

Project HEPCATS <u>Highly Elliptical Polar Constellation</u> for <u>Auroral Transport Studies</u>

Preliminary Design Review

Presenters: Hailee Baughn, Jordan Lerner, Valerie Lesser, Christopher Peercy, Vishranth Siva, Braden Solt & Benjamin Spencer

Team: Alexander Baughman, Colin Brown, Matthew Skogen, Colin Sullivan & Kian Tanner

Customer: Neal Anderson (DigitalGlobe) & Tom Berger (CU Space Weather Center)

Advisor: Dr. Donna Gerren

Agenda

- 1. Project Overview
- 2. Baseline Design
- 3. Feasibility of Baseline Design
- 4. Imaging System
- 5. Image Processing System
- 6. Magnetometer System
- 7. Summary

Project Overview

Project Overview > Baseline Design

Feasibility of Baseline Design Imaging System Image Processing System Magnetometer System

Summary

Project Motivation

Baseline Design

- The cause of the Aurora Borealis: originates from the solar wind and high energized particles colliding with high altitude atmospheric atoms
 - This affects radio and GPS reception
- Visible light imaging of the geomagnetic storms needs to be performed from a satellite in order
 - To assess radio and GPS inaccuracies
 - Drive auroral tourism
 - Validate current auroral models
- DigitalGlobe and CU Space Weather Center are collaborating with HEPCATS:
 - To image of entire polar crown for tourism
 - To gather science data in order to predict geomagnetic storms

Feasibility of Baseline Design

Project Statement

- DigitalGlobe and the CU Space Weather Center will work with an undergraduate \bullet senior design team at the University of Colorado Boulder to address the need for a satellite that can capture the entire northern polar crown through visible light imaging.
- HEPCATS project will focus on designing and implementing four specific \bullet components:
 - (1) An auroral imaging system

Baseline Design

- (2) A magnetometer system that will be used to measure magnetic field strength
- (3) The structure for the spacecraft to hold its payload

Feasibility of

Baseline Design

(4) The software that will be used to compress, filter, process, and map the images taken

Imaging System

System

System

HEPCATS Mission ConOps

System

Project Overview

Baseline Design

Feasibility of Baseline Design

Image Processing Imaging System

Magnetometer System

Summary

Baseline Design

Project Overview

Feasibility of Baseline Design

Baseline Design

Imaging System

Image Processing Magnetometer System System

Summary

HEPCATS Project

Project Overview

Feasibility of Baseline Design

Baseline Design

Imaging System Image Processing System Magnetometer System

Summary

"Orbit in the Life" Simulation Part 1

Feasibility of

Baseline Design

Imaging System

Image Processing

System

Magnetometer

System

Project Overview

Baseline Design

9

"Orbit in the Life" Simulation Part 2

Feasibility of

Baseline Design

Imaging System

Image Processing

System

Magnetometer

System

Project Overview

Baseline Design

10

"Orbit in the Life" Simulation Part 3

Feasibility of

Baseline Design

Baseline Design

Project Overview

Imaging System

Image Processing

System

Magnetometer

System

11

Functional Block Diagram

Functional Block Diagram: IPS

Functional Block Diagram

HEPCATS Baseline Design Overview

Baseline Design

- Onboard Computer
 - Single Board Processor
- Memory
 - Solid State Drive
- Camera
 - RGB CMOS Sensor
- Magnetometer
 - Vector Fluxgate Magnetometer
- Auroral Image Processing Software
 - Pre-Trained Deep Neural Network (PTDNN)

Feasibility of

Baseline Design

- Bus structure
 - 6U cubesat structure

Magnetometer

System

Image Processing

System

Imaging System

Feasibility of Baseline Design

Imaging System

Feasibility of

Baseline Design

Baseline Design

Project Overview

Magnetometer System

Summary

Image Processing

System

Functional Requirements

Level	Functional Requirement		
1.0	The imaging subsystem shall be capable of taking images of a simulated Aurora Borealis.		
2.0	The on-board image processing software (IPS) shall convert raw imagery into image data that is capable of being sent to the Simulated Ground Station.		
3.0	The magnetometer system shall be capable of measuring a magnetic field.		
4.0	The manufactured spacecraft bus shall be the infrastructure of the spacecraft capable of housing the Instrument Electronics Unit and the Instrument Suite.		
5.0	The electric power system shall consist of 120 volts AC from an outlet that will provide regulated power to the Instrument Electronic Unit and Instrument Suite for the duration of the "Orbit in the Life" simulation.		
6.0	The Simulated Ground Station shall be able to command and receive telemetry from the Instrument Electronics Unit.		
7.0	The instrument electronics unit shall be capable of storing all instrument telemetry, housekeeping telemetry, and command sequence data.		
8.0	The instrument electronics shall be capable of sending telemetry to the Simulated Ground Station.		
9.0	The Instrument Electronics Unit shall be capable of executing commands from the Simulated Ground Station or on board absolutely timed command sequences.		

