

HERMES Hazard Examination and Reconnaissance Messenger for Extended Surveillance

PRELIMINARY DESIGN REVIEW OCTOBER 15, 2018

Presenters: Marcos Mejia, Chase Pellazar, Colin Chen, Junzhe He, Alexander Sandoval, Ashley Montalvo, Brandon Santori, Quinter Nyland, Alexis Sotomayor
 <u>Customer:</u> Barbara Streiffert and Jet Propulsion Laboratory (JPL)
 <u>Advisor:</u> Dr. Kathryn Anne Wingate
 <u>Team:</u> Alexander Sandoval, Alexis Sotomayor, Ashley Montalvo, Brandon Santori, Brindan Adhikari, Chase Pellazar, Colin Chen, Junzhe He, Katelyn Griego, Marcos Mejia, Michely Tenardi, Quinter Nyland

Project Heritage

The Jet Propulsion Laboratory's Fire Tracker System is a system that is designed to be a low-cost, hands-off approach to **forest fire identification**.

There have been three previous years of heritage:

1. INFERNO (2015-2016)

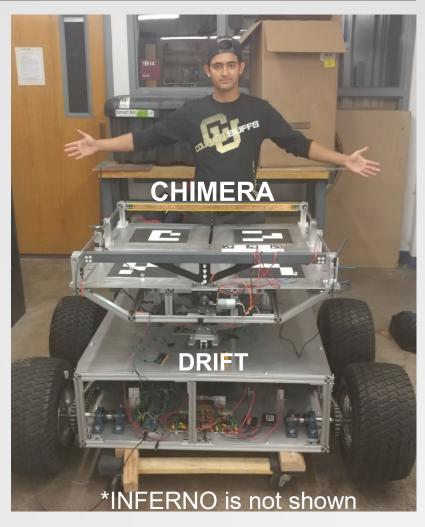
- Built a semi-autonomous drone capable of transporting and deploying sensor packages

2. CHIMERA (2016-2017)

- Built a landing, securing, and deployment system for the autonomous drone inherited from INFERNO

3. DRIFT (2017-2018)

- Developed a **mother rover** to secure, carry, and level the autonomous drone from INFERNO using the landing platform from CHIMERA



 Project Overview
 Baseline Design
 Feasibility Studies
 Summary
 Backup Slides

Project Motivation

The mother rover is large and difficult to navigate through forest like areas.

HERMES aims to improve the Fire Tracker System by path finding for the mother rover (MR) to avoid potential risk of damage by large obstacles and uneven terrain.

Backup

Slides

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary

Project Statement

The HERMES team will design, build and test a **child scout rover** (CSR) that will **deploy** on command, take **images/videos** of the surrounding terrain, **determine** a **viable** path to a location of interest (LOI), and upon arrival to the LOI, the CSR will **send** the LOI **to** the **mother rover**, and then **re-dock** on the mother rover.

Definitions

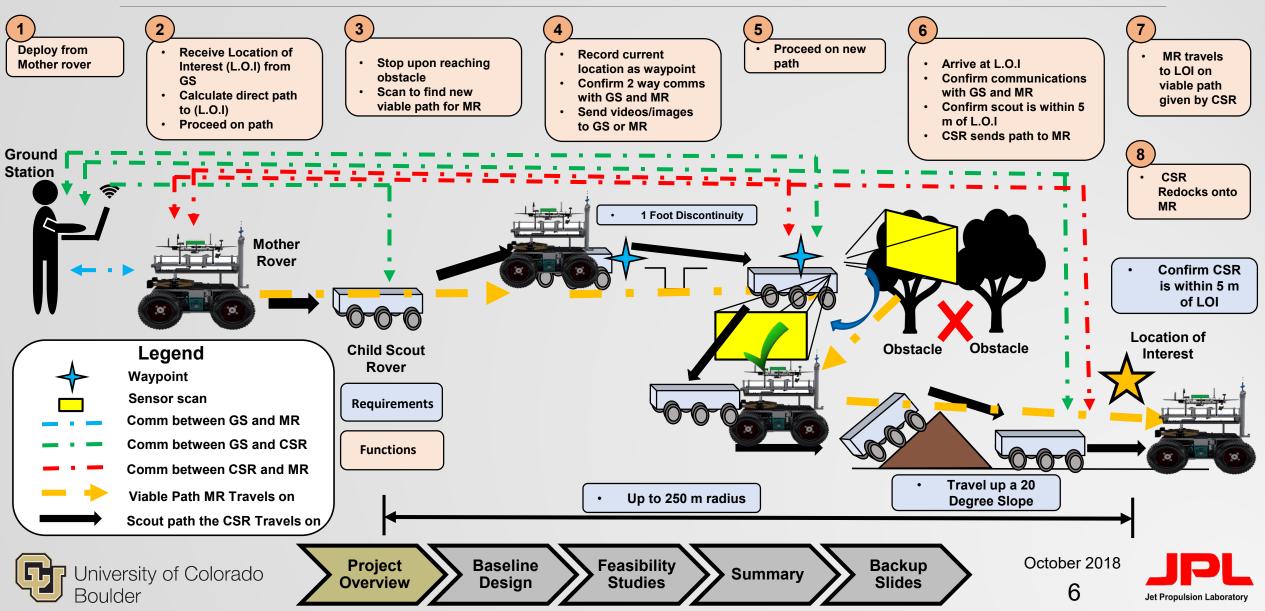
General Definitions:

- Location of Interest (LOI) The final location that the CSR and MR will navigate to. This is transmitted to the CSR from the Ground Station (GS)
- Waypoint Defined as a point where the CSR encounters an obstacle on the way to the LOI
- **Discontinuity** A gap the CSR and MR must travel over. The current requirement is 1 foot wide, however the dimensions (depth and width) are subject to change based on the MR's capabilities.
- Obstacles Defined by underbrush, roots, trees, and discontinuities

Terrain Definitions:

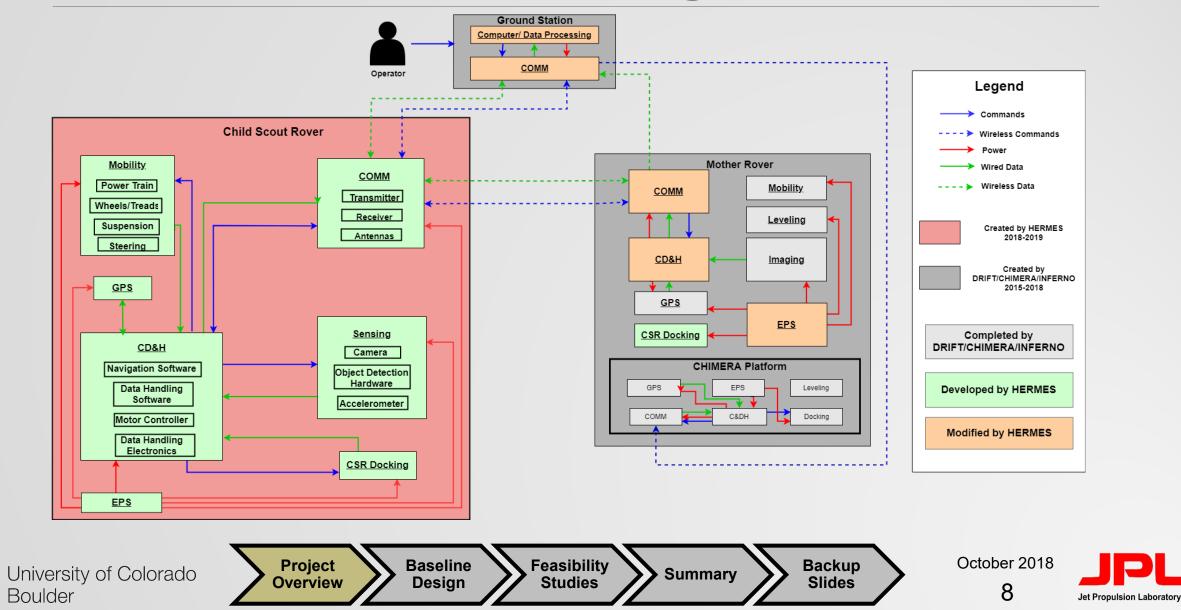
There are three main categories for varying types (A-D). The detailed terrain definition can be found in the backup slides

1) Forest


- Types vary by density of trees within a specified area
- 2) Ground
- Types vary by grain size
- 3) Underbrush
 - Types vary by physical dimensions of a specified vegetation and tree root diameter

Project Overview Baseline Design Feasibility Studies Summary Backup Slides

Concept of Operations


Functional Requirements

llde

Requirement ID	Description
CSR.1	The CSR shall be able to receive commands from the MR or the GS
CSR.2	The CSR shall be able to send image and positioning data to the GS
CSR.3	The CSR shall be able to travel to a location of interest
CSR.4	The CSR shall travel back to the last reported waypoint upon loss of communications with the MR
CSR.5	The CSR shall be able to take video while driving or in position-hold
CSR.6	The CSR shall be able to take pictures while driving or in position-hold
CSR.7	The CSR shall be able to dock from the MR
CSR.8	The CSR shall be able to deploy from the MR
MR.1	The MR shall travel to the CSR when a path is found
versity of Colorado	Project Overview Baseline Design Feasibility Studies Summary Backup Slides October 2018

Jet Propulsion Laboratory

Functional Block Diagram

Baseline Design

Project	Baseline	Feasibility	Summary	Backup	October 2018
Overview	Design	Studies	Summary	Slides	9

Baseline Design

Translational System

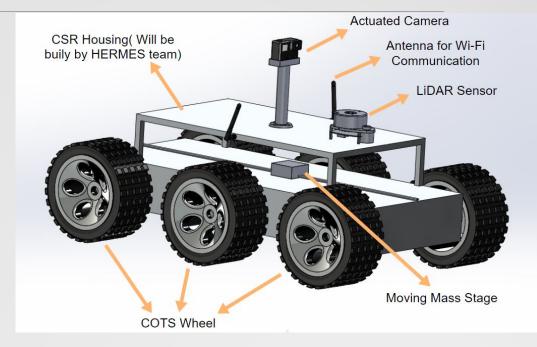
• Allows the CSR to be able to navigate through mission defined terrain to reach the LOI

Object Detection

 Allows the CSR to avoid obstacles and aids in determining a viable path for the MR

Communication System

• Allows the CSR to send data (GPS, images, obstacle positions) to the GS/MR within the mission range


Docking/Deploying Mechanism

 Allows the CSR to deploy and dock from/to the MR at the beginning and end of its mission

Imaging System

Boulder

 Allows the CSR to send back images and videos to the GS or MR to fulfill functional requirements

*Preliminary CAD Model of the CSR. This is a conceptual design and component placement is subject to change.

*Not shown:

- Docking/deploying mechanism

October 2018

Translational System Baseline Design

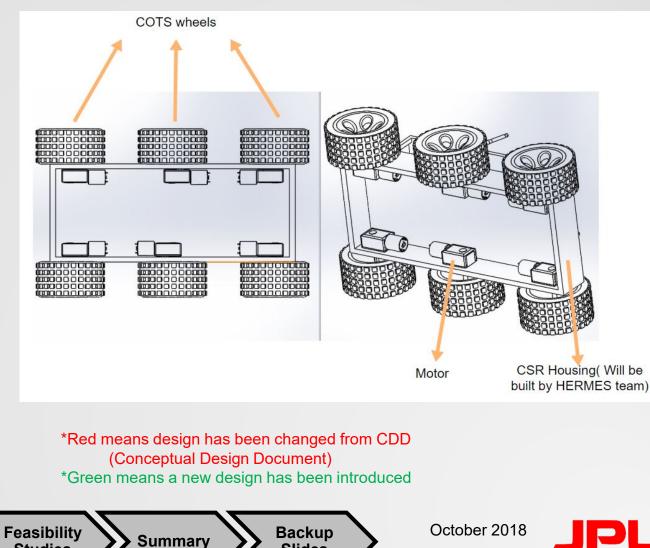
Studies

Options Considered:

4WD with 6 Wheels, **6WD with 6 wheels**, 4WD with 4 Wheels, Tank Track, Rocker Bogie

How is Translational System achieved?

6WD with 6 Wheels


- Rigid chassis with six wheels, all powered
- Skid Steering
- Variable Center of Mass to go over 1 ft discontinuities

Baseline Dimensions

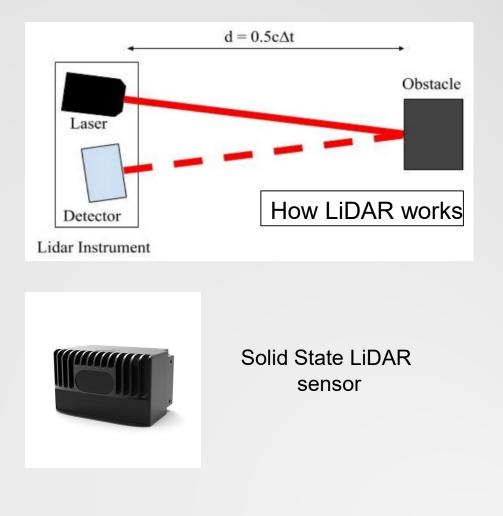
- Distance between wheels: 0.30 m (12 in)
- Height of CSR Center of Mass: 0.25 m (10 in)
- Mass of Chassis: 15 kg
- Mass of Mass Stage: 5 kg
- Radius of each wheel: 0.2 m (4 in)
- Power required for each wheel: 24W
- Torque required for each wheel: 5 Nm

Project Overview Baseline Design

Slides

Object Detection Baseline Design

Options Considered:


 LiDAR sensor, ultrasonic sensor, collision sensors, and image processing

How is Object Detection Achieved? LiDAR (Light Detection and Ranging) sensor

- Ability to create environmental maps & gather accurate distance data within a given range
- Available software & Robot Operating System (ROS) tools make the sensor possible to integrate

Solid State LiDAR ^[1]

- Angular resolution: <0.5°
- Field of view: 120°~130° horizontal & 5°~9° vertical
- Detecting Range: 0.1 m ~ 4 m

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

Communication System Baseline Design

Options Considered:

Wi-Fi, Zigbee, Global System for Mobile Communications

Wi-Fi Antenna and Module:

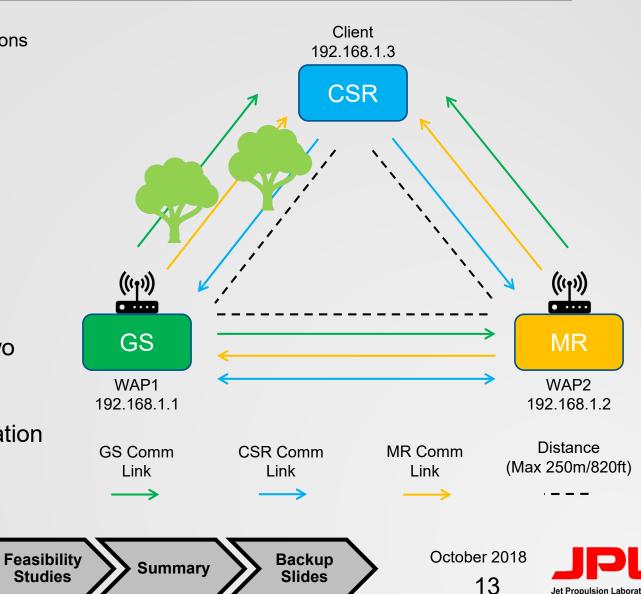
- Antenna Gain (G): 9.5 dBi •
- Directivity: Omni-Directional (360°)
- Transmission Power (Tx): 24 dBm
- Receiver Sensitivity (Rx): -86 dBm
- Frequency (f): 2400 MHz
- Data Rate (R): 1 to 300 Mbps

How is Communication Achieved?

- GS and MR create shared network with two wireless access points (WAP)
- CSR acts as a client on shared network
- Creates two possible paths for communication

Project

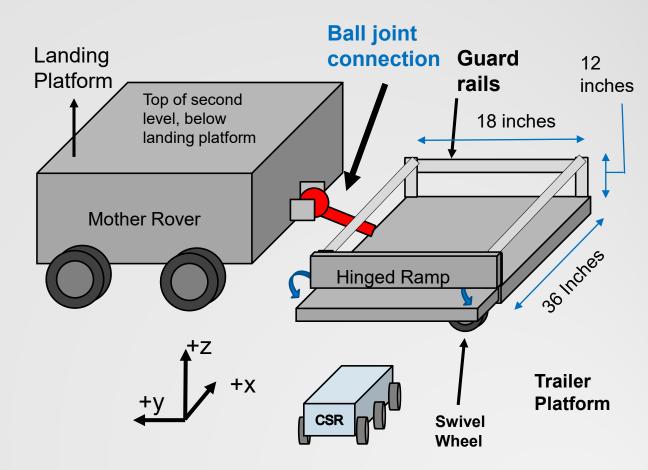
Overview


Baseline

Design

Studies

- No connection, no problem
- Signal strength dependence 0



Jet Propulsion Laborator

Docking/ Deploying Baseline Design

Options Considered:

- Hitch, Trailer Platform, On-board Ramp, On-board, Lift, On-board Lift with an Extended platform, Ball Joint + Trailer Platform
- How is Docking/Deploying Achieved?
 Ball Joint + Trailer Platform
 - A ball joint connects directly to an attached trailer platform
 - The ball joint allows for rotation around multiple axes when in uneven terrain
 - The ramp hinges towards the side of the trailer to reduce the trailer length
 - The CSR then travels up the ramp and onto the trailer

Backup

Slides

*Red means design has been changed from CDD *Green means a new design has been introduced

Project Overview Baseline Design

Feasibility Studies Summary

October 2018

Imaging System Baseline Design

Feasibility

Studies

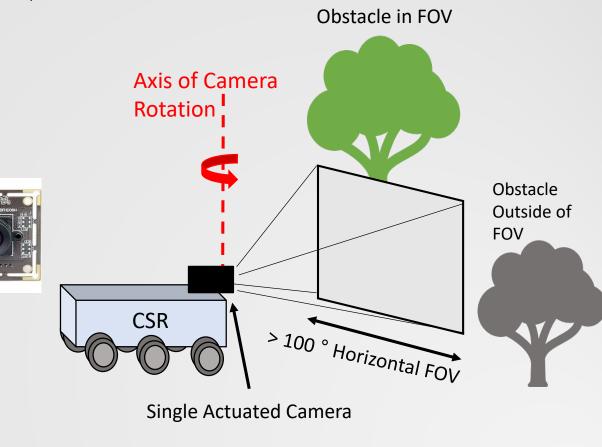
Summary

Options Considered:

 Single fixed camera, Two fixed cameras, Single Actuated camera, 360° 3 DOF camera

Baseline Design Selection:

Single Actuated Camera


- Allows for the CSR to remain stationary while the imaging system actuates for objects outside the FOV
- SVPro 2MPa Camera
- (800 x 600) at 30 fps Video Resolution
- 2.2 Mpa Image Resolution
- H264 Video Compression

Actuation Device

- Stepper
- 4W Power Consumption

Project Overview Baseline Design

Backup

Slides

Feasibility Analysis

Project Overview	Baseline Design	Feasibility Studies	Summary	Backup Slides		October 2018 16
---------------------	--------------------	------------------------	---------	------------------	--	---------------------------

Critical Project Elements

All Critical Project Elements (CPEs)

Mobility, Docking and Deploying:

The CSR must be able to travel through the defined terrain to navigate and reach an LOI. The CSR must also be able to dock/deploy to begin and end a mission.

Environment Sensing:

The CSR must be able to sense the terrain and obstacles around it to detect obstacles and determine a viable path.

Communications:

The CSR must be able to communicate with the GS and MR to send the viable path, images, and videos

Guidance, Navigation and Control:

The CSR must be able to read its own GPS data accurately to navigate and determine a viable path for the MR

Integration to Heritage Projects:

The CSR must be able to interface with previous heritage projects such as the ground station and mother rover.

Project

Overview

Baseline Design Feasibility Studies Summary Focus for PDR

Rationale:

Which CPEs relate to the most requirements?

Translational System: Mobility

Object Detection: Environment Sensing, Guidance Navigation and Control

Communications: Communication System, Integration to Heritage Projects

October 2018

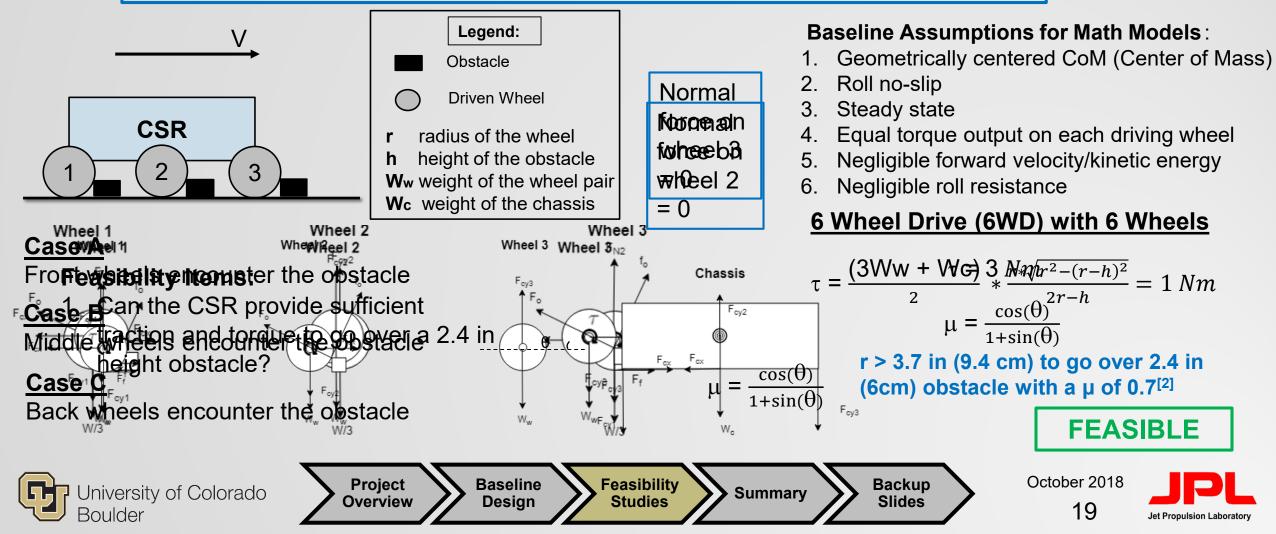
17

Jet Propulsion Laboratory

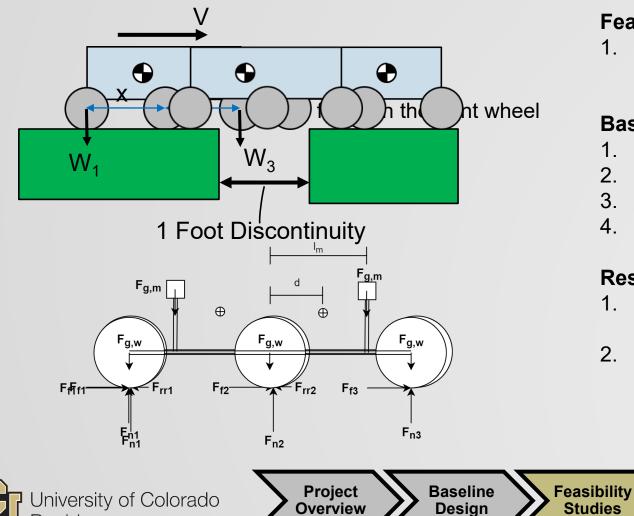
Backup

Slides

Translational System Feasibility Analysis



Project Overview Baseline Design	Feasibility Studies	Summary	Backup Slides		October 2018 18
--	------------------------	---------	------------------	--	---------------------------


Overcoming Obstacles

MOB.3.4 The CSR shall be able to drive in underbrush MOB.3.4.1 The CSR shall be able to go over obstacles up to 6 cm (2.4 in) of height

Overcoming a 1 Foot Discontinuity

MOB.3.2 The CSR shall be able to go over discontinuities up to 1 ft (0.3 m)

Boulder

Feasibility Items:

1. Can the CSR provide sufficient traction and torque to cross a 1 ft discontinuity?

Baseline Assumptions:

- 1. Roll no-slip
- 2. Negligible forward velocity

Summary

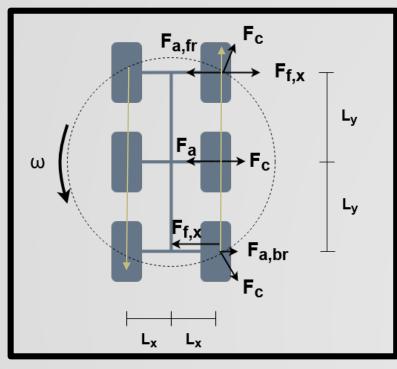
- 3. Equal torque across both driven wheels
- 4. Rigid Chassis

Results

- 1. Driving over a flat gap requires less torque than driving over obstacles
- 2. Feasibility of Case 2 obstacle proves feasibility of crossing discontinuity

Backup

Slides


FEASIBLE

Jet Propulsion Laborator

October 2018

360 Degree Turn

MOB.3.1 - The CSR Mobility system shall be able to perform a 0 m (0 ft) radius turn up to 360 degrees

 $F_{a,fr} = \frac{m}{6} \left(\frac{\mu_K g L_y}{\sqrt{L_x^2 + L^2}} + \omega^2 L_x\right)$

University of Colorado

Boulder

Project

Overview

Feasibility Items:

- 1. Can the CSR preform up to 360 degree turns?
- 2. If so, what are the axial loads?

