

Haleigh Flaherty, Kirill Kravchuk, Tommy Pestolesi, Gerardo Pulido, Dylan Reed, Jaquelyn Romano, Sage Sherman, Olagappan Chidambaram, Nate O'Neill, Angel Ortega, Brian Ortiz, and Savant Suykerbuyk

projects 20

Hybrid-rocket Information-Collection, Knowledgebase and Analysis Module

Orbital ATK

Agenda

- Overview
- Schedule
- Manufacturing
- Budget

Project Overview

- The goal of project HICKAM (<u>Hybrid-rocket Information-Collection</u>, <u>K</u>nowledgebase and <u>A</u>nalysis <u>M</u>odule) is to design and manufacture a modular, compact, and portable testing platform for hybrid rocket engines.
- Customer vision:
 - A plug-and-play test stand for future hybrid rocket projects
 - Donated to the department for future rocket project use

Levels of Success

Requirements	Mission Goals	Analysis Items
Level 1	Successful test of test stand using simulation of loads	Measure thrust (delay, duration, and maximum), total impulse, mass of rocket engine
Level 2	Successful static cold flow test	Measure nozzle temperature, combustion chamber pressure
Level 3	Successful static hot fire test	Measure of oxidizer flow rate, specific impulse

CONOPS

<u>Hybrid-rocket</u> Information-<u>C</u>ollection, <u>K</u>nowledgebase and <u>A</u>nalysis <u>M</u>odule (HICKAM)

FBD

Baseline Design – Test Stand

- Minor Changes
 - Bosses on anchor legs removed from design
 - Reverted back to U-bolts
 - Changes due to sizing constraints and cost

Baseline Design – Plumbing

• Changes

- Pre-combustion moved away from oxidizer tank
- Pre-combustion dump system added
- Moved some components onto the test stand

• Reasons

- Avoid more expensive Oxygen rated components from Swagelok
- Required dump for safety
- Better accuracy at ensuring N2O is entering as a liquid

тор

LEGEND

Baseline Design – Data Acquisition

- Changes
 - NI 9234 switched to NI 9205
 - CDAQ 9172 switched to CDAQ 9174
 - Mass Flow Meter(MFM) now has own computer.
- Reasons
 - Accelerometer was not IEPE, but NI 9234 is meant for IEPE sensors.
 - CDAQ 9172 was only capable of one task
 - MFM already had NI DAQ device.

Rank	Critical Project Element (CPE)	Description
1	Safety	 Pressure transducer Rocket critical failure Environmental and personnel safety risks
2	Budget	 Costs of four major systems: test stand, plumbing, rocket, and avionics sensors
3	Data Acquisition and Analysis System	 LabVIEW implementation with sensors
4	System Validation using Computational Modeling	 Low fidelity performance characterization model
5	Manufacturing of the Test Stand and Rocket Engines	• Manufacturing multiple components including the test stand, plumbing, and a rocket

CPE: Pressure Transducer

CPE: Pressure Transducer

CPE: Pressure Transducer

- Changes
 - Addition of NPT/Compression Tube Fitting and phenolic/machinableceramic tube
- Reasons
 - NPT/Compression tube fitting addresses concern about seal integrity
 - Phenolic/Machinable-ceramic tube addresses concern about excessive radiative and convective heat transfer to metal components

Schedule

Schedule

Event	Dec. '17	Jan. '18		Feb. '18		Mar. '18		Apr.	'18
Manufacturing/Modelling									
Manufacturing review milestone								7	
Simulated Loads Testing									
Test Readiness Review milestone						<			
Cold Flow Testing									1
Hot Fire Testing									
AIAA Paper milestone									
Data Analysis									
Final Presentation									
Project Completion milestone									15

Manufacturing

Manufacturing Plan - Test Stand

- Scope of tasks
 - Verify appropriate type and amount of material was ordered
 - Manufacture major components using CNC (i.e. Push plate)
 - Work with Matt Rhode for aluminum welding
 - Verify assembly of test stand

Test Stand Completed Work

Component /Quantity	1. Front Plate x1	2. Side Bars x2	3. Flat Plate x2	4. Horizontal Bars x3	5. Rear Legs x2	6. Front Legs x2	7. Brackets x4	Push Plates x2
Dimensions (inches)	20"x12"x1 "	34"x3"x1"	20"x4"x1"	20"x1"x1"	15.42"x3"x 2"	19.75"x3"x 2"	4"x4"x1"	10"x2"x0.5"
Future work	Drilling/ Milling	Drilling	Welding	Drilling	Welding	Welding	None	None
								- 5

