Note: This handbook is not a substitute for face-to-face advising. Students must meet with their faculty advisors at least once each semester to discuss their coursework and progress in the program.

Revised August 2018
Aerospace Engineering Sciences (AES) is one of the top aerospace engineering departments in the nation. Aerospace engineers work on Earth and in space not only to extend frontiers but also to understand more fully and to preserve our terrestrial environment. Few fields offer more exciting and diverse careers: becoming an astronaut (fifteen CU graduates to date have become astronauts), designing the next generation of aircraft and spacecraft, monitoring our global habitat via remote sensing from space, and helping to develop environmentally clean energy and transportation systems.

Teaching and research address both the challenges and the opportunities facing the aerospace engineering profession today. Graduate students, research staff and faculty work together on a wide range of research topics: aerodynamics and fluid mechanics; aerospace design and system engineering; astrodynamics and orbital mechanics; atmospheric, oceanic and space sciences; bioastronautics; computational and analytic methods; satellite-based global positioning/timing technology; remote sensing; structures, materials and structural dynamics; systems and control; and thermodynamics and propulsion.

Nearby government and industrial laboratories enhance the rich research environment of the University of Colorado. Local aerospace firms or their divisions include Ball Aerospace, Lockheed-Martin, Hughes, Raytheon, Loral, and TRW. Nearby government laboratories include the National Center for Atmospheric Research (NCAR), the Environmental Research Laboratories of the National Oceanic and Atmospheric Administration (NOAA), the National Renewable Energy Laboratory (NREL), and the National Institute of Standards and Technology (NIST).

In addition to the rules set forth in this Graduate Handbook, all students are also subject to the rules and provisions required by the University of Colorado Graduate School. The Graduate School Rules appear at: https://www.colorado.edu/graduateschool/sites/default/files/attached-files/graduate_school_rules_6.9.18.pdf
Table of Contents

Foreword .. 2
Table of Contents ... 3
Admission Requirements ... 5
Application Procedures ... 6
Academic Standards ... 7
Professional Master of Science Degree ... 8
 - Program Requirements: .. 8
Master of Science Degree .. 10
 - Program Requirements: .. 10
 - Guidelines for MS thesis: ... 12
 - Courses Satisfying Math Requirement: .. 12
 - CU Certificate Programs .. 13
 - Pre-approved Certificates: ... 13
 - Interdisciplinary Certificates ... 13
 - Professional Certificates .. 13
 - Certificates requiring pre-approval: ... 14
Doctoral Degree ... 15
 - Program Requirements: .. 15
 - Teaching Practicum: .. 17
 - PhD Program Timeline and Examinations: .. 18
 - YEARS 1-2 – Preparation for the Preliminary Exam ... 18
 - YEARS 2-3 – Preparation for the Comprehensive Exam and Admission to Candidacy ... 21
 - YEARS 3 and beyond – Dissertation Research, Professional Training, & Teaching.. 24
Focus Areas .. 26
Focus Area Curricula Charts ... 27
 - Aerospace Engineering Systems (AESys) .. 27
Admission Requirements

An applicant may be admitted to the Graduate School as either a regular degree student or a provisional degree student. For acceptance into the Department of Aerospace Engineering Sciences, the following requirements must be met.

Aerospace Engineering Sciences at CU-Boulder has established minimum standards for graduate admission. Applicants must:

1. Have undergraduate courses in calculus, linear algebra, and differential equations.

2. Have two semesters of undergraduate calculus-based physics.

3. Have at least two semesters of upper-division undergraduate courses in engineering or physics.

4. Hold a baccalaureate degree in engineering, science, or mathematics from an institution accredited by an agency recognized by the U.S. Department of Education, or have the equivalent.

5. Have an undergraduate grade point average of at least 3.40.

6. Provide official GRE scores. The minimum desired GRE scores are 157 verbal, 158 quantitative and 4.5 written analytical.

International students must provide documentation that they have the financial resources to support themselves for at least the first year in the program.

Students with undergraduate degrees in all areas of engineering are encouraged to apply. Students with undergraduate degrees in mathematics, physics, chemistry and other physical sciences are also encouraged to apply.
Application Procedures

Graduate students are admitted into a specific focus area that provides research advising, financial support, and sets specialized admission and program requirements and recommendations for coursework within and outside the department. The four focus areas are:

- Aerospace Engineering Systems
- Astrodynamics and Satellite Navigation Systems
- Bioastronautics
- Remote Sensing, Earth and Space Science

Each focus area has defined the required characteristics of its successful graduates at the MS and PhD level, and defined the required and elective courses that support its educational program. See the focus area curricula charts appearing in this handbook for details.

An applicant for admission must present complete application materials that include:

1. The online graduate application (including focus area/subplan).
2. Official transcripts of all academic work completed to date, including study abroad and coursework for college credit completed in high school.
3. A $60 nonrefundable application fee. The foreign application fee is $80.
4. Four letters of recommendation.
5. Official test scores from the analytical, quantitative, and verbal sections of the Graduate Record Examination (GRE) taken within the past 5 years.

Applicants must submit the electronic application for admission available on the Colorado.edu website.

The application deadline for domestic applicants is JANUARY 10 for FALL semester, and OCTOBER 1 for SPRING semester. International applicants must apply by December 1 for FALL and September 1 for SPRING.
Academic Standards

A master’s degree student is required to maintain at least a B (3.00) average in all work attempted while enrolled in the Graduate School. Admission to PhD candidacy requires a 3.25 average. For both the master's degree and PhD, a course mark below B- is unsatisfactory and will not be counted toward fulfilling the minimum requirements for the degree.*

A student, who fails to maintain a 3.00 grade point average or to make adequate progress toward completing a degree, as assessed by the student’s academic/research advisor, will be subject to suspension or dismissal from the Graduate School upon consultation with the major department. The final decision on suspension or dismissal will be made by the dean of the Graduate School.

See the Graduate School Rules, https://www.colorado.edu/graduateschool/sites/default/files/attached-files/graduate_school_rules_6.9.18.pdf, for additional information.

*An incomplete (I) grade is given only when students, for documented reasons beyond their control, have been unable to complete course requirements in the semester enrolled. A substantial amount of work must have been satisfactorily completed before approval of such a grade is given. At the end of one year, and I grade given for a course that is not successfully completed or repeated is regarded as an F and shown as such on the student's transcript.

Students who wish to drop a course after the drop deadline must show that they were unable to drop the course during the posted deadlines due to documented reasons that were beyond their control.

Students should refer to the version of the Graduate Handbook in effect at the time of their matriculation for degree plan requirements. Students who are readmitted or continue on from the MS to the PhD program are subject to the handbook in effect at the time of their continuation start date.
Professional Master of Science Degree

Students may elect to enroll in a Professional Master of Science (MS) degree rather than a traditional Master of Science, typically for one of the following reasons:

- Distance Learning students are interested in a coursework-only program.
- International and non-resident students are seeking a more affordable degree option.
- A student desires a more flexible and customized degree program (e.g. incorporating business courses) and/or does not wish to follow a specific focus area curriculum.
- Professional Masters students are ineligible for research or teaching assistantships, and any other university funding such as university fellowships.

Program Requirements:

- The Professional MS is a professional degree program requiring a total of 30 semester hours, at least 24 semester hours of which must be completed at the 5000 level or above, and at least 18 semester hours of which must be ASEN courses (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class).
- Up to 6 credits can be taken at the 4000 level in related engineering, math and science departments (ECEN, CVEN, MCEN, CHEN, CSCI, ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVG). 4000 level ASEN courses are not counted toward the program.
- One of the approved math courses (3 semester hours) listed on page 13.
- Completion of all degree requirements within four years of the date of commencing coursework.
- Master’s degree residence requirements can be met only by residence on the CU Boulder campus for two semesters or three summer sessions, or a combination of at least one semester and two summer sessions. Does not apply to distance learning students.
- Pass all courses with a grade of B- or higher and maintain a cumulative GPA of at least 3.0.

If a student is admitted on a provisional basis, a GPA of 3.25 must be maintained for each semester until 12 credit hours are completed, or the student will be
suspended. Provisional students are required to take a minimum of 12 hours of graduate coursework over a period of 4 semesters. Additional conditions may be placed on a provisional student at the discretion of the department, to account for individual circumstances.
Master of Science Degree

Program Requirements:

- A total of 30 semester hours (including courses, and thesis hours), at least 24 semester hours of which must be completed at the 5000 level or above, with 18 credits in ASEN (CU courses beginning with ASEN XXXX). Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class.

- Up to 6 credits can be taken at the 4000 level in related engineering, math and science departments (ECEN, CVEN, MCEN, CHEN, CSCI, ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVD). 4000 level ASEN courses are not counted toward the program.

- Two to four required courses (6-12 semester hours) as defined by the student’s focus area must be taken in the student’s primary focus/thrust area and one required course (3 semester hours) must be taken in a second focus/thrust area.

- One of the approved math courses (3 semester hours) listed on page 13.

- Seminar credits, even those earned in other disciplines, do not count toward the MS degree.

- Students must fulfill a graduate project requirement (6 credit hours) consisting of either: (1) MS thesis, (2) Graduate Projects I and II, or (3) required courses leading to an approved certificate (or completion of the dual ASEN/EMP degree).

- Graduate Projects (ASEN 5018/6028) is a two-semester course sequence designed to expose MS and PhD students to project management and systems engineering disciplines while working a complex aerospace engineering project as part of a project team. The course is also open to students in other engineering departments with the approval of the project professor. Graduate projects I and II is offered during the summer as a 6-credit course, and will count towards graduation requirements.

