

HERD Mid-Semester Review

March 13, 2023

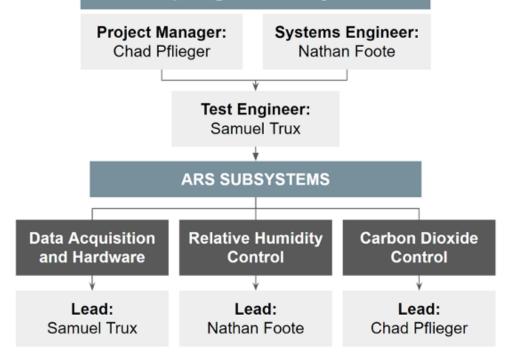
Project Advisor: Stuart Tozer **Customer:** Dr. James Nabity

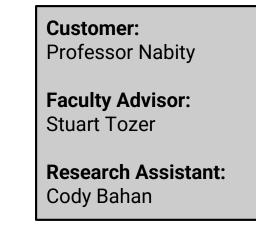
Team Members: Nathan Foote, Chad Pflieger, Samuel Trux

Ann and H.J. Smead Aerospace Engineering Sciences

Project Description

- **HERD:** HLS ECLSS Research and Design
- Working in collaboration with Professor Nabity, Stuart Tozer and Cody Bahan, the team is developing an air revitalization system (ARS) test-bed to aid the ECLSS application with short mission duration technologies.




Ann and H.J. Smead Aerospace Engineering Sciences

Work Breakdown

HERD Spring 2023 Project Team

Ann and H.J. Smead Aerospace Engineering Sciences

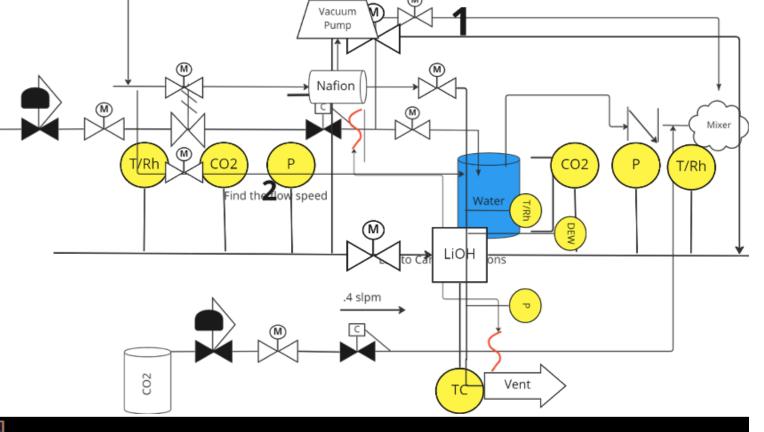
ces HERD

Mission Statement

Project Requirements

"To aid the ECLSS application by designing and testing traded technologies for an HLS to characterize carbon dioxide and humidity removal in an airstream"

Requirement	Definition
H1	Complete fabrication of a small-scale breadboard HLS ECLSS
H2	Conduct a Test Readiness Review
H3	Conduct experiments to assess HLS ECLSS performance
H4	Draft a conference or journal article for publication



HLS & ConOps Scenarios

PHASE 2 Humidity Removal:

- ARS collects air data before scrubbing (Nafion)
- For characterization of other ARS elements, scrubber can be bypassed
- Air characterization follows scrubbing
- Venting to fume hood after characterization

Ann and H.J. Smead Aerospace Engineering Sciences

HERD

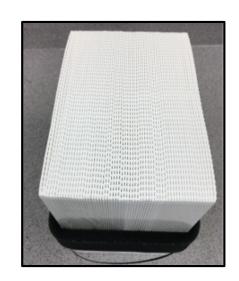
Deliverables and Milestones

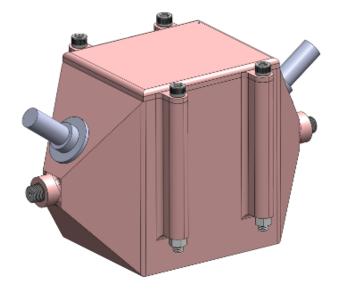
Major Design Milestones:

- Design and Procure
 - 01/17/23 to 03/17/23
- Assembly and Test
 - o 03/21/23 to 05/10/23

Major Project Deliverables		
Project Charter and Mission Statement	February 12th	
Final Subsystem Design and Procurements	March 17th	
Test Readiness Review	March 23rd	
ARS Assembly	April 7th	
ARS Characterization	April 14th	
ARS Test Conclusion	May 10th	
Final Review	TBD	

