

ASEN 4028: Senior Design Projects Spring 2021

Spring Final Review (SFR)

FLASH: Functional LiDAR Assessment of Structural Health

April 21, 2021

Team: Kunal Sinha, Ishaan Kochhar, Ricky Carlson, Fiona McGann, Jake Fuhrman, Shray Chauhan, Erik Stolz, Julian Lambert, Courtney Kelsey, Andrew Fu

Customer: ASTRA – Cotton Anderson, Chris Prince, Erik Stromberg,

Advisor: Professor Dennis Akos

Presentation Outline

Project Purpose and Objectives

Motivation: Infrastructure Analysis

Statistics

• 614,387 bridges in the US

Purpose &

Objectives

- 200,000+ are over 50 years old
- 17% of bridges are inspected annually
- Infrastructure monitoring market valued at \$1.78B in the U.S.

Motivation

Higher efficiency, lower cost, and less manpower required per bridge is the goal.

Design

Description

Test

Overview

Objective & Mission Statement

Project Objective

The system shall provide a low-cost and efficient way to monitor and assess infrastructure.

Mission Statement

Design, build, and deploy a dynamic, vehicle-based LiDAR sensor package which will scan infrastructure while in motion to produce a high-quality 3D map/model that can be used by engineers to assess structural health.

FLASH: Functional LiDAR Assessment of Structural Health

FLASH Concept of Operations

Single Infrastructure Inspection

FLASH: Functional LiDAR Assessment of Structural Health

FLASH Concept of Operations

Single Infrastructure Inspection

Levels of Project Success

	Structure	Data	Software/Mapping
Level 1	Capable of securely mounting system to one particular vehicle	10 cm size feature identified within point cloud from a scan distance of 3.5 m	Generate a 3D point cloud map and mesh in a stationary environment
Level 2	Capable of securely mounting system to multiple vehicles	5 cm size feature identified within point cloud from a scan distance of 3.5 m	Generate a 3D point cloud map and mesh in a moving environment via self-localization
Level 3	Capable of securely mounting system to multiple vehicles up to highway speeds	3 cm size feature identified within point cloud from a scan distance of 3.5 m	Generate a 3D point cloud map and mesh in a moving environment with enough accuracy and detail to enable structural analysis

Green indicates what level was achieved

Design Description

Functional Block Diagram (FBD)

Major Design Changes Since TRR

SENSOR ORIENTATION

- Up-looking configuration found to be incompatible with many tested SLAM routines
- Sensor mount redesigned
- Change is at the expense of underside scanning (reduced point cloud density)

*SLAM = Simultaneous Localization and Mapping

Project

Major Design Changes Since TRR

SLAM PACKAGE CHANGE

- Original SLAM package did not produce accurate/usable point cloud map due to orientation incompatibility
 - Ground plane visibility yields drastic improvement in SLAM output
- Each algorithm extremely sensitive to parameter tuning, sometimes on scan-by-scan basis
- Switched to SLAM package more suitable for chosen sensor

Failed LIOM Output (Vertical Sensor Orientation)

Hardware Design

Top-Level Design Overview

Deployment Configuration

FLASH

FLASH

FLASH

and the second second second

Critical Project Elements

Designation	Element	Components	Why critical?	
CPE-1	Sensor Package	Scanning LiDAR sensor + integrated IMU	High-resolution, precise, and accurate data collection is key to insightful 3D mapping and model generation	
CPE-2	Data Processing Software	ROS* and SLAM*-based pipeline + commercial software package (CloudCompare)	Will require the most time and effort; consolidation of LiDAR and IMU data into a high-quality point cloud or mesh is not a straightforward process	
CPE-3	Vehicle Platform	Magnets + custom-fabricated housing	Sensor package must be secure up to highway speeds and must not pose a safety concern	
	*ROS = Robot O	perating System	*SLAM = Simultaneous Localization and Mapping	
Purpose & Design Test Objectives Description Overview Test Results Systems Project Engineering Management 2				

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Mount Pull Test Overview

Objective/Rationale

Determine "maximum" horizontal force that magnets can withstand while driving

Model Validation

Holding capacity tested with hook scale

Expected result: **F**_{mag} >> **1.6 lbf**

Verifying DR 5.1

Secure sensor against drag forces associated with relative wind at 65 mph

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Purpose &
ObjectivesDesign
DescriptionTest
OverviewSystems
Test ResultsSystems
EngineeringProject
Management

Small-Scale LiDAR (SSL) Test Overview

Objective/Rationale

Verification and characterization of sensor performance with respect to predictions + requirements

Designed to Determine/Verify:

- DR 1.1: Max. Measurement Range ≥ 30 m
- DR 2.1: Point Spacing (Resolution) \leq 5 cm
 - Equivalent to Point Density ≥ 400 pts/m²
- DR 2.2: Accuracy ≤ 10 cm (comparison to truth)
- DR 2.3: Precision ≤ 10 cm (variation across trials)

NOTE: Testing was conducted inside a garage with ambient sunlight present to simulate conditions under a bridge in daytime.