Baseline Assumptions:

- 1. Constant angular velocity
- 2. Geometrically centered CoM

Results:

1. Expect axial loads about 20N, given:

Summary

1. Baseline Dimensions

Feasibility

Studies

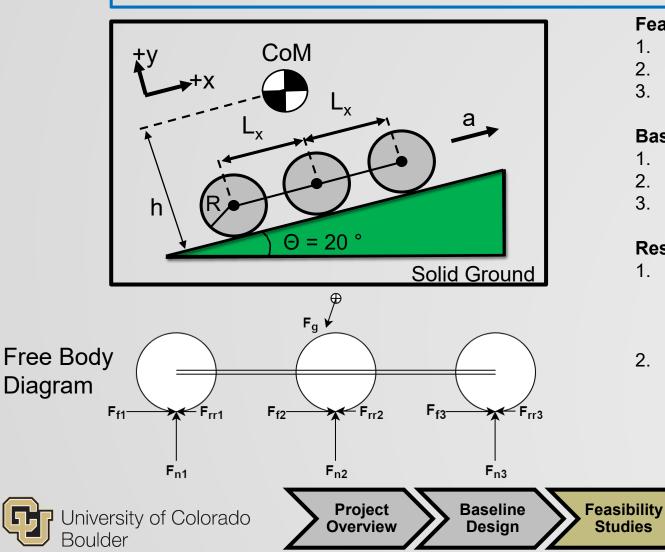
Baseline

Design

3. Angular Velocity = 0.5 rad/s (4.25 rpm)

Backup

Slides


FEASIBLE

Jet Propulsion Laborator

October 2018

Overcoming Inclined Slopes

MOB.3.3 - The CSR shall be able to go up or down a slope up to 20 degrees

Feasibility Items:

- 1. Maximum acceleration before tipping?
- 2. Torque and power needed to go up the slope?
- 3. What coefficient of friction is needed?

Baseline Assumptions:

- 1. Roll no-slip
- 2. Geometrically Centered CoM (Center of Mass)
- 3. Rigid Chassis

Results using Baseline Dimensions:

- 1. Gravel (crr = 0.02, $\mu_{\overline{4}}$ 0.60)
 - 1. Required Torque per Wheel = 1.2Nm
 - 2. Required Power per Wheel = (12^*V) W
 - 3. Maximum Acceleration before slip = 1.92 m/s^2
- 2. Sand (crr = 0.20, $\mu_{\overline{[4]}}$ 0.60)

Summary

- 1. Required Torque = 2.6Nm
- 2. Maximum Acceleration before slip = 0.26 m/s^2

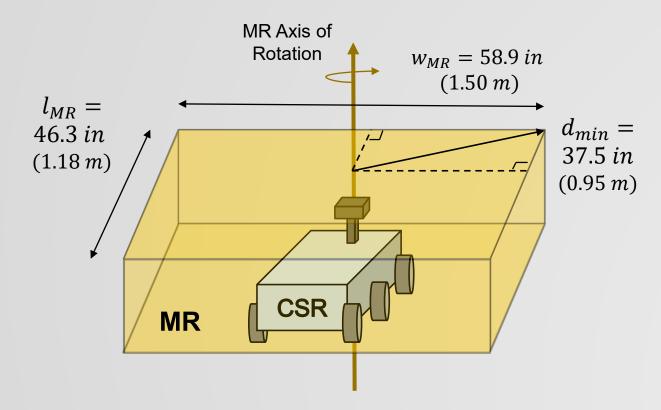
Backup

Slides

3. Required Power per Wheel = (22*V) W

Jet Propulsion Laboratory

October 2018


Object Detection Feasibility Analysis

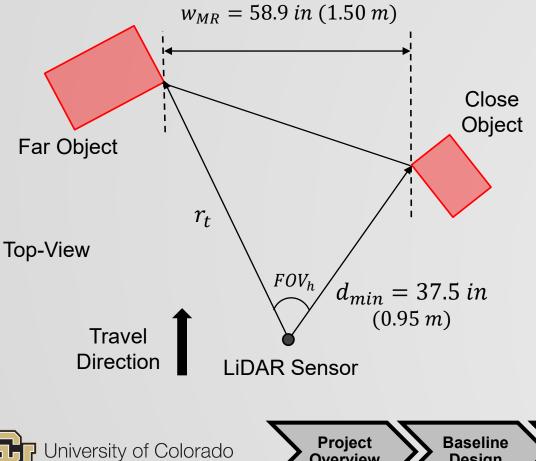
Project Overview Baseline Design	Feasibility Studies	Summary	Backup Slides		October 2018 23
--	------------------------	---------	------------------	--	---------------------------

Visualization of LiDAR Mounting

Boulder

Description:

- Object detection feasibility is based on the dimensions of the MR, not the CSR
- 2. The parameter d_{min} is the minimum distance the LiDAR sensor can be so that the MR will not collide with an obstacle (more information in backup slides)


Assumptions:

- 1. The MR is roughly a uniform rectangular box (including wheels)
- 2. LiDAR is mounted on the CSR, in line with the MR axis of rotation

Horizontal Field of View and Range

SENS.3.1.1 - CSR sensing system shall report objects within at least a 120 degree field of view (FOV) SENS.3.1.2 - CSR sensing system shall report objects up to 4 m (13.123 ft) away from the CSR

Boulder

Feasibility Items:

- 1. What is the minimum horizontal field of view (FOV_h) required?
- 2. What is the desired total range (r_t) ?

Assumptions:

- 1. LiDAR sensor is located at the axis of rotation of the MR
- 2. The parameters w_{MR} and d_{min} are measurable lengths based on the estimated dimensions of the MR
- 3. The MR directly touches the obstacles it attempts to pass (no safety margin)
- 4. Objects consist of typical terrain obstacles: underbrush, trees, roots, etc.

Developed a relationship between FOV_h , r_t , d_{min} , and w_{MR} (Equation in backup slides)

Horizontal Field of View and Range

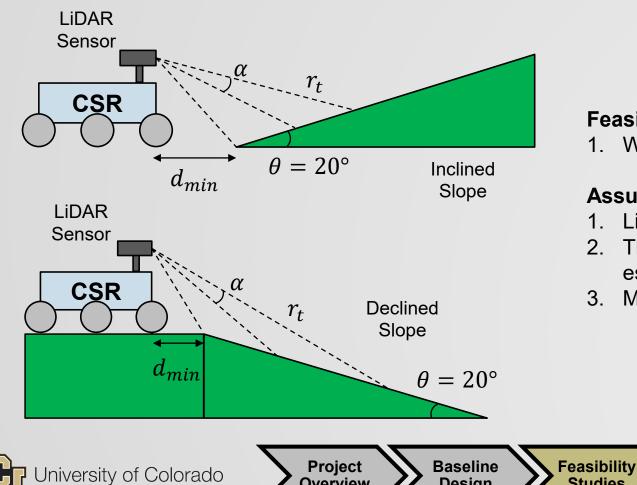
SENS.3.1.1 - CSR sensing system shall report objects within at least a 120 degree field of view (FOV) SENS.3.1.2 - CSR sensing system shall report objects up to 4 m (13.123 ft) away from the CSR

Boulder

Results:

- 1. Required FOV_h decreases as the desired total range (r_t) of the lidar increases
- 2. Solid state LiDAR systems fall within the design envelope ($FOV_h = 120 - 140^\circ$ and $r_t = 0.1 - 4$ m)

Further Analysis Required:


- 1. Determine the position of the LiDAR sensor on CSR to acquire more accurate values for w_{MR} and d_{min}
- 2. Introduce safety margins for w_{MR} and d_{min}

Range for Slope Determination

SENS.3.2 - CSR sensing system shall determine at least a 20 degree grade/incline on which the CSR is travelling SENS.3.3 - The CSR sensing system shall determine at least a 20 degree grade/incline up to 3.125 ft (0.9525 m) away from the CSR

Studies

Boulder

Overview

Design

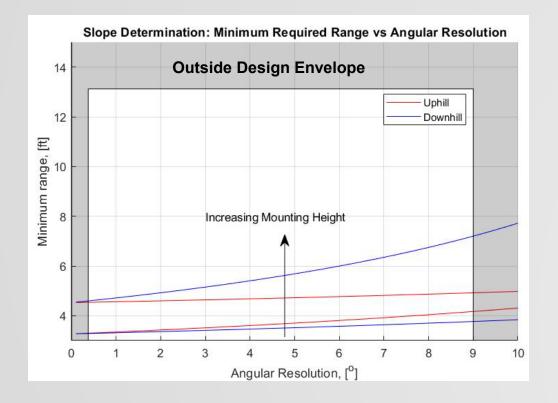
Feasibility Items:

1. What is the minimum range (r_t) required for slope detection?

Assumptions:

Summary

- LiDAR sensor is located at the axis of rotation of the MR
- 2. The parameter d_{min} is a measurable length based on the estimated dimensions of the MR
- 3. Minimum range is a function of angular resolution, not FOV


Backup

Slides

Range for Slope Determination

SENS.3.2 - CSR sensing system shall determine at least a 20 degree grade/incline on which the CSR is travelling SENS.3.3 - The CSR sensing system shall determine at least a 20 degree grade/incline up to 3.125 ft (0.9525 m) away from the CSR

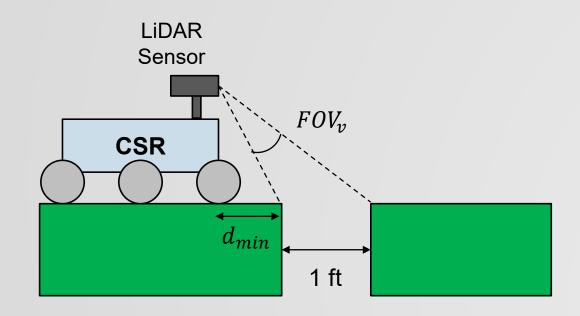
Boulder

Results:

- 1. Minimum range and angular resolution depend on LiDAR mounting height
- 2. In the worst case scenario, required minimum range is 7.72 ft (2.6 m)
- 3. Solid state LiDAR systems fall within the design envelope ($r_t = 0.1 - 4 \text{ m}$)

Further Analysis Required:

- Feasibility for angular resolution to determine slopes
- Determine mounting height and position of the LiDAR 2. system on the CSR
- Introduce safety margin for d_{min} 3.



Jet Propulsion Laborator

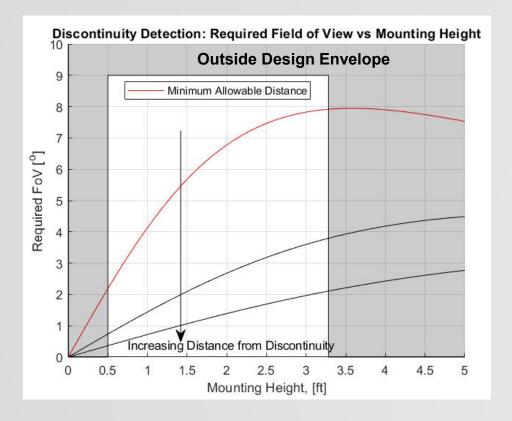
October 2018

Detecting Discontinuities

SENS.3.4 - The CSR sensing system shall be capable of detecting discontinuities at least 1 ft (0.305 m) long

Feasibility Items:

1. What is the minimum vertical field of view (FOV_v) required to detect a 1 ft horizontal discontinuity?


Assumptions:

- 1. Edges of discontinuity are equal in height
- 2. Walls of the discontinuity are perpendicular to the driving surface
- 3. LiDAR sensor is located at the axis of rotation of the MR
- 4. The parameter d_{min} is a measurable length based on the estimated dimensions of the MR

Detecting Discontinuities

SENS.3.4 - The CSR sensing system shall be capable of detecting discontinuities at least 1 ft (0.305 m) long

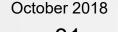
Boulder

Results:

- 1. Required FOV_{12} is dependent on the LiDAR mounting height
- 2. In the worst case scenario, required FOV_{ν} is 7.91°
- 3. Solid state LiDAR systems fall within the design envelope ($FOV_v = 5 - 9^\circ$)

Further Analysis Required:

- 1. Feasibility of LiDAR to measure discontinuities, not just detect them
- 2. Determine mounting height and position of the LiDAR system on the CSR
- 3. Introduce safety margin for d_{min}


October 2018

Communication System Feasibility Analysis

Project Overview	Baseline Design	Feasibility Studies	Summary		ickup lides	October 2 31
---------------------	--------------------	------------------------	---------	--	----------------	-----------------

Communication Feasibility

COMM.1.1 The CSR Communication system shall receive complete command packets up to 250 m (820 ft) COMM.2.4 The CSR Communication system shall send GPS data from up to 250 m (820 ft) to the GS COMM.2.5 The CSR Communication system shall send obstacle position data from up to 250 m (820 ft) to the GS

Feasibility

Studies

Baseline

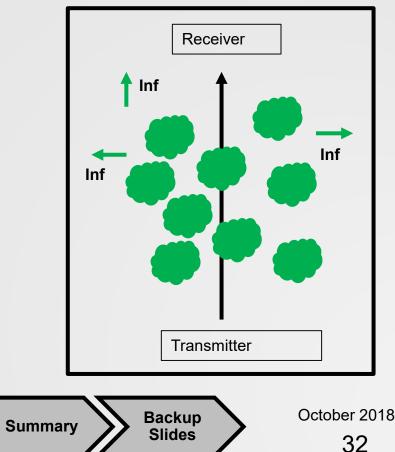
Design

Feasibility items:

- 1. What is link margin for solely free space path loss?
- 2. What is the attenuation due to varying tree depths in this scenario?
- 3. Is there a link margin of at least 10 dB accounting for this attenuation?

Assumptions:

University of Colorado


Boulder

- 1. Radio science's model is a reliable source to calculate attenuation due to trees ^[5]
- 2. Downlink and uplink parameters will be considered as the same

Project

Overview

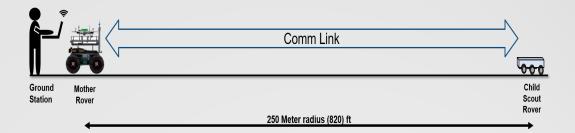
Worst Case Scenario: Into Vegetation

Link Margin Calculations

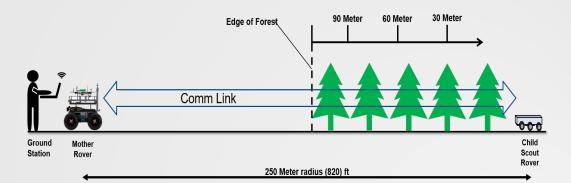
Link Margin with Free Space Path Loss (FSPL)

(<i>d</i>): 0.25 km	(<i>Tx</i>): 24 dBi	(<i>Gr/x</i>): 9.5 dBi
(<i>f</i>): 2400 MHz	(<i>Rx</i>): -86 dBm	(<i>L</i>): 4 dBi

$$FSPL(dB) = 20\log_{10}(d) + 20\log_{10}(f) + 32.45 = 88 \, dB$$


[6] Link Margin(dB) = Tx - FSPL + Gx + Gr - Rx - L = 37 dB

Link Margin with Attenuation

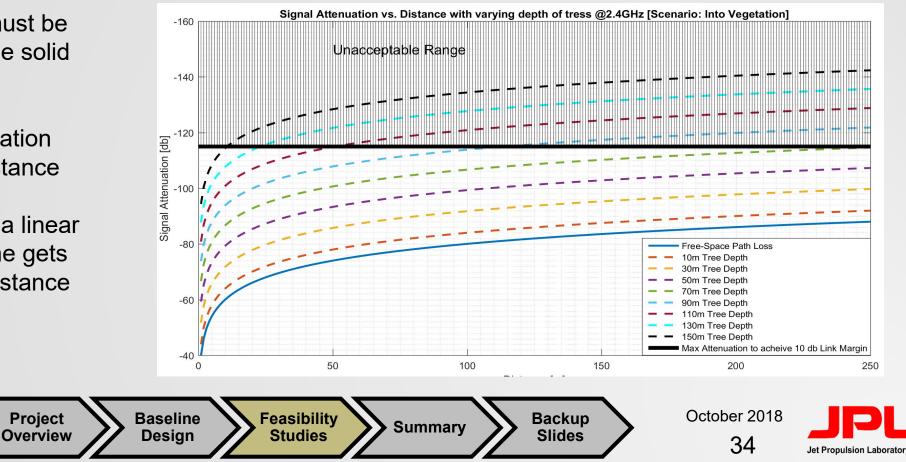

- Depends on varying tree depths ٠
- How to determine? •

Boulder

Link $Margin(dB) = 37 dB - Attenuation \ge 10 dB$

No Attenuation

Varying Tree Depth Attenuation


Into Vegetation Signal Attenuation

Attenuation =
$$R_{\infty}d + k\left[1 - exp\left(-\frac{R - R_{\infty}}{k}d\right)\right]^{12}$$

- The link margin must be ≥ 10 dB (Below the solid black line)
- The Signal attenuation increases with distance
- However, it is not a linear increase (Each line gets further apart as distance increases)

University of Colorado

Boulder

Link Budget Results

Summary

- 1. The link budget was calculated for the **worst** case scenario: **Into** Vegetation
- 2. Link margin calculated based on freespace path loss and tree attenuation

Tree Depth	Attenuation (dB)	Link Margin (dB):
10m	-3.97	33.01697499
20m	-7.8816	29.10537499
30m	-11.737	25.24997499
40m	-15.539	21.44797499
50m	-19.289	17.69797499
60m	-22.989	13.99797499
70m	-26.642	10.34497499
80m	-30.248	6.738974992

Link Budget:

FEASIBLE

Results:

Boulder

- Radio Science's model states that forest range can be from 62.3 m to 86.9 m (204.4 285.1 ft) 1.
- 2. A link margin of at least **10 dBm** is required for communication to be successful but for us, this is within 60-70 m (197 – 230 ft) depth range. This fits the lower range but does not meet the higher range of forest depth
- 3. However, since this is the worst case scenario, communication at a distance of 250 m (820 ft) range is feasible. Ideally, when the tree depth is under 70m (230 ft)

October 2018 **Baseline** Feasibility Project Backup University of Colorado Summary Overview Design **Studies** Slides 35

Power Feasibility

Project Baseline Feasibility Overview Design Studies Summary Backup Slides	Octob
---	-------

Power Budget

Required Power for the Child Scout Rover = ~173.17 W: Feasibility Pending – Further analysis is needed

- Feasibility dependent on many mission parameters (mission time, circuit configuration, etc.)

			Supply DC Voltage Range [V		Supply Current	Range [mA]	Supply Po	wer [W]		
Subsystem	Part	Quantity	Min	Max	Min	Max	Min	Max	Contingency [%]	Required Power [W]
Sensing										
	Camera	1	5	12	130	165	0.65	1.98	2	1.9839
	Camera Servo	1		12		330		3.96	2	3.9679:
	LIDAR Device	1		12		500		6	2	6.01:
	Accelerometer	1	3	3	0.04	0.3	0.00012	0.0009	2	0.0009018
lobility	Motors	6						102	2	102.204
	Motors							102	2	102.20
Communication										(
	Transmitter (CSR)	1	3.46		309		1.06914	8	2	8.010
	Receiver (CSR)	1	3.46		100		0.346	8	2	8.016
	Router (MR)	1						15	2	15.00
	Transmitter (GS)	1	3.46		309		1.06914	8	2	8.016
	Receiver (GS)	1	3.46		100		0.346	8	2	8.016
CD&H										(
	Mobility Computer	1		5		500		3.96	2	3.96792
	Communication Computer	1		5		500		3.96	2	3.96792
	Mother Computer	1		5		500		3.96	2	3.96792
										(
										173.1665418
niversity et		roject	Baselin	ne Fo	easibility			Backup	October	r 2018
		verview	Design		Studies 🧹	Summa	ary	Slides		Jet Propulsion La
oulder			•						3	Jet Propulsion La

Status Summary and Strategy

October 2018 **38**

Recap of Baseline Design

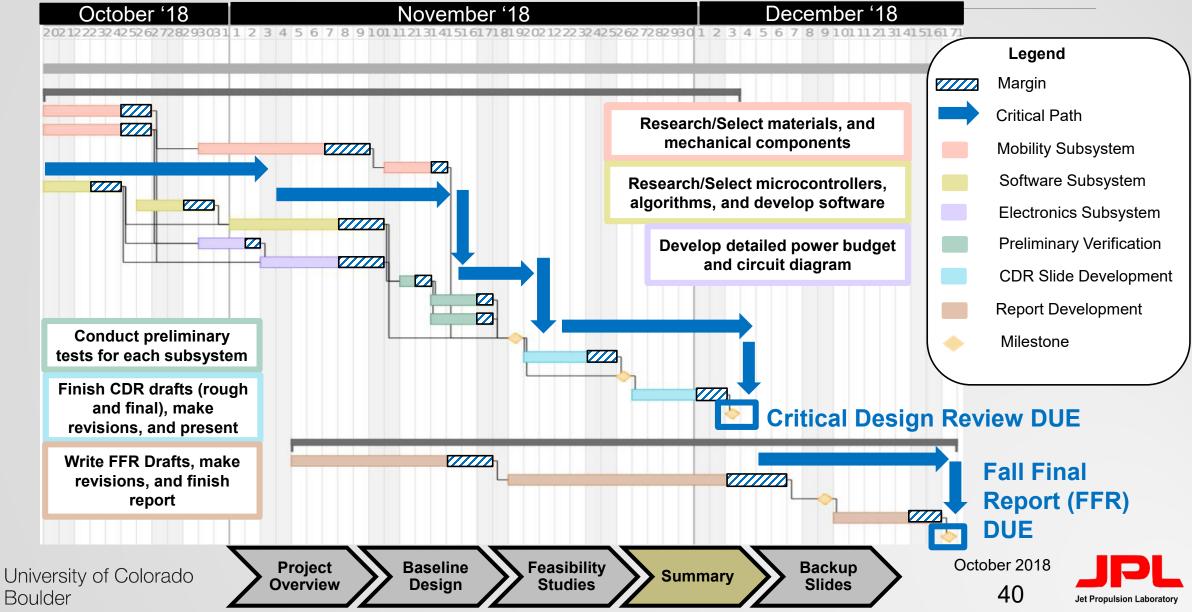
Baseline Design	Aspects shown to be Feasible	Continued Studies
Translational System: 6 Wheel Rover with a 6WD design and a variable center of mass	 Obstacles up to 6 cm can be crossed Discontinuities of 1 ft wide can be crossed The CSR can travel up 20° inclined slopes The CSR can perform up to 360° turns 	 Test MR gap traversing capability Testing and modeling variable CoM performance
Object Detection: Solid State LiDAR	 COTS LiDAR sensors exist that have the desired horizontal FOV and range needed to detect obstacles and slopes COTS LiDAR sensors exist that have the desired vertical FOV to detect discontinuities 	 Determine the power consumption Perform angular resolution study Analyze feasibility of measuring discontinuities Determine positioning of the LiDAR system on the CSR Introduce safety margins into models
Communication System: Wi-Fi Communications	 Communication at a distance of 250 m (820 ft) range is feasible when the tree depth is under 70m (230 ft). 	 Integration with software from previous years to allow for three way communication between the CSR, GS, and MR

University of Colorado Boulder

Project Baseline Overview Design

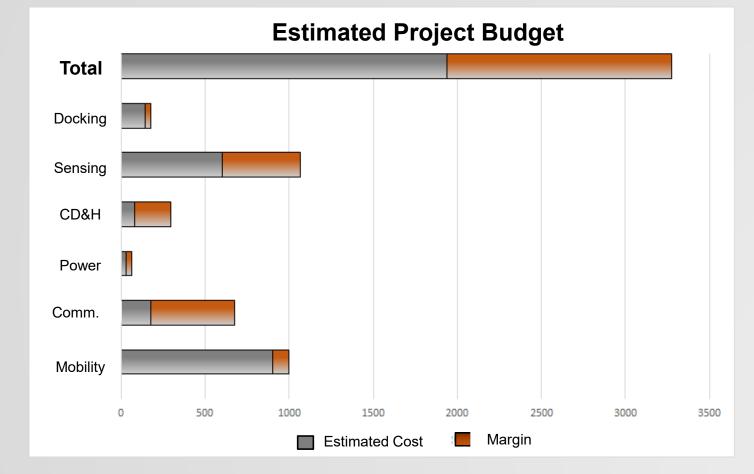
Feasibility Studies

Backup Summary


Slides

October 2018

39



Schedule and Gantt Chart

Budget

Boulder

- The current budget estimate is less • than \$3500
- Margin of \$1500 with allowable • spending
- The most expensive subsystems • will likely be:
 - Sensing ٠
 - Communications ٠
 - Mobility ٠
- High estimates of subsystems ٠ used for total estimate

Acknowledgements

Barbara Streiffert - Jet Propulsion Laboratory (JPL)

Dr. Kathryn Anne Wingate – Aerospace Engineering Sciences (AES)

