Test Readiness Review: High Altitude Lifting Orbiter (HALO)

By Braden Barkemeyer, David Cease, Kelly Crombie, Jared Dempewolf, Nolan Ferguson, Tyler Faragallah, Ryan Lansdon, Jacob Marvin, Kyle Mcgue, and Paolo Wilczak

Customer: Professor Lawrence

Advisor: Matt Rhode

The High Altitude Lifting Orbiter (HALO) projection will improve collection of turbulence data in the stratosphere.

HALO will create <u>autonomous tethered</u> <u>payloadystem capable odbiting outside</u> a <u>balloon's wake</u> control surface will be used to <u>induce altitude oscillations</u>

Levels of Success - Level 1

Levels of Success - Level 2

Levels of Success - Level 3

System Breakdown: CPE's

System Breakdown

Overview

Schedule

Test Readiness

Budget

Backups

Critical Project Elements

CPE	Why it is Critical?
Balloon	Must be able to reach the target altitude without bursting and handle the stresses on the neck due to the tether and payload.
Venting	Must be able to ensure venting can achieve neutral buoyancy, as well as act as a method to terminate flight.
Tether	Must have a launching tether design that will allow a maximum of 2 people to deploy (preferably 1 perstert) eash we because impulsive force.
Lifting Body	Must be able to maintain the sensor package outside of the balloon wake while orbiting at a maximum speed of 20 m/s. This system will then be able to induce an average ascent and descent speed of the சூற்றில் நடிகள் of 2.0
CDAS	Must have a method to ensure a safe descent of the payload in case of catastrophic failure in order to modelly arm person or pro
Electronics	Must keep electronics in operating temperature range and ensure that there is enough power for the durastion of the entire mis
Software	Must be able to account for altitude changes and actuate commands in order to initiate control surfacesent in the all and the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfacesent in the changes and actuate commands in order to initiate control surfaces and actuate control surfaces and actuate control surfaces are control surfaces.

Backups

FAA Update

- CU administration is requiring an FAA waiver to conduct final systems test
 - Potential for airship classification
 - Waiting on official response from FAA
- Cannot conduct untethered flight until further notice
 - Likely will not hear back in time to conduct flight test

Work Breakdown Structure

Overview Schedule Test Readiness Budget Backups

13

Updated Test Plan

Overview

Schedule

Test Readiness

Budget

Backups

14

15

Orbit Acquisition

Descent Arrest Lift Generation

Neutral Buoyancy

Data Transmission

Survivability

16

Orbit Acquisition

- Orbit Acquisition Test
- Moored Test

Descent Arrest Lift Generation

Neutral Buoyancy

Data Transmission

Survivability

17

Orbit Acquisition

- Orbit Acquisition Test
- Moored Test

Descent Arrest

• CDAS Drop Test

Lift Generation

Neutral Buoyancy

Data Transmission

Survivability

18

Orbit Acquisition

- Orbit Acquisition Test
- Moored Test

Descent Arrest

CDAS Drop Test

Lift Generation

- Software Dry Run Test
- Propeller Thrust Test

Neutral Buoyancy Data Transmission

Survivability

19

Orbit Acquisition

- Orbit Acquisition Test
- Moored Test

Descent Arrest

CDAS Drop Test

Lift Generation

- Software Dry Run Test
- Propeller Thrust Test

Neutral Buoyancy

Neutral Buoyancy Test

Data Transmission

Survivability

20

Orbit Acquisition

- Orbit Acquisition Test
- Moored Test

Descent Arrest

CDAS Drop Test

Lift Generation

- Software Dry Run Test
- Propeller Thrust Test

Neutral Buoyancy

Neutral Buoyancy Test

Data Transmission

Data Transmission Test

Survivability

21

Orbit Acquisition

- **Orbit Acquisition Test**
- **Moored Test**

Descent Arrest

CDAS Drop Test

Lift Generation

- Software Dry Run Test
- Propeller Thrust Test

Neutral Buoyancy

Neutral Buoyancy Test

Data Transmission

Data Transmission Test

Survivability

- **Tether Impulse Test**
- **Electronics Survivability** Test

Schedule Test Readiness Overview Budget Backups

22

Orbit Acquisition

- Orbit Acquisition Test
- Moored Test

Descent Arrest

Lift Generation

• Propeller Thrust Test

Neutral Buoyancy

Neutral Buoyancy Test

Data Transmission

Survivability

Electronics Survivability
 Test

Thermal Model: Overview

 Model results indicate electronic survival at flight conditions

Thermal Model: Types of Verification

THE LIFTING GREATER

24

- Need to mimic environmental flight conditions
 - 1. Very cold (-69.70 °C)
 - 2. Very low air density (0.9145% sea level)

Mimic Cold Conditions:

- <u>Thermal Chamber Test</u>
- Dry Ice(-78.5 degrees°C)

Mimic Pressure Conditions:

- Hypobaric Chamber Test
- Will resistors still dissipate heat?