- Completion of all degree requirements within four years from the date of commencing coursework, normally completed in one to two years.

- Master’s degree residence requirements can be met only by residence on the CU Boulder campus for two semesters or three summer sessions, or a combination of at least one semester and two summer sessions. Residence in this context refers to a student’s registration for CU Boulder courses. This does not apply to distance learning students.
• Pass all courses with a grade of B- or better, and maintain a cumulative GPA of 3.0 or better.

*Pre-approval of certificate programs offered outside the department is required.

Some required graduate level courses have prerequisites. Students are expected to complete prerequisite materials before enrolling in these courses. For any course to be counted toward the MS degree requirements, the student must earn a grade of B- or higher.

Students in the BS/MS program must also meet the above requirements.

The specific implementation of these requirements and additional requirements for the MS degree in the Department of Aerospace Engineering Sciences are described in the focus area curricula section appearing later in this handbook.

Up to 9 credits from an incomplete MS program may be accepted for degree requirements; however, work already applied toward a graduate degree received from CU Boulder or another institution cannot be accepted for transfer toward another graduate degree at the same level at CU Boulder. For example, work already applied to meet requirements for a master's degree earned by a student cannot be used toward a second master's degree from CU. Also, undergraduate level credits cannot be transferred, including credits earned while in the BS program at CU and prior to matriculation into the masters or PhD programs. Transfer credit is any credit earned prior to matriculation into the graduate program. In addition, work completed for a doctoral degree may not be applied toward a subsequent master's degree. Extension work completed at another institution cannot be transferred; and correspondence work, except to make up deficiencies, is not recognized.

Up to 9 credits from the ACCESS and Be Boulder Anywhere (BBA) programs prior to matriculation will be accepted toward the MS degree. These credits do not have to be transferred, as they appear on the CU transcript. However, Continuing Education (non-degree) credits have to be transferred.
Guidelines for MS thesis:

The MS thesis must consist of original and independent research conducted by the graduate student under the supervision of the faculty advisor. The thesis topic must be related to the major field. The thesis must:

1. Represent the equivalent of 6 semester hours of coursework.
2. Comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications.
3. Be filed with the Graduate School by posted deadlines for the semester for which the degree is to be conferred.

The examination committee for the MS thesis will consist of three graduate faculty members.

See the Graduate School Rules, https://www.colorado.edu/graduateschool/sites/default/files/attached-files/graduate_school_rules_6.9.18.pdf, for additional information.

Courses Satisfying Math Requirement:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5227</td>
<td>Aerospace Math</td>
</tr>
<tr>
<td>ASEN 5307</td>
<td>Engineering Data Analysis Methods (can be used to meet only one curriculum-specific requirement, i.e. math or RSS core and RSS certificate.)</td>
</tr>
<tr>
<td>ASEN 5417</td>
<td>Numerical Methods for Differential Equations</td>
</tr>
<tr>
<td>ASEN 5044</td>
<td>Statistical Estimation for Dynamical Systems (can be used to meet only one curriculum-specific requirement, i.e. math or ASN core and ASN certificate.)</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Multi-Object Filtering Theory (Summer 2014) (Clark)</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Experimental Design and Statistical Methods</td>
</tr>
<tr>
<td>ASEN 6412</td>
<td>Uncertainty Quantification (can be used to meet only one curriculum-specific requirement)</td>
</tr>
<tr>
<td>EMEN 5005</td>
<td>Intro to Applied Statistical Methods</td>
</tr>
<tr>
<td>APPM 4000, 5000, 6000, 7000 level courses</td>
<td></td>
</tr>
<tr>
<td>MATH 4000, 5000, 6000, 7000 level courses</td>
<td></td>
</tr>
<tr>
<td>ECEN 5612</td>
<td>Noise and Random Processes</td>
</tr>
<tr>
<td>ECEN 5632</td>
<td>Theory and Application of Digital Filtering</td>
</tr>
<tr>
<td>ECEN 5642</td>
<td>Modern Methods of Spectral Estimation</td>
</tr>
<tr>
<td>ECEN 5652</td>
<td>Detection and Extraction of Signals from Noise</td>
</tr>
</tbody>
</table>
CU Certificate Programs

Some certificates, noted below, require prior departmental approval to meet the graduate projects requirement.

In interdisciplinary certification programs, graduate students explore an interdisciplinary area while pursuing a master's or doctoral degree in a specific department. The students take classes outside their department and work with a faculty member affiliated with the program. Some programs also have research requirements. Professional certification programs allow professionals to pursue certification apart from degree completion. After completing the required work, students receive a certificate in the interdisciplinary field.

For detailed certificate information, see, http://www.colorado.edu/prospective/graduate/academics/certificates.html

Pre-approved Certificates:

Interdisciplinary Certificates
Some of the most popular certificate programs include the following. Please see the departments for additional programs.

- Astrodynamics and Satellite Navigation
- Atmospheric & Oceanic Sciences
- Environment, Policy and Society
- Oceanography
- Satellite System Design
- Remote Sensing (Modified for RSESS MS students)

Professional Certificates
Electrical and Computer Engineering:

- Embedded Systems
- Energy Communication Networks
- Wireless Networks and Technologies
Engineering Management:

- Engineering Entrepreneurship
- Engineering Management
- Leadership and Management
- Managing Applied Research in Technology
- Performance Excellence in Technology Management
- Project Management
- Quality Systems for Product and Process Engineering
- Six Sigma Statistical Practitioner
- Technology Ventures & Product Management

Telecommunications:

- Computer and Network Security
- Power Electronics
- Software Engineering

Certificates requiring pre-approval:

Interdisciplinary Certificates

- Behavioral Genetics
- Biotechnology
- Cognitive Science
- Development Studies
- Energy
- Geophysics and Hydrologic Sciences
- Neuroscience and Behavior
- Optical Science and Engineering
- Quantitative Biology
- Science and Technology Policy
Doctoral Degree

Prior to admission to the PhD program, the student must have a graduate advisor (member of the Graduate Faculty) who has agreed to supervise the student's dissertation research. A student entering the PhD program in Aerospace Engineering Sciences is not required to possess an MS degree; however, the student must have the proficiency required of a holder of the MS degree given in the Department of Aerospace Engineering Sciences at the University of Colorado to pass the preliminary examination. Until the comprehensive examination is passed, the student is considered a doctoral student. Once passed, the student is admitted to candidacy and officially becomes a PhD candidate.

Program Requirements:

- Total of 36 course credits numbered 5000 or above with 12 of these taken at the 6000 level or above (9 credits at 6000 level or above for the remote sensing focus area), with a minimum cumulative GPA of 3.25, and at least 18 credits must be in ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class). Seminar credits, even those earned in other disciplines, do not count toward the PhD degree.

- Six credits of approved math courses (see list of approved math courses appearing earlier in this handbook; however, 4000 level courses cannot be applied to the PhD).

- Up to 18 credits from an outside MS program can be applied, but not master’s thesis credits. All credits earned from a MS program taken at the University of Colorado can be applied toward a PhD, except for master’s thesis credit.

- Students are required to complete 30 PhD dissertation credits. (See Graduate School Rules for additional information.)

- Students must pass a departmental preliminary examination, or its equivalent, by no later than the end of the 3rd semester if the student already has a master’s degree in aerospace engineering; or the 5th semester if the student does not already have a master’s degree in aerospace engineering.
Students must pass a comprehensive examination by no later than the end of the 5th semester if the student already has an aerospace master’s degree; or the 7th semester if the student does not already have an aerospace master’s degree. Note: students must have completed the 36 required course credits by this semester or the remaining coursework must be pending in the semester in which the comprehensive exam is taken. Students cannot be admitted into candidacy until the necessary coursework is complete. In addition, students need to plan their program such that they meet the requirements of the Graduate School Rules regarding the accumulation of PhD dissertation credits, and within the maximum 6 year program length to complete the PhD. See Graduate School Rules, https://www.colorado.edu/graduateschool/sites/default/files/attached-files/graduate_school_rules_6.9.18.pdf, for additional information. Students must complete a PhD dissertation and successfully defend the dissertation in a final examination.

All degree requirements must be satisfied in a period of 6 years from the commencement of coursework for the PhD.

Course curriculum is defined by the chosen focus area and approved by the faculty advisor. See, focus area curricula charts appearing later in this handbook.

The minimum residence requirement for a PhD is six semesters beyond the attainment of an acceptable bachelor’s degree (2 semesters from another institution may be counted towards this requirement). “Residence” in this context refers to a student’s registration for CU-Boulder courses, and not physical residence.

Continuous registration. A student must register for a minimum of five dissertation hours in the fall and spring semesters of each year, beginning with the semester following the passing of the comprehensive exam and extending through the semester in which the dissertation is successfully defended (final examination).

For the PhD, a course mark below B- is unsatisfactory and will not be counted toward fulfilling the minimum requirements for the degree.

A student who fails to maintain a 3.25 grade point average or to make adequate progress toward completing a degree, as assessed by the student’s advisor, will be subject to suspension from the Graduate School upon
consultation with the major department. The final decision on suspension will be made by the dean of the Graduate School.

Teaching Practicum:

All PhD students are expected to gain teaching experience through a Teaching Practicum. The teaching practicum reflects one semester of documented teaching experience for each PhD student. It may be fulfilled in a number of ways to allow flexibility to the student and their advisor based on interests, skills, and departmental needs. While some teaching activities might be paid assignments from the department (for example, a teaching assistantship or hourly course assistantship), there is no requirement for the teaching practicum to be a paid appointment.