Dr. Jeliffe Jackson – AES

Matt Rhode - AES

Bobby Hodgkinson - AES

Trudy Schwartz – AES

Robert Marshall – AES

Boulder

Jet Propulsion Laboratory

Backup Slides

Project Overview Baseline Design Feasibility Studies Summary Backup Slides

Slide Directory

Slide	Description	Slide	Description	Slide	Description
1	Title Slide	22	Overcoming Inclined Slopes	44	Backup Slides
2	Project Heritage	23	Object Detection Feasibility Analysis	45	Slide Directory - 1
3	Project Motivation	24	Visualization of LiDAR Mounting	46	Slide Directory - 2
4	Project Statement	25	Horizontal Field of View and Range	47	Slide Directory - 3
5	Definitions	26	Horizontal Field of View and Range	48	References
6	Concept of Operations	27	Range for Slope Determination	49	Team Structure
7	Functional Requirements	28	Range for Slope Determination	50	Fire tracker Concept of Operations
8	Functional Block Diagram	29	Detecting Discontinuities	51	Detailed Terrain Definition
9		30	Detecting Discontinuities	52	Mass Budget
10	Baseline Design		Communication System Feasibility	53	Testing Facilities
11	Translational System Baseline Design	31	Analysis	54	Acronyms
12	Object Detection Baseline Design	32	Communication Feasibility	55	Baseline Design Summary
	Communication System Baseline	33	Link Margin Calculations	56	Translational System
13	Design	34	Into Vegetation Signal Attenuation	57	Overcoming Obstacles
14	Docking/ Deploying Baseline Design	35	Link Budget Results	58	Overcoming a 1 Foot Discontinuity
15	Imaging System Baseline Design	36	Power Feasibility	59	4WD
16	Feasibility Analysis	37	Power Budget	60	Overcoming Obstacles – Case 1
17	Critical Project Elements	38	Status Summary and Strategy	61	Plot of Sensitibity analysis
	Translational System Feasibility	39	Recap of Baseline Design	62	Overcoming Obstacles – Case 2
18	7 wilding one	40	Schedule and Gantt Chart	63	Overcoming Obstacles – Case 3
19	e e e e e e e e e e e e e e e e e e e	41	Budget		Sensitivity Analysis – Overcoming
20	<u> </u>	42	End Slide	64	Obstacle
21	360 Degree Turn	43	Acknowledgements		

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Backup Slides

Summary

October 2018

45

Slide Directory

Slide	Description	Slide	Description	Slide	Description	
65	6WD	86	Changing the baseline design	107	Lidar Trade Study	
	Overcoming Obstacles - Case 1 with	87	Rigid Trailer Platform Diagram	108	Lidar Trade Study	
66	different torque on each motor	88	Pros/ Cons of Rigid Trailer Platform	109	Lidar Trade Study Rationale	
67	Sensitivity analysis		Single Hinged Axis Trailer Platform			
68	Overcoming Obstacles – 6WD Case 2	89	Diagram	111	Communication System	Note: After slide 109
69	Overcoming Obstacles – 6WD Case 2	00	Pros/ Cons of Single Hinged Axis	112	Hardware Specs	the slide numbers are
70	Overcoming Obstacles – 6WD Case 2	90	Trailer Platform	113	Hardware Integration	1 slide ahead of the
71	Overcoming Obstacles – 6WD Case 2	91	Ball Jointed Trailer Platform Diagram Pros/ Cons of Ball Jointed Trailer	114	Wi-Fi Extra	actual presentation.
72	Overcoming Obstacles – 6WD Case 2	92	Platform	115	Variable and Equations Descriptions	actual presentation.
73	6WD Case 2 Feasibility Analysis	93	Hitched Trailer Feasibility	116	Scenarios	_
	Overcoming Obstacles – Case 3 with	94	Derivation	117	Communications: The Model	Example:
74	different torque on each motor	95	MR Mobility Analysis	118	Line of Trees	Communication
75	Sensitivity analysis	96	Tipping Derivation	119	Edge of Vegetation	Systems is actually
76	In-Place 360° Turn Model	97	Power Analysis of MR + CSR + Trailer	120	Imaging System	slide 110
77	Sensitivity analysis – In-Place Turn	98	Object Detection System	121	Imaging System Baseline Design	
78	Inclined Slope Model	99	Object Detection Docking Method	122	Camera Types and Specifications	
79	Inclined Slope Model	100	Determination of d min	123	Camera Feasibility	
80	Inclined Slope Model	101	Horizontal FOV and Range Model	124	Actuation System	
81	Inclined Slope Model	102	Slope Determination	125	Dimensions	
82	Inclined Slope Model	103	1 Foot Discontinuity Determination	126	Mother Rovers Dimensions	
83	Sensitivity Analysis - Inclined Slope	104	LiDAR Brightness Feasibility	127	State of the Mother rover	
84	Sensitivity Analysis – Inclined Slopes	105	Object Detection Software Feasibility			
85	Docking/ Deployment Mechanism	106	Lidar Trade Study			

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Backup Slides

Summary

October 2018

46

Slide Directory

Slide	Description	Slide	D
128	Levels of Success from PDD	149	С
129	Critical Project Elements from PDD		Do
130	Verification and Validation Definition	150	Cı
131	Verification and Validation Definition	151	Im
132	Derived Requirements	152	So
133	Derived Requirements - CSR.1	153	Tr
134	Derived Requirements - CSR.2	154	O
135	Derived Requirements - CSR.2	155	Co
136	Derived Requirements - CSR.3	156	Do
137	Derived Requirements - CSR.3	157	Do
138	Derived Requirements - CSR.3	158	In
139	Derived Requirements - CSR.3	159	Tr
140	Derived Requirements - CSR.4	160	Tr
141	Derived Requirements - CSR.5	161	O
142	Derived Requirements - CSR.5	162	Co
143	Derived Requirements - CSR.6	163	Do
144	Derived Requirements - CSR.7	164	In
145	Derived Requirements - CSR.8		
4.40	Weighting and Criteria for Trade		
146	Matrices		
147	Translational System Weighing and Criteria		
148	Object Detection Weighing and Criteria		

e	Description
v	Communication Weighing and Criteria
	Docking/Deploying Weighing and
	Criteria
	Imaging System Weighing and Criteria
	Scale Levels for Trade Matrices
	Translational System Scale Leveling
	Object Detection Scale Leveling
	Communication Scale Leveling
	Docking/Deploying Scale Leveling
	Docking/Deploying Scale Leveling
	Imaging Scale Leveling
	Trade Matrices
	Translational System Trade Matrix
	Object Detection Trade Matrix
	Communication System Trade Matrix
	Docking/Deployment Trade Matrix
	Imaging System Trade Matrix

University of Colorado Boulder

Project Baseline Overview

Design

Feasibility Summary Studies

October 2018 47

Backup

Slides

References

- 1. "Solid-State ToF Infrared LiDAR CE30-A" RobotShop, Retrieved October 4, 2018, from https://www.robotshop.com/en/solid-state-tof-infrared-lidar-ce30-a.html?gclid=EAIaIQobChMImcir9tqH3gIVE6rsCh0BJwX2EAYYASABEgLc7PD_BwE
- 2. "Friction Coefficients between different wheel/tire materials and concrete" Retrieved from http://www2.mae.ufl.edu/designlab/Class%20Projects/Background%20Information/Friction%20coefficients.htm
- 3. "Skid Steering of Wheeled and Tracked Vehicles" Australian Army Engineering Development Establishment. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a149826.pdf
- 4. "Theory of Ground Vehicles 4th Edition", J.Y. Wong, John Wiley and Sons, Inc.
- 5. "Radio wave propagation through vegetation: Factors influencing signal attenuation" Radio Science, Vol. 38, No.5. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2002RS002758
- 6. "Introduction to RF propgation" Retrieved from <u>Seybold, J. S. (2005). Introduction to RF propagation. Hoboken, NJ: Wiley.</u>
- 7. "Recommended Light Levels (Illuminance) for Outdoor and Indoor Venues," National Optical Astronomy Observatory.Retrieved October 12, 2018, from https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf
- 8. "Stepper Motor with Cable", Sparkfun, Retrieved September 29, 2018, from https://www.sparkfun.com/products/9238
- 9. "Understanding Tree Basal Area", Thought Co., Retrieved September 26, 2018, from https://www.thoughtco.com/understanding-tree-basal-area-1341712
- 10. "Wenthworth (1922) grain size classification", The Lanetary Society, Retreived September 26, 2018, from http://www.planetary.org/multimedia/space-images/charts/wentworth-1922-grain-size.html
- 11. "Shrub Plant", The Editors of Encyclopaedia Britannica, Retrieved September 29, 2018 from https://www. britannica.com/plant/shrub#ref144502
- 12. "Shrub", Wikipedia, Retrieved September 29, 2018 from https://en.wikipedia.org/wiki/Shrub
- 13. Dobson, Martin, and the Arboricultural Advisory and Information Service (1995). "Tree Root Systems" Arboriculture Research and Information Note. Arboricultural Advisory and Information Service, 130/95/ARB.
- 14. "Different Wi-Fi Protocols and Data Rates", Intel, Retrieved September 29, 2018, from https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.html#n.

Team Structure

Project

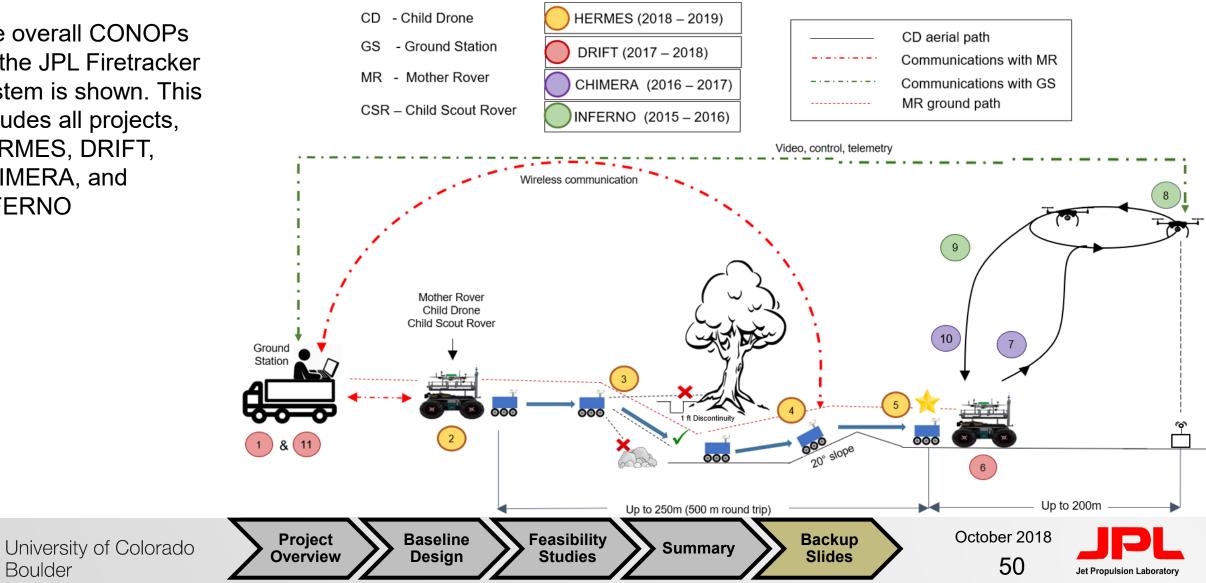
Overview

Person	Position
Dr. Kathryn Wingate	Project Advisor
Marcos Mejia	Project Manager
Colin Chen	Mechanical Lead
Quinter Nyland	Integrations Lead
Katelyn Griego	Safety Lead
Brindan Adhikari	Electronics Lead
Chase Pellazar	Systems Lead
Ashley Montalvo	Test Lead
Brandon Santori	Software Lead
Alexander Sandoval	Communications and GPS Lead
Alexis Sotomayor	Finance Lead
Junzhe He	Structures Lead
Michely Tenardi	Manufacturing Lead

University of Colorado Boulder Baseline Feasibility Summary Studies

October 2018 **49**

Backup


Slides

Fire tracker Concept of Operations

The overall CONOPs for the JPL Firetracker System is shown. This includes all projects, HERMES, DRIFT, CHIMERA, and **INFERNO**

Boulder

Detailed Terrain Definition

Terrain	Forest	Ground	Underbrush
	Open:	Mud:	Dirt with no vegetation:
Туре А	0 trees per acre	Grain size: 0.00006 - 0.0039 mm	- Refer only to ground classification
	o nees per dere	(< .0002 in)	- Scattered leaves
		Silt:	Grass, Fallen Leaves, and No shrubbery:
Tune P	Understocked:	Grain Size: 0.0039 - 0.0625 mm	- Full ground coverage by leaves
Type B	~100 trees per acre		- Grass between 2cm - 10cm height (.8 - 4 inches)
		(< .003 inch)	- Small roots 1-2 cm (.48 inches) in diameter
,		Sand:	Grass, Fallen Leaves, and Scattered Shrubbery
Type C	Fully Stocked:		- Shrubbery spaced by at least 1 meter
Type C	~170 trees per acre	Grain Size: $0.0625 - 2.00 \text{ mm}$	- Includes type A and B underbrush
		(< .08 inch)	- Medium roots: 3-4 cm (1.2 - 1.6 inches) in diameter
		Gravel:	Grass, Fallen Leaves, and Dense Shrubbery
Type D	Overstocked:		- No spacing between shrubbery
Type D	~ 200 trees per acre	Grain Size: $2.00 - 4.096 \text{ mm}$	- Includes type A, B, and C underbrush
		(< .2 inch)	- Large Roots: 5-6 cm (2 - 2.4 inches) in diameter

University of Colorado Boulder Baseline Feasibility Design Studies

Project

Overview

es Summary

October 2018

51

Backup

Slides

Mass Budget

		Mass [kg]					
Related Subsystem	Part	Lower Limit	Upper Limit	Quantity	Total Mass (Max) [kg]	Contingency [%]	Total Mass w/ Contingency [kg]
Mobility					0		0
	Motors		0.374	6	2.244	10	2.4684
	Wheels		1.225	6	7.35	10	8.085
					0		0
Sensing					0		0
	Camera	0.005	0.03	1	0.03	5	0.0315
	Camera Servo		0.0455	1	0.0455	5	0.047775
	LIDAR Sensor		0.219	1	0.219	5	0.22995
	Accelerometer		0.001	1	0.001	5	0.00105
					0		0
CD&H					0		0
	Mobility Computer		0.025	1	0.025	10	0.0275
	Communication Computer(s)		0.025	1	0.025	10	0.0275
	Mother Computer		0.025	1	0.025	10	0.0275
					0		0
Communications					0		0
	Transmitter (CSR)		0.5	2	1	10	1.1
	Receiver (CSR)		0.5	2	1	10	1.1
							0
Docking					0		0
	Trailer Wheels			2	0	10	0
	Trailer Platform		6.001	1	6.001	15	6.90115
	Trailer Walls?		3.341	3	10.023	15	11.52645
	Trailer Ramp		1.501	1	1.501	15	1.72615
	Ramp Servos			2	0	5	0
					0		0
							13.146175

University of Colorado Boulder Project Overview Design Feasibility Studies Summary Backup Slides October 2018 52

Testing Facilities

Terrain Testing and Mobility

- Boulder Open Space
- On campus
- ITLL

Software

- RECUV Lab in the Ideaforge
- ITLL

Boulder

Sensor Calibration

RECUV Lab in the Ideaforge

Object Detection

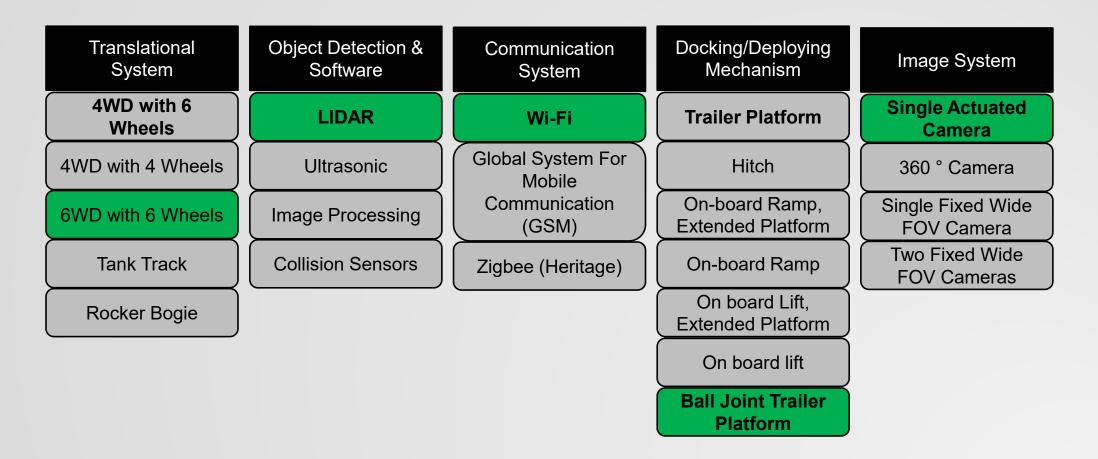
RECUV Lab in the Ideaforge

Communications

Boulder Open Space

Acronyms

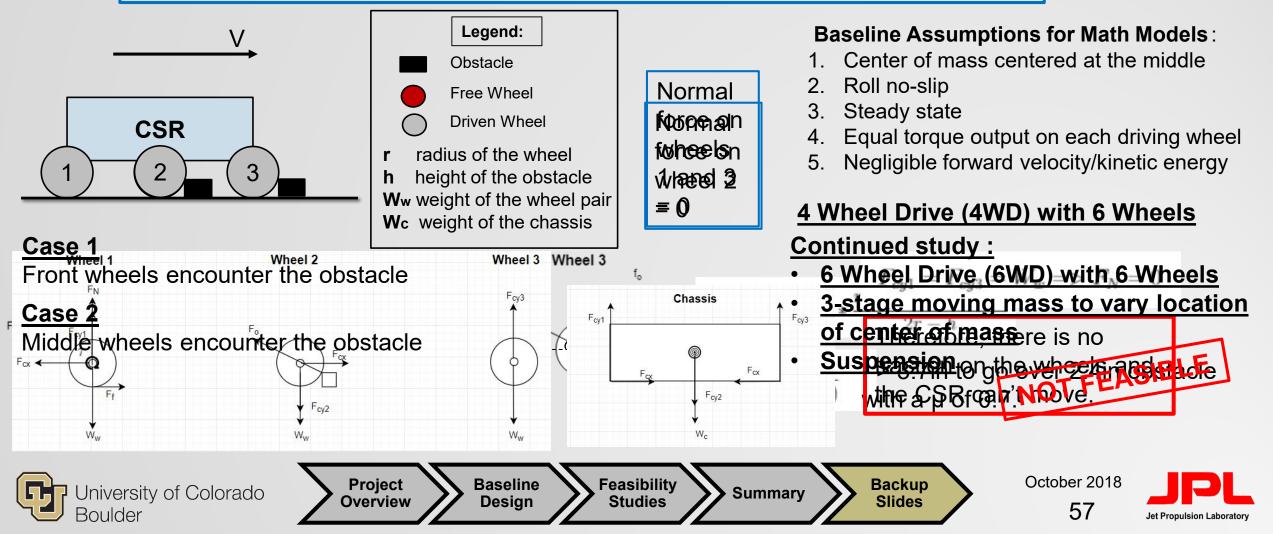
2WD	Two-Wheel Drive
4WD	Four-Wheel Drive
6WD	Six-Wheel Drive
AWD	All-Wheel Drive
CD	Child Drone
CD&H	Command Data and Handling
CHIMERA	CHIId drone deployment MEchanism and Retrieval Apparatus
COTS	Commercial Off the Shelf
CSR	Child Scout Rover
DRIFT	Drone-Rover Integrated Fire Tracker
FPS	Frames per Second
GPS	Global Positioning System
GS	Ground Station
HERMES	Hazard Examination and Reconnaissance Messenger for Extended Surveillance
INFERNO	INtegrated Flight Enabled Rover for Natural disaster Observation
Lidar	Laser Imaging Detection and Ranging
LOI	Location of Interest
MR	Mother Rover
V&V	Verification and Validation
DOF	Degree of Freedom
FOV	Field of View


University of Colorado Boulder

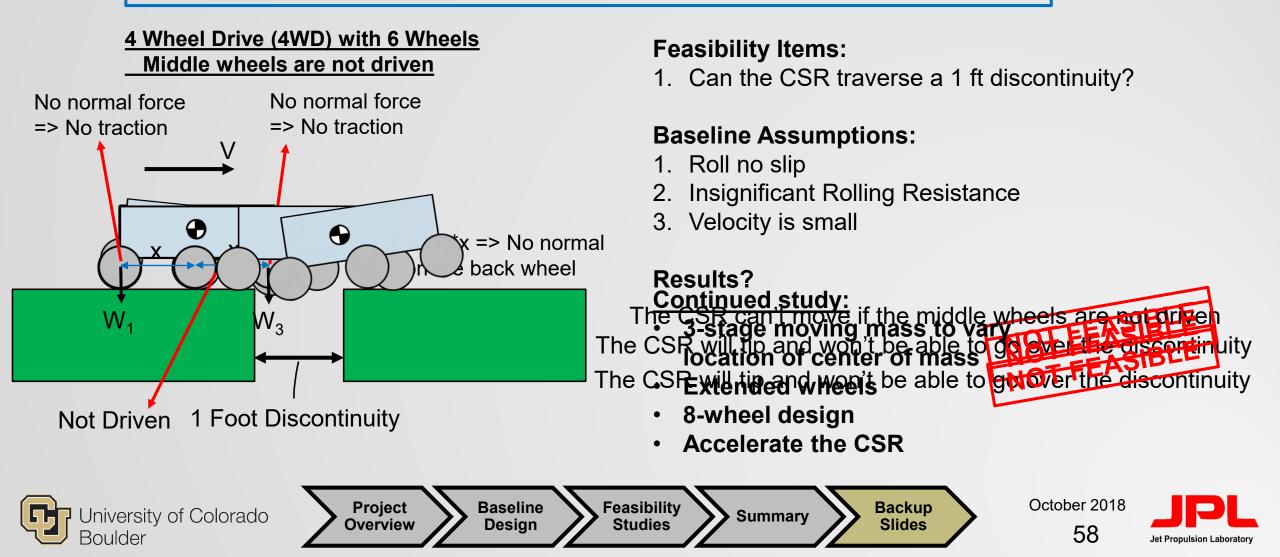
October 2018 54

Baseline Design Summary

Boulder


October 2018 Baseline Feasibility Project Backup University of Colorado Summary **Studies** Slides **Overview** Design 55 Jet Propulsion Laboratory

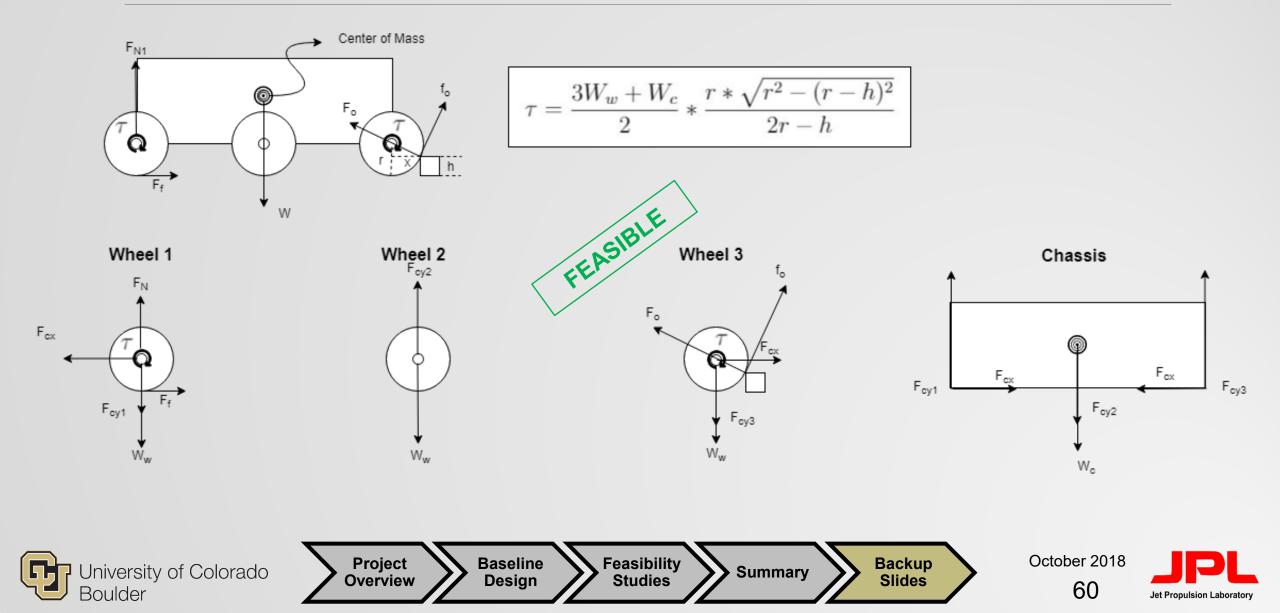
Translational System

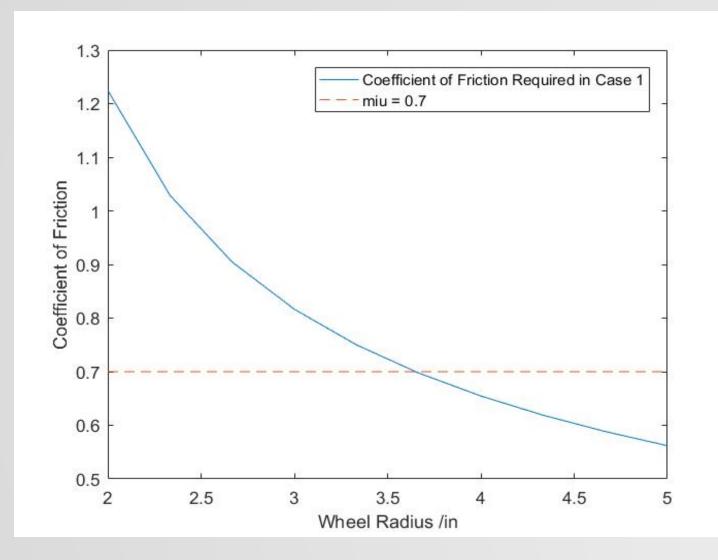

Overcoming Obstacles

MOB.3.4 The CSR shall be able to drive in underbrush MOB.3.4.1 The CSR shall be able to go over obstacles up to 6 cm (2.4 in) of height