- Expensive
- 2. Hard to acquire acces
- 3. Size requirement

Thermal Chamber Test

Testing

- FR 3.0: The payload must be able to survive the conditions presented throughout the entirety of the mission
 - Risks Mitigated: electronics failure, over/under heating

Procedure

- Place foam box with insulation width similar to the airfoil in cooler with dry ice
- Put all components where they would be for a real flight
- Use the temperature sensors to monitor the temperatures in the dry ice cooler and payload
- Data saved via SD card
- Re-Scheduled for March 4th

Status: 1 Week Behind

Hypobaric Chamber Test

THE LIFTING ORDITER

Testing

- FR 3.0: The payload must be able to survive the conditions presented throughout the entirety of the mission
 - Risks Mitigated: electronics failure, over/under heating
- Ability of heaters to dissipate heat to payload given low pressure (low density) conditions

Procedure

- Place the electronics housing package with selec components active in pressure chamber
- Use temperature sensors to monitor the heat conduction/convection in payload air
- Data saved via SD card

Conducted on March 1st

Status: On track

Propeller Thrust Model

THE LIFTING GALLER

- Thrust model must be verified to gain confidence we have the required thrust to orbit at altitude
- Blade element theory
- Propeller thrust must equal orbiter drag
- Most propeller thrust is generated from middle of blade section

Propeller Thrust Test

- FR 2.0: The payload must be capable of orbiting beneath the balloon
 - Risks Mitigated: not producing enough lift, not inducing predicted orbit
- Ability to change motor speeds

Procedure

- Attach motor to thrust sensor mount
- Vary throttle
- Obtain thrust data through a wired connection
- Rescheduledfor March 8th

Status: 1 Week Behind

Orbit Model

Orbit Acquisition Test

Testing

- FR 2.0: The payload must be capable of orbiting beneath the balloon
 - Risks Mitigated: not acquiring orbit, no orbit stability
- Ability to obtain orbit from vertical rest position
- Further check the beta angle measurement
- Test that the wing maintains the correct angle
- Test the stability of the wing
- Validate lift and drag coefficients

Scheduled for March 15th

Pending crane availability (currently in process)

Status: On track

30

Moored Test

Testing

- FR 1.0: There will be a method of controlling the altitude of the balloon and payload
 - Risks Mitigated: can't control altitude as predicted
- Full functionality of all components
- Ability to actuate tail to increase/decrease lift

Procedure

- Moor the balloon and payload to the ground with a cable less than 150 ft and an anchor
- Inflate the balloon with helium
- Throttle the motor and reach a stable beta angle
- Actuate the tail servos and measure changes in lift

Scheduled for March 22nd

Status: On track

31

Neutral Buoyancy Model

- We need to verify that we can vent to neutral buoyancy at a desired altitude of 30 km
 - Allows for orbiter to control system altitude

Neutral Buoyancy Test

HALO

Testing

- FR 1.0: There will be a method of controlling the altitude of the balloon and payload
 - Risks Mitigated: can't achieve neutral buoyancy
- Vent and data transmission operates successfully

Procedure

- Fill balloon with 3m³ of helium
- Attach electronics package with insulation for total mass equal to wing mass
- Continuously record/transmit altitude data with GPS
- Vent balloon to neutral buoyancy at 30km
- Monitor balloon altitude to verify neutral buoyancy
- Actuate vent until negatively buoyant (-2 m/s) to ensure safe system descent
- Scheduled for March 29th

Electronics package

Status: On track

33

HALO Budget Overview

HALO BUDGET MARCH UPDATE

Total spent: \$2,862.97 Total margin: \$2,137.03

Customer Budget

CUSTOMER BUDGET MARCH UPDATE

Questions? - Data transmission/acquisition Multiple ascent/descent **(6) (5)** phase, payload continues Payload begins Balloon begins orbiting outside wake orbiting outside venting toward balloon wake neutral buoyancy Low system battery. (3)Tether Flight arrest passively by venting extended Telemetry/data transmission Ground setup by at between 25 and 35 most two people km. Range of 100 km **(2)** Single-person balloon launch

Backup Slides

Testing Backup Slides

Parachute Deployment Test

39

Testing

- FR 7.0:As specified by the customer, the balloon must contain a controlled descent arrest system (CDAS) to prevent harm to property or person upon balloon burst.
- Successful deployment of the parachute
- Successful arresting of descent speed

Procedure

- Parachute tied to bottle mass
- Thrown off roof
- Radios for communication
- Timed descent of about 3.8sec.

