vs. Actuals Highlighting Primary Drivers of Discrepancy

Subsystem	Percent Difference	Reasoning
Visual Processing	57%	CDR Plan was conservative
Mechanical	444%	Red Loctite, Spring Break Redesign
Software Control	N/A	
Ground & Test Support	122%	Spring Break Redesign
Electrical	35%	CDR Plan was conservative
Total	159%	Biggest Impact was Mechanical Cost Increase

Project Level of Effort

Industry Equivalent of Project Cost

ltem	Cost
Total Labor Cost	\$ 146,906.25
Total Overhead	\$ 293,812.50
Total Material	\$ 4,794.78
Industry Cost	\$ 445,513.53

<u>Note</u>: Does not account for tax exemption and student discounts obtained for material costs.

04/23/2018

Project Hours – Total: 4701

- Fall: 2139 Hours
- Spring: 2562 Hours
- Assuming Labor Hourly Rate: \$31.25
 - Starting salary of \$65k for 2080 Hours
- Assuming 200% Overhead Rate

We would like to thank

- Josh Stamps and Sierra Nevada Corporation (project customer)
- Dr. Jade Morton (project advisor)
- Ann and H.J. Smead Aerospace Engineering Sciences
 department
- ASEN 4018-4028 Senior Design 2018 Project Advisory Board
- University of Colorado Boulder RECUV RIFLE Lab (high accuracy verification testing support with Vicon)
- Pacific Bells Inc. (project travel financial support)

Questions?

KESSLER Spring Final Review

®

76

BACKUP

-

®

Concept of Operations

04/23/2018

3. Secondary Positioning

- ArduCam Mini takes secondary images to fine tune position of
- Robotic arm actuates to the adjusted position and orientation of

Project

Management

Fig. 7 KESSLER Design: Short Range Camera for capture location fine Short Range RGB Camera & Prox Sensor on Robotic Arm Wrist

KESSLER Spring Final Review

Project Description

Project Assumptions

- Satellite Position:
 - Object is in front of and within reach of robotic arm.
- Satellite Dynamics:
 - Object is stationary with respect to robotic arm.
- Lighting Conditions:
 - Operations are conducted during Sun-Soak orbital phase.
- Standard Spacecraft Subsystems:
 - Are not in scope of KESSLER project (e.g. ADCS, EPDS, CDH, COM).
- Environment:

04/23/2018

• Controlled test environment at 1G and atmosphere.

All assumptions are approved by project customer.

Project Purpose

- The simulated target satellite is modeled after the Iridium satellite series.
- Model will be 30% scale
- Features are:
 - Solar Panels
 - Bus Structure
 - Antenna •
- Features on Iridium are commonly found on other satellites as well.

Fig. 3 Iridium Satellite [3]

SF.

Level 1 Success Criteria

Table 1: Level 1 Success Criteria

Identification	Processing	Command Execution
Identify at least two surfaces with varying depths in 3D space.	Identify the distance between the closest point of the satellite and the base of the robotic arm (± 4mm).	Demonstrate end-effector can move to closest point and actuate while facing the parallel plane (± 47mm).

Level 2 Success Criteria

Table 2: Level 2 Success Criteria

Identification	Processing	Command Execution			
Identify grappling feature recognition on target satellite.	Determine grappling feature location and orientation to within \pm 4mm & \pm 5 degrees.	Grapple feature in parallel plane to within ± 90 degree of end-effector roll angle.			

*Three categories decoupled to ensure there is no dependency when meeting mission success criteria

Level 3 Success Criteria

Table 3: Level 3 Success Criteria

Identification	Processing	Command Execution			
Identify collision feature on target satellite.	Define keep-out zone to within ± 4mm of collision feature surface, and select grappling feature that causes the smallest collision risk.	Grapple feature in perpendicular plane (demonstrate additional Degree of Freedom).			

*Three categories decoupled to ensure there is no dependency when meeting mission success criteria

Design Functionality

Project Assumptions

#	Description
1	Target object is in-front & within reach of the robotic arm; this entails that this scenario is valid
	if the target object and the chase vehicle are in the same orbit and in proximity to each other.
2	Target object is stationary with respect to the chase vehicle (robotic arm base plate); this
	entails that this scenario is valid (in an orbital case)if the target object is 3-axis stabilized (or the
	chase vehicle has matched rotation at one axis if 2-axis stabilized).
3	Chase vehicle operations (target and capture) occurs during Sun-soak in an average Lower
	Earth Orbit (LEO); this entails that lighting conditions are not in the scope of KESSLER.
4	KESSLER mission will be demonstrated in a controlled test environment (1G & atmosphere).
5	KESSLER will not design the "chase vehicle's" system; this entails that electrical power system,
	command & data handling, attitude determination & control, etc. will not be in the scope of
	the KESSLER project.
6	Main characteristics of the KESSLER mission include antennas, solar panel joints, and bus
	structure supports.