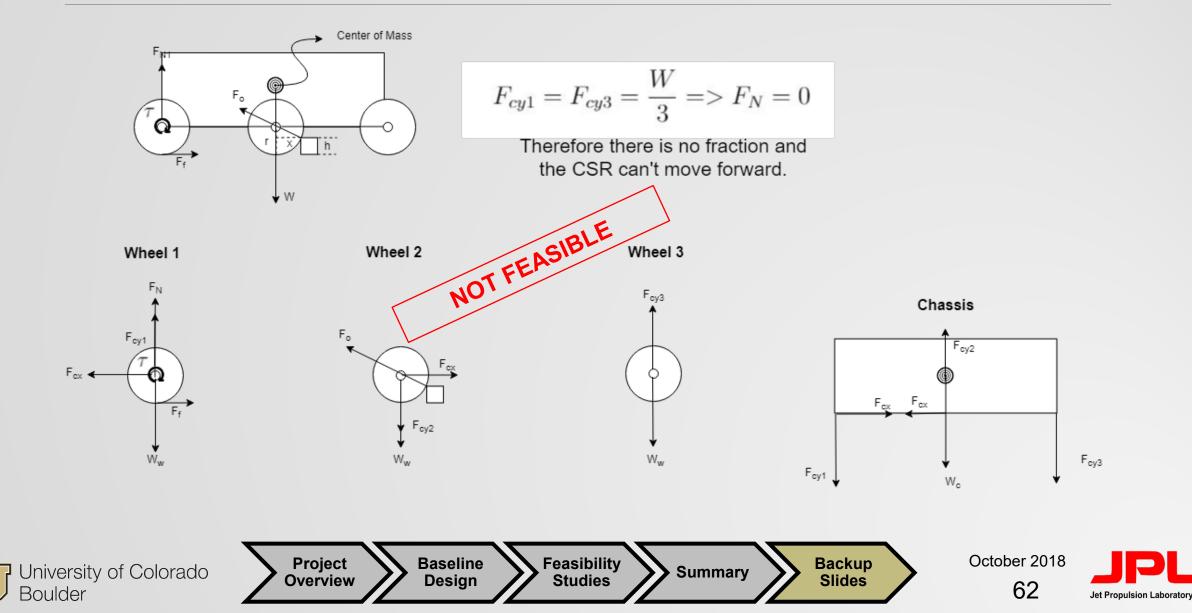
Overcoming a 1 Foot Discontinuity

MOB.3.2 The CSR shall be able to go over discontinuities up to 1 foot (0.3 meters)

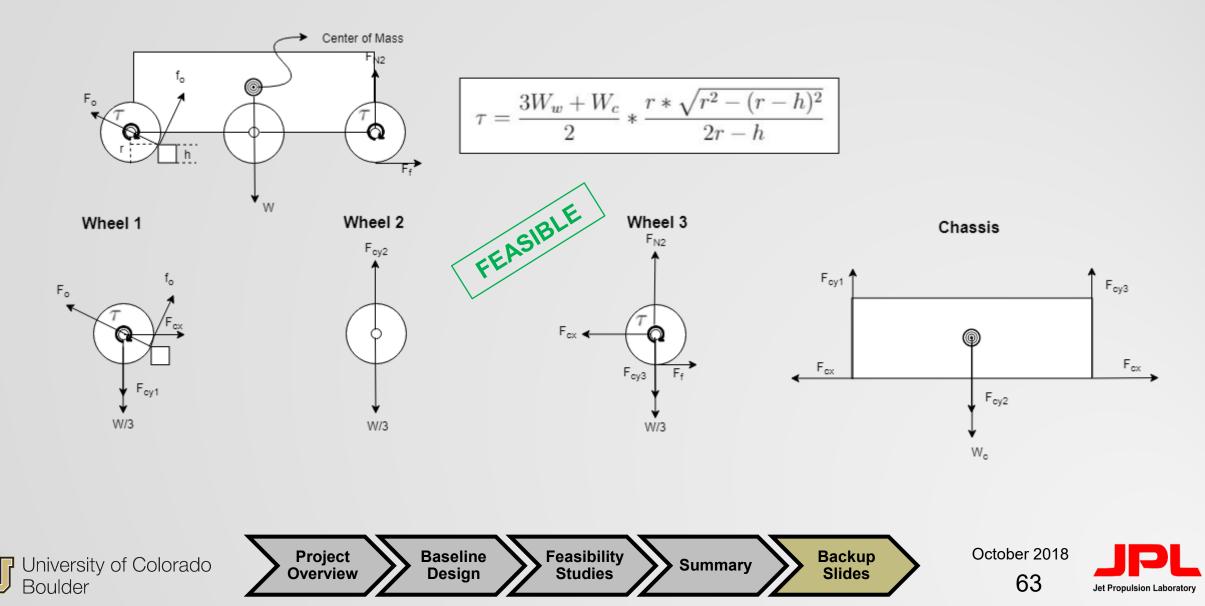


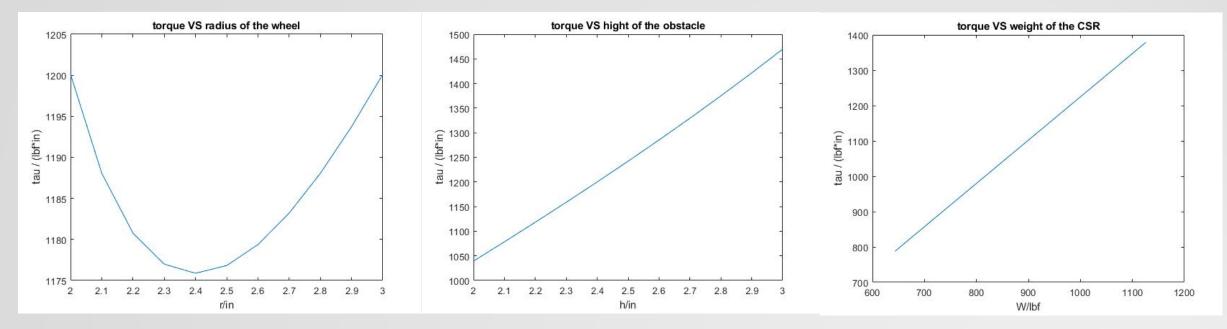

4WD

Overcoming Obstacles – Case 1


Change in μ required with the change in wheel size

Reference website




Overcoming Obstacles – Case 2

Overcoming Obstacles – Case 3

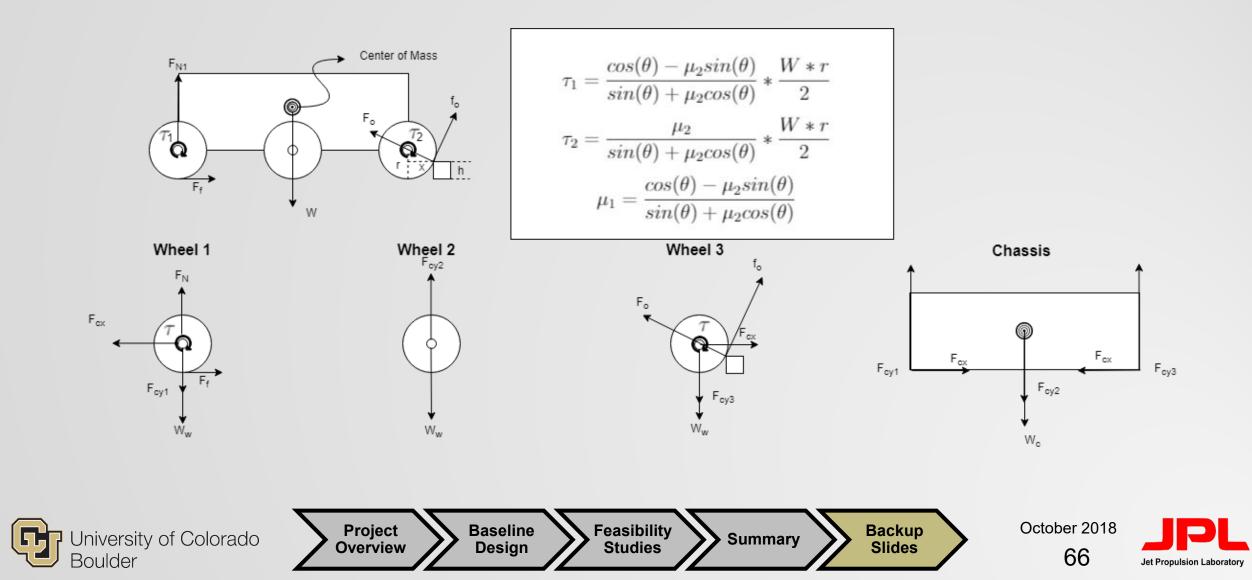
Sensitivity Analysis – Overcoming Obstacle

Based on the sensitivity analysis:

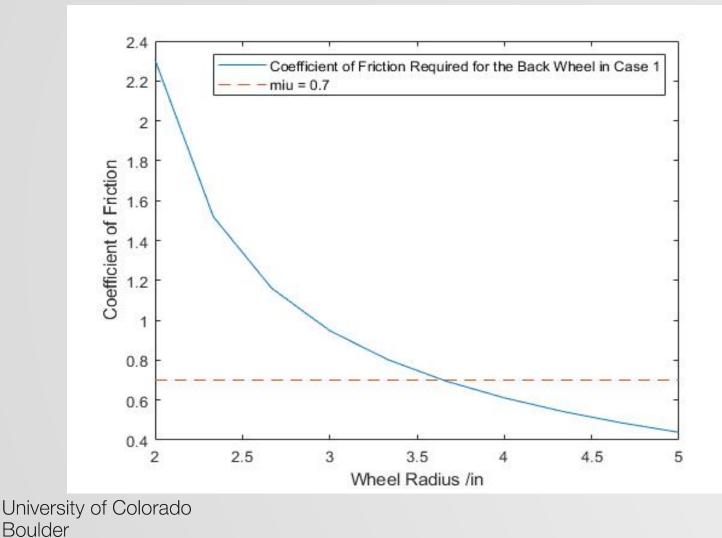
- Decreasing obstacle height and weight of the CSR decreases the torque required.
- Using wheels with an equal radius to the height of the obstacle requires minimum torque

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

October 2018 64



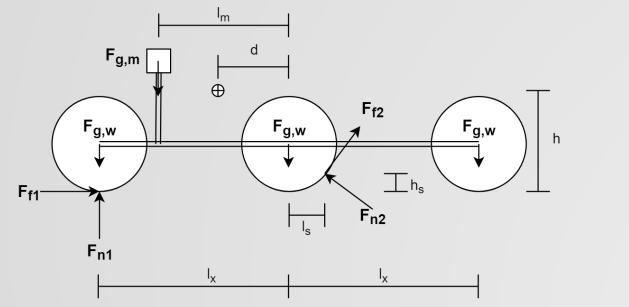
6WD

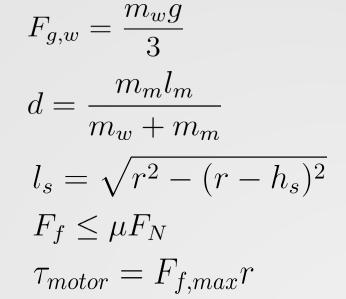


Overcoming Obstacles – Case A with different torque on each motor

Case A Sensitivity Analysis

With μ_2 set to be 0.7, the change of μ_1 required with the change of wheel size is shown below:


October 2018 **67**


1) Free Body Diagram

University of Colorado

Boulder

2) Relational Equations

3) Assume: Roll no-slip, rigid chassis, Coulomb friction model, each wheel is of equal mass, negligible rolling resistance, negligible forward velocity

October 2018 68

4) Summation of Forces and Moments

Boulder

$$\sum F_x : 0 = F_{f1} + F_{f2} \cdot \frac{r - h_s}{r} - F_{N2} \cdot \frac{l_s}{r}$$

$$\sum F_y : 0 = F_{f2} \frac{l_s}{r} + F_{N1} + F_{N2} \frac{r - h_2}{r} - (m_w + m_m)g$$

$$\sum M_{z,CM} : 0 = hF_{f1} + \frac{(r - h_s)(h - h_s) + l_s(d + l_s)}{r}F_{f2}$$

$$+ (d - l_x)F_{N1} + \frac{(r - h_s)(d + l_s) - l_s(h - h_s)}{r}F_{N2} - m_mg(l_m - d)$$

October 2018 Feasibility Project **Baseline** Backup University of Colorado Summary Overview **Studies** Slides Design 69 Jet Propulsion Laboratory

5) Convert Summation of Forces into Matrices

$$A = \begin{bmatrix} 1 & \frac{r-h_s}{r} & 0 & -\frac{l_s}{r} \\ 0 & \frac{l_s}{r} & 1 & \frac{r-h_2}{r} \\ h & \frac{(r-h_s)(h-h_s)+l_s(d+l_s)}{r} & d-l_x & \frac{(r-h_s)(d+l_s)-l_s(h-h_s)}{r} \end{bmatrix} \quad x = \begin{bmatrix} F_{f1} \\ F_{f2} \\ F_{N1} \\ F_{N2} \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ (m_w + m_m)g \\ -m_mg(l_m - d) \end{bmatrix}$$

6) Augment Matrix

Boulder

$$[A|b] = \begin{bmatrix} 1 & \frac{r-h_s}{r} & 0 & -\frac{l_s}{r} \\ 0 & \frac{l_s}{r} & 1 & \frac{r-h_2}{r} \\ h & \frac{(r-h_s)(h-h_s)+l_s(d+l_s)}{r} & d-l_x & \frac{(r-h_s)(d+l_s)-l_s(h-h_s)}{r} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ (m_w+m_m)g \\ -m_mg(l_m-d) \end{bmatrix}$$

October 2018 Feasibility Backup Project **Baseline** University of Colorado Summary **Studies** Slides Overview Design 70 Jet Propulsion Laboratory

7) Reduce Augmented Matrix

$$RREF[A|b] = \begin{bmatrix} 1 & 0 & 0 & i & | & X \\ 0 & 1 & 0 & j & | & Y \\ 0 & 0 & 1 & k & | & Z \end{bmatrix}$$

8) Use relation $F_f = \mu F_N$ to find normal forces associated with the maximum possible coefficient of friction allowed by a given terrain.

Set friction force on back wheel use the maximum µSet friction force on front wheel use the maximum µ
$$A_{\mu,max,f1} = \begin{bmatrix} 0 & \mu_{max} & i & | & X \\ 1 & 0 & j & | & Y \\ 0 & 1 & k & | & Z \end{bmatrix}$$
; $A_{\mu,max,f2} = \begin{bmatrix} 1 & 0 & i & | & X \\ 0 & 0 & \mu_{max} + j & | & Y \\ 0 & 1 & k & | & Z \end{bmatrix}$ October 2018
BoulderOctober 2018
The studies

9) Solve the Augmented Matrices, and use normal forces to solve for effective coefficients of frictions and frictional force required for the unsolved wheel experiencing μ_{max} using relation: $F_f = \mu F_N$ If the μ required by the other wheel is greater than μ_{max} , the design is not feasable.

10) Find the maximum frictional force required between the two wheels to determine the rating required by any one motor.

11) Solve for motor torque required: $\tau_{motor} = F_{f,max}r$

6WD Case B Feasibility Analysis

Using a geometrically centered CoM with baseline dimensions, *d* = 0m:

If $\mu_1 = 0.7$ $\mu_2 = 1.28$ If $\mu_2 = 0.7$ $\mu_1 = 1.42$

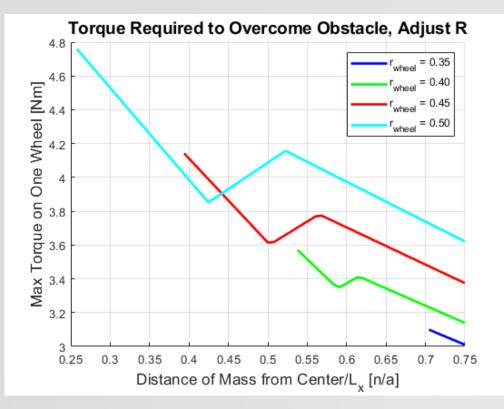
NOT FEASIBLE

Using variable center of mass with baseline dimensions:

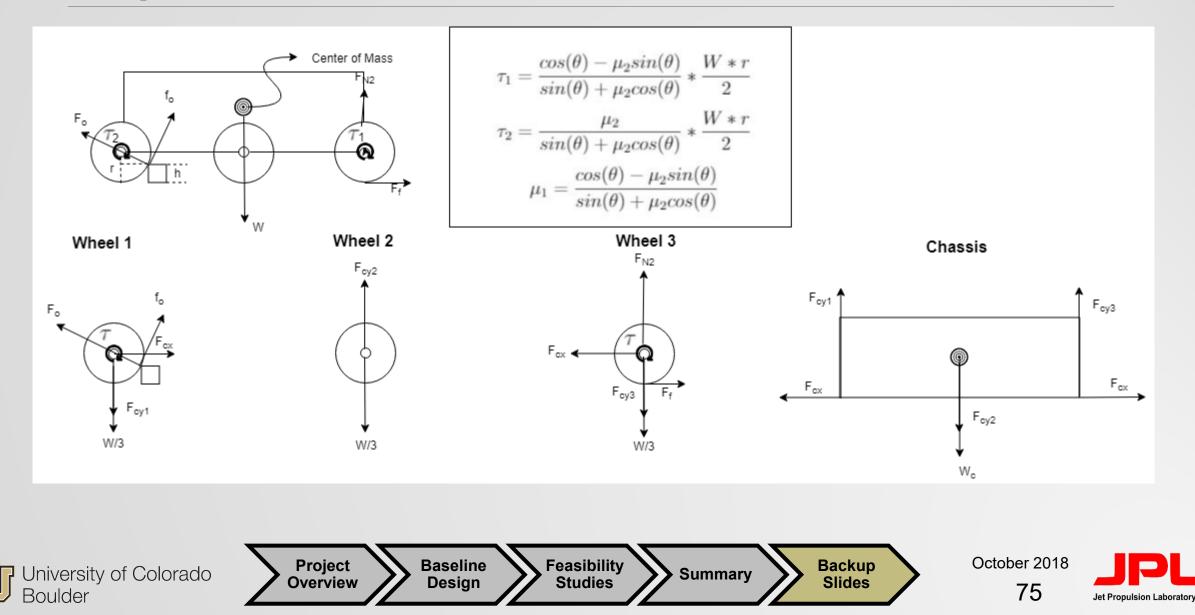
Set the mass stage position: $l_m = \frac{1}{4}l_x$

Provides benefit of offset center of mass, while allowing space for physical implementation.

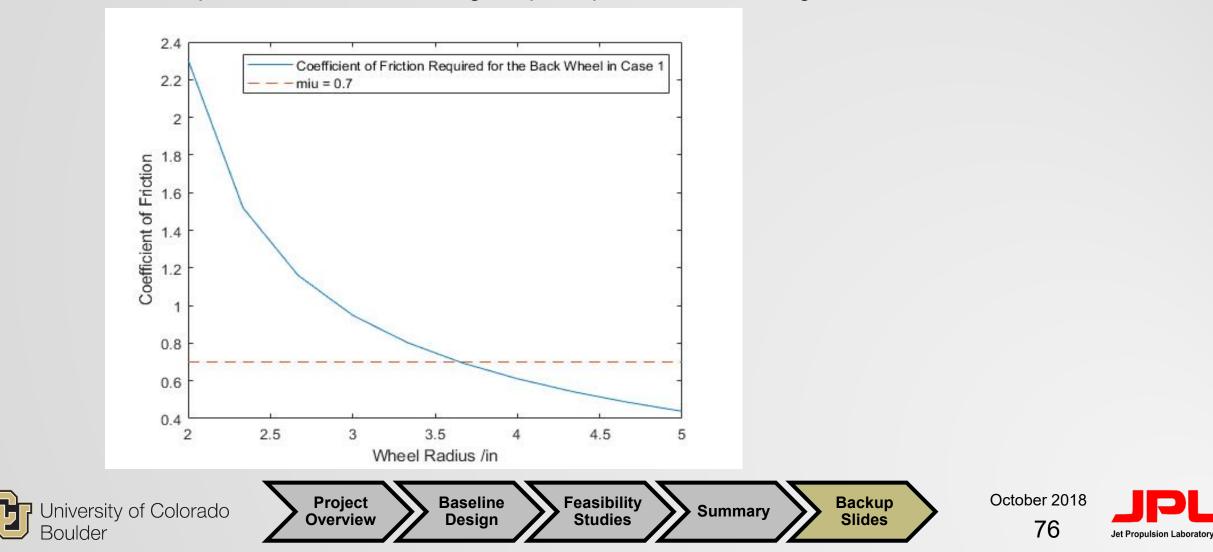
lf
$$\mu_1 = 0.7$$
 $\mu_2 = 0.49$
lf $\mu_2 = 0.7$ $\mu_1 = 0.54$


Boulder

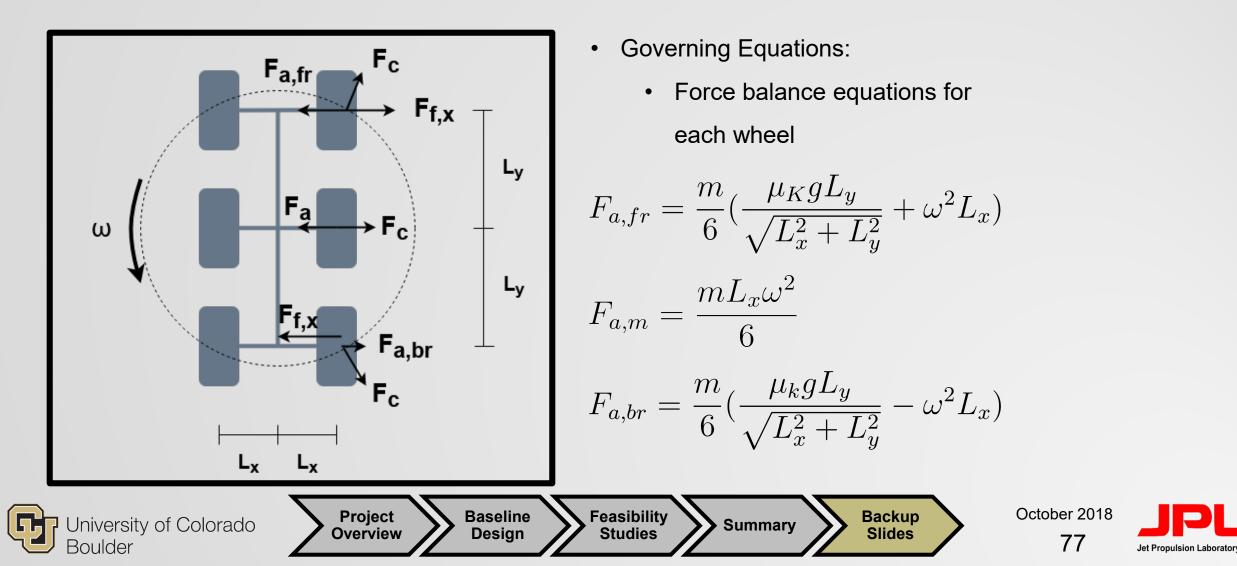
Case B Sensitivity Analysis


Using baseline CSR length and mass dimensions

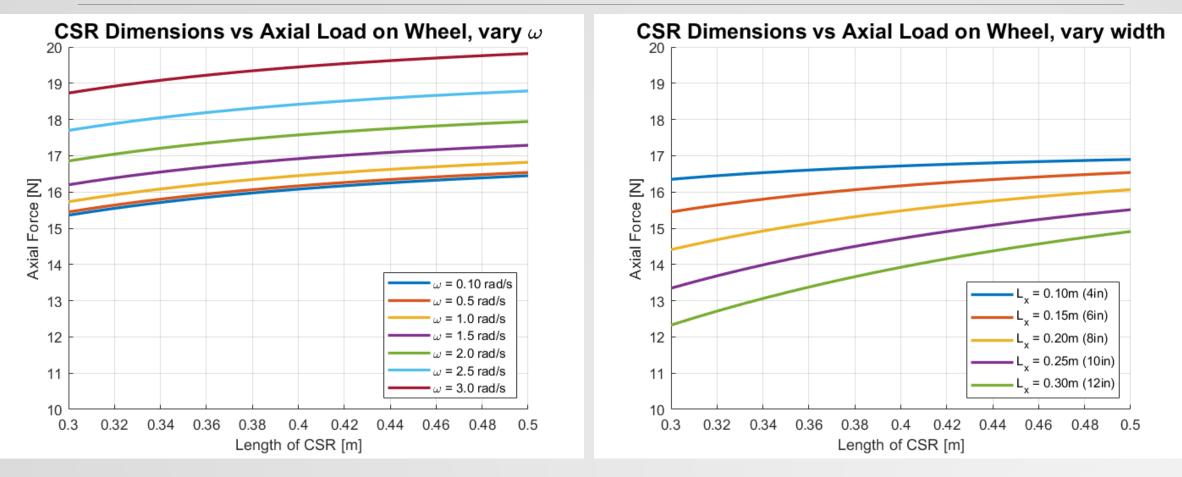
Determining the distance the linear mass stage must be from the center of the CSR, and the resultant torques



Overcoming Obstacles – Case C with different torque on each motor


Case C Sensitivity Analysis

With μ 2 set to be 0.7, the change of μ 1 required with the change of wheel size is shown below:

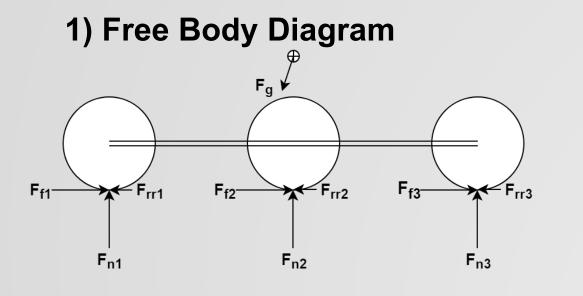


In-Place 360° Turn Model

Compare effect of CSR dimensions and angular velocity on axial force.