Parachute Deployment Test - Results

Results discussion

IMU - Beta Angle Test

Testing

- FR 1.0:There will be a method of controlling the altitude of the balloon and payload.
- Successful measure of angle

Procedure

- IMU was connected to a computer outputting to serial the angular rate
- It was then spun in circles and collected data
- The actual angle was found by taking a video and using similar triangles

Results

3 degree deviation between the video and IMU

Tether Strength Test

42

Testing

- FR 5.0:Balloon and its payload must meet all FAA guidelines, including those subjecting the balloon and its payload to designation as an unregulated balloon. In addition, Balloon and payload shall meet specifications set forth by customer.
- The tether breaks under a 50lbf impulse

Procedure

- Cut and configured shortened tethers
- Used an analog loading device
- Dropped 50lb of weights connected to tethers
- Used a slowmotion camera to measure the breaking force

Tether Strength Test - Results

- 20 Samples Taken
 - Bootstrapping done to obtain simulated results
- After 5,000 iterations we obtain:
 - 95% Confidence Interval of (37.15, 40.9)
- This is to say that a sample of data taken, no matter the size, the mean of the dataset will fall within the Confidence Interval 95% of the time

```
xbar = 39.15 . xbarstar = 39.15441
The 95% bootstrap pivot confidence interval for the mean is ( 37.15 , 40.9 )
       Shapiro-Wilk normality test
       breaks
W = 0.90878, p-value = 0.06042
```


43

Data Communication Test

Testing

- FR 4.0: The payload will be able to transmit collected data to the ground receiver
- Communication over long distances

Procedure

- Have two radios on the ground
- Attenuate signal from transmitting radio
- Calculate predicted range based on received signal strength
- Scheduled for March 8th

Software Dry Run Test

Testing

- FR: There will be a method of controlling the altitude of the balloon and payload
- All software should be working correctly

Procedure

- Change servo angles
- Change motor speeds
- Actuate the vent
- Scheduled for March 1st

Overview Backup Slides

Mission Statement

HALO aims to improve the process of collecting turbulence data in the stratosphere. This will be accomplished by designeribered payload systemat will autonomously execute orbits outside of the balloon wakethe help of control surfaces. These surfaces will also helinduce altitude oscillations increasing the amount of data collection per flight.

Levels of Success

	Tethered Orbiter	Altitude	Data Collection	Descent Arrest
Level I	The payload shall orbit below the balloon. This will be stable and periodic.	s Timb itballoon and payload will achieve target altitude of 150 ft and be neutra buoyant via Moored test. The balloon remain at this altitude until termination	lyand GPS to verify a successful orb wtitajectory. This data will will be	
Level II	The payload will be in a stable orbit below the balloon, demonstrating the ability to remove its from the wake. It will also generate enough lift drag to bring the balloon and payload to a vel 2m/s +/20% in ascent and descent.	s alf ow the tethered orbiter to change the balloon and payload altitude. The ball	necollected on the payload throughou ofight. This data will be transmitted receiving antenna during flight. and e used	ıt äts tonomously as triggered by lo
Level III	The stable payload orbit will remain fully outside balloon wake for the entire flight, ignoring occasional perturbations due to wind gusting. must be capable of generating lift or drag to be the balloon system to a velocity of 2-r20%/-/ during ascent or descent. Orbiter speed will not introduce turbulence measurement bias.	30 km and then oscillate between 25 Ita \$5 km until power depletion. GPS rimeasurements will approximate the altitude of the balloon. These altitudes	km	rated