Examples of 1 semester teaching practicum activities:

- Teaching assistant
- Course Assistant (hourly)
- Team-teaching a course with advisor
- Instructor of record or GPTI
- Mentor responsible for UROP, Discovery Learning Apprentice, SURE or SMART student or high school student, for full summer or semester
- Coordinator for focus area seminar

The advisor is responsible for specifying the teaching activities required and providing guidance and assistance to the student in this work. For teaching as a research mentor the advisor should set clear expectations for the role of the graduate student mentor and ensure that both the graduate mentor and the undergraduate student(s) they are working with understand the responsibilities and roles of each. Students must complete the teaching practicum tracking sheet available in the back of this handbook, or in the graduate advising office, prior to or in the semester of their final defense.
PhD Program Timeline and Examinations:

YEARS 1-2 – Preparation for the Preliminary Exam

During the first two years of the PhD program students will take coursework needed for academic preparation, begin conducting research with their advisor, and possibly initiate their teaching practicum.

Preliminary Exam

The **Preliminary Exam** (prelim) evaluates students’ academic qualifications and competency in relevant subject areas for entrance into the PhD program. The goal is to ensure that all students continuing in the program have the technical and communications skills required for successful completion of the doctorate. The prelim must be completed by the end of the third semester if the student already has an aerospace master’s degree upon entry to the program, or the fifth semester if the student does not have an aerospace master’s degree, as a PhD student. After passing the prelim a student is considered a PhD pre-candidate. (Students become PhD candidates after passing the comprehensive exam, described below.)

Subject Matter

The prelim examining committee consists of three ASEN faculty members selected by the student, including the PhD advisor, each of which will examine the student in a different topic. The student must select two topics from the student’s focus area and a third topic from a different focus or thrust area. The topics covered for each focus and thrust area must be selected from the core courses listed in the following Table. Alternate courses must be approved via petition by advisor, course instructor and the focus lead. The committee members determine the topical coverage of the exam for each student. In general, it will include MS level coursework and undergraduate prerequisite material relevant to the student’s and committee members’ focus areas. The exam questions may also address relevant research topics, background material, and integration of material from several courses. Students are expected to discuss expectations for the exam with each of the faculty members they select for their committee. The primary advisor may choose an alternate oral exam format, such as reading and discussing a research paper on the selected topic. However, the student must be given at least a week notice on such reading assignments.
<table>
<thead>
<tr>
<th>Focus/Thrust</th>
<th>Course</th>
</tr>
</thead>
</table>
| Bioastronautics | 5158 Space Habitat Design
| | 5016 Space Life Sciences |
| Remote Sensing | 5235 Atmospheric Radiative Transfer and Remote Sensing
| | 5245 Radar and Remote Sensing |
| | 5307 Engineering Data Analysis Methods |
| | 5335 Space Environment |
| | 6265 Fundamentals of Spectroscopy for Optical Remote Sensing |
| | 6365 Lidar Remote Sensing |
| Astrodynamics & Satellite | 5010 Spacecraft Attitude Dynamics and Control |
| Navigation | 5050 Space Flight Dynamics * |
| | 5090 Introduction to GNSS |
| | 5044 Statistical Estimation for Dynamical Systems |
| Control Thrust | 5014 Linear Control Systems |
| | 5044 Statistical Estimation for Dynamical Systems |
| | 5114 Automatic Control Systems |
| Fluid Thrust | 5051 Fluid Mechanics |
| | 5037 Turbulent Flows (to become ASEN 6037) |
| | 5151 High Speed Aerodynamics |
| Structures Thrust | 5012 Mechanics of Aerospace Structures |
| | 5022 Introduction to Dynamics of Aerospace Structures |
| | 5007 Introduction to Finite Elements |
| | 5111 Aeroelasticity |
| | 5519 Design Optimization in Aerospace Systems |

*ASEN 5519: Analytical Astrodynamics is an alternative option to ASEN 5050. ASEN 5519: Analytical Astrodynamics will satisfy the same requirements and prerequisites as ASEN 5050.

Logistics

The exam comprises a written and oral component, both administered by the student’s prelim committee. Each faculty member will ask one or more questions on both the written and oral exams. The written exam is typically given each year on the **second Monday in September**. Unless otherwise noted, the exam is closed-book and closed notes and has duration of 6 hours. Students can bring up to 3
cheat sheets, which are written on 8.5" x 11” paper and can have notes on both sides.

a. Students return the Preliminary Exam form to the graduate advisor by the posted deadline with the names of the three faculty members they have asked to sit on the committee.

b. The student’s faculty advisor should be the committee chair.

c. The oral exam is scheduled by the student within 1-2 weeks after the written exam.

d. The oral exam has duration of 1-2 hours.

Students are NOT allowed to discuss the preliminary examination with other students until after ALL preliminary examinations are completed – written and oral. Failure to abide by this rule is an Honor Code violation.

Grading

The committee will provide an overall recommendation on the student’s progress, and determine one of the following outcomes:

- Preliminary examination is passed unconditionally
- Preliminary examination has conditions placed. Conditions must be completed within one month of the next exam offering.
- Preliminary examination was unsatisfactory. Students who fail the exam may retest at the next exam offering. Students who fail to pass the exam after the second attempt will be dismissed from the PhD program.

Committee members will evaluate the examinee based on the following parameters:

1. **Written exams** – Each member will grade the written exam on a 0-100% scale before holding the oral examination. The lead committee member takes the written scores and records the cumulative level of competency (satisfactory/marginal/unsatisfactory) on the prelim form in the written exam line. All members will hold on to the graded exams as they may want to revisit questions during the oral exam.

2. **Oral exams** – Each member participates in the oral exam. Before the oral exam starts, the student is briefly dismissed so all committee members can discuss the written exam outcome. Upon completion of the exam, committee members record a cumulative level of competency
satisfactory/marginal/unsatisfactory) on the prelim form in the oral exam line.

3. Pass / Conditional Pass / Fail – After the oral examinations are completed, the committee will make its final decision on whether the student passes unconditionally, with conditions, or fails. The lead committee member will notify the student of the outcome.

In marginal cases, the preliminary examination committee may factor in a student’s research and/or teaching abilities into its final decision.

YEARS 2-3 – Preparation for the Comprehensive Exam and Admission to Candidacy

After completing the requisite coursework a doctoral student is eligible to apply for candidacy for the PhD degree by submitting the form "Application for Admission to Candidacy for an Advanced Degree" to the Graduate School. Before admission into candidacy, the student must pass a comprehensive examination. An "Exam Request Form" must be submitted to the Graduate School at least two weeks in advance of the exam.

In the second and third year of the program, PhD students who have successfully passed the Preliminary Exam work on advancing their specialized technical expertise, and in collaboration with their advisor, begin the process of defining their specific doctoral research topic. By no later than their fifth (came to CU with MS) or seventh semester (came to CU with BS), they must pass the comprehensive examination, administered by a 5-member thesis committee that includes 3 Tenured, Tenure-Track, Research, Adjunct or Adjoint ASEN professors (not including instructors, or those with special appointments) and 1 external (non-ASEN) member. Non-CU persons must be approved by the Graduate School. Non-CU persons must be approved by the Graduate School. Professors from other departments who hold courtesy appointments in ASEN can be included as either internal or external members, but not both. Each student should work with their advisor to identify suitable faculty members to serve on the committee; and then must submit the names for review and approval by the Graduate School. This committee will serve as the examining board for both the Comprehensive Examination and Final Defense Examination.

The following summarizes the preliminary exam committee make-up requirements. Note that if a non-CU person is selected, they must be approved and setup by the graduate school.

1 https://www.colorado.edu/graduateschool/graduate-faculty-membership-0
1. ASEN Tenured, Tenure-Track, Research, Adjunct or Adjoint ASEN professors
2. ASEN Tenured, Tenure-Track, Research, Adjunct or Adjoint ASEN professors
3. ASEN Tenured, Tenure-Track, Research, Adjunct or Adjoint ASEN professors
4. Open slot: any faculty or researcher with an appointment to serve on a PhD committee, or a person who holds a PhD and currently works in industry or a research lab
5. Non-ASEN external member: could be a non-ASEN faculty member from CU or a different university, or a person who holds a PhD and currently works in industry or a research lab

The Comprehensive Exam tests mastery of a broad field of knowledge, not merely formal coursework. It will include a written and an oral element, which together test the student’s depth of understanding of their technical area. The written element will consist of a research proposal (~15-20 pages) that demonstrates the student’s capacity for scholarly work in their chosen topic, including a timeline for the proposed tasks. The oral exam will include a presentation by the student defending their written proposal and addressing questions from the thesis committee and other faculty who may attend. The oral presentation should be about 45 minutes and address the following questions:

1. Why is the proposed research of interest, how does it compare to prior work?
2. Is the proposed research challenging enough to be worthy of a PhD dissertation?
3. Is the student qualified and knowledgeable enough to perform the proposed work?
4. Are the timeline and the scope of the proposed work reasonable?

The outcome of the comprehensive exam is determined by Graduate School procedures. Students who successfully pass this exam then are considered PhD Candidates. A successful candidate must receive the affirmative votes of a majority of the members of the examining board. The student is automatically dismissed by the Graduate School after a second failure. Details on the Comprehensive Examination format can be found on the Graduate School website.