Sensitivity analysis – In-Place Turn

Keep L_x constant at 0.15m (6in)


Boulder

Keep ω constant at 1 rad/s (9.5 rpm)

Compare effect of CSR dimensions and angular velocity on axial force.

Boulder

2) Relational Equations

$$F_{f} \leq \mu F_{N}$$

$$F_{rr} = c_{rr} F_{N}$$

$$F_{g} = mg$$

$$\tau_{motor} = F_{f,max} r$$

3) Assume: Roll no-slip, rigid chassis, geometrically centered CoM, Coulombic friction model

4) Summation of Forces and Moments

$$\sum F_x : ma = F_{f1} + F_{f2} + F_{f3} - (F_{rr1} + F_{rr2} + F_{rr3})$$

$$\sum F_y : 0 = F_{n1} + F_{n2} + F_{n3} - mgcos(20^o)$$

$$\sum M_{z,CM} : 0 = h(F_{f1} + F_{f2} + F_{f3} - F_{rr1} - F_{rr2} - F_{rr3}) - F_{n1}l_x + F_{n3}l_x$$

5) Convert Summation of Forces into Matrices

$$A = \begin{bmatrix} 1 & 1 & 1 & -c_{rr} & -c_{rr} & -c_{rr} \\ 0 & 0 & 0 & 1 & 1 & 1 \\ h & h & h & -l_x - c_{rr}h & -c_{rr}h & l_x - c_{rr}h \end{bmatrix} \quad x = \begin{bmatrix} F_{f1} \\ F_{f2} \\ F_{f3} \\ F_{N1} \\ F_{N2} \\ F_{N3} \end{bmatrix} \quad b = \begin{bmatrix} ma \\ mgcos(20^o) \\ 0 \end{bmatrix}$$

Six unknowns, three equations. Indeterminate matrix, non-unique solution

6) Use relation $F_f = \mu F_N$ and recreate matrices to relate the sum of the forces and moments all to the normal forces acting on the wheels

$$A = \begin{bmatrix} \mu_1 - c_{rr} & \mu_2 - c_{rr} & \mu_3 - c_{rr} \\ 1 & 1 & 1 \\ \mu_1 h - l_x - c_{rr} h & \mu_2 h - c_{rr} h & \mu_3 h + l_x - c_{rr} h \end{bmatrix} \quad x = \begin{bmatrix} F_{N1} \\ F_{N2} \\ F_{N3} \end{bmatrix} \quad b = \begin{bmatrix} ma \\ mgcos(20^o) \\ 0 \end{bmatrix}$$

Matrix equation is now solvable, given effective μ_1, μ_2, μ_3

Project

Overview

- 7) Use guess and check, brute force algorithm to look at resultant normal forces given some combination of effective coefficients of friction that all lie below µmax. If any F_N lies below 0, the combination does not work.
 If a valid combination is found, the design parameters are feasible.
- 8) Solve for the frictional force acting on each wheel using the equations $F_f = \mu F_N$
- 9) Find the motor torque required for any given combination of $\mu_{effective}$'s $\tau_{motor} = F_{f,max} r$

Feasibility

Studies

Summary

October 2018

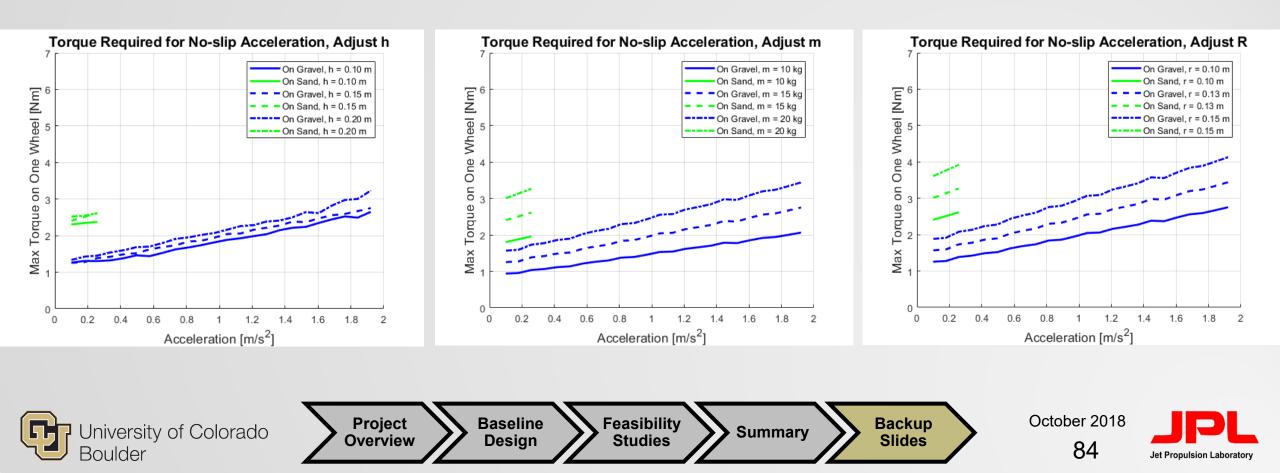
83

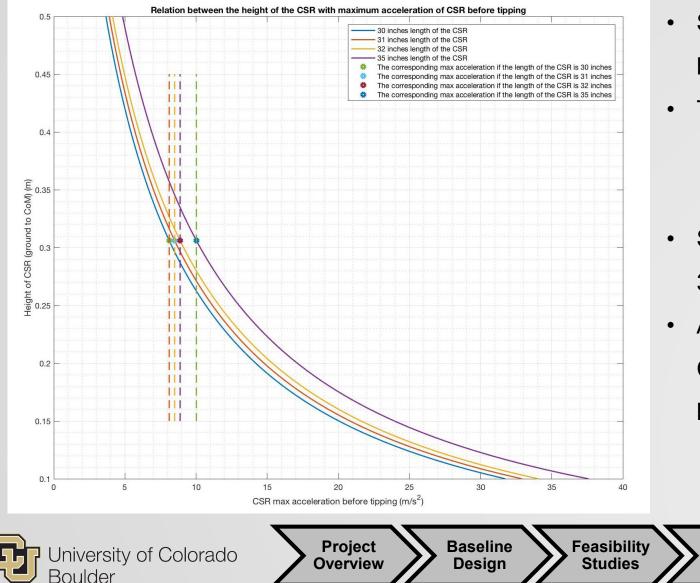
Backup

Slides

10) Select the combination of $\mu_{\text{effective}}$'s that results in the lowest τ_{motor}

Baseline


Design


Sensitivity Analysis - Inclined Slope

Compare CSR dimensional variables height, mass, and radius, to performance in gravel ($c_{rr} = 0.02$) and sand ($c_{rr} = 0.20$)

These plots only show cases such that the combination of torques acting on each wheel cause them to not slip

Sensitivity Analysis – Inclined Slopes

- Sensitivity analysis for maximum acceleration before tipping in the inclined slopes.
- The final equation is:

$$a_{max} = g(\frac{l_x cos 20^o}{2h} - sin 20^o)$$

- Setting the length of the CSR constant which is 30 inch (0.762 meter).
- As the maximum acceleration required to tip the CSR is above the maximum acceleration possible before slipping, tipping is not a concern.

Backup

Slides

Summary

October 2018

85

Jet Propulsion Laboratory

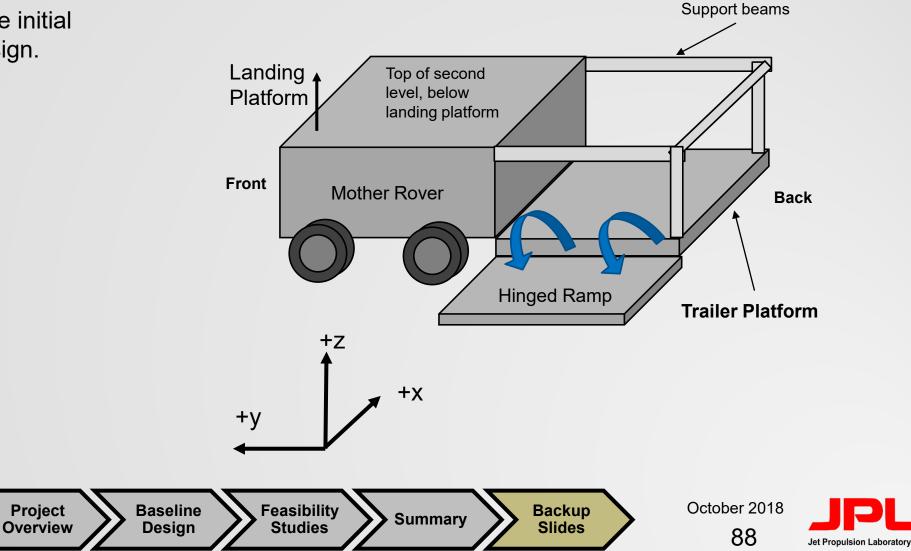
Docking/ Deployment Mechanism

Changing the baseline design

After the trade study results from CDD, there were two close options. A trailer platform and a hitch platform.

Although the baseline design that was chosen was a rigid trailer platform, further analysis was done into a hinged trailer platform attached by a ball joint. Another option that was considered and analyzed was a single axis hinged trailer platform.

The analysis concluded that instead of a rigid trailer platform, a hitch with a permanent platform attached by a ball joint would be the better option, so this is the new baseline design.


Diagrams and analysis of all three configurations are shown in the following slides

Boulder

Rigid Trailer Platform Diagram

This platform was the initial chosen baseline design.

University of Colorado Boulder

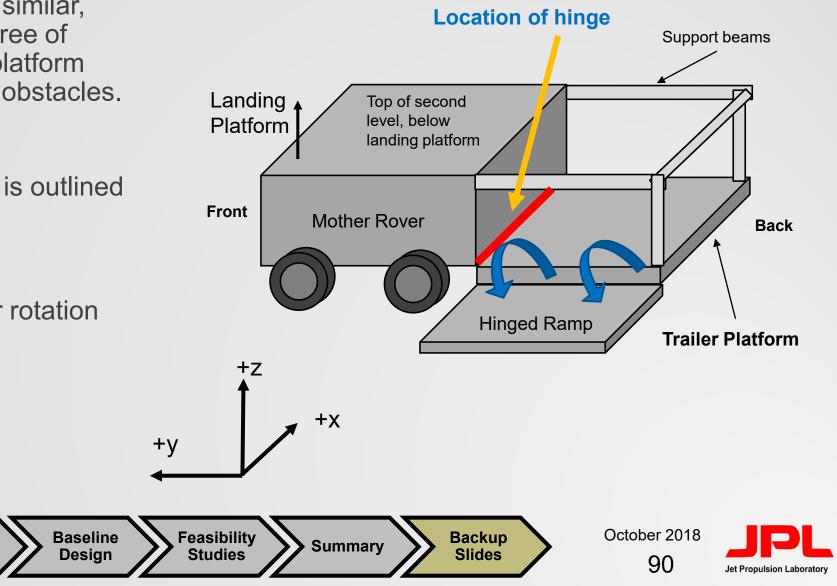
Pros/ Cons of Rigid Trailer Platform

Description	Pros	Cons
Traversing from flat ground to Inclined slopes		A rigid trailer platform may not allow for clearance on this transition, and if it does the force on the back wheels would need to be analyzed.
Mobility on uneven ground		Very limited, and uneven ground may induce high stresses on
Manufacturing complexity	Easy to manufacture because more than likely it would be 8020 extensions from the MR	
Complexity of modeling force analysis		Very difficult because there are many torques and loads to consider from multiple axes
Inclined Slopes, Loss of traction on trailer wheels while going down on slopes	Since the trailer would be a fixed rigid extension of the mother rover's chassis, there is little concern of the back wheels losing traction.	

Single Hinged Axis Trailer Platform Diagram

This configuration is very similar, however there is one degree of freedom to let the trailer platform rotate due to overcoming obstacles.

This location of the hinge is outlined in red in the diagram.


The hinge would allow for rotation around the x axis.

University of Colorado

Boulder

Project

Overview

Pros/ Cons of Single Hinged Axis Trailer Platform

Description	Pros	Cons
Traversing from flat ground to Inclined slopes	A single hinge allows for rotation when in this situation	
Mobility on uneven ground		Limited, is there is mobility on an axis not aligned with the hinge, then the trailer may not be able to maneuver easily.
Manufacturing complexity	Will still be easy to manufacture, except more support around the hinge may be required	
Complexity of modeling force analysis		Very difficult due to torques present around the z axis.
Inclined Slopes, Loss of traction on trailer wheels while going down on slopes		Since the hinge can rotate around the x axis, there is a possibility of the trailer tipping towards the MR. This may be solved by adding stoppers

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

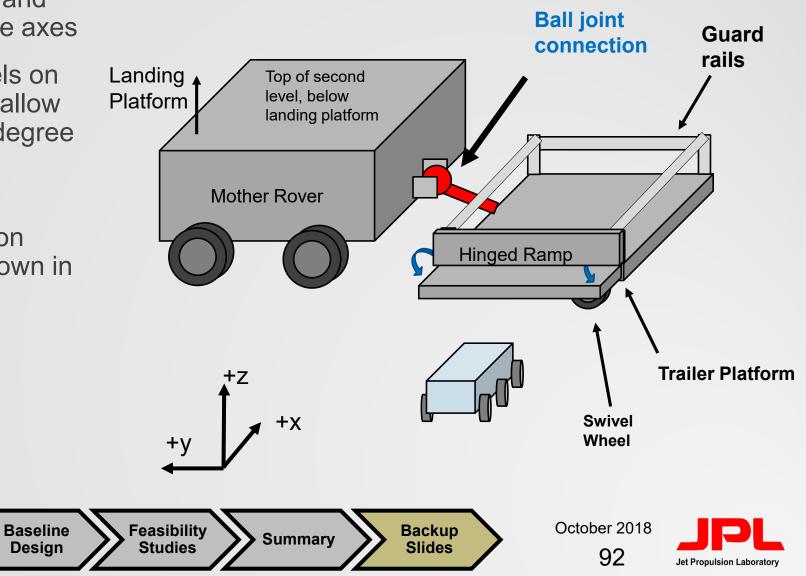
October 2018

91

Ball Jointed Trailer Platform Diagram

The ball joint is shown in red, and allows rotation around all three axes

There will be two swivel wheels on the bottom for support and to allow the MR to perform up to 360 degree turns

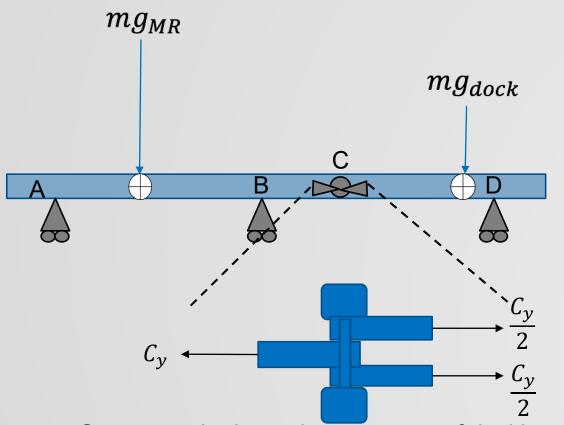

Since this was the chosen configuration, force and traction analysis was done. This is shown in the following slides

Project

Overview

University of Colorado

Boulder


Pros/ Cons of Ball Jointed Trailer Platform

Description	Pros	Cons
Traversing from flat ground to Inclined slopes	A ball joint allows for rotation when in this situation	
Mobility on uneven ground	The ball joint allows for rotation around all axes, so this is not a concern.	
Manufacturing complexity		Will be difficult to manufacture a ball joint interface. May be solved by buying COTS parts.
Complexity of modeling force analysis		Will be difficult to model, however this may be simplified into an easier situation to model.
Inclined Slopes, Loss of traction on trailer wheels going down on slopes		Since the hinge can rotate around all axes, there is a possibility of the trailer tipping towards the MR or it's wheels. This can be solved by adding stoppers

University of Colorado Boulder Project
OverviewBaseline
DesignFeasibility
StudiesSummaryBackup
SlidesOctober 2018
93

Hitched Trailer Feasibility

University of Colorado

Boulder

Feasibility Items:

- 1. Can a Hitch support the reaction forces of the CSR and Trailer
- 2. Are the stresses and strains on the Hitch reasonable

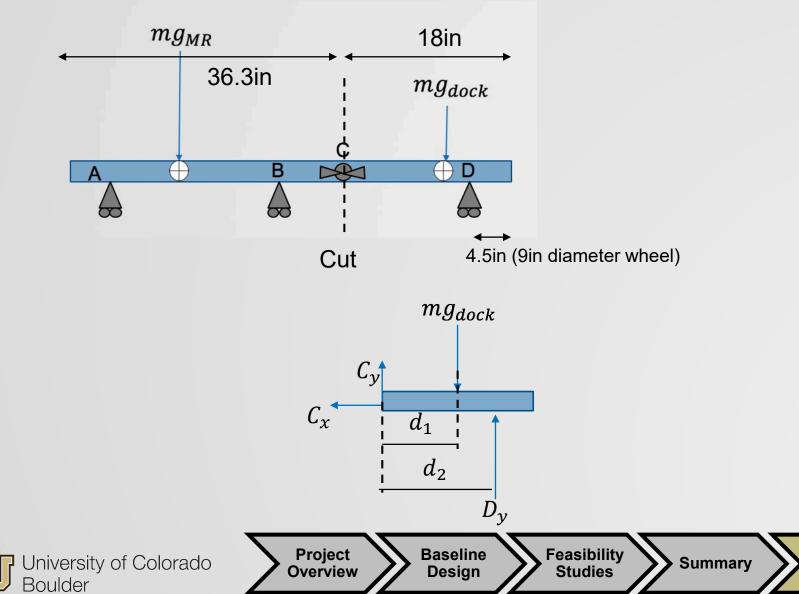
Assumptions:

 $C_y = \frac{1}{3}mg_{dock}$

 $\frac{F}{2} = \frac{\frac{4}{3}mg_{dock}}{\frac{4}{3}mg_{dock}}$

- 1. The MR and CSR+Trailer can be modeled as a uniform beam with two point loads at the CG of each
- 2. The Hitch can be modeled as a pin and the Wheels as rollers

Results


2.

94

Derivation

Assume mg_{dock} acts at Cg of the CSR+Trailer configuration, then:

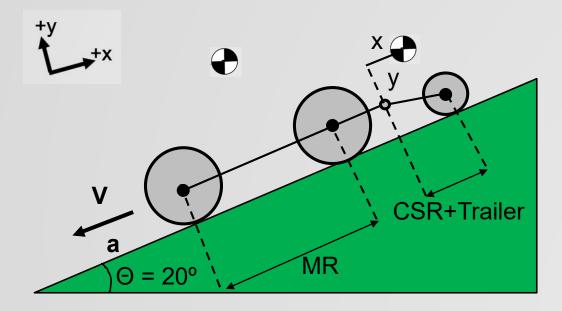
$$d_1 = 9in$$

 $d_2 = 13.5in$

1.
$$\sum F_x = 0; C_x = 0$$

2. $\sum M_c = 0; mg_{dock} * d_1 - D_y * d_2$
 $D_y = \frac{2}{3}mg_{dock}$

October 2018


95

Jet Propulsion Laboratory

Backup

Slides

MR Mobility Analysis

x - distance from hitch to Cg of CSR+Trailer y – distance from hitch to Cg of CSR+Trailer

Boulder

Feasibility Items:

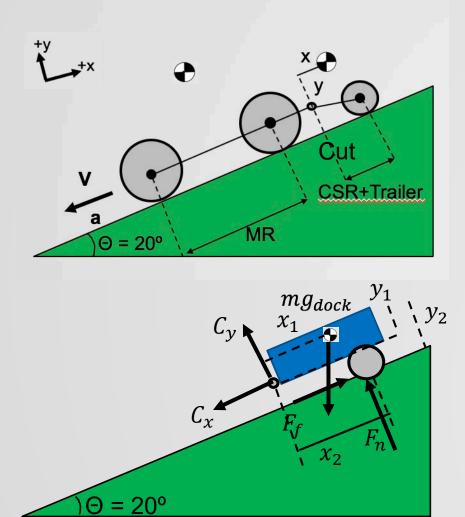
- Will the trailer tip going down a 20° slope? 1.
- At what deceleration will the trailer begin to tip? 2.

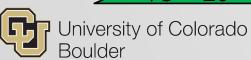
Assumptions:

- Roll-no-slip 1.
- 2. The Hitch can be modeled as a pin

Results

- Trailer doesn't tip unless $\frac{y}{r} \le 2.75$
- 2. Deceleration at which tipping occurs


 $a = g(\frac{x}{v}\cos(\theta) - \sin(\theta))$


Feasibility is dependent on the location of the Cg of the CSR and Trailer configuration

FEASIBLE

October 2018 Feasibility **Baseline** Project Backup University of Colorado Summary Overview Design **Studies** Slides 96 Jet Propulsion Laboratory

Tipping Derivation

$$\begin{split} \sum F_x &= C_X - F_f + mg_{dock}sin20 = 0\\ \sum F_y &= F_n + C_y - mg_{dock}cos20 = 0\\ \sum M_c &= mgcos20x_1 - mgsin20y_1 - F_nd_2 - F_fd_2 = \\ \sum F_x &= C_X - F_f + mg_{dock}sin20 = 0\\ \sum F_y &= F_n + C_y - mg_{dock}cos20 = 0\\ \sum M_c &= mgcos20x_1 - mgsin20y_1 - F_nx_2 - F_fy_2 = 0\\ \sum M_c &= mgcos20x_1 - mgsin20y_1 - F_nx_2 - \mu F_ny_2 = 0\\ F_n &= \frac{mg_{dock}(x_1cos\theta - y_1sin\theta)}{x_2 + \mu y_2} \end{split}$$

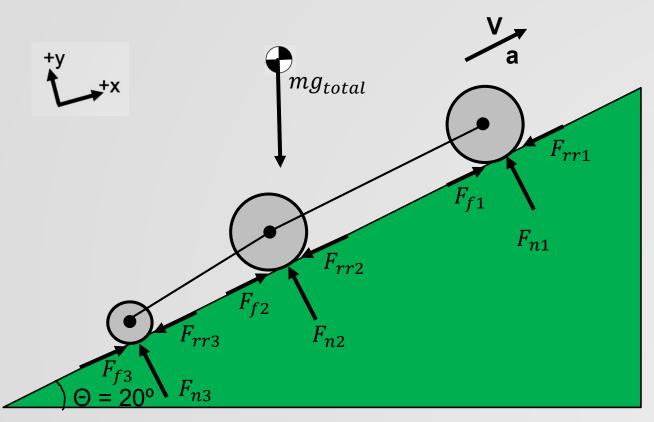
0

$$y_1 \le 2.7474x_1$$

For deceleration:

$$F_{n} = 0 \text{ so } F_{f} = 0$$

$$\sum F_{x} = ma = C_{x} - mg_{dock}sin20$$


$$\sum F_{y} = C_{y} - mg_{dock}cos20 = 0$$

$$\sum M_{cg} = C_{x}y_{1} + C_{y}x_{1}$$

$$a = g(\frac{x_{1}}{y_{1}}cos\theta - sin\theta)$$
October 2018
97

Power Analysis of MR + CSR + Trailer

Feasibility Items

1. Does the MR have enough power to pull the trailer + CSR?

Baseline Assumptions:

- 1. Roll no-slip
- 2. Rigid Chassis
- 3. Trailer+CSR weight = 150lbs

Results using Baseline Dimensions:

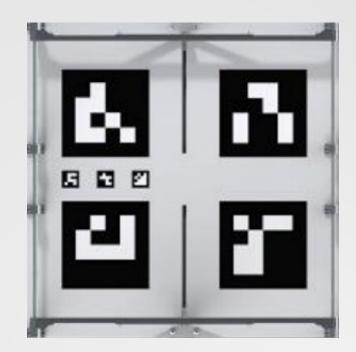
Use same technique as before with Matrix Manipulation

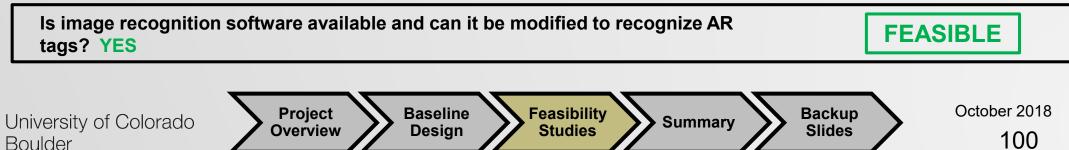
- 1. Gravel (crr = 0.02, μ=0.60)
 - 1. Required Torque per Wheel = 1030lbf*ft