Organizational Chart

Manufacturing Backup Slides

Manufacturing Overview

<u>Manufactured</u>

Wings/Booms

Motor Mount

Safety-System Connections

<u>Software</u>

Data Transmission Code

Orbit Acquisition Code

Motor Control Code

Tail Actuation Control Code

Venting Code

Thermal Control Code

<u>Testing</u>

Balloon Vent

Drop Test assembly

Tether/Force scale assembly

Electronics Assembled

Electronics Bay

Lifting Orbiter

Purchased Components

<u>Hardware</u>	<u>=lectronics</u>

Foam Battery

3D Printing Filament ESC

Carbon Spars Motor

Kevlar Tether Arduino

Propeller Servos

Balloon Thermal Resistors

Swivels and Slip Rings Relay Switch (pMOSFET)

Load Cell IMU

Tether Deployment Spool Transceivers

Motor Mount with ESC

Vent for Balloon Neck

- Verified functional vent with improved servo actuation (24 Jan)
- Vent has flight heritage
 - Verified to work up to 32.5 km
- Vent affixed to balloon neck using fiber tape

Tether Connection

- Slip ring prevents comm lines from tangling with tether
- Tether connected with fishing swivel
- Tether wraps around wing
- Tether attached to vent via hose-clamp

Wings: Hot Wire Cutting

- Completed training with current student Operator (30 Jan)
- Small test cuts completed on Monday (03 Feb)
 - Use Profili Pro 2 Program to create Gcode
- Prototype airfoil section scheduled for Friday (07 Feb)

Hot Wire Cutting Station

Wings: Spar Alignment Sketch For Main Airfoil

Carbon Fiber Spars

Tail Boom: Spar Attachment Sketch

THURS CARLES

- Two carbon fiber rods
- Placed on either side of the electronics package

Spar Attachment

Tail Boom: Spar Attachment Sketch

Tail Boom: Spar Attachment CAD **Payload Bay** Tail control servo Tail control horn '

NOTE: Control link between servo and control horn not shown

3D Printing: Payload Bay

3D printed chassis to keep electronics aligned

3D Printer

Software: Overview

Software: Overview Status

Electronics Component	Status	Next Step	
Arduino Mega	Completed Preliminary Interfacing	Integrate Main Functions	
ESC	Completed Preliminary Interfacing	Develop Motor Control Loop	
Motor	Completed Preliminary Interfacing	Develop Motor Control Loop	
GPS	Completed Preliminary Interfacing	Data Transmission Test	
IMU	Completed Preliminary Interfacing	Develoβ Angle Determination	
Vent	Completed Preliminary Interfacing	Develop Vent Control Loop	
Temperature Sensors	Basic Wiring Complete, No Interfacing	Preliminary Arduino Interfacing	
XBee Transceiver	No Interfacing	Preliminary Arduino Interfacing and Data Transmission Test	

Software: Main Block Legend Start/End Process Find bottom or top of Predicted Beta Angle cycle? Decision Predicted Beta Angle Input/Output Actuate Re-Initialize Servos (Tail Orbit Acquisition Actuation Loop) Read GPS No Yes Temperature Check Orbit Status Motor Throttle Adjustment Transmit Payload is still in orbit? Check Battery End Start Battery < 5%? Control Package Read IMU Yes Terminate Flight IMU Actual Beta Angle Find Beta angle

Overview Schedule Test Readiness Budget Backups

64

Software: Motor Control

Software: Tail Actuation

Software: Neutral Buoyancy Acquisition

Software: Thermal Control

- Using p-channel MOSFET as a relay switch
- On/off Arduino pin control
- Less than **O**Cwill result in "on" command from Arduino

Drilling into Foam for Carbon Spar Mounting

Tools capable of drilling into foam for carbon spar mounting: Standard Spade Bit

Hot Wire Cutting G -Code


```
This is our first attempt
G20
G17
G90
F18.000000
М3
G0A0.000000B0.000000X0.000000Y0.000000
G0A0.000000B1.500000X0.000000Y1.500000
G0A2.250000B1.500000X2.250000Y1.500000
G1A2.253789B1.500000X2.253789Y1.500000F18.000000
G1A2.644000B1.542064X2.644000Y1.542064
MØ
G1A2.675740B1.546498X2.675740Y1.546498
G1A2.707480B1.550932X2.707480Y1.550932
G1A2.739223B1.555343X2.739223Y1.555343
G1A2.770967B1.559751X2.770967Y1.559751
G1A2.802711B1.564150X2.802711Y1.564150
G1A2.834457B1.568546X2.834457Y1.568546
G1A2.866202B1.572942X2.866202Y1.572942
G1A2.897947B1.577339X2.897947Y1.577339
```