Successful completion of the comprehensive exam is required before a student is admitted into PhD candidacy. The following guidelines for the comprehensive examination are given:

1. A student shall have earned at least four semesters of residence, have a GPA of 3.25 for all graduate ASEN or CU coursework, and shall have passed the Comprehensive Examination before admission to candidacy is approved by
the Graduate School. The Comprehensive Examination must be taken at least one semester before the Final Exam.

2. The Exam is conducted by a group of at least 5 graduate faculty members who comprise the thesis committee.

3. At least two weeks before the comprehensive exam, the candidate must complete the Candidacy Application for Advanced Degree form and the Doctoral Exam Report and submit those documents to the graduate advisor in the aerospace offices for approval by the Graduate School. The graduate advisor will send the chair of the committee the Exam Report, and the chair will take it into the comprehensive exam. This form must be returned, signed by all committee members, to the graduate advisor once the exam is complete.

4. At least one week before the exam, the candidate must provide each member of the thesis committee with a written document consisting of a detailed written proposal for the thesis research.

5. The examination typically requires a time period of about 2 hours. The candidate makes an oral presentation on the research proposal, typically of duration of about 40 minutes. The remainder of the exam consists of questions directed to the candidate by the committee members. The questions typically pertain to the subject matter and content of the proposal, but may also be asked on topics outside this area, at the committee's discretion.

6. A successful candidate must receive the affirmative votes of a majority of the members of the examining board. In case of failure, the examination may be attempted once more after a period of time determined by the thesis committee. The student is automatically suspended after a second failure.

A successful written research proposal and examination convinces the thesis committee that the candidate has:

- a thorough understanding of the research literature in the chosen field
- articulated an original and significant research program
- familiarity with the tools and methods of the proposed research
- identified a project that is of the appropriate scope for a PhD thesis
- a reasonable plan to complete the research in the time period allowed for the PhD requirements.

Typically, a successful candidate will have conducted some preliminary research on the thesis topic prior to the examination, and these preliminary results should be included in the research proposal.
Exam forms can be obtained from the Graduate Advisor.

YEARS 3 and beyond – Dissertation Research, Professional Training, & Teaching

In the subsequent years of the program, the PhD candidate will work with the faculty to conduct research which includes writing and presenting technical papers at conferences and in journals, reviewing technical papers, writing research proposals, and mentoring undergraduate, MS, or new doctoral students. They will also take advanced coursework and complete their teaching practicum. Both the advisor and student are responsible for ensuring that the work is adequately progressing. The student will meet with each of the members of their thesis committee at least once per semester to assess progress and to obtain feedback.

PhD Dissertation

A dissertation based upon original investigation and showing mature scholarship and critical judgment, as well as familiarity with the tools and methods of the research, must be written upon a subject approved by the student’s committee chair. Each dissertation presented in partial fulfillment of the doctoral degree must:

1. Comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications.
2. Be filed with the Graduate School by the posted deadline for the semester in which the degree is to be conferred.

Final Examination

After the dissertation has been accepted by the student’s committee a final examination of the dissertation and related topics will be conducted. The following rules must be observed:

1. A student must be registered as a regular degree student on the Boulder Campus for a minimum of five, and no more than ten, dissertation hours the semester in which the final examination is scheduled.
2. The examination will be oral and open to anyone who wishes to attend
3. The examination will be conducted by the same dissertation committee in place for the comprehensive exam.
4. More than one dissenting vote will disqualify the candidate. In case of failure, the examination may be attempted only one more time. A second failure will result in automatic suspension by the Graduate School. Signatures from all committee members are required.
5. Arrangements for the final examination must be made in the Graduate School at least two weeks in advance of the scheduled date of the examination (this is arranged through the ASEN Graduate Advisor).

See the Graduate School Rules for additional information, https://www.colorado.edu/graduateschool/sites/default/files/attached-files/graduate_school_rules_6.9.18.pdf
The MS and PhD programs in Aerospace Engineering Sciences are organized into four focus areas listed below. Graduate students are admitted into a specific focus area which provides research advising and financial support, and sets specialized admission and program requirements and recommendations for coursework within and outside the department.

- Aerospace Engineering Systems (AESys)
- Astrodynamics and Satellite Navigation Systems (ASN)
- Bioastronautics (Bio)
- Remote Sensing, Earth and Space Science (RSESS)

Many of our faculty members have interests in two or more of these areas and, in fact, some students may end up doing research that spans multiple focus areas. The purpose of defining these areas is to allow for specialization of the academic program in a sustainable way, aligned with primary research interests of the faculty. Furthermore, by bringing students directly into one of these groups we seek to facilitate and strengthen their connection with a primary advisor and with other like-minded students in the department.

Each focus area will define the required characteristics of their successful graduates at the MS and PhD level and will define a set of required and elective courses to be offered on a regular basis that support their educational program. Each focus area is encouraged to look for synergy with other areas and other departments to avoid duplication and to enhance multidisciplinary education.
Focus Area Curricula Charts

The following pages provide charts listing the courses offered by each of the focus areas and their area specific requirements for the MS and PhD Courses shown in bold are MS Core courses. All others are considered MS or PhD electives.

Aerospace Engineering Systems (AESys)

AESys Specific MS Requirements

- 2 Core Classes in one thrust area (Fluid Dynamics and Propulsion, Automatic Control, or Structures and Materials); 1 core course in a second thrust area within AESys.
- 2 electives from the student’s core thrust area.

Note: for AESys focus area ONLY, MS requirement of outside core is waived; however, BBA students in the structures thrust area must take an outside core course to fulfill the second thrust area requirement since no fluids or control courses are currently offered through BBA.

AESys Specific PhD Requirements

- 2 Core Classes in one thrust area (Fluid Dynamics and Propulsion, Automatic Control, or Structures and Materials); 1 core course in a second thrust area within AESys or one of the APPM 5600, APPM 5610, APPM 6610 or APPM 6640 courses.
- 2 of the AESys 6000 level electives in one thrust area (these may be the same courses used to satisfy the MS Requirements).
Thrust Area: Automatic Control

Core MS Courses in Thrust Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5114</td>
<td>Automatic Control Systems</td>
<td>F</td>
</tr>
<tr>
<td>ASEN 5014</td>
<td>Linear Systems Theory</td>
<td>F</td>
</tr>
<tr>
<td>ASEN 5010</td>
<td>Attitude Dynamics and Control (cannot count as outside core for ASN focus)</td>
<td>S</td>
</tr>
<tr>
<td>ASEN 5044</td>
<td>Statistical Estimation for Dynamical Systems (can count for controls core or controls elective OR math but not both)</td>
<td>F</td>
</tr>
</tbody>
</table>

Elective Courses offered by Controls Thrust Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 6024</td>
<td>Nonlinear Systems</td>
<td>B, S</td>
</tr>
<tr>
<td>ASEN 5148</td>
<td>Spacecraft Design</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Aerobotics</td>
<td>F</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Microavionics</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>UAS in the NAS</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Multi-Object Filtering Theory</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Classical Thermodynamics</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Inverse Methods</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>High Performance Computing</td>
<td>B</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Small Unmanned Aircraft SGNC</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Isogeometric Analysis</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>High Performance Computing</td>
<td>B</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Cooperative Control of Multi-Vehicle Systems</td>
<td>B, S</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Model-Based Parameter & State Estimation</td>
<td>B, S</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>System Identification for Control</td>
<td>B, S</td>
</tr>
</tbody>
</table>
Additional Elective Courses accepted by Controls Thrust Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, Biennially - triennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 6080</td>
<td>Advanced Statistical Orbit Determination</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 6020</td>
<td>Optimal Trajectories</td>
<td>F, T</td>
</tr>
</tbody>
</table>
Thrust Area: Fluids and Propulsion

Core MS Courses in Thrust Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, O-Odd, E-Even Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5051</td>
<td>Fluid Mechanics (REQUIRED)</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5151</td>
<td>High Speed Aerodynamics</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 6037</td>
<td>Turbulence</td>
<td>S-A</td>
</tr>
</tbody>
</table>

Elective Courses offered by Fluids Thrust Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, O-Odd, E-Even Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5053</td>
<td>Rocket Propulsion</td>
<td>S-O</td>
</tr>
<tr>
<td>ASEN 5063</td>
<td>Aircraft Propulsion</td>
<td>F-E</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Boundary Layers, Convection, and Applied CFD</td>
<td>S-O</td>
</tr>
<tr>
<td>MCEN 6001</td>
<td>Reacting Flows</td>
<td>S-E</td>
</tr>
<tr>
<td>ASEN 6321</td>
<td>Computational Fluid Dynamics Structured Grid</td>
<td>F-E</td>
</tr>
<tr>
<td>ASEN 6331</td>
<td>Computational Fluid Dynamics Unstructured Grid</td>
<td>F-O</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Experimental Fluid Mechanics</td>
<td>F-E</td>
</tr>
<tr>
<td>ASEN 6061</td>
<td>Molecular Gas Dynamics and Direct Monte Carlo Simulation</td>
<td>As Offered</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Advanced Turbulence Simulation</td>
<td>As Offered</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Flow Control</td>
<td>As Offered</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Stabilized and Multiscale Finite Element</td>
<td>As Offered</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Mathematical Foundations of Finite Element Analysis</td>
<td>As Offered</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Isogeometric Analysis</td>
<td>As Offered</td>
</tr>
</tbody>
</table>
Thrust Area: Structures and Materials