Manufacturing Schedule – Test Stand

Event	3-4 week J '18	an. 1-2 v	veek Feb. '18
Components check			
Cut, fit, and deburr all components			
Welds for legs			
Drilling of components			
Finish machining milestone			
Assemble test stand			

Manufacturing Plan - Plumbing

Manufacturing Schedule – Plumbing

Event	2-4	1 week Mar. '18	
Valve pressure testing		•	
Cleaning of valves and additional parts			
Swagelok tutorial			
Plumbing integration			
Cart assembly and Switch board integration			

Manufacturing Plan - Rocket Motor

Overall manufacturing progress:

end of Feb

Rocket and Plumbing Concerns

Concern	Solution
 Plumbing parts coming in on time Rocket manufacturing complexity Troubleshooting plumbing leaks and valve function 	 Stable communication with Rob Carroll Expert Matt Rhode CO2 Cold flow and valve Testing
 Machinist and personnel safety 	 Proper manufacturing setting for specific rocket components

Manufacturing Schedule – Rocket Motor

Event	3-4 week Feb. '18		1 week Mar. '18
Vacuum Chamber			
End Caps			
Phenolic			
Carbon Fiber Wrap			
Fuel Casting			
Fuel cure			
Injector housing, plate, and nozzle			
Full integration milestone			

Manufacturing Plan - Power

Power – Tasks Completed

30%

- Everything in orange was manufactured and tested: actuating 4 valves at the same time

- 3 GPS4303 power
supplies must be used for
meeting power/current
requirements: 2 for valves,
1 for sensors.

- x6 60 feet wires were measured and cut.

Manufacturing schedule - Power

Event	1-4 weeks Feb '18			1-3 weeks March '18			
Highest power consumption scenario tested							
Verify that LED switches work with our design							
Integrate switches into a sheet of plastic, cut all the wires to length							
Run tests with supplying power to valves for cold flow procedure, PT and LC power tests							
Integrate the power rail, XT60 connectors and switch board into switch box							
Test cold-flow procedure w/ PT and LC data acquisition							

Manufacturing Plan – Data Acquisition System

Critical Concerns – Data Acquisition System

	Concern	Solution	
• 	Postponed ordering 2 pressure transducers for plumbing system due to financial restrictions Postponed ordering & manufacturing test stand thermocouples due to financial restrictions	 1 week built in margin to obtain sensors Additionally, ahead of schedule by 1 week of testing software with sensors 	on
• (Location to verify pressure transducer not established	 In contact with LASP, NIST, and Space Grant about possible verification locations 	
•	Procedure to verify mass flow meter not established	 In contact with manufacturer Emerson to receive assistance on procedure Final option - measure time for amount of water to pass through meter 	

Manufacturing Schedule – Data Acquisition

Event	1-4 wee	1-4 week Jan. '18		1-4 week Feb. '18				
Procure all sensors								
Sensor and software integration								
Load cell verification								
Thermocouple verification								
Accelerometer verification								
Mass flow meter verification								
Pressure transducer verification								

Software: Tasks

Manufacturing Plan - Software

Manufacturing Schedule – Software

Event	3-4 week Jan. '18			1-2 week Feb. '18		
Data writes to file and outputs plots						
Tested with hardware						
Tested with load cell and thermocouples						
Tested with pressure transducer and accelerometer						
Debug mass flow meter code						
Tested with mass flow meter						

Manufacturing Plan - Analysis

55% left

45%

Manufacturing progress:

34

Manufacturing Analysis - Challenges

Challenges:

- Deriving the control points for the nozzle geometry
- Defining the steady burn for derived components

Manufacturing Schedule – Analysis Software

Event	2-4 week Jan. '18		1	1-4 week Feb. '18			
GUI made							
Post processing software work							
Read in the data files produced by the DAQ							
Construct a 3D Cone shaped solids with NURBS Toolbox				•			
Construct a 3D Conical Nozzle with NURBS Toolbox							
Construct a 3D MaCH SR1 nozzle with NURBS Toolbox							
Integrate the file reading, GUI, and post-processing software together							

Full System Integration Plan

Budget

Budget Status

- Spent: \$3,189
 - Remaining Funds: \$2,811
- Projected Total Cost: \$7,621
- Submitted Funds Request to Department
- Received Donation of Plumbing from Swagelok Denver

Subsystem	Projected Total Cost	
Plumbing	\$2,654	
Test Stand	\$1,326	
Rocket Motor	\$2,308	
Data Acquisition	\$633	
Simulated Loads Test	\$200	
Shipping	\$500	
Total	\$7621	

Procurement Status

Arrived

- Test Stand Raw Materials
- Rocket Injector Plate and Endcap Raw Materials
- Switchboard Raw Materials
- Accelerometer