 \checkmark

Object Detection System

Object Detection Docking Method

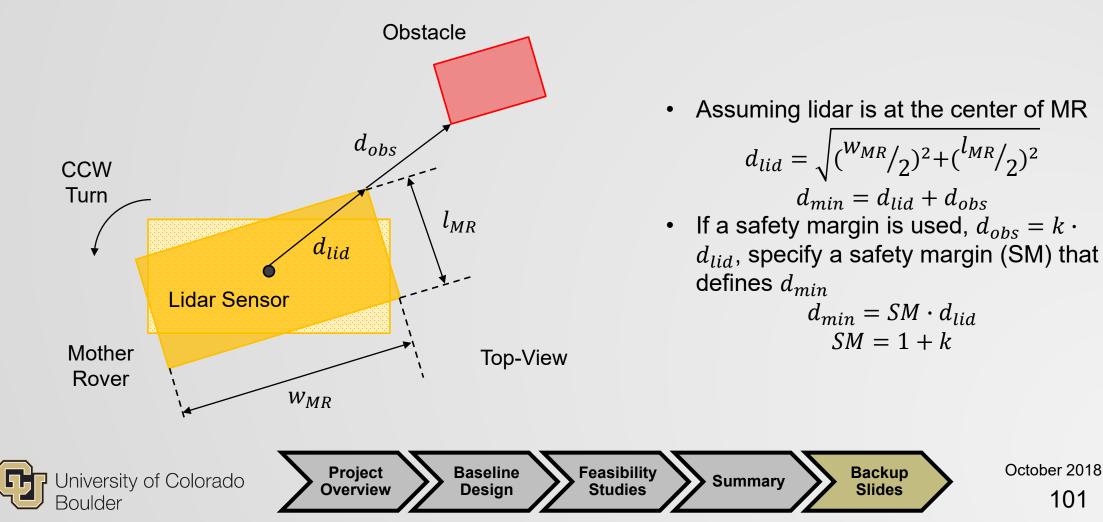

CSR.7 - The CSR shall be able to dock to the MR SENS.7.1 - CSR sensing system shall report orientation with respect to MR docking system


Results:

- Image recognition software will be used with Augmented Reality (AR) tag on the mother rover's trailer platform
- This method was similarly used and verified for the landing of the child drone (INFERNO) on the mother rover
- LiDAR processing software will be switched to image processing software once in close proximity (test determined)

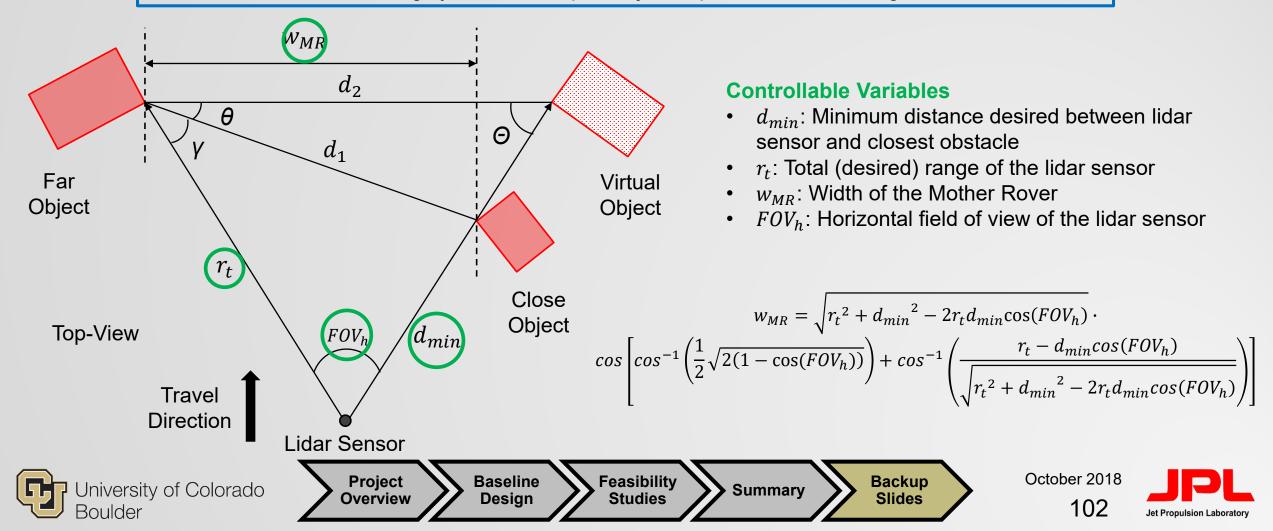
Further Analysis:

1. Determine the distance in which the image recognition software will be able to recognize the AR tag



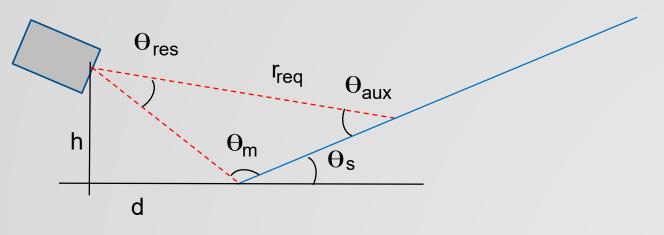
Determination of d_{min}

SENS.3.1.1 - CSR sensing system shall report objects within a field of view (FOV) SENS.3.1.2 - CSR sensing system shall report objects up to a maximum range from the CSR



October 2018 101

Horizontal FOV and Range Model


SENS.3.1.1 - CSR sensing system shall report objects within a field of view (FOV) SENS.3.1.2 - CSR sensing system shall report objects up to a maximum range from the CSR

Slope Determination

θ_{aux}

 θ_{S}

r_{req}

θ_m

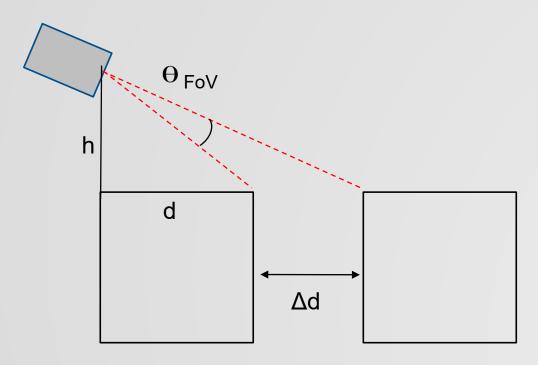
$$\begin{aligned} \theta_m &= 180 - tan^{-1} \left(\frac{h}{d}\right) \\ r_{req} &= \frac{sin(\theta_m)}{sin(180 - \theta_{res} - \theta_m)} \sqrt{h^2 + d^2} \end{aligned}$$

$$\theta_m = 180 - tan^{-1}(\frac{d}{h}) + \theta_s$$

$$\theta_{aux} = tan^{-1}(\frac{d}{h}) - \theta_s - \theta_{res}$$

$$r_{req} = \frac{sin(\theta_m)}{sin(\theta_{aux})} \sqrt{h^2 + d^2}$$

University of Colorado Boulder


d

 θ_{res}

h

1 Foot Discontinuity Determination

$$\theta_{FoV} = tan^{-1}(\frac{d+\Delta d}{h}) - tan^{-1}(\frac{d}{h})$$

LiDAR Brightness Feasibility

Common Outdoor Light Levels [8]

Condition	Illumination		
Condition	(ftcd)	(lux)	
Sunlight	10,000	107,527	
Full Daylight	1,000	10,752	
Overcast Day	100	1,075	
Very Dark Day	10	107	
Twilight	1	10.8	
Deep Twilight	.1	1.08	
Full Moon	.01	.108	
Quarter Moon	.001	.0108	
Starlight	.0001 .0011		
Overcast Night	.00001	.0001	

Feasibility Items:

1. Will the LiDAR system operate in an outdoor environment?

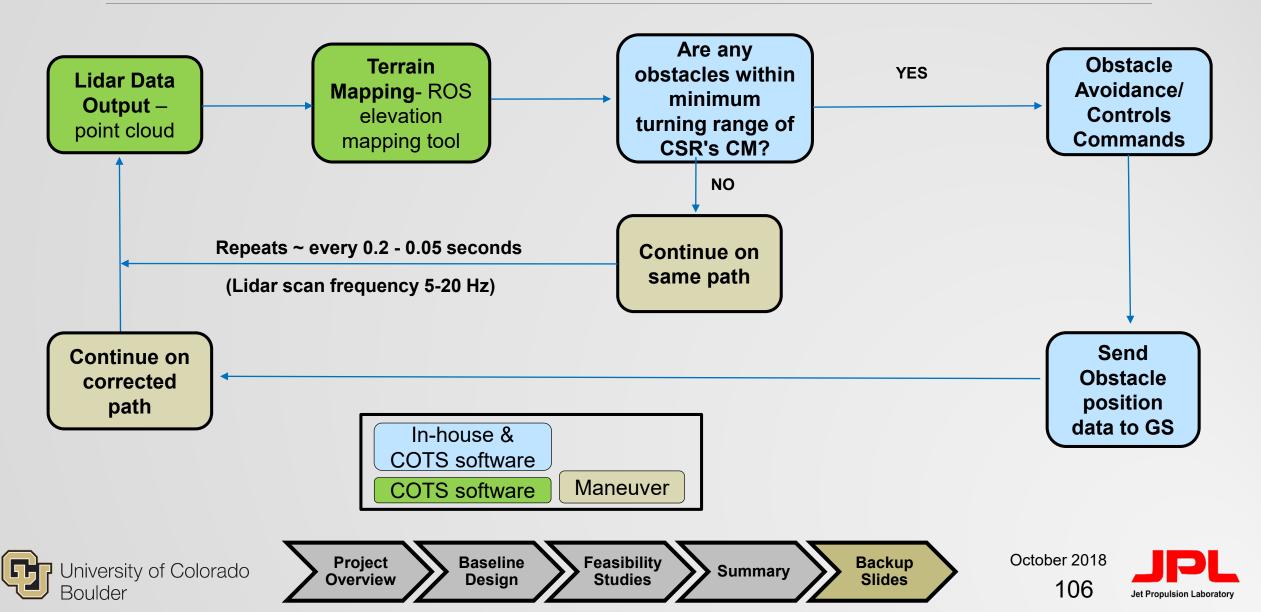
Results:

- 1. Outdoor operation requires the LiDAR to operate over a specific illuminance with enough ambient light resistance
- 2. Based on the chart to the left, it is reasonable that a resistance of 10,752 lux (full daylight) represents feasibility
- 3. The solid state LiDAR chosen has an ambient light resistance of 60,000 lux

Backup

Slides

60,000 lux > 10,752 lux, so



Project Overview Baseline Design Feasibility Studies Summary

Object Detection Software Feasibility

Lidar Trade Study

SENS.3.1 - The CSR sensing system shall be capable of object detection

Criteria	1	2	3	4	5
Cost	>\$700	\$500-\$700	\$300-\$500	\$100-\$300	<\$100
Data Rate	>200 kHz	50-200 kHz	1-50 kHz	10-1000 Hz	<10 Hz
Angular Resolution	No angular resolution	N/A	>0.5°	N/A	<0.5°
Slope Determination	Vertical and horizontal actuati on or CSR movement required	N/A	Vertical Actuation required	N/A	No CSR movement or LiDAR actuation required
Field of View	No field of view	<120° horizontal No vertical FoV	>120° horizontal No vertical FoV	>120° horizontal <5° Vertical FoV	>120° horizontal >5° Vertical FoV
Environmental Vulnerability	High vulnerability to impact and bright light.	High vulnerability to either impact or bright light	Low vulnerability to impact and bright light.	Low vulnerability to either impact or bright light	Little to no vulnerability to bright light or impacts

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary

Backup

Slides

October 2018 107

Lidar Trade Study

SENS.3.1 - The CSR sensing system shall be capable of object detection

Criteria	Weight	Single Beam	360° Rotating Single Beam	Solid State Lidar
Cost	5%	4	3	1
Data Rate	10%	5	3	2
Environmental Vulnerability	15%	5	2	5
Angular Resolution	20%	1	5	5
Slope Determination	25%	1	3	5
Field of View	25%	1	3	5
Total	100%	2.15	3.05	4.35

Project

Overview

Baseline

Design

Feasibility

Studies

Single Beam LiDAR

Summary

360° Rotating Single Beam LiDAR

October 2018

108

Solid State LiDAR

Backup

Slides

University of Colorado Boulder

Lidar Trade Study Rationale

Criteria	Weight	Rationale
Cost	5%	Cost must be considered in order to remain within designated budge. However, as the LiDAR is crucial to success, a higher cost is largely justifiable.
Data Rate	10%	The more data produced per second increases the computational load of data processing and thus may necessitate more powerful microprocessors.
Environmental Vulnerability	15%	The LiDAR system may be exposed to bright light or impacts. Thus, it is important that it remain functional in these conditions in order for the CSR to complete it's mission.
Angular Resolution	20%	A higher angular resolution may allow soft obstacles such as grass to be differentiated from hard obstacles like trees.
Slope Determination	25%	Slope determination is important as it may facilitate differentiation between trees and ground as well as allowing the CSR to find a traversable path.
Field of View	25%	A larger field of view allows the CSR to analyze a greater amount of terrain without requiring CSR maneuvering or actuation.

Studies

Summary

Slides

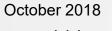
University of Colorado Boulder

Overview

Design

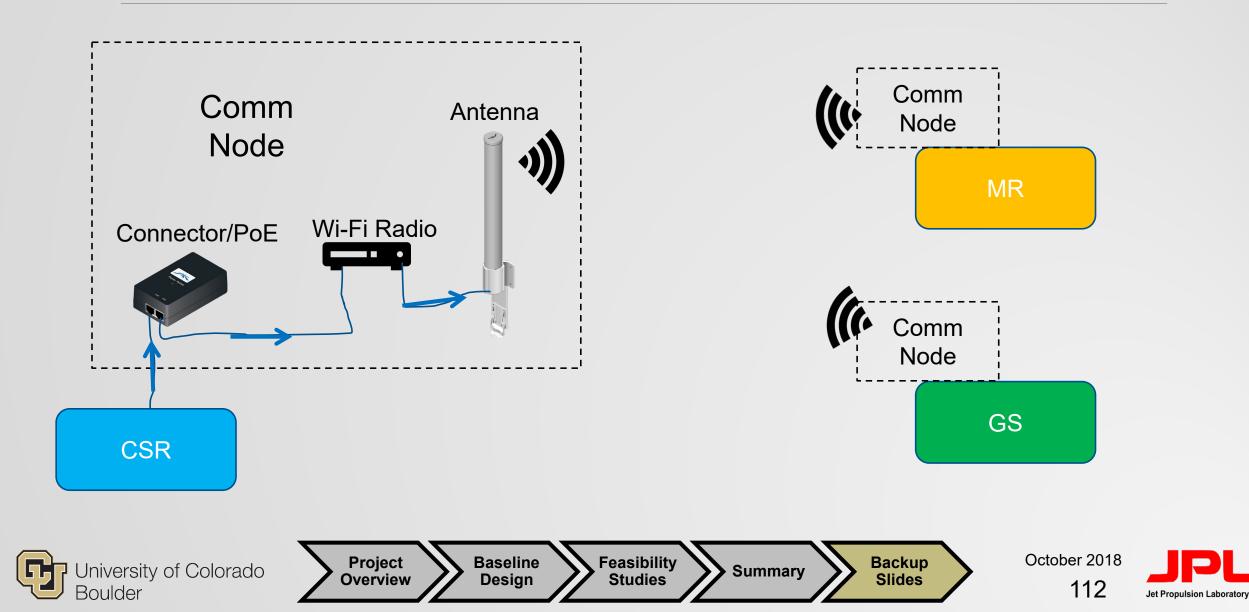
Communication System

BASELINE DESIGN AND FEASIBILITY ANALYSIS



Hardware Specs

	Model	Connection		Frequency (GHz)	Gain (dBi)	Dimensions (in)	Direction	Cost (\$)				Fraguator	Data Bata	Transmission	Dessiver	Power Consumption	
	A8EX						Omni-Directional			Model	Connection	Frequency (GHz)		Power (dBm)	Receiver Sensitivity (dBm)		Cost (\$)
		N-Type Female	2	2.4	8.00	20 x 3 x 3	360 (outdoor)	89.32									
	TL- ANT2408 CL	RP-SMA Female	2	2.4	8.00	14 x 3.2 x 0.8	Omni-Directional 360 (indoor)	10.56		Xbee Wi- Fi S6B	Pins, RP-SMA	2.4	1/72	16	-82	?/3.3	43.95
	TL- ANT2409						Directional 60			TL- WN722N	USB, RP-SMA	2.4	11/150	20	-88	N/A	14.99
	A	RP-SMA Female	2	2.4	9.00	4.72 x 4.72 x 1.57	(outdoor)	24.49		M2	Ethernet, POE, RP-SMA	2.4	10/100	28	-88	6.5/24	89.00
Antenna	TECHTO 01	RP-SMA Female	2	2.4	9.00	15.3 x 0.7 x 0.7	Omni-Directional (indoor)	13.99	Standalone	M5	Ethernet, POE, RP-SMA		10/100	27	-88	8/24	89.00
Extensions	TECHTO						Omni- Directional(indoor		Wi-Fi Modules	BM2HP	Ethernet, POE, Type N	2.4	6/24	28	-88	7/24	79.00
	02	RP-SMA Female	2	2.4	12.00	10 x 6 x 2.7)	29.99		BM5HP	Ethernet, POE, Type N	5	10/100	25	-88	6/24	79.00
	ANRD24 05	RP-SMA Female	2	2.4	9.00	15 x 0.7 x 0.7	Omni- Directional(indoor	17.99		LocoM2	Ethernet, POE (Has Antenna)	2.4	1/54	20	78	5.5/24	48.53
	TL- ANT2412 D		2	2.4	12.00	47 x 3.54 x 2.56	/ Omni-Directional 360 (outdoor)	36.61		TL- WA7210 N	Ethernet, POE, Type N (Has Antenna)	2.4	11/150	27	-88	12/12	53.00
	HA09SIP		2				Omni-Directional			CPE210		2.4	36/300	27	-88	6/24	39.98
Averages		RP-SMA, N-Plug	2	2.4	9.00 9.5	24.45 x 1.77 x 1.77 18.8 x 2.95 x 1.725		73.99 37.1175	Averages			2.4		24.22222222	86		59.60555 556


University of Colorado Boulder

Feasibility Studies Baseline Backup Slides Project Summary Overview Design 111

Hardware Integration

Wi-Fi Extra

FCC 2.4 GHz BAND RULES (POINT-TO-MULTIPOINT)

Maximum = +36dBm (4watts)

Maximum Power from Intentional Radiator *1	Maximum Antenna Gain (dBi)	EIRP (dBm)	EIRP (watts)
30dBm or 1 watt	6	36	4
27dBm or 500mW	9	36	4
24dBm or 250mW	12	36	4
21dBm or 125mW	15	36	4
18dBm or 63mW	18	36	4
15dBm or 32mW	21	36	4
12dBm or 16mW	24	36	4

https://www.air802.com/fcc-rules-and-regulations.html

University of Colorado Boulder Project Overview Baseline Design Project Design Project

Variable and Equations Descriptions

Receive sensitivity

The minimum level of a received signal required for a device to understand the signal. Access point

A device that allows wireless devices to connect to a wired network using Wi-Fi.

dBm

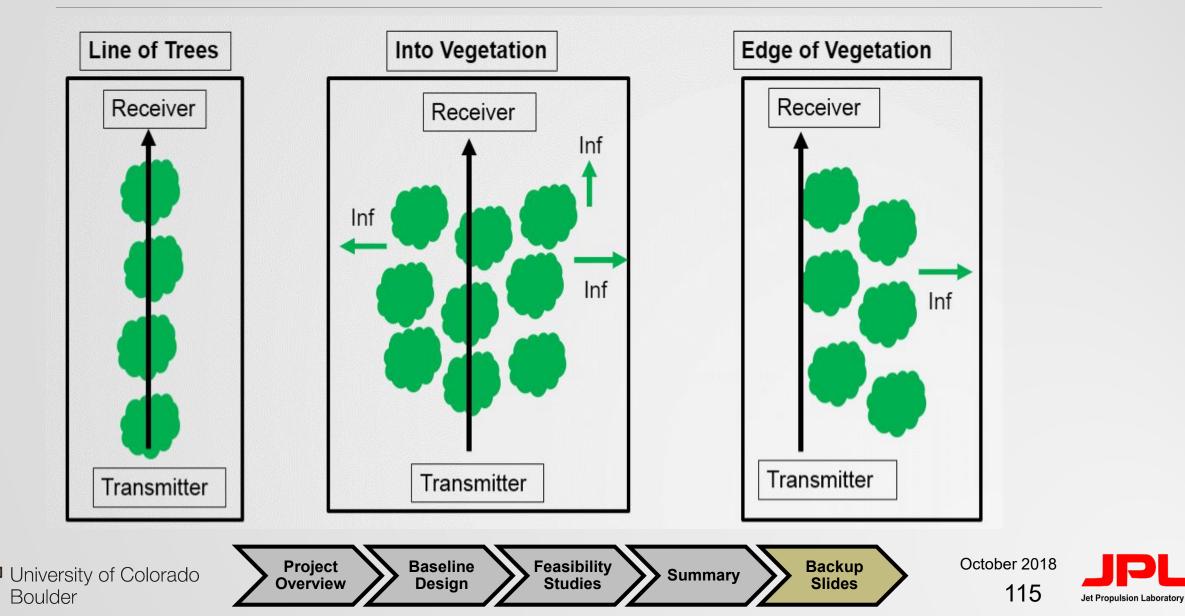
An abbreviation for the power ratio in decibels (dB) of the power referenced to one milliwatt (mW). 0 dBm is equal to 1 milliwatt.

Gradient

Boulder

Analysis is a research approach for study of spatial patterns of vegetation.

Non-Zero Gradient Model:


-R: Initial Gradient -R∞: Final Gradient -k: Offset Final Gradient -d: Vegetation depth in meters -Assuming 2.4 GHz

Attentuation =
$$R_{\infty}d + k(1 - \exp(-\frac{R - R_{\infty}}{k}d))$$

Scenarios

ا ما كا

Communications: The Model

Baseline

Design

Atten =
$$R_{\infty}d + k\left(1 - \exp\left(-\frac{(R_0 - R_{\infty})}{k}d\right)\right)$$

Table 5. Fitted Parameters for Nonzero Gradient Model

1.									
	R _∞ (11.6)	$\stackrel{R_{\infty}}{(2)}$	R _∞ (1.3)	R ₀ (11.6)	R ₀ (2)	R ₀ (1.3)	k (11.6)	k (2)	k (1.3)
All	0	0.1	0.1	3.1	1.4	1.15	30	13	14
Edge	0.15	0.25	0.25	4	2.25	1.95	38	11	11
Into	0.55	0.25	0.35	0.65	0.4	0.45	6	37	34
Wedge	-0.1	-0.15	-0.1	3.95	1.65	3.85	33	24	13
Line	0	0.1	0.05	3.75	3.35	1.55	29	14	14
Line_in	-0.15	0.1	0.1	3.95	1.85	1.35	41	13	11
Line_out	0.1	0.05	1.65	3.65	3.95	1.05	20	18	18
Lobe	0	0.1	0.1	3.95	1.6	1.35	32	14	12
Oval	0.6	0.05	0.15	3.35	0.15	0.45	9	46	3
In-leaf	0	0.05	0.1	3.2	0.7	1	32	21	12
Out-of-leaf	0.1	0	0.25	3.85	2.85	1.8	19	18	13

Project

Overview

Pros:

- 1. A very accurate model and simple to calculate.
- 2. A practical model based on normal forest conditions.

Cons:

Feasibility

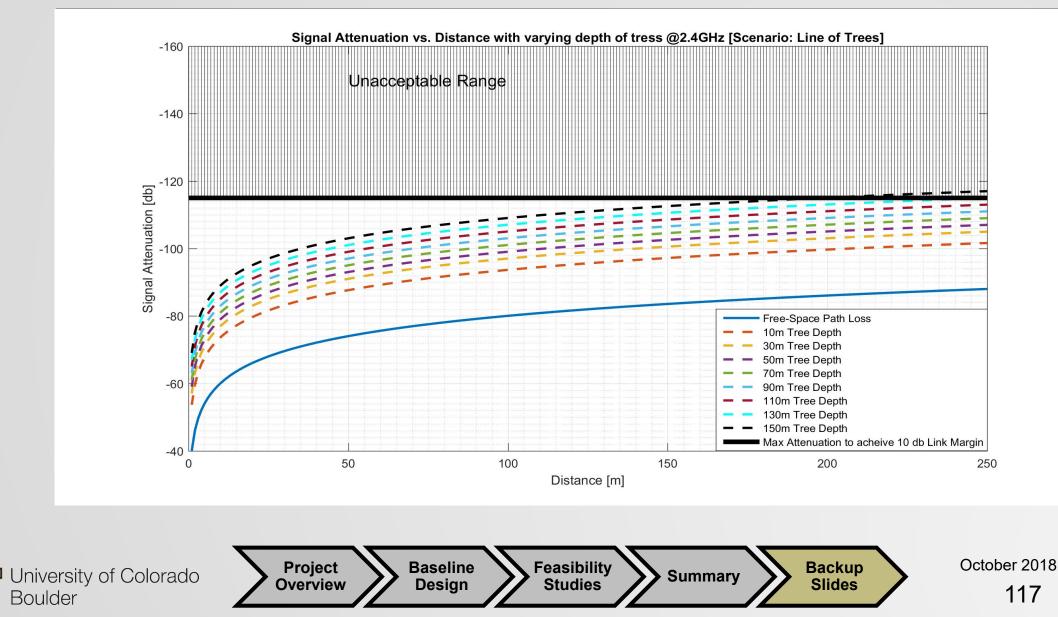
Studies

- 1. The calculation of the variables are not for a specific density of trees but an average values of a found forest range.
- 2. Limits us on knowing exactly how many trees we're dealing in the area.