Core MS Courses in Thrust Area:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5012</td>
<td>Mechanics of Aerospace Structures</td>
<td>F, A</td>
</tr>
<tr>
<td>ASEN 5022</td>
<td>Introduction to Dynamics of Aerospace Structures</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 5007</td>
<td>Introduction to Finite Elements</td>
<td>F, A</td>
</tr>
</tbody>
</table>

Elective Courses offered by Structures Thrust Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5111</td>
<td>Aeroelasticity</td>
<td>S, B</td>
</tr>
<tr>
<td>ASEN 5148</td>
<td>Spacecraft Design</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Design Optimization in Aerospace Systems</td>
<td>S, B</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Introduction to Phononics</td>
<td>F, B</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Inverse Methods</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Classical Thermodynamics</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Deploy and Lightweight Structure</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Molecular Dynamics</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5188/Same as EMEN 5405</td>
<td>Space Systems Engineering</td>
<td>S</td>
</tr>
<tr>
<td>ASEN 6024</td>
<td>Nonlinear Systems</td>
<td>B, S</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Isogeometric Analysis</td>
<td>F</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>High Performance Computing</td>
<td>B</td>
</tr>
<tr>
<td>ASEN 6517</td>
<td>Computational Methods in Dynamics</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6107</td>
<td>Nonlinear Finite Elements</td>
<td>S, B</td>
</tr>
<tr>
<td>ASEN 6367</td>
<td>Advanced Finite Elements for Plates & Shells</td>
<td>S, B</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Engineering Nonlinear Dynamics</td>
<td>S, B</td>
</tr>
<tr>
<td>ASEN 6412</td>
<td>Uncertainty Quantification</td>
<td>S, B</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Cooperative Control of Multi-Vehicle Systems</td>
<td>Varies</td>
</tr>
</tbody>
</table>
Astrodynamics and Satellite Navigation Systems (ASN)

ASN Specific MS Requirements

3 ASN Core Classes

Required MS Course outside focus area: ASEN 5051, ASEN 6327, ASEN 5151, ASEN 5114, ASEN 5014, ASEN 5012, ASEN 5022, ASEN 5007, ASEN 5016, ASEN 5148, ASEN 5158, ASEN 5307, ASEN 5337, ASEN 5168, ASEN 5245, ASEN 5215, ASEN 5335, ASEN 5235

Required MS Courses in Focus Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title (faculty who teach)</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5010</td>
<td>Attitude Dynamics and Control</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 5050*</td>
<td>Space Flight Dynamics</td>
<td>F, A</td>
</tr>
<tr>
<td>ASEN 5090</td>
<td>Introduction to GNSS</td>
<td>F, A</td>
</tr>
<tr>
<td>ASEN 5044</td>
<td>Statistical Estimation for Dynamical Systems</td>
<td>F, A</td>
</tr>
</tbody>
</table>

ASEN 5519: Analytical Astrodynamics is an alternative option to ASEN 5050. ASEN 5519: Analytical Astrodynamics will satisfy the same requirements and prerequisites as ASEN 5050.
Elective Courses offered by Focus Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially, T - triennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 6070</td>
<td>Satellite Geodesy</td>
<td>F/B</td>
</tr>
<tr>
<td>ASEN 6080</td>
<td>Advanced Statistical Orbit Determination</td>
<td>S/B</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Astro Applications of Dynamical Systems Theory</td>
<td>F/B</td>
</tr>
<tr>
<td>ASEN 6008</td>
<td>Interplanetary Mission Design</td>
<td>A</td>
</tr>
<tr>
<td>ASEN 6020</td>
<td>Optimal Trajectories</td>
<td>F/T</td>
</tr>
<tr>
<td>ASEN 6010</td>
<td>Advanced Spacecraft Dynamics and Control</td>
<td>F/B</td>
</tr>
<tr>
<td>ASEN 6014</td>
<td>Spacecraft Formation Flying</td>
<td>F/B</td>
</tr>
<tr>
<td>ASEN 6060</td>
<td>Advanced Astrodynamics</td>
<td>F/T</td>
</tr>
<tr>
<td>ASEN 6090</td>
<td>Advanced GNSS Software</td>
<td>S/B</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Celestial Mechanics</td>
<td>F/T</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Satellite Navigation Receiver Architecture</td>
<td>S/B</td>
</tr>
</tbody>
</table>
Bioastronautics

Bio Specific MS Requirements
ASEN 5016 Space Life Sciences
ASEN 5158 Space Habitat Design
ASEN 5335 Aerospace Environment (RSESS)*
ASEN 5050 Space Flight Dynamics (ASN)*
ASEN 5053 Rocket Propulsion (VS)*
*any 2 of 3

Bio Specific PhD Requirements
This specialized field of study addressing human spaceflight is typically augmented with coursework tailored to meet the student’s specific career interests, and may include related topics in spacecraft engineering design, life sciences or other areas relevant to the needs of the research.

ASEN 5016 Space Life Sciences
ASEN 5158 Space Habitat Design

Required MS Courses in Focus Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F – Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5016</td>
<td>Space Life Sciences</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 5158</td>
<td>Space Habitat Design</td>
<td>F, A</td>
</tr>
</tbody>
</table>
Required MS Courses outside Focus Area (any 2 of 3):

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5335</td>
<td>Aerospace Environment</td>
<td>S, A</td>
</tr>
<tr>
<td>ASEN 5050†</td>
<td>Space Flight Dynamics</td>
<td>F, A</td>
</tr>
<tr>
<td>ASEN 5053</td>
<td>Rocket Propulsion</td>
<td>F</td>
</tr>
</tbody>
</table>

†ASEN 5519: Analytical Astrodynamics is an alternative option to ASEN 5050. ASEN 5519: Analytical Astrodynamics will satisfy the same requirements and prerequisites as ASEN 5050.

Elective Courses offered by Focus Area:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5519</td>
<td>Experimental Design and Statistical Methods</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6116</td>
<td>Spacecraft Life Support Systems</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Extravehicular Activity</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Human Operation of Aerospace Vehicles</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 5849</td>
<td>MS Independent Study</td>
<td>on request</td>
</tr>
<tr>
<td>ASEN 6849</td>
<td>Independent Study (for PhD ‘pre/non-thesis’ topic)</td>
<td>on request</td>
</tr>
</tbody>
</table>
Remote Sensing, Earth and Space Science (RSESS)

Remote Sensing, Earth and Space Sciences focus area is a field that embodies a broad multidisciplinary approach. The expected competency at the graduating masters level in the RSESS focus area is to have completed coursework in four primary topics of study (1) Data or Numerical Analysis Methods, (2) Instrumentation Fundamentals, (3) Physical Sciences of Earth and Space and (4) Astrodynamics or Aerospace Engineering Systems.

The below requirements are applicable to both MS and PhD candidates in the RSESS focus area.

The expected competency at the PhD level is to further advance the four primary topics within RSESS by complementary theory and analysis obtained through coursework offered at the 6000 level and above, and by research activities in developing the PhD thesis.

Required courses needed to specialize in the RSESS focus area are:

1. One course in data or numerical analysis
2. One course in instrumentation
3. One course in physical science
4. One course in astrodynamics or aerospace engineering systems
5. PhD students are strongly encouraged to enroll for the remote sensing seminar and present their research.

MS students interested in using the Remote Sensing Certificate for their degree requirements in lieu of an MS thesis or two semester graduate project must complete the certificate requirements described in this Handbook. RSESS students may count a maximum of 2 of the 4 required RSESS focus area courses toward the certificate requirement.

Below is a list of core RSESS courses, offered regularly by the AES faculty, that satisfy the four primary topics. These are listed as core courses as their content satisfies a primary topic in our focus area. Students can design a course schedule with their graduate faculty advisor to insure their course selections satisfy the RSESS focus area. It is possible to petition courses outside of these core courses to fulfill the required coursework as long as they meet the four topics of study outlined above and that the general guidelines of the AES graduate program are met.
RSESS Data or Numerical Analysis Courses (1):

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5307</td>
<td>Engineering Data Analysis</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 5337</td>
<td>Remote Sensing Data Analysis</td>
<td>F-A</td>
</tr>
<tr>
<td>APPM 5540</td>
<td>Introduction to Time Series</td>
<td>S-A</td>
</tr>
<tr>
<td>APPM 5580</td>
<td>Statistical Methods for Data Analysis</td>
<td>S-A</td>
</tr>
<tr>
<td>APPM 5520</td>
<td>Introduction to Mathematical Statistics</td>
<td>Varies</td>
</tr>
<tr>
<td>APPM 5570/EMEN 5005</td>
<td>Statistical Methods</td>
<td>Varies</td>
</tr>
<tr>
<td>APPM 5350</td>
<td>Methods in Applied Mathematics: Fourier Series and Boundary Value Problems</td>
<td>Varies</td>
</tr>
<tr>
<td>ECEN 5612</td>
<td>Noise and Random Processes</td>
<td>F-A</td>
</tr>
<tr>
<td>ECEN 5632</td>
<td>Theory and Application of Digital Filtering</td>
<td>F-A</td>
</tr>
<tr>
<td>ECEN 5642</td>
<td>Modern Methods of Spectral Estimation</td>
<td>S-A</td>
</tr>
<tr>
<td>ECEN 5652</td>
<td>Detection and Extraction of Signals from Noise</td>
<td>S-A</td>
</tr>
</tbody>
</table>

RSESS Instrumentation Courses (2):