Electronics

Component	Chosen	Voltage [V]	Current [mA]	Mass [g]	Powered by:
GPS	Adafruit Ultimate	3.3	25	8.5	3.3V Arduino pin
Arduino	Arduino Mega	7.6	100	53	LG MU1 barrel connector
IMU	Sparkfun 9DoF Razor IM	5	10	15	5V Arduino pin
Radio Transceiver	Radio Transceiver	3.3	150	3	3.3V Arduino pin
Arduino Battery	2 x LG MU1 18650	7.6	NA	2 x 49 = 98	NA
Temperature Senso	r TMP36	3.3	5	1	3.3V Arduino pin

Software Backup Slides

Software: Data Transmission

- IMU, GPS, and temperature sensor measurements will be transmitted to ground receiver
- Data transmission test will be held 2/15 to determine data rate, transmission rate, and transmission range

Software: Orbit Acquisition

- Motor will be throttled to attain orbit
 - Throttle amount will be determined with scaled flight test
- If orbit is not acquired, motor will turn off and try again after a minute
- Motor has been successfully interfaced with Arduino Mega

Venting Backup Slides

Balloon Purpose

- Balloon will transport the payload to maximum altitutable of 35
 - Burst altitude/diameter is the most significant factor to consider
- Balloon will be neutrally buoyant *lath* 30
 - This will determine our mass budget
- Customer Requirements
 - Balloon and its payload must meet all FAA guidelines
 - Per customer request, balloon will meet FAA criteria for rem unregulated
 - FAA guidelines can be found in appendix

FR 5. Balloon and payload system must meet all FAA guidelines.

High Altitude Balloon

Venting Design

THE LIFTING ORDER

- Reusing venting system from HYFLITS mission
 - Verified to operate in atmospheric conditions
 - Can be sufficiently mounted to balloon
 - Venting has been experimentally modelled for this

FR 6.0: System must be capable of mission termination at emobilite, determined when battery has 5% remaining.

Venting Control System

- GPS, battery data fed into consystem
- Vent until desired altitude is reached

FR 6.0: System must be capable of mission termination at-efitie, determined when battery has 5% remaining.

Venting Model

Neutral buoyancy acquired after roughly 1 hour of venting

Tether Backup Slides

Venting Purpose and Concerns

 Need to vent gas to become neutrally buoyant

 Neutral buoyancy decreases force needed to lift balloon

84

FR 5.0Balloon and payload system must meet all FAA guidelines.

FR 8.0: Launch setup must be able to be conducted by a maximum of two people, but ideally one person.

Tether Deployment Method

ideally one person.

Alternate Tether Deployment Method

Modelled after passive unspooling devices used in sounding balloon missions

With a deployment rate slower than the ascent rate of the balloon there is an increased likelihood to clear obstacles in the launch zone

FR 5.0Balloon and payload system must meet all FAA guidelines.

FR 8.0: Launch setup must be able to be conducted by a maximum of two people, but ideally one person.

Notable Risks to the Project Success - cont.

Risk	Mitigation Plan	PreMitigation Likelihood	PreMitigation Impact
Tether breaks	Tensile testingImpulse Generator	Severe	Improbable
Vent too much	Pressure Tank Tests	major	High likely
Wing stalls	TetherballMooredCFD Analysis	minor	likely
Stability	TetherballRECUV Flight Room Testing	major	likely
Software talk/initiate control surfaces	TetherballMooredObservational Studies	Severe	likely

Risk Backup Slides

Notable Risks to the Project Success

Risk	Mitigation Plan	PreMitigation Likelihood	PreMitigation Impact
Unable to do actual flight test due to external factors	Conduct early and manufacture early to allow more time allotted for launching	Likely	Catastrophic
Ground tests not accurate or don't scale properly	 Compare results to CFD programs (such as XFLR, Fluent) Compare results to hand computations 	High Likely	Severe
Unable to initiate orbit at altitude	Tetherball testMoored test	Likely	Catastrophic
Data transmission error	Will test reliability around mountainous surroundings of Boulder	Likely	Severe
Balloon burst	 Will purchase stronger balloon material (Totex) Adding a Factor of Safety to max. height 	Likely	Severe
CDAS Failure	Conduct Drop tests	Likely	Major

Notable Risks to the Project Success - cont.