Summary

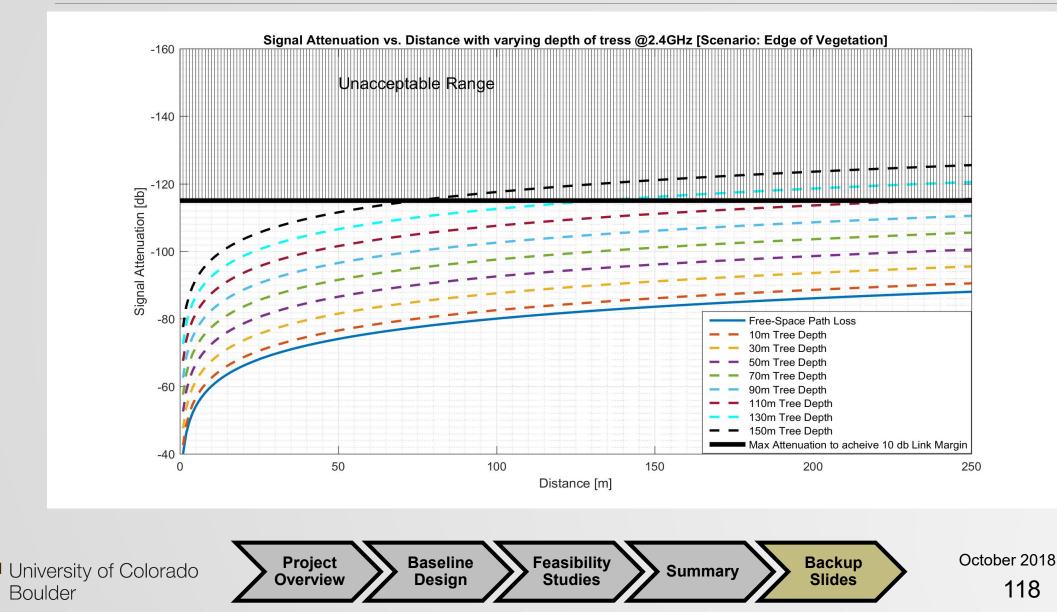
Backup

Slides


October 2018

116

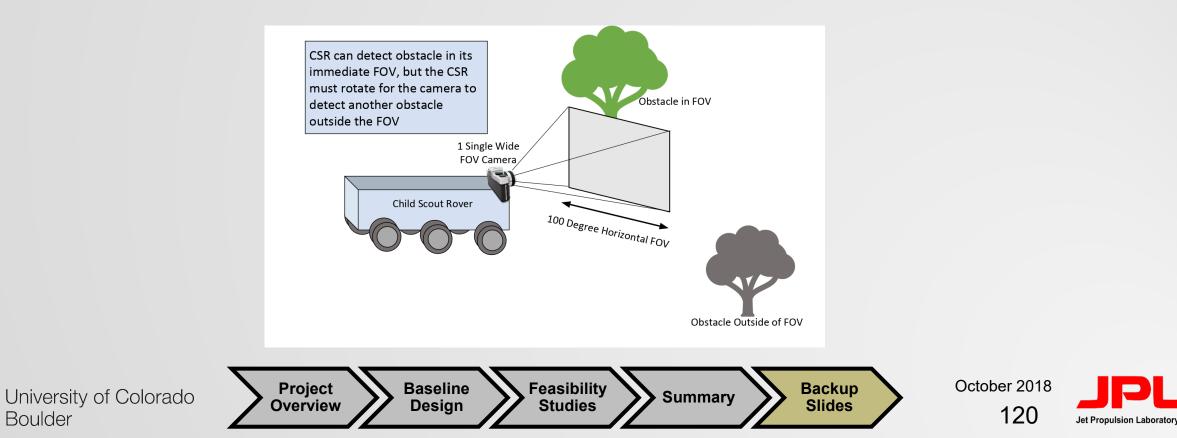
Jet Propulsion Laborator


University of Colorado Boulder

Line of Trees

Edge of Vegetation

JPL Jet Propulsion Laboratory


Imaging System

BASELINE DESIGN AND FEASIBILITY ANALYSIS

Imaging System Baseline Design

- Imaging system needed to satisfy major requirements for images/video feed
- Single actuated camera chosen as baseline selection

Boulder

Camera Types and Specifications

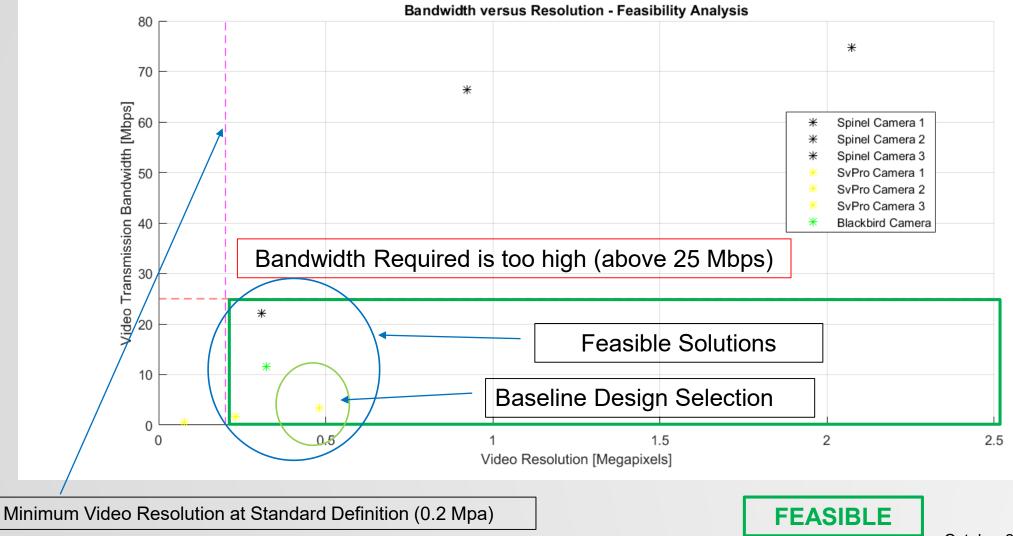
SENS.5.1 The CSR Sensing system shall capture video SENS.6.1 The CSR Sensing system shall capture images

Project

Overview

Camera	Field of View	Average Video Resolution	Cost	Power	Frame Rate	Projected Bandwidth (with compress)
Spinel 2MP (UC03MPA)	100 deg (no distortion)	(640 x 480)	\$50	.7 W	60 fps	22 Mbps
SvPro	100 deg (no distortion)	(320 x 240)	\$53	.83 W	30 fps	1.66 Mbps
Blackbird 1D 3D FPV	54 deg (no distortion)	(656 x 442)	\$90	1.1 W	30 fps	11.6 Mbps

University of Colorado Boulder Baseline Feasibility Summary


October 2018 121

Backup

Slides

Camera Feasibility

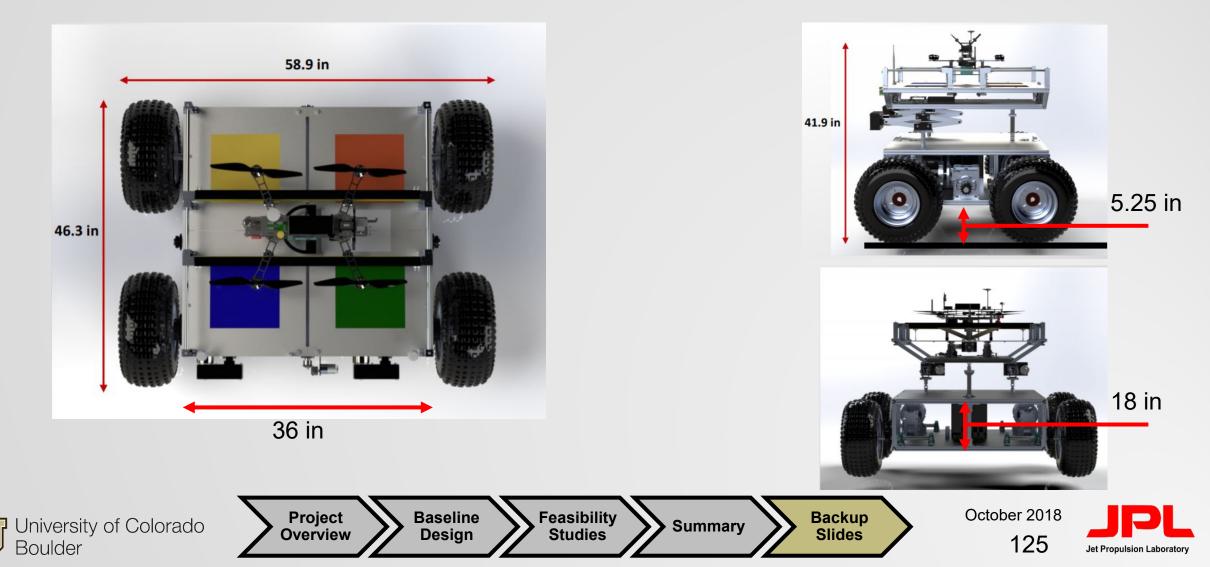
October 2018 122 Jet Propulsio

Actuation System

	Pros	Cons	Cost	Power
Servo	High Resolution High Efficiency Closed Loop	Complexity High Bandwidth No Position Hold	~\$12.00	10.9 W
Stepper	Low Torque (for our case) Low Complexity Position Hold/ Low Vibration	Open Loop	~\$15.00	3.96 W

Power is << than total Power Budget

Dimensions


Boulder

MOTHER ROVER, CHILD SCOUT ROVER, TRAILER

Mother Rovers Dimensions

Dimensions have not been confirmed with actual measurements

State of the Mother rover

It works!

We met up with DRIFT members who showed us what the correct code was needed to command the MR wirelessly, or plugged in. We were able to have the wheels turn, go forward and in reverse, however the MR does not stop after commanding it to stop. Further debugging needs to be done.

Construction quality will need to be improved, and then there is a slight right offset when driving.

Two DC60-4Q 24V 20A Motor Drivers – Motor Control

Two MCP4131 Digital Potentiometers – Variable Speed Control

Two Brushed DC Marathon Gear Motors with Reducer Producing 535 in-lb each

Feasibility

Studies

Summary

October 2018

126

Jet Propulsion Laborator

Backup

Slides

Two 12V 100Ah Lead Acid Marine Batteries

Project

Overview

One 60A Time Delay Fuse – Current limiter for motor driver

Baseline

Design

Levels of Success from PDD

Criteria	Level 1	Level 2	Level 3
Control	 The CSR shall be able to navigate by received control commands from the GS. The CSR shall be able to dock/deploy to the MR. The CSR shall be able to perform a 360° turn. The CSR shall be able to travel forward and reverse. 	• The CSR shall navigate to a LOI and shall detect obstacles en route to the LOI, but manual control is needed to circumvent the obstacles.	 The CSR shall be capable of autonomous navigation, obstacle detection, and avoidance. The CSR shall be able to return to the last known GPS location if connection is lost. The CSR shall be capable of autonomous deployment and docking with the MR.
Communications	 The CSR shall verify connection to the MR/GS. The CSR shall send at least one GPS data packet to MR/GS upon command. The CSR shall have functional communication up to a 250 meter radius from the deployment point in an open area. The CSR shall be able receive control commands from MR/GS. 	• The CSR shall be able to record and send waypoint locations after encountering an obstacle.	 The CSR shall be able to transmit GPS location at TBD frequency and send continuous video feed. The CSR shall be able to verify its location from the LOI within ± 5 meters. The CSR shall have functional communications through a forest up to a 250 meter radius from the deployment point.
Range	• The CSR shall be able to drive in up to a 250 meter radius from the deployment point on flat terrain.	• The CSR shall be able to drive up to a 250 meter radius from the deployment point on flat terrain with ob- stacles present.	• The CSR shall be able to drive in a 250 meter radius from the deployment point at a 20° inclined slope.
Environment	 The CSR shall be able to traverse the following: 1) Open areas 2) 20° incline slopes 	The CSR shall be able to traverse the following: 1) Light underbrush 2) Roots	The CSR shall be able to traverse the following: 1) Heavy underbrush 2) 1 foot of discontinuity
Video/Image	 The camera on the CSR shall capture a FOV greater than 100°. The image processing system shall send time-stamped images to the MR/GS. 	 The CSR shall be able to send videos to the MR/GS. The MR shall be capable of toggling on/off the video capture from the CSR. 	• The CSR shall be able to send and receive continuous video feed to MR and GS at TBD framerate.

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

Critical Project Elements from PDD

	2011 (D. 1997)	Technical
T.1	Mobility, Docking, and Deploying	The CSR must be able to travel forward and backwards in forest fire prone areas and perform 360° turns. Otherwise it cannot navigate and would be unable to reach a LOI. Moreover the CSR must be able to dock on MR, remain on the MR during travel, and deploy from the MR.
T.2	Communications	The CSR must be able to communicate with the GS and MR in wooded and open areas. If this is not achieved, then the CSR will not be able to send viable path, images, and video to the MR or GS.
T.3	Guidance, Navigation, and Control	The CSR must be able to be controlled remotely by one operator. The CSR must always read its own GPS data accurately. Other- wise, the CSR will not be able to navigate or determine a viable path for the MR.
T.4	Environment Sensing	The CSR must be able to accurately sense the terrain and ob- stacles around it. If this is not achieved, a single operator will be unable to guide the CSR remotely, and in the case of self- navigation, the CSR will be unable to detect obstacles.
		Logistical
L.1	Integration with Heritage Projects	The CSR hardware and software needs to interface with aspects of previous heritage projects such as the GS and MR. Integration between all systems is crucial for HERMES because it's success furthers the objective of the Fire Tracker System.

University of Colorado Boulder

Backup October 2018 Project Baseline Feasibility Summary Overview Slides Design **Studies**

Jet Propulsion Laboratory

128

Verification and Validation Definition

Test	Test Description
Docking and Deploying	The CSR will be placed such that the docking hardware aboard the MR is within the FOV of the CSR's imaging system. The CSR will then be commanded to dock on the stationary MR autonomously. In addition the CSR will be placed in the stowed configuration aboard the MR and commanded to deploy autonomously. Success - When docking the CSR drives onto the trailer with no operator intervention with none of the chassis left on the ramp. When deploying the CSR drives out of the trailer using the ramp and halts when the entire chassis is off of the ramp.
Communication	The CSR will receive commands from the GS 250 meters away to perform desired tasks in multiple options of mission defined terrain (See Terrain Definition). The CSR will transmit requested data (position, images, and obstacle positions) to the GS and MR or perform the movement task. The CSR will then send task completion acknowledgements to both the GS and MR to then receive transmission acknowledgements from the GS. <i>Success - When commands are sent to the CSR from MR, acknowledgement messages are sent back from the CSR. When the CSR transmits data (position, images, or obstacle position). acknowledgement messages are sent back from the GS.</i>
Off-Nominal Communication Navigation	The CSR will be placed in a location where it can communicate with the MR and GS successfully. Then, the MR's communication system will be turned off to demonstrate that the CSR is able to return to it's last known location. <i>Success - When acknowledgement messages are not received by the CSR form the MR the CSR returns within 0.25 meters of the last recorded waypoint</i>
Obstacle Avoidance	The CSR will be placed such that a test defined location of interest is obstructed by obstacles. The CSR will be commanded to travel to the location and utilize the object detection device to navigate the obstacle(s). <i>Success - The CSR navigates aroud a given obstacle without colliding with it.</i>

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary

October 2018 **129**

Backup

Slides

Verification and Validation Definition

Environmental Maneuverability	The CSR will be commanded to drive in various configurations of mission defined terrain (See Terrain Definition) at a 0° incline Success - The CSR is able to traverse 5 meters in each type of ground and underbrush terrain without the need of human intervention
Camera Operation	The CSR will receive a toggle camera on command and a toggle off command. These commands will be received in two cases: when the CSR is in position hold and driving Success - When commanded to turn on the camera the CSR returns an acknowl- edgement that the camera is on when the CSR is in position hold. When the commanded to turn off the camera the CSR returns an acknowledgement that the camera is off when the CSR is in position hold. The success criteria is the same for when the CSR is driving
Final Path Validation	A path will be transmitted to the MR as the final path and the MR will be commanded to navigate the path. Success - The GS receives a collection of waypoints from the CSR that indicate a viable path with the last waypoint within 5 meters of the location of interest
Range	The CSR will be placed on a treadmill and travel 250 meters at 0°. Success - The CSR drives for the entirety of the test without the need of battery replacement or hardware maintenance
Inclinations	The CSR will be placed on a treadmill inclined at a 20 ° slope and show capa- bility to travel up to 250 meters. Success - The CSR drives for the entirety of the test without the need of battery replacement or hardware maintenance

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

Derived Requirements

CSR.1 : The CSR shall be able to receive commands from the MR or the GS						
Requirement ID	Description	V&V				
COMM.1.1	The CSR Communication system shall receive complete command packets up to 250 meters (820 ft) <i>Motivation - Since the CSR will be operating over large distances from</i> <i>the GS, it should be able to receive all commands from the maximum</i> <i>distance a mission will travel</i>	Test - Communication Demonstration Analysis				
CDH.1.1	The CSR CD&H system software shall send commands to the correct subsystem Motivation - Since the CSR system will have multiple subsystems it is necessary that the CD&H subsystem distributes commands to the cor- rect subsystem	Test - Communication Demonstration				
CDH.1.2	The CSR CD&H system hardware shall interface with the CSR Com- munication system receiver <i>Motivation - In order for the commands received by the receiver to be</i> <i>issued to the rest of the system, the receiver must interface with the</i> <i>hardware that runs the command handling software</i>	Test - Communication Demonstration				

University of Colorado Boulder

October 2018

132

CSR.2 : The CSR shall be able to send image and positioning data to the GS					
Requirement ID	Description	V&V			
COMM.2.1	The CSR Communication system shall send GPS data to the GS at a frequency between 1-20 Hz through mission defined terrain (See Terrain Definition) Motivation - Depending on the COTS GPS component, the transmission frequency of the GPS data packets may vary between this range. ¹⁰	Test - Communication Demonstration			
COMM.2.2	The CSR Communication system shall send obstacle position data to the GS at a frequency between 1-20 Hz through mission defined terrain (See Terrain Definition) <i>Motivation - The obstacle position must be known in order to determine</i> <i>if a viable path is possible.</i>	Test - Communication Demonstration			
СОММ.2.3	The CSR Communication system shall send imaging data to the MR in packets of 6-30 kilobytes (TBR) through mission defined terrain (See Terrain Definition) <i>Motivation - Depending on the capability of the receiver on the MR the</i> <i>CSR transmitter can only send a limited size of imaging data packets</i>	Test - Communication Demonstration			
COMM.2.4	The CSR Communication system shall send GPS data from up to 250 meters (820 ft) to the GS Motivation - The CSR will be operating at a maximum distance of 250 meters (820 ft) from the GS, so the CSR should be able to send GPS data packets up to this maximum distance.	Test - Communication Demonstration			

Feasibility

Studies

Summary

University of Colorado Boulder

Project

Overview

Baseline

Design

October 2018 133

Backup

Slides

COMM.2.5	The CSR Communication system shall send obstacle position data from up to 250 meters (820 ft) to the GS <i>Motivation - The CSR will be operating at a maximum distance of 250</i> <i>meters (820 ft) from the GS, so the CSR should be able to send environ-</i> <i>mental position data packets up to this maximum distance.</i>	Test - Communication Demonstration
СОММ.2.6	The CSR Communication system shall send imaging data from up to 250 meters (820 ft) to the GS Motivation - The CSR will be operating at a maximum distance of 250 meters (820 ft) from the GS, so the CSR should be able to send imaging data packets up to this maximum distance.	Test - Communication Demonstration
CDH.2.1	The CSR CD&H system software shall organize collected GPS, obsta- cle position, and imaging data by time <i>Motivation - Since the CSR will be collecting data over the duration</i> <i>of its mission it is necessary to organize the recorded data so that the</i> <i>mission can be understood</i>	Demonstration
CDH.2.2	The CSR CD&H system shall interface with the CSR Communication system transmitter <i>Motivation - In order for the data collected by the CSR to be transmit-</i> <i>ted to the GS the transmitter must interface with the hardware that runs</i> <i>the data handling software</i>	Demonstration

Feasibility

Studies

Summary

University of Colorado Boulder

Project

Overview

Baseline

Design

October 2018

134

Backup

Slides

Requirement ID	Description	V&V
MOB.3.1	The CSR Mobility system shall be able to perform a 0 meter (0 ft) radius turn up to 360 ° Motivation - In order for the CSR to maneuver around obstacles it needs to turn, so if it can perform the maximum reorientation it can re-orientate to any degree	Test - Obstacle Avoidance Demonstration Analysis
MOB.3.2	The CSR shall be able to go over discontinuities up to 1 foot (0.30 meters) Motivation - While the MR can not go over 1 foot (0.30 m) discontinuities it is advantageous for the CSR to go over a discontinuity in the event that it encounters one while on mission	Test - Terrain Maneuverability Demonstration Analysis
MOB.3.3	The CSR shall be able to go up or down a slope of 20 ° Motivation - Since the MR can drive up slopes of this degree the CSR needs to have the capability to too	Test - Inclinations Demonstration Analysis
MOB-POW.3.3.1	The CSR Power system shall provide up to 17 W to each motor driver Motivation - When the CSR must is driving up a slope of 20° each motor must generate up to 5Nm of torque	Test - Environmental Maneuverability Demonstration

MOB.3.4	The CSR shall be able to drive in underbrush (See Terrain Defi- nition) Motivation - The CSR will be operating in forest environment and will encounter varying levels of this type of vegetation	Test - Environmental Maneuverability
MOB.3.4.1	The CSR Mobility system shall be able to drive the CSR over a 2.4 inch (0.06096 m) step Motivation - When the CSR must drive over roots of this size when driving through type D underbrush	Test - Environmental Maneuverability Demonstration Analysis
SENS.3.1	The CSR Sensing system shall be capable of object detection Motivation - In order for the CSR to navigate itself through an unknown environment it needs a way to sense obstacles	Test - Obstacle Avoidance Demonstration Analysis
SENS.3.1.1	The CSR Sensing system shall report objects within a field of view of at least 120° of the CSR <i>Motivation - Available commercial of the shelf devices have a 2D field of view at a minimum of 120</i> °	Test - Obstacle Avoidance Demonstration Analysis
SENS.3.1.2	The CSR Sensing system shall have a range up to 4 meters from the CSR Motivation - Available commercial of the shelf devices have a 2D range up to 4 meters	Test - Obstacle Avoidance Demonstration Analysis

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

SENS-POW.3.1.3	The CSR Power system shall provide up to 6 W to the Sensing system for object detection <i>Motivation - Available commercial of the shelf solid state LiDAR</i> <i>devices operate at up to 6 W</i>	Test - Obstacle Avoidance Inspection Demonstration
SENS.3.2	The CSR Sensing system shall determine the grade/incline up to 20° on which the CSR is travelling <i>Motivation - The CSR must map the terrain grades its traversing so that a viable path for the MR can be determined, because the MR has a 20° terrain limitation</i>	Test - Inclinations Demonstration Analysis
SENS.3.3	The CSR Sensing system shall determine the grade/incline up to 20° at least 3.125 ft away from the CSR sensing system <i>Motivation - The CSR must map the terrain grades its traversing so that a viable path for the MR can be determined, because the MR has a 20° terrain limitation</i>	Test - Inclinations Demonstration Analysis
SENS.3.4	The CSR Sensing system shall be capable of detecting disconti- nuities at least 1 foot (0.3048 meters) long <i>Motivation - The CSR must be capable of detecting discontinu-</i> <i>ities to determine if the current path is viable for both itself and</i> <i>the MR</i>	Test - Terrain Maneuverability Demonstration Analysis
CDH.3.1	The CSR CD&H system shall communicate with the mobility systems power train Motivation - For the CSR to drive commands must be sent to the power train	Demonstration

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

CDH.3.2	The CSR CD&H system shall determine the relative distance between obstacles reported by the Sensing system <i>Motivation - The MR has a width limitation of 5 ft (1.524 meters)</i>	Test - Obstacle Avoidance Demonstration
CDH.3.3	The CSR CD&H system software shall store the Location of In- terest's GPS coordinates in memory. <i>Motivation - In order for the CSR to remain on course with the</i> <i>Location of Interest the location must be stored in memory</i>	Test - Obstacle Avoidance Demonstration
COMM.3.1	The CSR Communications system shall receive positioning data that composes a location of interest from the GS or MR. <i>Motivation - The CSR must be able to receive the location of</i> <i>interest positioning data in order to travel to the LOI</i>	Test - Communications

Project	Baseline	Feasibility	Summary	Backup	October 2018
Overview	Design	Studies		Slides	138

CSR.4 : The CSR shall travel back to the last reported waypoint upon loss of communications with the MR				
Requirement ID	Description	V&V		
MOB.4.1	The CSR Mobility system shall be able to perform a 0 meter (0 ft) radius turn up to 360° Motivation - If the mobility system can rotate the CSR to the max possible case it can roatate the CSR to any smaller angle	Test - Off-Nominal Communication Navigation Demonstration		
CDH.4.1	The CSR CD&H shall store the last recorded waypoint in mem- ory Motivation - To return to this position it must be stored in mem- ory	Test - Off-Nominal Communication Navigation Demonstration		

University of Colorado Boulder Project
OverviewBaseline
DesignFeasibility
StudiesSummaryBackup
SlidesOctober 2018
139