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5168</td>
<td>Remote Sensing Instrumentation</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 5245</td>
<td>Radar and Remote Sensing</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 6265</td>
<td>Fundamentals of Spectroscopy for Optical Remote Sensing</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Microcontroller Fundamentals with Aero Applications</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5090</td>
<td>Global Navigation Satellite Systems</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 6050</td>
<td>Space Instrumentation</td>
<td>Varies</td>
</tr>
<tr>
<td>ASEN 6365</td>
<td>Lidar Remote Sensing</td>
<td>S-B</td>
</tr>
</tbody>
</table>
RSESS Physical Sciences Courses (3):

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5215</td>
<td>Oceanography</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 5519</td>
<td>Ocean Modeling</td>
<td>F-B</td>
</tr>
<tr>
<td>ASEN 5335</td>
<td>Aerospace Environment</td>
<td>S-A</td>
</tr>
<tr>
<td>ATOC 5050</td>
<td>Introduction to Orbital Dynamics</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5235</td>
<td>Introduction to Atmospheric Radiation Transfer and Remote Sensing</td>
<td>S-A</td>
</tr>
<tr>
<td>ATOC 5060</td>
<td>Dynamics of the Atmosphere</td>
<td>S-A</td>
</tr>
<tr>
<td>ATOC 5051</td>
<td>Introduction to Physical Oceanography</td>
<td>F-A</td>
</tr>
<tr>
<td>ATOC 5050</td>
<td>Introduction to Atmospheric Dynamics</td>
<td></td>
</tr>
<tr>
<td>ATOC 5060</td>
<td>Dynamics of the Atmosphere</td>
<td></td>
</tr>
<tr>
<td>ATOC 5051</td>
<td>Introduction to Physical Oceanography</td>
<td></td>
</tr>
<tr>
<td>ASTR 5140</td>
<td>Astrophysical and Space Plasmas (same as PHYS 5141)</td>
<td></td>
</tr>
<tr>
<td>ASTR 5150</td>
<td>Introduction to Plasma Physics (same as PHYS 5150)</td>
<td></td>
</tr>
<tr>
<td>ASTR 5300</td>
<td>Introduction to Magnetospheres</td>
<td></td>
</tr>
<tr>
<td>ASEN 6519</td>
<td>Special Topics in Aerospace Environment: Upper Atmospheres</td>
<td>S-B</td>
</tr>
</tbody>
</table>

RSESS ASN or AESys Courses (4):

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5014</td>
<td>Linear Systems Theory</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5050*</td>
<td>Space Flight Dynamics</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5051</td>
<td>Fluid Mechanics</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5061</td>
<td>Intro to Real Gas Dynamics</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5148</td>
<td>Spacecraft Design</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 6060</td>
<td>Satellite Geodesy</td>
<td>S-B</td>
</tr>
<tr>
<td>ASEN 6080</td>
<td>Advanced Statistical Orbit Determination</td>
<td>S-B</td>
</tr>
</tbody>
</table>

ASEN 5519: Analytical Astrodynamics is an alternative option to ASEN 5050. ASEN 5519: Analytical Astrodynamics will satisfy the same requirements and prerequisites as ASEN 5050.
Other Courses of interest to RSESS students:

<table>
<thead>
<tr>
<th>Course Number (current)</th>
<th>Title</th>
<th>Offering (F - Fall, S – Spring, A – annually, B – biennially)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN 5227</td>
<td>Aerospace Math</td>
<td>F-A</td>
</tr>
<tr>
<td>ASEN 5327</td>
<td>Computational Fluid Mechanics</td>
<td>S-A</td>
</tr>
<tr>
<td>ASEN 5417</td>
<td>Numerical Methods for Differential Equations</td>
<td>S-A</td>
</tr>
<tr>
<td>ECEN 5134</td>
<td>Electromagnetic Radiation and Antennas</td>
<td>F-A</td>
</tr>
<tr>
<td>ECEN 5254</td>
<td>Radar Remote Sensing</td>
<td>S-B</td>
</tr>
<tr>
<td>PHYS 7310</td>
<td>Electromagnetic Theory I</td>
<td>F-A</td>
</tr>
</tbody>
</table>
Certificates

The University of Colorado recognizes that interdisciplinary study at the graduate level may involve coursework and formal requirements that exceed those of established degree programs. To recognize this additional work by graduate students, interdisciplinary faculty may establish a certificate program within the Graduate School. In addition to earning a Certificate while pursuing a graduate degree, the Graduate School has extended the Certificate program to students who have received a B.A. or B.S. degree and are continuing to take courses but are not enrolled in a graduate degree program and meet the course prerequisites.

Students in the Department of Aerospace Engineering Sciences may want to consider obtaining a Certificate in Remote Sensing, or a Certificate in Astrodynamics and Satellite Navigation Systems.

Certificate in Remote Sensing

Remote sensing (satellite and ground-based) is increasingly being used as a technique to probe the Earth's atmosphere, ocean and land surfaces. Probing of other planets is accomplished largely by satellite remote sensing. Given national priorities in such areas as climate and global change, the interest in remote sensing will only increase with time.

Remote sensing is a relatively new academic subject, with few universities having any sort of an organized curriculum. The purpose of formalizing the CU remote sensing curriculum is to coordinate curricula across campus so that a coherent curriculum in remote sensing can be provided to complement and supplement the students' regular degree program. An additional purpose is to encourage multidisciplinary education of the students in the area of remote sensing.

Graduate students, research staff, and faculty work on a wide variety of topics, ranging from the theory of remote sensing, to its application. These applications include: use of satellite remote sensing to determine ocean surface temperature and heat fluxes; use of surface radar to improve the determination of clouds and precipitation from satellite; determination of surface biological characteristics and productivity from satellite; mapping of land use from satellite; mapping of surface landform and topographical features; searching for locations of buried artifacts; use of surface radar to determine upper atmosphere wind motions; and aircraft remote sensing to assess the validity of satellite retrieval algorithms of surface and atmospheric characteristics.
Certificate Requirements

1. Four courses are required totaling at least 12 credits, with grades of B or better.
2. Two courses from one of the following topical areas:
 a. Data Analysis
 b. Instrumentation and Measurement Techniques
 c. Remote Sensing Theory
3. One course in each of the two remaining topical areas
4. At least one semester of Remote Sensing Seminar (currently listed as ASEN 5210 and ATOC 7500).

Data Analysis Courses:

- ASEN 5307 Engineering Data Analysis
- ASTR 5550 Observations, Data Analysis, and Statistics
- ECEN 5004 Environmental Signal Processing
- ECEN 5254 Remote Sensing Signals and Systems
- ECEN 5612 Noise and Random Processes
- ECEN 5652 Detection and Extraction of Signals from Noise
- GEOG 5103 Intro to Geographical Information Systems
- GEOG 5203 GIS and Spatial Modeling
- GEOG 5303 GIS Programming for Spatial Analysis

Instrumentation & Measurement Techniques Courses:

- ASEN 5168 Remote Sensing Instrumentation Design
- ASEN 5245 Radar and Remote Sensing
- ASEN 6091 GNSS Receiver Architecture
- ASEN 6365 Lidar Remote Sensing
- ASTR 5760 Astrophysical Instrumentation
- ECEN 5134 Electromagnetic Radiation and Antennas
- ECEN 5274 Radar Science and Techniques
- PHYS 5160 Fundamentals of Optics and Lasers
- ASEN 6050 Space Instrumentation
- GEOG 5100 Adv. Measurements in Snow Measurement

Remote Sensing Theory Courses:
- ATOC/ASEN 5235 Intro to Atmos Rad Trans & Remote Sens
- ASEN 6265 Fundamentals of Spectroscopy
- ATOC/ASTR 5560 Radiative Processes in Planetary Atmosphere
- ECEN 5264 Electromag Absorption, Scattering & Propagation
- GEOL/GEOG 5093 Remote Sensing of the Environment
- GEOG 5100 Advanced Remote Sensing
- PHYS/ASTR 5150 Plasma Physics

Admission Requirements

Requirements for a Graduate Certificate in Astrodynamics and Satellite Navigation Systems:

- Email aerograd@colorado.edu to be registered as an certificate-seeking student.
- Completion, with a grade of B or better, of all required courses.
- Upon completion of your courses, complete the certificate request form and submit it to the Graduate Advisor, aerograd@colorado.edu.
Certificate in Astrodynamics and Satellite Navigation Systems (ASN)

The certificate recognizes student accomplishments at the graduate level in successfully completing a specialized program of study in Astrodynamics and Satellite Navigation (ASN). It is essentially a specialization of the Aerospace Engineering Sciences Master of Science (MS) degree in the ASN focus area with additional requirements for breadth and depth in the ASN area.

The certificate will make students more desirable to future employers looking for the astrodynamics and satellite navigation specialists.

Certificate Requirements

Complete all four core area subjects in ASN, plus two advanced ASN courses of the student's choosing.

Core Requirements:
ASEN 5010 - Spacecraft Attitude Dynamics and Control
ASEN 5050 - Astrodynamics†
ASEN 5044 - Statistical Estimation for Dynamical Systems
ASEN 5090 - Introduction to Global Navigation Satellite Systems

*Any core requirement can be satisfied by taking an additional 6000 level course which has the corresponding core requirement as a prerequisite.

†ASEN 5519: Analytical Astrodynamics is an alternative option to ASEN 5050. ASEN 5519: Analytical Astrodynamics will satisfy the same requirements and prerequisites as ASEN 5050.