®

Design Functionality

Functional Requirements

Req. ID	Requirement	Verification Method
<u>F1</u>	The visual processing algorithm shall identify the surface of a satellite in the primary camera's (RGB) field of view (FOV) and within the robotic arm's reach.	Imaging Analysis & Visual Inspection
<u>F2</u>	Control algorithm shall define a path to the location of a grappling feature.	Path Simulation (Experimental vs. Theoretical Location)
<u>F3</u>	Robotic arm shall autonomously navigate to at least one preselected grappling feature on the satellite.	Demonstration/Test
<u>F4</u>	The KESSLER system shall have a total mission time no greater than 53 minutes .	Timing Analysis
<u>F5</u>	KESSLER shall execute a total of 3 end to end process operations and succeed at least twice within the total mission time.	Demonstration/Test

Design Requirements

REF ID	Description	Verification Method
D1.1	The visual processing algorithm shall be capable of detecting a feature at a minimum distance of 20 inches.	Demonstration/Test
D1.2	The visual processing algorithm shall be capable of identifying the main characteristics of a satellite with a level of confidence greater than or equal to 75%.	Image Analysis
D1.3	The visual processing algorithm shall identify the position (x,y,z) and orientation (Euler angles) of an object in 3D space.	Image Analysis
D1.4	The visual system shall be capable of communicating with the control system.	Demonstration/Test

Design Requirements

REF ID	Description	Verification Method
D2.1	The end-effector position and orientation shall be determined	Demonstration/Test
	in 3D space to within +/- 13mm and +/- 5 degrees.	
D2.2	The robotic arm path shall be constrained by the arm's joint	Demonstration/Test
	limitations	

Design Requirements

REF ID	Description	Verification Method
D3.1	The robotic arm shall receive commands from the control system	Demonstration/Test
D3.2	Grappling features shall be representative of features on the Iridium Satellite form factor	Inspection Test
D3.3	Robotic arm shall execute path defined by control algorithm	Demonstration/Test
D3.4	End effector shall have a full deployable range of 9 inches.	Demonstration/Test
D3.5	The arm shall be capable of capturing feature at a finite displacement of 30inch arm radius, ± 180 degree roll, in x,y,z, and roll	Demonstration/Test

04/23/2018

KESSLER Spring Final Review

90 °

Camera Calibration

- Perform camera calibration on Kinect
 - Define possible pixel warping due to distance
- Take images of a checkerboard
- Determine differences between actual positions and measured positions
- Plot results to determine offset of Kinect

Fig #: Example of calibration testing setup

How the Kinect Works

https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/

- Projected Structured Patterned Scene
- Distance between each dot is known
- Depth is determined from disparity
 - Offset of the Captured Pattern to the knows projected pattern
- Depth computations are performed on the Prime Sense's PS1080 chip
- The actual pattern is distorted to a pin cushion shape and varies brightness.
- The pattern is composed of a 3×3 repetition of a 211 x 165 spot

https://www.anandtech.com/show/4057/microsoft-kinect-the-anandtech-review/2

pattern, totaling to 633 x 495 spots, a number quite similar to VGA resolution.

- The pattern is additionally 180°-rotation invariant.
- Given a specific angle between emitter and sensor, depth can be recovered from simple triangulation. Expand this to a predictable structure, and the corresponding image shift directly relates to depth.

04/23/2018

KESSLER Spring Final Review

Capturing the IR Data Stream

• Kinect sensor returns 16 bits per pixel infrared data with a resolution of 640 x 480 as an color image format, and it supports up to 30 FPS.