Project Overview

Imaging System Image Processing System

Magnetometer

System

Feasibility Concerns of Select CPEs

Critical Project Element		Description	
I1	Proper Camera & Lens System	Need to select proper FOV in order to have continuous coverage of polar crown and ensure a spatial resolution that produces useful images	
P1	Image Processing & Aurora Detection	Image processing should be able to identify if an aurora is present in each image	
M1	Magnetometer System Bias	The magnetometer sensor needs to be placed a distance away from the payload so that system bias from the payload does not saturate the sensor	

Project Overview

Imaging System Image Processing System

Summary

Magnetometer

System

Imaging System

Project Overview

Baseline Design

Feasibility of

Baseline Design

Imaging System Image Processing System

g Magnetometer System

Summary

Imaging System Baseline Design

1 High-Resolution RGB CMOS Sensor

Project Overview

- CMOS Sensor converts photons to electrons for digital processing
- Digital-to Analog converter translates cells into pixels
- RGB filter uses Bayer Filter which is a color filtering array that arranges RGB filters on each pixel.
- Camera then combines all three colors to create full spectrum

Baseline Design

• "High-resolution" defined as minimum of 2 megapixel resolution (1920 x 1080 pixels)

Feasibility of

Baseline Design

Bayer Filter - RGB Built in Filter

Magnetometer

System

Image Processing

System

Imaging System

- FOV must be selected to optimize spatial resolution and observation time
- Requirement 1.1 Need 33%onorbit imaging
 - Doesn't necessarily mean continuous imaging
- Observation time exponentially approaches asymptote of 6.2 hours as FOV increases

) /

Magnetometer

System

Project Overview

Baseline Design Feasibility of Baseline Design

Image Processing System

Imaging System

Summary

Project Overview

Feasibility of **Baseline** Design **Baseline** Design

Image Processing Imaging System

System

Magnetometer System

Summary

Sensor coverage of Latitudes above 46°N over one week with 7 deg half angle FOV

Project Overview

Imaging System Image Processing System Magnetometer System 23

Sensor coverage of Latitudes above 46N over one month with 9 deg half angle FOV

Project Overview

Baseline Design Feasibility of Baseline Design

Imaging System Image Processing System Magnetometer System

Summary

Feasibility Summary

	Critical Project Element	Solution	Feasibility
<u>1</u> 1	Proper Camera & Lens System	There is a wide selection of FOV which can offset sensor cost and be offset by higher resolution sensors	Feasible
₿1	Image Processing & Aurora Detection		
M 1	Magnetometer System Bias		

Imaging System

Image Processing

System

Magnetometer

System

Feasibility of

26

Image Processing System

Project Overview

Feasibility of Baseline Design **Baseline** Design

Imaging System

Image Processing

System

Magnetometer Summary

System

Image Processing: Why Detect Auroras?

- Downlink rates for HEPCATS will be limited
- Images are only downlinked when Auroras are detected
- This functionality was requested by the customer

Magnetometer

System

Image Processing

System

Imaging System

Image Processing: What it Does

Auroral Detection Algorithm will distinguish between:

Images which contain Auroras \rightarrow

Image Processing

System

Magnetometer

System

And...