Purchased, Not Arrived

- Graphite Rod for Rocket Nozzle
- Combustion Chamber Raw Materials
- Fuel Casting Raw Materials

Not Yet Purchased

- Plumbing Hoses, Valves, Pressure Transducers
- Tanks for Hot and Cold Fire
- Thermocouples for Rocket Nozzle
- Rocket Motor Material: O Rings, Burst Discs, Safety Heads

Subsystem Break Down

Subsystem	Total Spent
Plumbing	\$0
Test Stand	\$1,184.27
Rocket Motor	\$1521.04
Data Acquisition	\$204.08
Simulated Loads	\$0
Shipping	\$279.81
Total	\$3,189.20
Remaining Funds	\$2,810.80

Total Amount Spent

Backup Slides

Hybrid-rocket Information-Collection, Knowledgebase and Analysis Module (HICKAM)

CONOPS

43

Rocket Motor – Fuel Casting

- Teflon tube mandrel milled to shape of fuel port
- Conical top to ease pouring
- Vacuum Chamber with variable control flow. Allows bubbles to be extracted as it goes through lower pressure chamber
- Fuel mixture numbers from previous MaCH-SR1 Projects

Fuel Mixture						
0.09145 ft^3						
57.54 lbm/ft^3						
5.52 lbm						
Mass Ratios	Mass					
84.57%	4.67 lbm					
10.34%	0.571 lbm					
5.00%	0.276 lbm					
0.09%	0.005 lbm					
100%	5.52 lbr					
	e 0.09145 57.54 lbr 5.52 l Mass Ratios 84.57% 10.34% 5.00% 0.09% 100%					

Rocket Motor – Combustion Chamber

- Manufacture end caps
- Shape phenolic
- Attach end caps to phenolic
- Wrap the carbon fiber sheet around the chamber 6 times while spreading epoxy and applying pressure

Rocket Motor – Nozzle and Injector Plate

Same process from MaCH-SR1 will be followed – Nozzle

- Drill the hole using the lathe with a 6-jaw chuck
- Bore the interior profile at speeds between 1100 & 1400 rpm
- Cut to length
- Cut the exterior profile using the lathe at speeds between 1100 & 1400 rpm

Same process from MaCH-SR1 will be followed – Injector Plate

- Drill holes in titanium injector plate
- Aluminum end fittings using CNC lathe
- Mold cerafiber into bottom aluminum fitting
- Drill instrument holes in cerafiber
- Heli-coil threads to injector fitting
- Cut graphite gasket to correct size

Thermocouple Verification

- Location: Senior Projects Shop
- Procedure:
 - Place thermocouples and thermometer within an ice bath
 - Check to see if thermocouples read values within 2 degrees of the thermometer
 - Repeat process but use boiling water bath instead of ice bath

Pressure Transducer Verification

- Location: TBD
 - Looking at Spacegrant, LASP, NIST
- Procedure:
 - Place pressure transducers in Bell Jar
 - Collect values from pressure transducers
 - Compare values of pressure transducer to that of pressure gauge on Bell Jar, ensure values are within 2 psi

Accelerometer Verification

- Location: Senior Projects Shop
- Procedure:
 - Tilt X-axis in the direction of Earth's gravity
 - Ensure the accelerometer measures approximately 1 G
 - Follow same steps for Y and Z-axes
 - Shake the accelerometer
 - Ensure accelerometer measures values greater than 1 G

Load Cell Verification

- Location: Senior Projects Shop
- Procedure:
 - Place weights in 5 lb increments on load cell
 - Ensure load cell measurements are accurate to within 1 lb of the mass placed
 - Stop placing weights at 50 lbs

Mass Flow Meter Verification

- Location: TBD
 - Contacting Emerson about field tech assistance in verification
- Procedure:
 - Measure and weigh 1 gallon of water
 - Pump water through mass flow meter
 - Integrate the results of the mass flow meter
 - Check if the result of the integration is within 1 lbm of the water pumped in through the mass flow meter

Wiring Diagram

Switchboard circuit not shown

Software: Tasks

Task	Scheduled Finish Date	Status
Basic Main Code draft	January 22	Finished
Debug Given MFM Software	January 22	Finished
Add Times to File	January 28	Finished
Test software with hardware to ensure data rates	January 28	Finished
Output data to one file	February 11	Finished
Test MFM code with Hardware	February 11	In Progress
Test Main code with sensors to ensure it is reading correct values	February 11	Finished
Finish all Code	February 20	In Progress
Debugging of code if issues arise	April 1st	Ongoing

Manufacturing progress:

75%

Model GUI

Switchboard Test Pictures