CSR.5 : The CSR shall be able to take video while driving or in position-hold				
Requirement ID	Description	V&V		
SENS.5.1	The CSR Sensing system shall be able to capture video Motivation - The sensing system must be capable of capturing video in order for the CSR to capture video	Test - Camera Operation Demonstration		
SENS.5.1.1	The CSR Sensing system shall take video at a rate of 30 fps (TBR) Motivation - The quality of the video will is being based on IN-FERNO's frame rate. ¹¹	Test - Camera Operation Inspection		

University of Colorado Boulder Project
OverviewBaseline
DesignFeasibility
StudiesSummaryBackup
SlidesOctober 2018
140October 2018
Laboratory

Boulder

SENS.5.1.2	The CSR Sensing system shall take video at at least 320 x 240 resolution (TBR) while the CSR is driving or in position-hold <i>Motivation - The video quality is being based on INFERNO's frame resolution.</i> ¹¹	Test - Camera Operation Inspection
SENS.5.1.3	The CSR Sensing system video device shall have a field of view of at least 100 ^o Motivation - Establishes the type of lens incorporated in the camera design	Test - Camera Operation Inspection

CSR.6 : The CSR shall be able to take pictures while driving or in position-hold				
Requirement ID	Description	V&V		
SENS.6.1	The CSR Sensing system shall be able to capture pictures Motivation - A camera with imaging capability is required to take pictures	Test - Camera Operation Inspection		
SENS.6.1.1	The CSR Sensing system shall take pictures at an 8 MP (TBR) resolution while the CSR is driving or in position-hold <i>Motivation - A clear image will be needed to determine what the environment looks like. The resolution was based off of IN-FERNO's image resolution.</i> ¹¹	Test - Camera Operation Inspection		
SENS.6.1.2	The CSR Sensing system imaging device shall have a FOV of at least 100° (TBR) Motivation - Establishes the type of lens incorporated in the camera design	Test - Camera Operation Inspection		

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

October 2018

142

CSR.7 : The CSR shall be able to dock to the MR				
Requirement ID	Description	V&V		
MOB.7.1	The CSR shall be at most 14.765 ft ³ (0.418 m ³) Motivation - The CSR trailer on the MR has a base area of 18 inches by 36 inches and the MR is 1 meter (3.281 ft)	Inspection		
SENS.7.1	The CSR Sensing system shall report the CSRs orientation with respect to the MR scout docking system Motivation - The CSR can not dock with the MR if its relative position to the dock is unknown	Test - Docking and Deploying		
POW.7.1	The MR scout docking power system shall provide at least 0.526 W to deploy the MR trailer ramp <i>Motivation - To raise a</i> $\frac{1}{8}^{th}$ <i>inch thick, 18 inch by 16 inch 6061 Aluminum ramp 2.741 N-m (2.021 ft-lbf) of torque is required</i>	Demonstration Inspection		
CDH.7.1	The CSR CD&H system shall compute the correction for the CSRs position with respect to the position of the MR scout dock- ing mechanism Motivation - For autonomous docking the CSR must correct its position with on board computing	Test - Docking and Deploying Demonstration		
CDH.7.2	The CSR CD&H system shall command the Mobility system to implement position corrections with respect to the MR scout docking mechanism <i>Motivation - For autonomous docking the CSR needs to dis-</i> <i>tribute movement commands on board</i>	Test - Docking and Deploying Demonstration		

Feasibility

Studies

Summary

University of Colorado Boulder

Project

Overview

Baseline

Design

October 2018 143

Backup

Slides

CSR.8 : The CSR shall be able to deploy from the MR					
Requirement ID	nt ID Description V&V				
POW.8.1	The MR scout docking power system shall cease power to lower the MR trailer ramp <i>Motivation - The CSR can not deploy from the MR if the ramp is</i> <i>still at the housing position</i>	Demonstration			

Boulder

Weighting and Criteria for Trade Matrices

Translational System Weighing and Criteria

Criteria	Weight (%)	Rationale
Suspension Capability	5	Suspension helps improve the performance of the CSR on rough terrains and reduces the risk of tipping. However, as the CSR must be stiff enough to cross a 1 ft (0.30 m) discontinuity and will travel relatively slow, suspension will not be the a significant trade factor.
Cost	10	Ensuring the financial scope of the design lies within our given budget of \$5000 is critical, as there are many other subsystems that will require part of this funding. However, while it will not likely command over \$600 dollars, it is possible to purchase expensive COTS chassis. While significant, this is not the most significant trade criterion, at 10%.
Traction	10	The wheels of the CSR must have sufficient traction in order to travel through the rough terrain of the operating environment, such as slopes and underbrush. Although traction is important, the operating environment is mainly dry, thus traction is not the most significant design driver.
Size	15	The size of the CSR drives the design of the other subsystems, and because the CSR should ideally be smaller than the MR. However, as the lengths of the systems will be relatively similar, and the possibility of a trailer docking platform, it is not mission critical. This criteria earns a weight of 15%.
Control Complexity	15	The more motors the CSR contains, the more complex the CSR will be to control. By increasing the number of motors, thus control complexity, the risk of failure increases. Therefore, this criterion has 15% of the weight.
Manufacturing Complexity	20	In order to be a successful project, the manufacturing process has to be done thoroughly with limited time, money and resources available. Due to the mission critical aspect of this criteria, it was given a higher weight at 20%.
Mechanical Complexity	25	Mechanical complexity can be defined by several different as- pects such as the drive train, suspension, moving wheel link- ages, etc. Increasing the mechanical complexity of the system increases the difficulty of modelling and analyzing the system, and introduces increased risk of CSR failure. Due to the critical nature of this criteria, it is weighted the highest at 25%.

Table 34. Translational System Weighting Criteria and Rationale

Feasibility

Studies

Baseline

Design

Project

Overview

Summary Slides

Object Detection Weighing and Criteria

Criteria	Weight (%)	Rationale
Cost	5	Accurate sensor systems can be expensive, so the cost must be taken into account in order to maintain a rea- sonable project budget.
Range	10	The range of the sensor dictates its maximum capa- bilities. A sensor with a shorter range will not be able to detect distant obstacles.
Hardware Integration	15	Hardware integration can be difficult if the choser system has outputs that can only be read by atypi- cal processors. Additionally, if the device requires uniquely designed mechanical and electrical inter- faces, this integration process can become time con- suming.
Environmental Vulnerability	20	The rover will be in complicated terrain with vari- able conditions such as changing lighting and com- plicated surface materials and geometries, and po- tentially damaging collisions. If the sensors data is made erroneous due to environmental obstacles ther the rover will be unable to accurately navigate and de- termine a viable path.
Computational Difficulty	25	Some methods may be extremely computationally in- tense and thus may interrupt other programs within the software controlling the rover. Additionally, com- plex on-board computations may take a long amount of time to perform and thus may impact efficiency of the rover. Furthermore, object detection softwares is very complex and difficult to write, so it will be optimal to have a variety of available softwares for the chosen system. The desired use of these soft- wares will be to measure distances to obstacles and distances between objects.
Relative Position Detection	25	A large part of the scout rovers mission is to present a path that is viable for the mother rover to travel. Due to the size of the Mother Rover a key aspect of the path will be the distance between obstacles along it If the detection systems measurements cannot provide this distance or enough information to allow for an accurate calculation this distance then a viable path cannot effectively be determined.

University of Colorado Boulder

Communication Weighing and Criteria

Criteria	Weight (%)	Rationale		
Cost	5	Communication systems are more of a time re quirement and a software challenge to establish However, communication systems can be exper sive therefore cost must be taken into account to maintain a reasonable project budget.		
Size	10	Size of the communication system needs to fall under the design requirements (Size of the CSR). Since communication options include external an- tennas, this may present a problem for docking.		
Integration Complexity	15	Integration includes hardware/software complex- ity and the documentation available for the com- munication system. These factors will directly af fect the time (man hour) needed to make a work- ing communication system. Since this project has a time-limit of one year, it is critical to analyze the integration complexity of the system.		
Speed/Bandwidth	20	During the mission numerous types of data (im ages, video, gps, etc) will be transmitted and re ceived between GS,MR, and the CSR. Thus, it i essential that the communication system in place has enough bandwidth for the communication to function smoothly.		
Range	20	The communication range needs to be at least 25 meters (820 ft) for the functional requirement t be met. For the worst case scenario, we need t aim for a greater range of communication for factor of a safety buffer.		
Signal Attenuation	30	For the mission to be successful, the communication system needs to work at all time during the entirety of the mission without significant reduction of signal strength during transmission or signal attenuation. For a communication system to be reliable, it must transmit and receive the required data consistently with a minimal chance of failur and latency. Communication must also be available through hills, trees, boulders, and brushes Thus, a reliable source of communication is essential for the success of the mission.		

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary

Backup

Slides

Docking/Deploying Weighing and Criteria

Criteria	Weight (%)	Rationale			
Cost	5	While the cost of the system is significant, most design options will cost a similar amount, and the highest priority is to design a working system rather than saving money. This is the least important criteria at 5%.			
CSR Integra- tion	10	The complexity of the integration required with the CSR may make the design requirements more stringent; however, it does not significantly drive the design or risk total mission failure. Therefore, this criteria is given a 10% weight.			
Mechanical Complexity	10	The design should aim to have as few moving parts and complex mechanical components to reduce to risk of failure and simplify dynamic and kinematic analysis. However, due to the relatively few moving parts and actuators, and thus overall mechanical complexity for this system, it is given a weight of 10%.			
Power	10	Although the system should aim to minimize its required power, it should not require significant power such that power is a primary driving design factor. While a large power load may increase the risk and complexity of the system, it is not as significant of a design driver. This criteria is weighted at 10%.			
Docked Ma- neuverability	15	If the docked maneuverability is impaired, it complicates the MR contro and CSR path finding requirements. Additionally, worsening the MR's ma- neuverability increases risk of mission failure, as the MR could get stuck or possibly collide with the CSR depending on the design. To minimize the risk of mission failure, the docked maneuverability was ranked as one of the next most important criteria at 15%.			
Manufacturing Complexity	15	Due to the limited monetary and time budget available, as well as the lim- ited manufacturing experience of the team's personnel, the design should be as simple to manufacture as possible. Manufacturing cost and time over flow can easily result in mission failure; therefore, the manufacturing com- plexity is also ranked as the second most important criteria at 15%.			
Modification of MR	15	As significant modifications made to heritage equipment both increases the risk of MR structural and electrical failure, and lies outside the scope of the project, minimizing the modifications made to the MR is also ranked as the second most important criteria at 15%.			
Allowed Size of CSR	20	Due to the fact that the allowable size of the CSR significantly drives its overall design, this criteria was weighted the highest at 20%. Additionally as the CSR is required to cross a 1 ft (0.30 m) discontinuity, the CSR mus be at least 2 ft (0.61 m) long. By allowing the CSR to be larger, the design space for the translational system opens up.			

University of Colorado Boulder Project Overview Baseline Design

Feasibility Studies Summary

Backup

Slides

Imaging System Weighing and Criteria

Criteria	Weight (%)	Rationale
Cost	5	Cost includes any cost for the cameras, wires, rotation devices, and software integration. The higher the cost, the lower the score for the category due to the projects maximum budget of \$5,000. Cost was rated as the lowest weighted category because the maximum amount the team will spend on a camera system is approximately \$1,000, which is only 20% of the overall budget.
Image Processing	15	This category is essential for docking and deploying from the MR. Image pro- cessing required by image distortion (from wide FOV) and stitching of images is required for accurate environment, but will hinder performance by taking time. This category is weighted quite high due to the missions dependency on the data received concerning the CSR's surroundings.
Hardware/ Mechani- cal Integration	15	Hardware Integration can be difficult if the device does not have detailed doc- umentation to be able to integrate the camera with the CSR. This criteria is important if also the device requires uniquely designed mechanical parts as this integration process can become time consuming.
Effect of Actuation	20	Effect of Actuation is defined as the effect of the camera's actuating abilities on the CSR's performance. The CSR's performance will increase with the ability of the camera to actuate independently of the CSR, gaining viewpoints outside of the immediate FOV. This is essential, as it would be much easier to rotate the camera to scan the environment than to have the CSR maneuver, resulting in faster determination of objects and waypoints. This is especially the case when obstacles are close in proximity.
Speed	20	Speed is a percentage approximation of the total communications bandwidth required to send images/video to the GS and MR. This category is weighted heavily because a key functional requirement is to send data in the form of images and video to the GS and MR. The design options considered vary on the amount of data that needs to be sent, and therefore the bandwidth that would be required to do so.
FOV Performance	25	FOV Performance is the capability of the camera system to perform the imag- ing objectives of the mission. The image/video FOV is the biggest driver of performance, because the performance of the CSR will increase with the cam- era systems capacity to pick up as many objects/obstacles as possible in a given FOV. FOV Performance was rated as the highest weighted category because the imaging system is crucial for mission success of sending images to the GS and MR.

University of Colorado Boulder

Project Baseline Overview Design

Feasibility Studies

October 2018

150


Backup

Slides

Summary

Scale Levels for Trade Matrices

Project Overview Baseline Design	Feasibility Studies	Summary	Backup Slides		October 2018 151
--	------------------------	---------	------------------	--	---------------------

Translational System Scale Leveling

Criteria	1	2	3	4	5
Cost	> \$900	\$700 - \$900	\$500 - \$700	\$300 - \$500	< \$300
Suspension Capability	No suspension and high potential of tipping	N/A	No suspension	N/A	With suspension
Traction	Minimal contact with the ground	N/A	Medium contact with the ground	N/A	Significant con- tact with the ground
Control Complexity	6 motors to con- trol	N/A	4 motors to con- trol	N/A	2 motors to con- trol
Manufacturing Complexity	Too hard to man- ufacture. Compo- nent manufactur- ing must be out- sourced	All in-house manufactured	Primarily in- house manufac- tured with some parts COTS	Significant COTS and in-house manufactured	Primarily COTS
Size (length x width x height)	>3ft x >3 ft x >3 ft	(2.5ft - 3ft) x (1ft - 2ft) x (1ft - 2ft)	$\begin{array}{l} (2.5 \mathrm{ft} - 3 \mathrm{ft}) \ \mathrm{x} \leq 1 \mathrm{ft} \\ \mathrm{x} \leq 1 \mathrm{ft} \end{array}$	$(2ft - 2.5ft) \le 1ft$ $x \le 1ft$	
Mechanical Complexity	• Sophisticated Power Train	 Simple Power Train Complex Tread System 	 Simple Power Train Simple Wheels Moving wheel linkages 	 Simple Power Train Simple Wheels Fixed wheel linkages Suspension 	 Simple Power Train Simple Wheels Fixed wheel linkages No added suspension

Feasibility

Studies

Summary

Baseline

Design

University of Colorado Boulder

Project

Overview

October 2018

152

Backup

Slides

Object Detection Scale Leveling

Criteria	1	2	3	4	5
Cost	> \$550	\$350 - \$550	\$150 - \$350	<mark>\$50</mark> - \$150	< \$50
Range	max range 0 m - 5 m	max range 5 m - 15 m	max range 15 m - 25 m	max range 25 m - 35 m	max range > 35 m
Hardware Integration	Too difficult and time consuming to implement over the span of the project	Low possibility of fully finish- ing the system integration over the span of the project	Integration is challenging, but not too time consuming for project timeline	Integration diffi- culty is average and efficient for project timeline	Integration is easy and effi- cient for project timeline
Environmental Vulnerability	Extremely vul- nerable to light, material types, surface geometry, or collisions	Highly vulner- able to light, material types, surface geometry, or collisions	Moderately vul- nerable to light, material types, surface geometry, or collisions	Low vulnerability to light, material types, surface ge- ometry, or colli- sions	Not vulnerable to environmental factors
Computational Difficulty	Extremely slow on-board com- putations. Little to no available software that is difficult to access or find and is poorly documented	Slow on-board computation time. Some avail- able software but difficult to access or find	Moderate on- board computa- tion time. An average amount of available software with average docu- mentation	Moderate on- board com- putation time. Large amounts of software that is easy to access and has average documentation	Quick on-board computations. Many software libraries available that are easy to access and are well documented, or has product specific software tailored for the device.
Relative Position Detection	Not able to detect the relative posi- tion between ob- stacles	N/A	Ability to detect the relative po- sition between obstacles with ad- ditional hardware integration and computational efforts	N/A	Able to detect the relative po- sition between obstacles

University of Colorado Boulder October 2018 **153**

Backup

Slides

Summary

Baseline Design

Project

Overview

Feasibility Studies

Communication Scale Leveling

Criteria	1	2	3	4	5
Cost	>\$500	\$250 - \$500	\$100 - \$250	< \$100	Free
Size (Height)	> 12" (0.30 m)	10-12" (0.25-0.30 m)	7-10" (0.18-0.25 m)	4-7" (0.1-0.18 m)	< <mark>4</mark> " (0.1 m)
Integration Complexity (Man hour required)	> 280 hours	210-280 hours	140-210 hours	70-140 hours	< 70 hours
Speed	< 250 Kbps	250 Kpbs-1 Mbps	1 Mbps-10 Mbps	10-50 Mbps	> 50 Mbps
Range	< 250 m (820 ft)	250-275 m (820-902 ft)	275-300 m (902-984 ft)	300-325 m (984-1066 ft)	> 325 m (1066 ft)
Signal Attenuation	System has high loss from obstruc- tion and path of transmission	System has some loss from obstruc- tion and path of transmission	System has some loss from obstruc- tion but minimal loss from path of transmission	System has min- imal loss from obstruction and minimal loss from path of transmission	System's only loss is due to free-space path loss

University of Colorado Boulder

Docking/Deploying Scale Leveling

Criteria	1	2	3	4	5
Cost	> \$800	\$800-600	\$600-400	\$400-200	< \$200
CSR Integration	CSR must have a neutral gear.	Docking control accurate to ± 0.5 " (1.27 cm). CSR does not need a neutral gear.	Docking control accurate to ± 1 " (2.54 cm). CSR does not need a neutral gear.	Docking control accurate to $\pm 2^{"}$ (5.08 cm). CSR does not need a neutral gear.	Docking control accurate to ± 4 " (10.2 cm). CSR does not need a neutral gear.
Mechanical Complexity	Requires 3 actu- ators and 2 or more other mov- ing parts.	Requires 2 actu- ators and 2 or more other mov- ing parts.	Requires 1 actu- ators and 2 or more other mov- ing parts.	Requires 1 actu- ator and 1 other moving part.	Requires 1 actua- tor and no other moving parts.
Power	Actuators must supply sufficient power to support over 40 kg.	Actuators must supply sufficient power to support 40-20 kg.	Actuators must supply enough power to support 20-10 kg.	Actuators must supply enough power to support 10-5 kg.	Actuators must supply enough power to support 5-0 kg.
Docked Ma- neuverability	MR and CSR in the docked con- figuration cannot make in-place 360° turns.	MR is capable of in-place 360° turning capability. Offset CoM in docked configura- tion.	Docking mecha- nism adds protru- sion longer than CSR length. MR is capable of in-place 360° turning capability. Extra power required to drive CSR. Semi-offset CoM in docked config- uration.	Docking mecha- nism adds protru- sion smaller than CSR length. MR is capable of in-place 360° turning capability. Mechanism does not increase re- quired driving power. Balanced CoM in docked configura- tion.	Docking Mecha- nism does not add a protrusion to the MR. MR is capable of in-place 360° turning capability. Mechanism does not increase re- quired driving power. Balanced CoM in docked configura- tion.

University of Colorado Boulder Project Overview Baseline Design Feasibility Studies Summary Backup Slides

Docking/Deploying Scale Leveling

Criteria	1	2	3	4	5
Manufacturing Complexity	Too complex to manufacture in- house, outsourced machining re- quired.	Minimal COTS parts, almost all components manufactured in house.	Few COTS parts, primarily man- ufactured in house.	Approximately half of compo- nents are COTS, but significant in-house man- ufacturing is required.	Primarily COTS parts with min- imal in-house manufacturing.
Modification of MR	Significant ma- chining and re-configuring of current MR struc- ture required. Electronics con- figuration may be changed.	Significant ma- chining of current MR housing or chassis required. Minor changes to MR struc- ture required. Electronics con- figuration may be changed.	Significant ma- chining of MR housing required. Electronics con- figuration may be changed.	Light machining of MR housing. Electronics con- figuration may be changed.	Trivial modifi- cations to the MR are required. No electronics configuration changes required.
Allowed Size of CSR	CSR is lim- ited to a size of 24"x10"x6" (0.61x0.25x0.15 m) or smaller	CSR is lim- ited to a size of 28"x12"x9" (0.71x0.30x0.23 m) or smaller	CSR is limited to a size of 32"x14"x12" (0.81x0.36x0.30 m) or smaller	CSR is limited to a size of 36"x16"x14" (0.91x0.41x0.36 m) or smaller	Deployment mechanism does not limit the size of the CSR

University of Colorado Boulder Project
OverviewBaseline
DesignFeasibility
StudiesSummaryBackup
SlidesOctober 2018
156

Imaging Scale Leveling

Criteria	1	2	3	4	5
Cost	>\$600	\$400-\$600	\$200-\$400	\$100-\$200	<\$100
Image Processing	Image processing required due to image distortion and stitching of images	Image processing required due to image distortion	Image processing required to stitch images together, no distortion in images	No image pro- cessing is needed, image distortion present but is not extreme	No image pro- cessing due to distortion is needed
Hardware/ Mechani- cal Integration	Poor documenta- tion, mechanical integration re- quired including moving parts in > 1 DOF	Poor documenta- tion, mechanical integration re- quired including moving parts in 1 DOF	Poor documenta- tion, mechanical integration rela- tively simple	Good documen- tation, mechani- cal integration re- quired including moving parts in 1 DOF	Mechanical inte- gration for mov- ing parts not re- quired
Effect of Actuation	Motion of CSR needed to gain additional FOV's	N/A	N/A	N/A	No motion of CSR needed to gain additional FOV's
Speed	>50% Bandwidth	40%-50% Band- width	30%-40% Band- width	20%-30% Band- width	<20% Bandwidth
FOV Performance	100° FOV is never attained	100° FOV is at- tained by camera actuation	100° FOV is at- tained with no ac- tuation	360° FOV is at- tained with cam- era actuation	360° FOV is at- tained at all times

University of Colorado Boulder
 Project Overview
 Baseline Design
 Feasibility Studies
 Summary
 Backup Slides
 Octob

Trade Matrices

Translational System Trade Matrix

Criteria	Weight(%)	Options						
Cincila	weight(70)	Rocker	Tank	4WD 4	6WD 6	4WD 6		
		Bogie	Track	wheels	wheels	wheels		
Suspension	5	5	1	1	3	3		
Capability								
Cost	10	4	1	4	4	4		
Traction	10	3	5	3	1	1		
Size	20	4	5	2	3	3		
Control	15	1	5	3	1	3		
Complexity								
Manufacturing	20	2	3	2	3	3		
Complexity								
Mechanical	25	3	1	5	5	5		
Complexity								
Weighted	100	2.85	3	3.15	3.1	3.4		
Total								

Feasibility

Studies

Summary

University of Colorado Boulder October 2018 159

Backup

Slides

Project Design

Object Detection Trade Matrix

Criteria	Weight(%)	Options					
Criteria	weight(70)	Lidar	Ultrasonic	Collision Sensors	Image Processing		
Cost	5	3	3	5	4		
Range	10	5	5	1	5		
Hardware Integration	15	3	3	3	4		
Environmental Vulnerability	20	4	3	4	3		
Computational Difficulty	25	4	3	4	1		
Relative Position Detection	25	5	5	1	3		
Weighted Total	100	4.15	3.7	2.85	2.9		

Project
OverviewBaseline
DesignFeasibility
StudiesSummaryBackup
SlidesOctober 2018
160

Communication System Trade Matrix

Criteria	Weight(%)	Options				
Criteria		Wi-Fi	Zigbee	GSM		
Cost	5	3	4	1		
Size	10	4	5	4		
Complexity	15	5	4	4		
Speed/Bandwidth	20	5	2	3		
Range	20	3	5	5		
Signal Attenuation	30	4	2	4		
Weighted Total	100	4.1	3.3	3.85		

Boulder

Docking/Deployment Trade Matrix

Criteria	Weight(%)	Options						
Criteria Weight(Hitch	Trailer Platform	On-board Ramp	On-board Ramp, Extended Platform	On-board Lift	On-board Lift, Ex- tended Platform	
Cost	5	4	3	4	4	4	4	
CSR Integra- tion	10	1	5	4	5	4	5	
Mechanical Complexity	10	4	3	4	4	2	2	
Power	10	5	4	2	2	2	2	
Docked Ma- neuverability	15	1	3	4	2	5	2	
Manufacturing Complexity	15	4	3	3	3	2	2	
Modification of MR	15	4	3	3	2	3	2	
Allowed Size of CSR	20	5	5	1	4	1	4	
Weighted To- tal	100	3.55	3.7	2.9	3.15	2.7	2.8	

Feasibility

Studies

Summary

Baseline

Design

University of Colorado Boulder Project

Overview

October 2018 **162**

Backup

Slides

Imaging System Trade Matrix

Boulder

Criteria	Weight(%)	Options					
CITICITA	weight(70)	Single	Fixed	Two Fixed Wide	Single Actuated	360°3 DOF Cam-	
		Wide	FOV	FOV Cameras	Camera	era	
		Camera					
Cost	5	5		4	4	1	
Image Processing	15	2		3	5	1	
Hardware/ Mechani- cal Integration	15	5		5	4	3	
Effect of Actuation	20	1		1	5	5	
Speed	20	5		4	4	2	
FOV Performance	25	3		3	4	5	
Weighted Total	100	3.25		3.15	4.35	3.30	