Risk	Mitigation Plan	PreMitigation Likelihood	PreMitigation Impact
Q_diss too hot/cold	Tvac TestingDry Ice Testing	severe	Low likely
Propeller disturbances propagating to sensors	Place further apart	severe	Low likely
Unit system costs	 Plan out material(s) bought prior to buying Budget Plan 	major	improbable
Wing being in wake	Tetherball Test	severe	likely
Foam strength	Torsion Tests	severe	Low likely

Testing Backup Slides

Schedule: Old Test Plan

Parachute Deployment Drop Test

THE LITTING OBSTER

Controlled Descent Arrest System (CDAS)

FAA Backup Slides

FAA Regulations - General

101.1 Applicability.

(1) Except as provided for in §101.7, any balloon that is moored to the surface of the earth or an object thereon and that has a diameter of more than 6 feet or a gas capacity of more than 115 cubic feet.

(2) Except as provided for in §101.7, any kite that weighs more than 5 pounds and is intended to be flown at the end of a rope or cable.

(3) Any unmanned rocket except:

(i) Aerial firework displays; and,

(ii) Model rockets:

(a) Using not more than four ounces of propellant;

(b) Using a slow-burning propellant;

(c) Made of paper, wood, or breakable plastic, containing no substantial metal parts and weighing not more than 16 ounces, including the propellant; and

(d) Operated in a manner that does not create a hazard to persons, property, or other aircraft.

(4) Except as provided for in §101.7, any unmanned free balloon that-

(i) Carries a payload package that weighs more than four pounds and has a weight/size ratio of more than three ounces per square inch on any surface of the package, determined by dividing the total weight in ounces of the payload package by the area in square inches of its smallest surface;

(ii) Carries a payload package that weighs more than six pounds;

 $(\ensuremath{\mathrm{iii}})$ Carries a payload, of two or more packages, that weighs more than 12 pounds; or

(iv) Uses a rope or other device for suspension of the payload that requires an impact force of more than 50 pounds to separate the suspended payload from the balloon.

(b) For the purposes of this part, a gyroglider attached to a vehicle on the surface of the earth is considered to be a kite.

[Doc. No. 1580, 28 FR 6721, June 29, 1963, as amended by Amdt. 101-1, 29 FR 46, Jan. 3, 1964; Amdt. 101-3, 35 FR 8213, May 26, 1970]

101.3 Waivers.

No person may conduct operations that require a deviation from this part except under a certificate of waiver issued by the Administrator.

[Doc. No. 1580, 28 FR 6721, June 29, 1963]

101.5 Operations in prohibited or restricted areas.

No person may operate a moored balloon, kite, unmanned rocket, or unmanned free balloon in a prohibited or restricted area unless he has permission from the using or controlling agency, as appropriate.

[Amdt. 101-1, 29 FR 46, Jan. 3, 1964]

101.7 Hazardous operations.

(a) No person may operate any moored balloon, kite, unmanned rocket, or unmanned free balloon in a manner that creates a hazard to other persons, or their property.

(b) No person operating any moored balloon, kite, unmanned rocket, or unmanned free balloon may allow an object to be dropped therefrom, if such action creates a hazard to other persons or their property.

(Sec. 6(c), Department of Transportation Act (49 U.S.C. 1655(c)))

[Doc. No. 12800, Amdt. 101-4, 39 FR 22252, June 21, 1974]

3, 1964; Amdt. 101-3, 35 FR 8213, May 26, 1970]
Schedule Ivianuiaciuming Budget Backups

FAA Regulations - Moored Balloons and Kites

101.11 Applicability.

This subpart applies to the operation of moored balloons and kites. However, a person operating a moored balloon or kite within a restricted area must comply only with §101.19 and with additional limitations imposed by the using or controlling agency, as appropriate.

101.13 Operating limitations.

- (a) Except as provided in paragraph (b) of this section, no person may operate a moored balloon or kite-
- (1) Less than 500 feet from the base of any cloud;
- (2) More than 500 feet above the surface of the earth;
- (3) From an area where the ground visibility is less than three miles; or
- (4) Within five miles of the boundary of any airport.
- (b) Paragraph (a) of this section does not apply to the operation of a balloon or kite below the top of any structure and within 250 feet of it, if that shielded operation does not obscure any lighting on the structure.

101.15 Notice requirements.

No person may operate an unshielded moored balloon or kite more than 150 feet above the surface of the earth unless, at least 24 hours before beginning the operation, he gives the following information to the FAA ATC facility that is nearest to the place of intended operation:

- (a) The names and addresses of the owners and operators.
- (b) The size of the balloon or the size and weight of the kite.
- (c) The location of the operation.
- (d) The height above the surface of the earth at which the balloon or kite is to be operated.
- (e) The date, time, and duration of the operation.