Carbon Dioxide Removal Subsystem

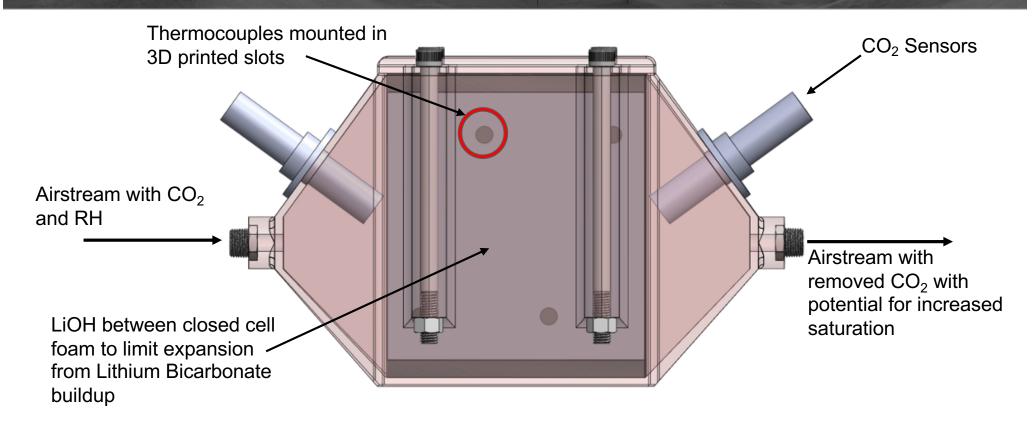

Driving Requirement


HLS-REQ-006 No.	Name	Description
HLS-S-HMTA-0018	Nominal Vehicle/Habitat Carbon Dioxide Levels	The HLS shall limit the 1-hour average partial pressure of carbon dioxide ($ppCO_2$) in the habitable volume to <3 mmHg.

Chosen Technology:

Lithium Hydroxide:

- Micropore PowerCube Enclosure:
 - 3D printed Material (PLA +)
 - 3D printed card to hold thermocouples
 - HEPA sheets behind LiOH to remove particulates from reaction
 - Air sealed with neoprene gasket and epoxy resin



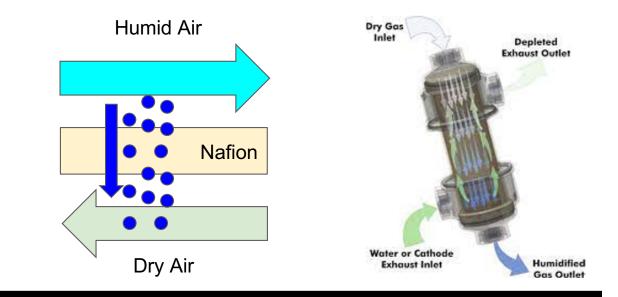
Carbon Dioxide Removal Subsystem

Humidity Removal Subsystem

Driving Requirement

HLS-REQ-006 No.	Name	Description
HLS-S-HMTA-0023	Comfort Zone	Relative humidity between 25% and 75% during all nominal operations.

Chosen Technology:


Nafion Humidifier

Ann and H.J. Smead

INVERSITY OF COLORADO BOULDER

Aerospace Engineering Sciences

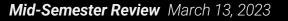
- Plastic Membrane that is selectively permeable to water
- Used in SpaceX Dragon and Boeing Starliner
- Alternative to condensing heat exchanger traditionally used on spacecraft

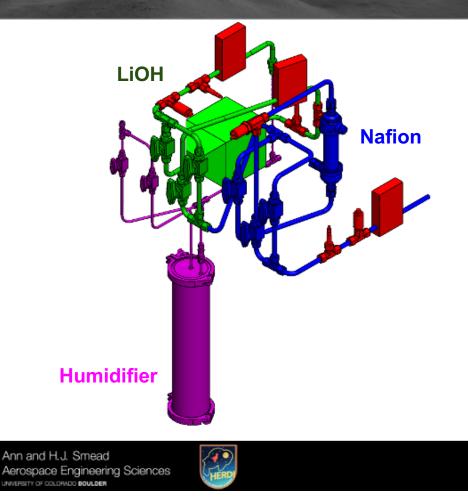
9

Data Acquisition Subsystem

- CO₂, relative humidity/dewpoint, temperature, pressure, mass flow
- Sample rate < 1 Hz
- 16 bit accuracy
- 0-5v analog I/O
- Labview

Not shown: Thermocouples


Ann and H.J. Smead Aerospace Engineering Sciences



ARS System Design

- Air Supply
- CO₂ Removal
- H₂O Removal
- Sensors

Not shown:

- Cart
- CO₂ Canister
- Data Acquisition Hardware
- Vacuum Pump

Worries/Need

- Long lead times
 - Some desired components are not available for 6 months (alternatives required)
- One by-product of LiOH and CO₂ is heat, and has reached up 45°C in previous studies with the PowerCube
 - Glass transition for PLA + is 60°C
- LiOH currently in Wallops, VA
 - Finding contact there to ship
 - Expired 1 year ago (shelf life of 4 years)
- Potential issues during assembly and test

Ann and H.J. Smead Aerospace Engineering Sciences