Imaging System

 \leftarrow Images which do not

Feasibility of

Summary

Image Processing: Baseline Design

Pre-Trained Deep Neural Network

- Using a highly capable, deep neural network to recognize features
- Quick and robust with less training time and data needed than a custom network
- Training done on ground and calibrations for classifier will be updated via uplink

System

System

Image Processing: How it Works

• We all know that in traditional programming, a set of rules are created which transform data into answers

• Machine learning flips the process, instead providing the program with the data and the answers, and letting the training process determine the set of rules

Image Processing: How it Works

By providing the neural network we are using with labeled training data, it will learn the features which make an Aurora
Shape
Shape can be learned through the detection of individual edges which combine to form shapes

Imaging System

Image Processing

System

Magnetometer

System

• Color can be learned through differences learned between the three color channels of the image (RGB)

32

Image Processing: Feasibility Example

Training Example: Satellites vs. Airplanes

Baseline Design

Project Overview

- The problem chosen is to differentiate between images showing satellites and images showing airplanes
- Images used are widely varied in composition
- Features of satellites are more complex than auroras
- Code was written using Google's TensorFlow framework

Feasibility of

Baseline Design

• 900 Total images were used from training and validation

Magnetometer

System

Image Processing

System

Imaging System

Image Processing: Feasibility Example

• Functional Requirement 2.1 specifies that the Auroral detection algorithm should achieve an accuracy of 95%

• The Satellite vs. Airplane example network quickly achieved an accuracy of >97%

Magnetometer

System

Image Processing

System

Feasibility of Baseline Design

Imaging System

Image Processing: Example Images

Proper Classification Examples (97% in this category)

Mis-classification Example

Imaging System Image Processing System Magnetometer System Summary

Feasibility Summary

	Critical Project Element	Solution	Feasibility
I1	Proper Camera & Lens System	There is a wide selection of FOV which can offset sensor cost and be offset by higher resolution sensors	Feasible
₽1	Image Processing & Aurora Detection	A PTDNN works for recognizing satellites in this example data and can be implemented to identify auroras	Feasible
M1	Magnetometer System Bias		

Imaging System

Image Processing

System

Magnetometer

System

Feasibility of

Magnetometer System

Project Overview

Baseline Design $\sum_{\mathbf{R}}$

Feasibility of Baseline Design

Imaging System Image Processing System

Summary

Magnetometer

System

Magnetometer System Baseline Design

Vector Fluxgate Magnetometer

- Has high COTS availability
- Easy integration with system
- High resolution: <.1 nT

Project Overview

• +/-70uT Range

Implementation: Mounted on a Boom

Baseline Design

 Magnetometer mounted to a boom will decreas electromagnetic interference (EMI) caused from the spacecraft

Feasibility of

Baseline Design

• Background fields will appear unchanged

Magnetometer

System

Image Processing

System

Imaging System

Summary

- 1. What is bias for a magnetometer sensor?
- Additional induced magnetic field from onboard electronics
- Can be subtracted out from reading once bias is determined

Feasibility of

Baseline Desid

- 2. What does bias have to do with feasibility?
- System bias could cause magnetic field strength to exceed magnetometer range (satur

Image Processing

System

Magnetometer

System

• Bias decreases with distance from system

Baseline Desid

Project Overview

• Must ensure that threshold to prevent saturation occurs at a feasible boom length

Imaging Syste

Summary

Feasibility of

Baseline Design

Dipole vs Induced Magnetic Field

1. Dipole:

 $B\alpha \frac{1}{d^3}$

2. Induced Magnetic Field:

$$\vec{B} = \frac{\mu_0}{4\pi} \int_{wire} \frac{I\vec{dl} \times \hat{r}}{r^2}$$

Baseline Design

Treating the System as a Circular Loop:

$$B_x = \frac{\mu_0 I R^2}{2\sqrt{x^2 + R^2}^3}$$

Where:

- x = distance from center of circle
- R = radius of circle
- Bx = magnetic field strength in x-direction

Image Processing

System

Imaging System

Equivalent wire loop approximation

Boom distance from center of circle

Project Overview

Baseline Design Feasibility of Baseline Design

Summary

Magnetometer

System

Treating the System as a Circular Loop:

Where:

- x = distance from center of circle
- R = radius of circle
- Bx = magnetic field strength in x-direction

Range of Current:

- From 1.25 A 5.83 A
 - System voltage is 120 V by FR 5.0
 - Industry standard 12 V to magnetometer
 - I = P/V

Image Processing

System

Imaging System

• 6U CubeSats have a typical power range between 15 - 70W

Magnetometer

System

Treating the System as a Circular Loop:

$$B_x = \frac{\mu_0 I R^2}{2\sqrt{x^2 + R^2}^3}$$

Maximum Distance

Image Processing

System

Imaging System

- Maximum distance of 2.5 m
 - Maximum length of a magnetometer boom flown (FedSat mission)

Magnetometer

System

Where:

- x = distance from center of circle
- R = radius of circle
- Bx = magnetic field strength in x-direction