Diffraction grating

 In optics, a diffraction grating is an optical component with a periodic structure that splits and diffracts light into several beams travelling in different directions. The directions of these beams depend on the spacing of the grating and the wavelength of the light so that the grating acts as the dispersive element. The relationship between the grating spacing and the angles of the incident and diffracted beams of light is known as the grating equation.

https://abhijitjana.net/2013/01/11/get-the-ir-stream-and-control-the-ir-emitter-kinect-for-windows-sdk/

https://en.wikipedia.org/wiki/Diffraction_grating

https://www.edmundoptics.com/resources/faqs/optics/diffraction-gratings/what-is-the-grating-equation/

KESSLER Spring Final Review

G

Actuator Dynamic Testing - Results

MX-64T Wrist (6)

<u>MX-28T (7), H</u>

Actuator Dynamic Testing - Results

Actuator Preliminary Testing - Results

MX-64T DA (2)										
Trial #	Calculated Torque (oz.in.)	Measured Torque (oz.in.)	Measured Weight (oz)	Load Deflection (deg)	Final Actuator Position (deg)	Change in Actuator Position (deg)	Change in Commanded Position (deg)	Actuator Position Error (%)	Time (s)	Actuator Velocity (rev/min)
1.1	225	222.5	44.5	-5	24	29	29	0	0.23	234.7
1.2			÷.	-5	24	29	29	0	0.22	232.7
1.3			÷.	-5.5	26	31.5	31	1.61	0.22	230
2.1	325	333	66.7	-7	29	36	35	2.86	0.4	142.8
2.2			Ē	-6	24	30	30	0	0.4	142.5
2.3			Ē	-6	24	30	30	0	0.4	141.1
3.1	375	372.5	74.5	-4	23	27	28	3.57	0.27	175.6
3.2	-	-	-	-5.5	24	29.5	30	1.67	0.29	174.7
3.3	-		-	-6	23.5	29.5	29	1.72	0.3	172.8
Comments	ctuator performed as expected without issue	S.								

MX-106T B Pitch (6*)										
Trial #	Calculated Torque (oz.in.)	Measured Torque (oz.in.)	Measured Weight (oz)	Load Deflection (deg)	Final Actuator Position (deg)	Change in Actuator Position (deg)	Change in Commanded Position (deg)	Actuator Position Error (deg)	Time (s	Actuator Velocity (deg/s)
(1.1)	350	357.5	71.5	mistrial	mistrial	mistrial	mistrial	mistrial	mistrial	mistrial
1.2	-	-	-	-3	27	30	29	3.45	0.22	279.6
1.3	-		-	-6	26	32	31	3.23	0.25	291.2
1.4	-	-	-	-5	25	30	31	3.23	0.22	266.5
2.1	400	401	80.2	-5	23.5	28.5	29	1.72	0.24	268.5
2.2	-	-	-	-6	24	30	30	0	0.22	281.5
2.3	-		~	-6	28	34	35	2.86	0.26	255.2
3.1	450	451.5	90.3	-6	22	28	29	3.45	0.26	236.6
3.2	1	10 - 1	~	-6	17	23	23	0	0.22	248.4
3.3	-	-	-	-9	27	36	35	2.86	0.28	225.1
Comments										
		Actuator not commanded								
1.1	Mistrial	to correct angle								

Actuator Testing - Results

MX-106T Turntable (1)											
Trial	Stall Torque (oz.in)	Design Torque (oz.in.)	Test Weight (oz)	Design FOS	Test FOS	RPM	T - after	delta position, commanded (deg)			
1	1,420	840	180	1.7	1.58	1	fail	30			
2	n. N S N	2 7 0		.=.		1	fail	30			
3	6 	-		(=)	: .	1	fail	30			
Notes	Alternative solutions will be tested										
MX-64T DA (3)											
Trial	Stall Torque (oz.in)	Design Torque (oz.in.)	Test Weight (oz)	Design FOS	Test FOS	RPM	delta position, commanded (deg)	Pass/fail			
1	1,030	280	75	3.67	2.75	25	30	pass			
2	-	-	-	-	-	10	30	fail			
3	-	-	-	-	-	5	30	fail			
4	-	-		-	-	5	90	pass			
5	-	-	2	12	-	10	90	pass			
6		-	-	-	-	25	90	pass			
MX-64T (5)											
Trial	Stall Torque (oz.in)	Design Torque (oz.in.)	Test Weight (oz)	Design FOS	Test FOS	RPM	delta position, commanded (deg)	Pass/fail			
1	1,030	180	75	5.72	2.75	25	30	pass			
2		-	-			10	30	pass			
3	1057.	120	-	5 (-	5	30	fail			
4	3.5	3 - 1	H	-	-	5	90	pass			
5	-	-	-	-	-	10	90	pass			
6	-	-	-	-	-	25	90	pass			
04/23/2018 KESSLER Spring Final Review 99											