Advanced Requirements - Select ANY two 6000 level courses in ASN including (but not limited to):
ASEN 6090 GNSS Software and Applications (course number assignment pending)
ASEN 6091 Satellite Navigation Receiver and Architectures (course number assignment pending)
ASEN 6080 Advanced Statistical Orbit Determination
ASEN 6010 Advanced Spacecraft Attitude and Control
ASEN 6014 Spacecraft Formation Flying
ASEN 6020 Optimal Trajectories
ASEN 6060 Advanced Astrodynamics
Admission Requirements

Requirements for a Graduate Certificate in Astrodynamics and Satellite Navigation Systems:

- Email aerograd@colorado.edu to be registered as a certificate-seeking student.
- Approval of your ASN course selections.
- Completion, with a grade of B or better, of all required courses.
- Upon completion of your courses, complete the certificate request form and submit it to the Graduate Advisor, aerograd@colorado.edu.
Certificate in Satellite System Design (SSD)

The certificate recognizes student accomplishments at the graduate level in successfully completing a specialized program of study in Satellite System Design (SSD). It blends courses from the Smead Department of Aerospace Engineering Sciences, Electrical, Computer and Energy Engineering and Engineering Management Departments. The certificate will allow students to develop interdisciplinary skills in the area of satellite design, making them more desirable to future employers.

Certificate Requirements

Track 1: Hands-on (recommended for on campus students)

ASEN 5148 – Spacecraft Design*
ASEN 5018 and 6028 – Graduate Projects (Project must have a satellite or rocket focus)
1 course from elective list

Track 2: Distance Compatible Track

ASEN 5148 – Spacecraft Design*
EMEN 5405 – Fundamentals of System Engineering*
2 courses from elective list (no more than one EMEN course)

To develop cross-disciplinary breadth, students are strongly encouraged, but not required, to choose elective courses outside of their major.

Elective list

ASEN 5010 – Spacecraft Attitude Dynamics and Control*
ASEN 5050 – Space Flight Mechanics†
ASEN 5053 – Rocket Propulsion
ASEN 5090 – Introduction to Global Navigation Satellite Systems*
ASEN 5335 – Aerospace Environment*
ASEN 5519 – Microavionics
ECEN 5134 – Electromagnetic Radiation and Antennas*
ECEN 5264 – Electromagnetic Absorption, Scattering and Propagation*
ECEN 5517 – Photovoltaic Power Electronics Laboratory
ECEN 5613 – Embedded System Design
ECEN 5623 – Real-Time Embedded Systems
ECEN 5634 – Graduate Microwave and RF Laboratory
ECEN 5692 – Principles of Digital Communications
ECEN 5797 – Introduction to Power Electronics*
ECEN 5813 – Principles of Embedded Software
EMEN 5010 – Introduction to Engineering Management*
EMEN 5030 – Fundamentals of Project Management*
EMEN 5031 – Software Project Management*
EMEN 5405 – Fundamentals of System Engineering*

1: Students are required to meet course prerequisites. Question should be directed to the course instructor.
2: Core ASN certificate courses. Cannot be counted for both certificates.
3: Course enrollment is limited to non-Electrical Engineering students.
* Courses available via distance.
† ASEN 5519: Analytical Astrodynamics is an alternative option to ASEN 5050. ASEN 5519: Analytical Astrodynamics will satisfy the same requirements and prerequisites as ASEN 5050.

Admission Requirements

Requirements for a Graduate Certificate in Satellite System Design:

• Approval of your SSD course selections.
• Email aerograd@colorado.edu to be registered as a certificate-seeking student.
• Completion, with a grade of B or better, of all required courses.
• Upon completion of your courses, complete the certificate request form and submit it to the Graduate Advisor, aerograd@colorado.edu.
Contact Persons

Madeline Job and Carrie Simon (first point of contact)
Graduate Advisors
429 UCB
University of Colorado
Boulder, CO 80309-0429
aerograd@colorado.edu

Professor Jade Morton
Associate Chair for Graduate Studies
429 UCB
University of Colorado
Boulder, CO 80309-0429
jade.morton@colorado.edu

Professor Brian Argrow
Chair, Aerospace Engineering Sciences
429 UCB
University of Colorado
Boulder, CO 80309-0429
brian.argrow@colorado.edu
Expectations for Students Working on Appointment

Student Expectations:

When you are supported as a Research, Teaching or General Assistant (RA/TA/GA), there are certain expectations the department has and certain requirements that you must meet.

We expect you to want to learn. We expect to see enthusiasm, energy, and 100% effort. Mediocrity will not be tolerated in the environment in which you will be eventually employed and will not be tolerated here. Writing should be clean and neat. Notes should be well-organized. Assignments should be completed on time and presented as a neat well-finished package. A lab book of activities and results should be well maintained. Attention now will pay dividends later.

All engineers and scientists of quality spend more than 40 hours per week engaging in scholarly activities. As a graduate student your scholarly activities are defined as working in the laboratory, learning through discussions, going to seminars, taking courses, working at your desk, reading literature in the library, writing publications and theses, and participating in university activities. Your professor is engaged in all these activities and additionally in similar activities outside the university as research, advising, and committee work demand. Students should also strive to meet this "culture of excellence." Don’t solely rely on your professors to tell you what you should be doing. Be proactive with your research and work and look for research areas to explore and expand.

Your presence at your desk, in the laboratory, and at seminars and meetings is a direct measure of your involvement in engineering and science. It is a privilege to be here. Make sure that you deserve the privilege.

Your attendance at department seminars, colloquia, and other presentations is an important part of your training as an engineer and scientist. This is an essential activity of all our scholars and we expect you to attend and participate in functions, especially those related to your area of research interest. You are also encouraged to present your research at seminars as opportunities arise.

We expect a cordial atmosphere at all times and places. Respect and be courteous to other students, staff, and faculty. Maintain a quiet work atmosphere; excessive noise distracts others. Assist your advisor and fellow graduate students. This is an important part of your training for the future. You will often be working in a group
environment, so be a responsible team member. When you are required to share equipment with others, transfer data/codes/etc., do so in a professional manner. We expect that students follow the highest standards of ethics in their research and publications. Plagiarism, data manipulations, etc. are examples of unethical behavior and are not tolerated. Your adviser can help you and/or refer you to the proper channels if the ethical line is not clear.

Faculty expectations:

Likewise, there are things that you should expect of your professors. It is the professor’s responsibility to clarify the ground rules regarding time off, work hours, publication authorship, funding, etc. early on; it is your responsibility to make sure he/she does so. Your professors will guide you in your research, teaching, and professional development, and assist you with post-graduation job placement. They will provide you with opportunities for industry or laboratory internships and encourage your attendance at professional conferences. Your professor will provide you with an annual evaluation of your progress in meeting your degree requirements and in your research, and if you have a RA appointment, financial support is guaranteed so long as you make reasonable progress and there are available funds.

Disagreements between a student and faculty member:

If after discussions with your advisor an irreconcilable disagreement occurs, consult the Associate Chair for Graduate Affairs.

Appointment percentage:

The majority of department RA/TA/GAs have a 50% AY appointment (20 hrs/wk). Some may have summer appointments (up to 40 hrs/wk) but this is determined by the supervisor. A RA/TA/GA can hold no less than a 15% appointment to receive tuition remission. Any appointment in addition to a 50% appointment needs approval by the Graduate School.

Tuition:

Tuition remission covers tuition and a percentage of the Gold Comprehensive Insurance Plan provided that you work at least 12 weeks of the semester. It is your
responsibility to pay the remainder of the insurance and all mandatory fees. Some fellowships do allow for the payment of fees but department appointments do not.

Leave Time:

The appointment follows the University holiday schedule and not the class schedule. Please note that these dates do not follow the same dates as the academic year.

- **Fall -** September 1 through December 31
- **Spring -** January 1 through May 31
- **Summer -** June 1 through August 31

For example, the University is closed on the Friday of spring break, not for the entire spring break week, so unless you make arrangements with your advisor you are expected to work during the week of spring break even though there are no classes this week.

Students on appointment do not accumulate sick or vacation time through their appointment. There is not a policy within the department as to what happens if a student wants to take sick or vacation days; this policy is set directly by your supervisor.