Project Overview

Baseline Design Feasibility of Baseline Design

Summary

Treating the System as a Circular Loop:

Where:

- x = distance from center of circle
- R = radius of circle
- Bx = magnetic field strength in x-direction

Maximum Bias:

• Max bias of 4000 nT

Image Processing

System

Imaging System

- Magnetometer range of 70000 nT
- Highest Earth magnetic field strength of 66000 nT

Magnetometer

System

• Saturation if total magnetic field strength exceeds 70000 nT

Project Overview

Baseline Design Feasibility of Baseline Design

44

Summary

Feasibility Summary

	Critical Project Element	Solution	Feasibility
I1	Proper Camera & Lens System	There is a wide selection of FOV which can offset sensor cost and be offset by higher resolution sensors	Feasible
P1	Image Processing & Aurora Detection	A PTDNN works for recognizing satellites in this example data and can be implemented to identify auroras	Feasible
M 1	Magnetometer System Bias	Placement of the magnetometer sensor at a distance in the range of 0.25 m - 2.5 m prevents sensor saturation and is a feasible boom length	Feasible

Imaging System

Image Processing

System

Magnetometer

System

Feasibility of

Baseline Design

46

Summary

Summary

Project Overview

Baseline Design

Feasibility of Baseline Design

Imaging System Image Processing System

Summary

Magnetometer

System

Feasibility Summary

	Critical Project Element	Solution	Feasibility
I1	Proper Camera & Lens System	Any field of view greater than 9 degrees will provide continuous coverage of target area	Feasible
P1	Image Processing & Aurora Detection	A PTDNN works for recognizing satellites in this example data and can be implemented to identify auroras	Feasible
M1	Magnetometer System Bias	Placement of the magnetometer sensor at a distance in the range of 0.25 m - 2.5 m prevents sensor saturation and is a feasible boom length	Feasible

Imaging System

Image Processing

System

Magnetometer

System

Summary

Budget

Project Overview

Total Budget: \$5000

System

System

Financial Summary

System	Cost (\$)	Margin(\$)	
Imaging	700	200	
Magnetometer	600	300	
Command & Data Handling	800	100	
S/C Bus Materials	300	125	
Replacements (Spares)	1000	N/A	
Total	3400	725	
Total w/ Margin	\$4125		

Baseline Design

Baseline Design

Schedule for PDR to CDR

System

Imaging System

Project Overview

Baseline Design

Baseline Design

50

Summary

System

Schedule Overview for PDR to PFR

System

Imaging System

Project Overview

Feasibility of **Baseline** Design **Baseline** Design Image Processing Magnetometer System

Summary

Acknowledgements

Special thanks to:

- Dr. Gerren
- Matt Rhode
- Dr. Holzinger
- Dr. Marshall
- Dr. Jackson
- Professor Jason Glenn

Baseline Design

Feasibility of

Baseline Design

Image Processing

System

Imaging System

Magnetometer

System

- Ian Cooke
- Christine Reilly
- GHOST Team

Summary

References

- "Aluminum price per kg'Alibaba (2018.). https://www.alibaba.com/showroom/aluminum-price-per-kg.html
- "What Is the Aurora Borealis?" Aurora Service (Europed) Jan. 2014, www.aurora-service.eu/aurora-school/aurora-borealis/.
- "6U 20W Solar Panel." *Space Flight*Andrews Space, spaceflight.com/wp-content/uploads/2015/05/201410-6U-20W-Solar-Panel-Datasheet.pdf.
- "Bayer Interpolation." *CMOS Fundamentals* www.siliconimaging.com/RGB%20Bayer.htm.
- Díaz-Michelena, M. (2009). *Small Magnetic Sensors for Space Apple Entions* Basel: MDPI AG, http://www.mdpi.com/1424-8220/9/4/2271/htm
- "dslr cmos camera" https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias=electronics&field-keywords=dslr cmos camera&rh=n:172282,k:
- Digit-Key Electronics. (2018). https://www.digikey.com/products/en?keywords=single%20board%20computer
- "Enhanced Power Systems for CubeSats." *CubeSat Kit*www.cubesatkit.com/docs/press/20120420_Pumpkin_CSDWSLO_2012-2.pdf.
- (LINK TO SLIDE 14) "How Digital Cameras Work." *HowStuffWork*, HowStuffWorks, 29 Nov. 2006, electronics.howstuffworks.com/cameras-photography/digital/digital-camera3.htm.
- GMW Associates Bartington Mag648/649, Mag670, Mag690 Three Axis Fluxgate Sensors Price list. (2018). http://www.gmw.com/magnetic_measurements/Bartington/Other-Probes-Pricing

Project Overview

Imaging System Image Processing System

Summary

Magnetometer

System

References cont.