101.17 Lighting and marking requirements.

- (a) No person may operate a moored balloon or kite, between sunset and sunrise unless the balloon or kite, and its mooring lines, are lighted so as to give a visual warning equal to that required for obstructions to air navigation in the FAA publication "Obstruction Marking and Lighting" .
- (b) No person may operate a moored balloon or kite between sunrise and sunset unless its mooring lines have colored pennants or streamers attached at not more than 50 foot intervals beginning at 150 feet above the surface of the earth and visible for at least one mile.

(Sec. 6(c), Department of Transportation Act (49 U.S.C. 1655(c)))

[Doc. No. 1580, 28 FR 6722, June 29, 1963, as amended by Amdt. 101-4, 39 FR 22252, June 21, 1974]

101.19 Rapid deflation device.

No person may operate a moored balloon unless it has a device that will automatically and rapidly deflate the balloon if it escapes from its moorings. If the device does not function properly, the operator shall immediately notify the nearest ATC facility of the location and time of the escape and the estimated flight path of the balloon.

- Chapter 7. Airplane Aerodynamics and Performance, by Chuan-Tau Edward. Lan and Jan Roskam, DARcorporation, 1997, pp. 265 - 330.
- [2] Battery University, 'BU-502: Discharging at High and Low Temperatures', Retrieved August 29, 2019, from https://batteryuniversity.com/index.php/learn/article/discharging_at_high_and_low_temperatures
- [3] "Controlled Weather Balloon Ascents and Descents for Atmospheric Research and Climate Monitoring", Atmospheric Measurement Technology, March 7, 2016, Retrieved September 9, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5734649/[Accessed 09 11. 2019]
- [4] Drag of a Sphere. NASA, NASA, www.grc.nasa.gov/www/k-12/airplane/dragsphere.html.
- [5] Engineering ToolBox, (2003). U.S. Standard Atmosphere. [online] Available at: https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html [Accessed 09 09. 2019].
- [6] FAA Regulations for Kites/Balloons, from http://www.chem.hawaii.edu/uham/part101.html
- [7] Grainger, 'Open Cell, Foam Sheet, Polyurethane', Retrieved August 29, 2019, from https://www.grainger.com/product/5GCU4?gclid=Cj0KCQjww7HsBRDkARIsAARsIT45Lm5vDpt0PM_np7cVeeRBe4-N8p7qvgsJE864gIaMXGkcWKOAQCAaAoyNEALw_wcB&cm_mmc=PPC:+Google+PLA&ef_id=Cj0KCQjww7HsBRDkARIsAARsIT45Lm5vDpt0PM_np7cVeeRBe4-N8p7qvgsJE864gIaMXGkcWKOAQCAaAoyNEALw_wcB:G:s&s_kwcid=AL!2966!3!264955916384!!!g!437270349819!
- [8] GreenSpec, 'Insulation Materials and Their Thermal Properties', Retrieved August 29, 2019, from http://www.greenspec.co.uk/building-design/insulation-materials-thermal-properties/
- [9] Home Depot, 'Owens Corning Foamular', Retrieved August 29, 2019, from https://www.homedepot.com/p/Owens-Corning-FOAMULAR-150-1-in-x-4-ft-x-8-ft-R-5-Scored-Square-Edge-Rigid-Foam-207179253
- [10] Interstate Plastics, 'Phenolic Sheet Natural Canvas', Retrieved August 29, 2019, from https://www.interstateplastics.com/Phenolic-Natural-Canvas-Sheet-PHENC--SH.php?sku=PHENC++SH&vid=20190923182015-2p&dim2=20&dim3=20&thickness=1.000&qty=1&recalculate.x=84&recalculate.y=1
- [11] Jackson, Jelliffe. "Project Definition Document (PDD)", University of Colorado-Boulder, Retrieved August 29, 2019, from https://canvas.colorado.edu/
- [12] Kaymont Balloons Civilian / Enthusiast Balloons (HAB), from https://www.kaymont.com/ habphotography
- [13] Lawrence, Dale. "Orbiting Platform for Turbulence Measurement on High Altitude Balloons for the AFOSR HYFLITS Program", Received August 28, 2019, from https://canvas.colorado.edu/