It is up to you to discuss taking time off with your supervisor before making travel arrangements or arranging for time off. If you will be away from your position for an extended period of time, your supervisor does have the option to put the position on a short work break, without pay. This doesn't happen often, but it is an option.
AES PhD Student Teaching Practicum Worksheet

Name:
Advisor:

Current Date:
Matriculation Date:

Expected Graduation Date:
PhD Preliminary Exam Date:
PhD Comprehensive Exam Date:

Teaching Activities:

<table>
<thead>
<tr>
<th>AY & Semester</th>
<th>Type of Activity: (Circle one)</th>
<th>Course Name, # or Project Title</th>
<th>Faculty Supervisor</th>
<th>Primary Responsibilities</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instructor of Record/GPTI</td>
<td></td>
<td></td>
<td></td>
<td>Planned</td>
</tr>
<tr>
<td></td>
<td>Teaching Fellow/Team Teach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching/Course Assistant</td>
<td></td>
<td></td>
<td></td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>Research Mentor</td>
<td></td>
<td></td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Seminar Coordinator (1yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other:_________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructor of Record/GPTI</td>
<td></td>
<td></td>
<td></td>
<td>Planned</td>
</tr>
<tr>
<td></td>
<td>Team-Teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching/Course Assistant</td>
<td></td>
<td></td>
<td></td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>Research Mentor</td>
<td></td>
<td></td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Seminar Coordinator (1yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other:_________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Faculty Advisor Signature: ________________________________

Date:__________________
Name: _______________________ Advisor Signature: __________________

Coursework:

Focus area: (Aerospace Engineering Systems)
- Primary technical thrust: (Fluid Dynamics, Automatic Control, Structures & Materials)
- Second technical thrust core: _________________
 (outside core for BBA structures students – i.e. core in ASN, Bio, RSESS focus areas)
- 30 or more semester hours total (courses, seminars, thesis)
 - 24 must be 5000 or above
 - 18 credits of ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class)
 - up to 6 credits can be 4000 level in ECEN, CVEN, MCEN, CHEN, CSCI, ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVD
- 6-12 semester hours as defined by the student’s focus area must be taken in the student’s primary focus area and one required course (3 semester hours) must be taken in a second focus area.
 - AESys focus requirement: 2 Core classes in primary thrust of focus area

 _______________ _______________
 (AESys Thrust1) (AESys Thrust1)

 - AESys focus area requirement:
 1 Core class in second thrust:

 (AESys Thrust2)

- 6 elective credits in primary thrust : ______________

- 3 semester hours of approved math coursework ______________
 (Math)
Circle One:

1. MS Thesis, or
2. Graduate Projects (can be inside or outside the focus area), or
3. An approved certificate program

Thesis:

- Represent the equivalent of 6 semester hours of coursework.
- Comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications.
- Be filed with the Graduate School by posted deadlines for the semester for which the degree is to be conferred.

Courses of interest that Satisfy Math Requirement

____________________ ____________________

Electives (balance of courses up to 30 required total MS hours):

____________________ ____________________
____________________ ____________________
____________________ ____________________

Potential Courses of Interest/Semester Offered:

____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
MS degree planning form – ASN Focus

Name: __________________________ Advisor Signature: __________________

Coursework:

Focus area: (Astrodynamics and Satellite Navigation)
- Three focus area core
- Outside focus area core:__________________________________

Required MS Course outside focus area: ASEN 5051, ASEN 5327, ASEN 5151, ASEN 5114, ASEN 5014, ASEN 5012, ASEN 5022, ASEN 5007, ASEN 5016, ASEN 5148, ASEN 5158, ASEN 5307, ASEN 5337, ASEN 5168, ASEN 5245, ASEN 5215, ASEN 5335, ASEN 5235
- 30 or more semester hours total (courses, seminars, thesis)
 - 24 must be 5000 or above
 - 18 credits of ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class)
 - up to 6 credits can be 4000 level in ECEN, CVEN, MCEN, CHEN, CSCI,ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVD
- 6-12 semester hours as defined by the student’s focus area must be taken in the student’s primary focus area and one required course (3 semester hours) must be taken in a second focus area.
 - ASN focus area requirement: 3 Core Classes

_________________ _____________ _____________
(ASN Core1) (ASN Core 2) (ASN Core 3)

Outside Core: ________________
(Outside core)

- 3 semester hours of approved math coursework

(Math)
Circle One:

1. MS Thesis, or
2. Graduate Projects (can be inside or outside the focus area), or
3. An approved certificate program

Thesis:

- Represent the equivalent of 6 semester hours of coursework.
- Comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications.
- Be filed with the Graduate School by posted deadlines for the semester for which the degree is to be conferred.

Courses of interest that Satisfy Math Requirement

____________________ ____________________

Electives (balance of courses up to 30 required total MS hours):

____________________ ____________________
____________________ ____________________
____________________ ____________________

Potential Courses of Interest/Semester Offered:

____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
Coursework:

Focus area: (Bioastronautics)

- two focus area core courses
- two of three specified second focus area core: ASEN 5335 (RSESS), ASEN 5050 (ASN) or ASEN 5053 (AESys) are required; however, students with non-aerospace BS degrees are encouraged to take all three

- 30 or more semester hours total (courses, seminars, thesis)
 - 24 must be 5000 or above
 - 18 credits of ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class)
 - up to 6 credits can be 4000 level in ECEN, CVEN, MCEN, CHEN, CSCI,ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVD

- 6 semester hours must be taken in the Bio focus area and two required courses (6 semester hours) must be taken in a second focus area as defined above.
 - Bio focus area requirement: 2 Core Classes

 (Bio Core1) (Bio Core 2)

- Two of 3 required outside Core: (Outside Core1) (Outside Core 2)

- 3 semester hours of approved math coursework. (Math)

Circle One:

1. MS Thesis, or
2. Graduate Projects (can be inside or outside the focus area), or
3. An approved certificate program
Thesis:

- Represent the equivalent of 6 semester hours of coursework.
- Comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications.
- Be filed with the Graduate School by posted deadlines for the semester for which the degree is to be conferred.

Courses of interest that Satisfy Math Requirement

____________________ ____________________

Electives (balance of courses up to 30 required total MS hours):

____________________ ____________________

____________________ ____________________

Potential Courses of Interest/Semester Offered:

____________________ / ____________________

____________________ / ____________________

____________________ / ____________________

____________________ / ____________________

____________________ / ____________________

____________________ / ____________________
MS degree planning form – Remote Sensing Focus

Name: __________________________ Advisor Signature: __________________

Coursework:
Focus area: (Remote Sensing)

- four focus area core, one in each primary topic area
- second focus area **core (may also count as primary topic core)**
- 30 or more semester hours total (courses, seminars, thesis)
 - 24 must be 5000 or above
 - 18 credits of ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class)
 - up to 6 credits can be 4000 level in ECEN, CVEN, MCEN, CHEN, CSCI, ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVD
- 6-12 semester hours as defined by the student’s focus area must be taken in the student’s primary focus area and one required course (3 semester hours) must be taken in a second focus area.
- RSESS focus area requirement: 4 Core Classes, 1 in each primary topic area.

_________________ _____________ _____________ _____________
(RSESS Topic 1) (RSESS Topic 2) (RSESS Topic 3) (RSESS Topic 4)

- Outside Core (may also fulfill a topic req’t): _____________

- 3 semester hours of approved math coursework ____________
 (Math)

Circle One:

1. MS Thesis, or
2. Graduate Projects (can be inside or outside the focus area), or
3. An approved certificate program
Thesis:

- Represent the equivalent of 6 semester hours of coursework.
- Comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications.
- Be filed with the Graduate School by posted deadlines for the semester for which the degree is to be conferred.

Courses of interest that Satisfy Math Requirement

____________________ ____________________

Electives (balance of courses up to 30 required total MS hours):

____________________ ____________________

____________________ ____________________

Potential Courses of Interest/Semester Offered:

____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
____________________ / ____________________
Professional MS degree planning form

Name: __________________________ Advisor Signature: __________________

Coursework:

- 30 or more semester hours total (courses, seminars, thesis)
- 24 must be 5000 or above
- 18 credits of ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class)
- up to 6 credits can be 4000 level in ECEN, CVEN, MCEN, CHEN, CSCI, ATOC, ASTR, PHYS, MCDB, APPM, MATH, CHEM, IPHY, GEOL, ENVD
- 3 semester hours of approved math coursework ____________ (Math)

Courses of interest that Satisfy Math Requirement

____________________ ____________________

Potential Courses of Interest/Semester Offered:

____________________ / ________________
____________________ / ________________
____________________ / ________________
____________________ / ________________
____________________ / ________________
____________________ / ________________
____________________ / ________________
PhD degree planning worksheet: All focus Areas

Name: __________________________ Advisor Signature: __________________

Coursework/dissertation requirements:

- 36 or more semester hours course credit (5000 or above)
 - 12 above 6000 (9 credits for RSESS focus)
 - 18 must be in ASEN (Note: EMEN 5405 Fundamentals of Systems Engineering counts as an ASEN class)
 - 6 credits of math from approved list

- 30 hours dissertation credit
- Teaching Practicum
- Preliminary exam (by third or fifth semester) __________________
- Comprehensive exam (after coursework completed by fifth or seventh semester/before semester of final defense)__________________
- Written Dissertation
- Defense/Final Examination
 - Up to 10 PhD dissertation credits pre-comprehensive exam
 - Up to 10 PhD dissertation credits in semester in which comprehensive exam is passed
 - Remaining PhD dissertation credits post-comprehensive exam, but students must register for a minimum of 5 PhD dissertation credits in each semester following the comprehensive exam through the semester in which final dissertation is successfully defended.

Courses:

18 credits of **ASEN** coursework (not other department coursework)

<table>
<thead>
<tr>
<th>(ASEN 1)</th>
<th>(ASEN 2)</th>
<th>(ASEN 3)</th>
<th>(ASEN 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ASEN 5)</td>
<td></td>
<td>(ASEN 6)</td>
<td></td>
</tr>
</tbody>
</table>

- 12 credits of 6000 level or above (9 credits for RSESS focus).

<table>
<thead>
<tr>
<th>(6000 level 1)</th>
<th>(6000 level 2)</th>
<th>(6000 level 3)</th>
<th>(6000 level 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• 6 semester hours of approved math coursework

(Math)

Courses of interest that Satisfy Math Requirement

____________________ ____________________

Potential Courses of Interest/Semester Offered:

____________________ / ______________________
____________________ / ______________________
____________________ / ______________________
____________________ / ______________________
____________________ / ______________________
____________________ / ______________________
____________________ / ______________________
____________________ / ______________________
____________________ / ______________________