- Hollows, G., and James, N., "Understanding Focal Length and Field of View | Edmund Optics," *Edmund Optics Worldwide* https://www.edmundoptics.com/resources/application-notes/imaging/understanding-focal-length-and-field-of-view/.
- (LINK TO SLIDE 14) Lofft, Alan. "Standard or High Definition: It's All in the Pixel Count." *Ecoustics.com*Nov. 2012, www.ecoustics.com/articles/standard-high-definition-pixel-count/.
- MATLAB (2018a). The Mathworks Inc.
- Satya Mallick. Image Classification using Convolutional Neural Networks in Keras. 2016. https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/

Imaging System

- Systems Tool Kit. (2018). Analytical Graphics Inc.
- "Steel price per kg". *Alibaba*, (2018.). https://www.alibaba.com/showroom/steel-price-per-kg.html
- "Telescope Cameras" | *CCD & CMOS Astrophotography Cameras*;//optcorp.com/collections/telescope-cameras
- "Titanium price per kg". *Alibaba*, (2018.). https://www.alibaba.com/showroom/titanium-price-per-kg.html
- PhysicsLAB: Magnetic Field Along the Axis of a Current Loop,

http://dev.physicslab.org/Document.aspx?doctype=3&filename=Magnetism_BiotSavartLaw2.xml

Magnetometer

System

Thank You!

Questions?

Appendix

Appendix Slides Index

Alternative Camera Testing Methods Functional Requirements Feasibility **Command Distribution Telemetry Flow** Simulated Ground Station Image System Capturing Images from Projector Screen Methods to minimize Earth shine Constellation Sensor Coverage of G1 Storms Static Constellation Sensor Coverage of G1 Storms Video Focal Length and Field of View "Orbit in the Life" Simulation: Projection Image Processing: Training Image Examples Image Processing: Neural Networks (NNs) Image Processing: Convolutional NNs

Custom Classifier Training Process 1 Mu Metal Shielding for Magnetometer Magnetometer Noise Command and Data Handling Spacecraft Bus Schedule for PDR to CDR Schedule Overview for PDR to PFR Trade Study - Image Sensor Trade Study - Image Configuration Trade Study - IPS Detection Algorithm Trade Study - Magnetometer Sensor Trade Study - Magnetometer Location Trade Study - IEU Trade Study - External Memory S/C Materials Budget

Alternative Camera Testing Methods

Scale darkroom model

- Provides lighting environment closer to actual system application
- More difficult to simulate orbit in the life

Functional Requirement Feasibility

Level	Functional Requirement	Feasibility
4.0	The manufactured spacecraft bus, the structure of the spacecraft, shall be capable of housing the Instrument Electronics Unit and the Instrument Suite	Design and fabrication of a 6U bus structure is accomplished by referencing pre-existing designs and aerospace faculty expertise.
5.0	The Electric Power System shall consist of 120 volts AC from an outlet that will provide regulated power to the instrument electronic unit and instrument suite for the duration of the "Orbit in the Life" simulation.	Design of an electric power system is accomplished by team experience and aerospace faculty expertise.
6.0	The Simulated Ground Station shall be able to command and receive telemetry from the Instrument Electronics Unit.	Communication interface is provided by physical wired connection and leverages a standard protocol to networking IEU and SGS.
7.0	The Instrument Electronics Unit shall be capable of storing all instrument telemetry, housekeeping telemetry, and command sequence data.	Data storage on an external solid state drive is within team experience.
8.0	The Instrument Electronics Unit shall be capable of sending telemetry to the Simulated Ground Station.	Communication interface is provided by physical wired connection and leverages a standard protocol to networking IEU and SGS.
9.0	The Instrument Electronics Unit shall be capable of executing commands from the Simulated Ground Station or on board absolutely timed command sequences.	Command execution (real time and absolutely timed) is a functionality of the onboard operating system. This functionality is heavily documented in any operating system that would be choosed.