98

- [14] Motor Operated Valves, Retrieved August 29, 2019, from https://automationforum.co/ introduction-to-motor-operated-valve-types-applications/
- [15] NASA, 'State of the Art of Small Spacecraft Technology: Thermal Control', Retrieved August 29, 2019, from urlhttps://sst-soa.arc.nasa.gov/07-thermal
- [16] Solenoid Valve, from https://www.omega.co.uk/prodinfo/solenoid-valve.html
- [17] University of Colorado Boulder Aerospace Engineering."Past Senior Projects", from https://www.colorado.edu/aerospace/current-students/undergraduates/senior-design-projects/past-senior-projects
- [18] Spincast Reel for Passive Tether Deployment, from http://www.shakespeare-fishing.com/ Shakespeare-ome-casting-a-spincast-reel.html
- [19] Maxon Motors from https://www.maxongroup.us/maxon/view/category/motor?etcc_cu=onsite&etcc_med_onsite=Product&etcc_cmp_onsite=ECX+SPEED+program&etcc_plc=Overview-Page-brushless-DC-Motors&etcc_var=%5bus%5d%23en%23_d_&target=filter&filterCategory=ECX
- [20] Kevlar Twine from https://www.amazon.com/emma-kites-Outdoor-Tactical-Camping/dp/B002PR16EM/ref=sr_1_8?crid=174IS2U07ATK&dchild=1&keywords=kevlar+kite+string&qid=1570639465&sprefix=kevlar+kite*2Caps*2C328&sr=8-8
- [21] Tether Connection Methods https://hialtphoto.blogspot.com/2018/01/balloon-system-harness-and-tether.html
- [22] Kevlar Material Properties https://www.dupont.com/products-and-services/fabrics-fibers-nonwovens/fibers/articles/kevlar-properties.html
- [23] Propeller Picture https://www.gauss-center.de/results/computational-and-scientific-engineeri article/numerical-investigation-of-ship-propeller-cavitation-with-full-description-of-
- [24] Foam Factory Polyurethene Insulation https://www.foamdistributing.com/P/poly-foam.html
- [25] Digikey Batteries https://www.digikey.com/product-detail/en/adafruit-industries-llc/1578/1528-1841-ND/5054539&?gclid=CjwKCAjwldHsBRAoEiwAd0Jybfj98fK4Gi-nxF0NEF7HMjxgoAY3p0Hak0-IiKxKYzrs_uPRcXTzfhoCALMOAvD BWE
- [26] Maxongroup Altitude Motor https://www.maxongroup.us/maxon/view/category/motor?etcc_cu=onsite&etcc_med_onsite=Product&etcc_cmp_onsite=ECX+SPEED+program&etcc_plc=ECX-Program&etcc_var=%5bus%5d%23en%23_d_&target=filter&filterCategory=ECX
- [27] Servocity Orbital Motor https://www.servocity.com/90-rpm-micro-gear-motor
- [28] Hobby King Orbiting Body https://hobbyking.com/en_us/aero-modelling-foam-board-10mm-x-500mm-html?countrycode=US&gclid=Cj0KCQjw84XtBRDWARIsAAU1aM0yKQOp5nM5z9g1YBRs-9FMI1AQnq330gZ1VdPZtcyYaAjLlEALw_wcB&gclsrc=aw.ds
- [29] Emma Kites Tether Material https://www.amazon.com/emma-kites-Outdoor-Tactical-Camping/
 dp/B00ZPR16EM/ref=sr_1_8?crid=I74IS2U07ATK&dchild=1&keywords=kevlar+kite+
 string&qid=1570639465&sprefix=kevlar+kite*2Caps*2C328&sr=8-8

- [30] X-Bet-Magnet Tether Magnets https://www.amazon.com/X-bet-MAGNET-Neodymium-Countersunk-Magnets/dp/B01BX1ZX38/ref=sr_1_5?keywords=50+lb+magnets&qid=1570640595&sr=8-5
- [31] ASCO Solenoid Valve https://www.asco.com/en-us/Pages/solenoid-valve-series-284-s.aspx
- [32] USGS Helium https://www.usgs.gov/centers/nmic/helium-statistics-and-information
- [33] Adafruit Batteries https://www.alliedelec.com/product/adafruit-industries/328/70928240/?gclid=CjwKCAjwldHsBRAoEiwAd0JybSDfcUpqGcbwBwds7dJd72D220EtsC8n1Ffz0EQmopvX0lU3BwE&gclsrc=aw.ds
- [34] Full Battery 14 AH Batteries https://fullbattery.com/collections/18650-cells/products/ncr18650ga
- [35] Full Battery Solar Cells https://fullbattery.com/products/sunpower-c60-solar-cell?