Actuator Testing - Results

Actuator	Stall Torque (oz.in.)	Design Torque (oz.in.)	Test Torque (oz.in)	Test Weight (oz.)	Design FOS	Test FOS	T - initial (deg)	T - 10/20 (deg C
MX-106T Turntable (1)	1,420	840	900	180	1.7	1.58	32	63 @10 mins
MX-64T DA (3)	1,030	280	375	75	3.67	2.75	30	60
MX-64T (5)	1,030	180	375	75	5.72	2.75	26	75

04/23/2018

KESSLER Spring Final Review

Ţ

Sharp Infrared Proximity Short Range Sensor

• 16.5 ms ± 3.7 ms data acquisition rate

Electrical Hardware Block Diagram

Short Range Camera (src) and Proximity Sensor: Harnessing for communication and integration with microcontroller.

Microcontroller: USB to MicroUSB, expected location central to PC.

Long Range Camera: External DC Power Supply and USB cord management

Arm Assembly: Anchors for SRC harnessing, removal of heritage force cells, re-harnessing of heritage actuator 3pin connectors.

Expected Challenge:

Verifying SRC harnessing provides reliable connectivity and does not impede arm, execution.

Electronics Hardware Housing and Integration

- Short Range Camera, Microcontroller received
- Proximity Sensor received
- Long Range Camera heritage

KESSLER Spring Final Review

ArduCam Uno

Power

- 3.3 to 5 VCC and GND
- SPI
 - Issues capture command; ArduCam waits for new frame and buffers the entire image data to the frame buffer, sets completion flag bit

• I2C

 Interacts directly with the OV2640 image sensor

노기

System Ground Support Equipment

Scaled Iridium Satellite MGSE

04/23/2018

Robotic Arm MGSE

Rail

- Robotic Arm MGSE is movable and has adjustable height
- Moving the robotic arm MGSE around the Scaled Iridium Satellite MGSE simulates different approaches

Budget

Scaled Iridium Satellite will be kept stationary

Integration

KESSLER Spring Final Review

Hardware

VICON

- VICON is a system of cameras that measures the position and orientation of an object marked with markers
- Has an accuracy of 1mm when measuring stationary objects
- VICON is able to measure objects in motion at 120 fps, but we will not use this functionality
- VICON data is <u>only truth data</u>. KESSLER will not use VICON for operation, only for conformation

Visualization of VICON cameras around an object

RIFLE lab

- RIFLE has 18 VICON cameras
- Positions of the cameras are adjustable to maximize visibility to the measured object
Final Integration Test Procedure

- 1. Green Screen, Lighting System and VICON will be set up. VICON will be calibrated.
- 2. Iridium satellite and Robotic Arm MGSE's will be set up. The approach of the arm will be varied by changing the position of the Robotic Arm MGSE.
- 3. KESSLER will begin operation:

Project

Overview

- Visual Processing Algorithm will find closest point of Satellite (Level 1) or closest plane (Level 2 and 3). Then it will pass position (Level 1), orientation (if Level 2), and avoidance point cloud (if Level 3)
- Controls Algorithm will generate a path to the point given to it by Visual Processing, while avoiding collision (if Level 3).
- Controls Algorithm will output commands to arm, and arm shall execute path made by controls. End Effector will end up at a point (and orientation if Level 2) initially output by the Visual System.
- Position of end effector will now be measured with VICON

Schedule

- Claw will actuate and grip target (if Level 2 and 3). System will be inspected to ensure that claw has gripped the target, and torque of claw will be measured
- 4. KESSLER will finish operation. Time of Operation is recorded.

Level 1 Level 2 Level 3

04/23/2018

KESSLER Spring Final Review

Hardware

Integration

Budget

Software

Final Integration Test Objectives

Verify Functional Requirements:

- The visual processing algorithm shall identify the position and orientation of a satellite.
- Control algorithm shall define a path from the initial to final end-effector position and orientation.
- . Robotic arm shall autonomously navigate to at least one preselected grappling feature on the satellite.
- KESSLER shall have a total mission time no greater than 53 minutes, based off the average LEO orbital period.
- . KESSLER shall execute a total 3 end to end process operations and succeed at least twice within the total mission time.

System Reliability

D5.0: KESSLER shall execute a total 3 end to end process operations and succeed at least twice within the total mission time.