Command Distribution

Telemetry Flow

Simulated Ground Station

Imaging System

Baseline Design: 1 High-Resolution RGB CMOS Sensor

- CMOS Sensor
 - Cheap, competitive image quality
 - Low power consumption, small size
- High-Resolution RGB Filter
 - Cheap, small data size
 - Produces acceptable images for Image Processing System
 - Information on specific colors makes it easier to recognize Aurora

Capturing Images from Projector Screen

- Adjustable camera with variable shutter speeds, ISO and white balance
- Stabilized camera aligned center with the screen
- Post-processing to brighten darker areas, enhance contrast and smooth potential grainy photos
- All possible with today's cameras and post-editing software

Methods to minimize Earth shine

- Long exposure time, high dynamic range, CMOS is less susceptible to "blooming" due to overexposure effects
- <u>http://www.globalbedo.org/</u> (albedo map of Earth, 1 km resolution)
 - Can be used to calculate reflected intensity of light from Sun at various points in orbit
- Day-night VIIRS imaging suite apart of the Joint Polar Satellite System
 - Provided "nighttime" map of Earth
- <u>Images</u> from astronauts on -board ISS shows timelapse of both night side and day side taken from same camera (Kodak Pro DCS 760)

Constellation Sensor Coverage of G1 Storms

Earth Inertial Axes ·

AGI

Constellation Sensor Coverage of G1 Storms

Focal length and Field of View

• Field of view is inversely proportional to focal length

HFOV = 2Dtan(FOV) $L_f = \frac{W_s D}{HFOV}$ Where:

 W_s is sensor width (35mm) D is distance from lens to target L_F is focal length FOV is angular field of view HFOV is horizontal field of view in meters

"Orbit in the Life" Simulation: Earth Projection

"Orbit in the Life" Simulation will project the Earth with an aurora for the camera to image

- This projection of the Earth will change with the position of the satellite as it travels along its orbit
 - Size and orientation of the Earth will vary just as it would on-orbit
- This can be accomplished using orbit simulation software or even an interactive space flight simulation program called Kerbal Space Program
 - Kerbal Space Program is pictured here with the Earth with an aurora

Image Processing Training Image Examples

• Unfortunately, no imagery available is completely analogous to HEPCATS data, so UV Imagery from the POLAR or IMAGE missions will have to be used

POLAR VIS (UV Earth Camera)

IMAGE (Neutral Atom Imager)

Image Processing: Neural Networks (NNs)

- Inputs are connected to the output by a series of *hidden layers*
- Each connection has a *weight* which defines the strength of the connection
- Each node, or *neuron* computes a non-linear activation function on the weighted sum of its inputs and a given *bias*

- A loss functions defined to quantify the error of the network compared to training values
- Weights are adjusted through the *gradient descent* the *loss function* a process called *backpropagation*

Image Processing: Convolutional NNs

In the field of image processing, many operations operate on pixels based on a grid of surrounding pixels. These types of operations are called *Convolutiona* nd these are the type of operations used by *Convolutional Neural Networks (CNNs)*

Custom Classifier Training Process 1

Mu Metal Shielding for Magnetometer

- What is it?
 - High permeability metal material that blocks against low frequency and static magnetic fields
 - Permeability \sim 80,000-100,000 H/m
 - Most effective for slowly varying magnetic fields
 - Very ductile and workable material
- Design:
 - Use sheet of Mu Metal to shield back side of magnetometer
 - Only the side of the magnetometer facing the EMI source will be shielded
 - Prevents blocking the actual desired magnetic fields
 - Line interior of spacecraft bus with Mu Metal material
- Decision to not use:
 - An estimate of EMI magnitude was made based upon predicted electronics
 - Dipole magnetic field relations showed that this EMI would not be significant enough to warrant the use of Mu Metal

Magnetometer Noise

- COSMO
 - Sampling Rate: 2000 Hz
 - Bandwidth: 2 Hz
 - Max Noise < 10 nT

- HEPCATS
 - Sampling Rate: 80 Hz
 - Bandwidth: 2 Hz
 - Desired Max Noise < 10 nT

COSMO Magnetometer Noise

Command and Data Handling

Solid-State Hard Drive (External Memory)

- Flash memory storage device without any moving parts
- Offers ample read and write speeds and storage space for mission
- Hardware will remain unaffected by magnetic interference

Single-board Computer

- Functional computer completely built on one circuit board
- Allows for integration with all other electrical components
- Single-board design will be adequate for running image processing software

Simulated Ground Station

- Wired communication b/w simulated ground station and IEU
- Avoids the complexity of designing and implementing RF system
- Sufficient to meet proof of concept mission design

Spacecraft Bus

- Purpose
 - House all the payload systems
 - Magnetometer excluded
- 6U CubeSat
- Materials
 - 3D Printing Plastic (PLA, ABS)
 - Machined Parts (Aluminum, Titanium, Steel)

Instrument Electronics Unit (IEU

Schedule for PDR to CDR

Schedule Overview for PDR to PFR

Trade Study - Image Sensor

Table 28: Image Sensor Trade Study Results

Metric	Weight	CCD	CMOS	Oversampled Binary	QIS
Cost	30%	4	5	4	1
Power	10%	4	5	4	5
Heritage	10%	5	5	2	1
Quantum Efficiency	25%	4	3	4	5
Color Reproduction	25%	3	3	1	5
Total	100%	3.85	4.00	3.05	3.40

Trade Study - Image Configuration

Table 31: Image Configuration Trade Study Results								
Metric	Weight	1 High-Res Grayscale	1 High-Res RGB	High-Res 1R + 1G + 1B	1 High-Res Grayscale + 1 High-Res RGB			
Cost	30%	3	5	2	3			
Spatial Resolution	20%	5	3	5	5			
Image Processing	20%	4	4	1	2			
Data Size	15%	4	5	2	3			
Data Usability	15%	2	3	5	4			
Total	100%	3.6	4.1	2.85	3.35			

Trade Study - IPS Detection Algorithm

Table 34: IPS Detection Algorithm Trade Study [3][11][9][16]							
Metric	Weight	CNN	PTDNN	SIFT	IS & CHT		
Accuracy	40%	4	5	4	4		
Speed	20%	4	4	3	2		
Feasibility	20%	2	3	1	4		
Adaptability	20%	3	3	3	3		
Total	100%	3.4	4.0	3.0	3.4		

Trade Study - Magnetometer Sensor

Table 37: Magnetometer Sensor Trade Study							
Metric	Weight	Fluxgate Sensor	SDT Sensor	AMR Sensor			
Resolution	35%	5	4	2			
Sensor Noise Density	15%	5	4	3			
Power Consumption	20%	2	4	5			
Cost	10%	3	4	5			
Availability	15%	5	2	5			
Mass	5%	2	5	5			
Total	100%	4.05	3.75	3.65			

Trade Study - Magnetometer Location

 Table 40: Magnetometer Location Trade Study [3][11][9][16]

Metric	Weight	Inside S/C	Surface Mounted on S/C	Mounted to Boom
EMI	40%	3	3	5
Complexity	25%	2	3	2
Heritage	25%	2	3	4
Cost	10%	2	3	4
Total	100%	2.4	3	3.9

Trade Study - Instrument Electronics Unit

Table 43: Instrument Electronics Unit Trade Study Scoring						
Metric	Weight	SBC	FPGA	Microcontroller		
Processing Speed	20%	2	3	1		
Power Consumption	20%	1	3	2		
Difficulty	15%	3	1	2		
OS/Software Compatibility	15%	3	1	2		
Built in I/O Hardware	15%	3	2	2		
Thermal	10%	1	2	3		
Cost	5%	2	1	3		
Total	100%	2.15	1.9	1.95		

Trade Study - External Memory

Table 46: External Memory Metric Score Categorization						
Metric	Weight	USB	SSD	MicroSD	HDD	
Read/Write Speed	30%	2	5	1	3	
Performance/Reliability	20%	5	5	5	2	
Storage Space	20%	3	5	4	5	
Power Draw	10%	4	4	5	1	
Cost	10%	5	2	4	4	
Size/Weight	5%	4	3	5	3	
Complexity	5%	5	4	5	3	
Total	100%	3.55	4.45	3.5	3.1	

S/C Materials Budget

MATERIAL	MASS (kg)	SolidWorks Mat	COST/KG (\$/kg)	COST(\$)	(x2) MOUNTING(\$)	(x2) EXTRA (MISTAKES)
ABS	0.5	ABS	21	10.5	21	42
PLA	0.61	PEI	21	12.81	25.62	51.24
Aluminum	1.37	2219-T62	5	6.85	13.7	27.4
Titanium	2.33	Ti-3Al-8V-6Cr-4Mo-4Zr (SS)	30	69.9	139.8	279.6
Steel	3.86	AISI 304	3	11.58	23.16	46.32