- To execute this requirement reliably (>90% success), KESSLER as a system must have a success rate in individual tests (R) of 79%. Found with $R^3 + 3(1 R)R^2 = 0.9$
- Bimodal Distribution, $P(X = x) = (nCs)R^{s}(1-R)^{n-s}$, can be used to quantify success rate.
- Using this approach can cut down on number of tests required to be confident in results.

How certain we can be that KESSLER has over 79% reliability based on consecutive successful trials

Q

04/23/2018

Ľ

®

KESSLER Spring Final Review

112

Project Management Approach

- Initial Approach (prior to project selection)
 - Contacted peers from previous lab work that worked well together
 - Valued "Team Dynamic and Skill Versatility over Project Topic"
 - Voted on highest technical interests for Project Bazaar
- Post Project Selection
 - <u>Milestone driven</u> Course milestones provided strong infrastructure
 - Defined sub-milestones as a team to ensure we had team buy-in for all majors tasks
 - Conducted weekly meetings with Project Customer and Project Advisor every Thursday
 - Held presentation 'design reviews' leading into course milestones

Project Management Approach

• Fall 2017 – Subsystem Autonomy

04/23/2018

- Subsystems delivered required data for milestones
 - PM & SE helped to define sub-milestones (with input from team)
 - Sub-milestones reviewed by team (customer & advisor too) during Thursday meetings
 - Templates were provided for higher efficiency to reuse work for course deliverables
- All subsystems were required to meet at least once a week outside of lab hours
- Spring 2018 Inter-Subsystem Development
 - Majority of working hours involved at least 7/11 team members
 - Working hours lasted between 4-8 hours depending on project phase
 - Deliverable development vs. integration testing

Presentation 'content reviews' held Thursdays prior to Monday submissions. Upon feedback received we met with PAB to help rectify / clarify any issues.

Budget

Subsystem	Cost	ltems
Visual Processing	\$296.24	ArduCam, Arduino, Lighting, Green Screen, Spray paint, power strips
Mechanical	\$3,357.97	CrustCrawler parts (girders, fasteners, replacement servos)
Software Control	\$0.00	N/A
Ground & Test Support	\$826.03	Acrylic, fasteners, paint, plywood
Electrical	\$236.56	Power, connectors, sensors, sleeving
Misc.	\$77.98	Printing, etc.
Total Cost	\$4,794.78	
Remaining	\$205.22	

Updated 4/19/2018

Visual Processing

	Price (per unit,		
Item (Name)	without tax)	Quantity	Item Total
ArduCAM Mini	\$25.99	1	\$25.99
Arduino Zero	\$39.00	1	\$39.00
Lighting	\$48.22	2	\$96.44
		0	\$0.00
Green screen	\$26.99	1	\$26.99
Green screen stand	\$32.50	1	\$32.50
Gold spray paint	\$6.76	1	\$6.76
Silver spray paint	\$6.76	1	\$6.76
Black spray paint	\$5.76	1	\$5.76
White spray paint	\$3.28	2	\$6.56
Extra lightbulbs	\$34.90	1	\$34.90
Power strips	\$10.89	1	\$10.89

Visual Processing	\$296.24
Total	\$4,794.78

Updated 4/19/2018

04/23/2018

Mechanical

	Price (per unit,		
Item (Name)	without tax)	Quantity	Item Total
MX-106T	\$552.00	1	\$552.00
MX-64T Wrist	\$364.00	1	\$364.00
2.5" Girder	\$23.00	2	\$46.00
MX-64/106 To MX-28 Adapter	\$11.99	2	\$23.98
Singleaxismount	\$15.00	3	\$45.00
12in. (30.48cm) 3-pin wire extension	\$9.49	3	\$28.47
5" Girder	\$29.00	1	\$29.00
Fasteners (various)	\$64.31	1	\$64.31
AX Dual Gripper kit (no servo)	\$69.00	1	\$69.00
FR08-H101	\$29.90	1	\$29.90
FR05-H101K	\$29.90	1	\$29.90
FR07-H101	\$27.90	1	\$27.90
MX-28T (servo only)	\$219.90	1	\$219.90
Stanley Organizer	\$14.40	2	\$28.80
Various Hardware	\$335.61	1	\$335.61
MX-106T DA	\$1,166.00	1	\$1,166.00
Fiero	\$45.68	1	\$45.68

Mechanical	\$3,357.97
Total	\$4,794.78

Updated 4/19/2018

123