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Comprehensive System Test (CST) Overview

Objective/Rationale

Complete system integration from real, raw 3D point cloud data to a deliverable 3D mesh. Project elements to be validated here include:

- Magnetic attachment of mount
- All electrical interfacing
- LiDAR 3D point cloud data collection
- Saving/registering point cloud data
- Generating a 3D mesh model

Test Environment: Walnut St + Foothills Pkwy Underpass **Equipment:** Complete system + vehicle

General Procedure (CONOPs)

- 1) Secure system to vehicle and verify power to all systems
- 2) Pass under the bridge/infrastructure of interest with LiDAR powered on
- 3) Collect, save, and register 3D point cloud data
- 4) Post-process data through custom pipeline to create a 3D mesh model of the infrastructure

Purpose & Design Objectives Description

Test Overview

Test Results

Systems Engineering

Designed to Determine/Verify:

- Satisfaction of all design requirements
- Full "day-in-the-life" of system

Validation Method (DR 2.1, 2.2)

<u>Resolution:</u> Density was calculated via tool within CloudCompare software.

<u>Accuracy:</u> Point cloud dimensions were checked against infrastructure measurements from Google Earth

Purpose & Objectives

Design Description Test Overview

Test Results

Systems Engineering

Google Maps API Comparison Overview

Google Maps API Overlay

Objective/Rationale

Assess validity of collected data against ground truth

Validation Method

Google Maps API will provide true X/Y position that our map will be compared against.

Designed to Determine/Verify:

- DR 2.2: Accuracy ≤ 10 cm (comparison to truth)
- Generation of 3D mesh that is representative of infrastructure geometry (DR 7.1)

Purpose &
ObjectivesDesign
DescriptionTest
OverviewSystems
Test ResultsSystems
EngineeringProject
Management

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Mount Pull Test Recap

Vehicle Roof

Belt with Hook Scale

3D-Printed Structure with Magnets and Dummy Weight

NOTE: This test was conducted before the need for another orientation change was identified. Results still applicable.

Design

Description

Test

Overview

Purpose &

Objectives

0 5 10 10 20 25 30 35 40 Project

Test Results

Systems

Engineering

Hook Scale Measurement

Management

Mount Pull Test Results

DR 5.1

The mounting structure shall withstand drag forces associated with a vehicle speed of no more than 65 mph.

Model Prediction Magnet horizontal holding capacity ≥ 1.5F_{drag} = 1.6 lbf

FOS achieved = ~30

Requirement satisfied and model validated through pull test V

Aggregate fila Summary			
Hook Scale Reading	Observations		
5 lb	Sturdy (No slippage)		
10 lb	Sturdy (No slippage)		
20 lb	Sturdy (No slippage)		
30 lb	Earliest observed slipping		
35+ lb	Steady, consistent slipping as load increases		

we get a Trial Cummers

Design Description Test Overview

Systems P Engineering Man

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Small-Scale LiDAR Test Results

- Test board holes and extrusions aim to replicate features that are difficult/unsafe to access and measure on real infrastructure
- Performance metrics (accuracy, precision, resolution) assessed both stationary and dynamically
 - Sensor translated horizontally and vertically with respect to target during scan trials

Test

Overview

Test Results

• Distance varied from 1.5 m to 4.5 m to assess feature identification and noise

Design

Description

Purpose &

Objectives

Project

Management

Systems

Engineering

Small-Scale LiDAR Test Results

Design

Description

Test

Overview

Test Results

Purpose &

Objectives

- FLASH
- Smallest test board features (2.5 to 5 cm) could be resolved up to 4.5 m away, but geometry was best captured at distances below ~3 m
- Glitter cardstock material panel yielded best results in data stream
 - Highest reflectivity \rightarrow least noise / point wiggle (as expected)

Project

Management

• Testing in sunlight led to slightly more noise in data than shaded condition, but data quality not affected significantly

Systems

Engineering

Small-Scale LiDAR Test Results

	The point cloud shall							
have an average point spacing (resolution) of 5 cm or less directly			Test Result	Expected from Sensor Spec	Method of Determination			
∠.	above the sensor.	Avg. Accuracy @ 3.5 m	1.89 cm (σ = 2.41 cm)	3 cm	Comparison of known test board dimensions to point cloud measurements			
DR 2.2	The sensor shall have an average measurement accuracy of at least 10 cm.	Avg. Precision @ 3.5 m	2.73 cm (σ = 2.65 cm)	1 cm	Comparison of point cloud measurements across multiple trials			
DR	The sensor shall have an average	Avg. Resolution @ 3.5 m (Point Spacing)	2.18 cm (σ = 0.01 cm)	2.15 cm	Measurement of distance between adjacent points in point cloud rows			
2.3 measurement precision (repeatability) of at least 10 cm. NOTE: Results shown above are averages across multiple identical measurement Results for other distances (up to 4.5) will be reported in PFR.								
	Purpose & Design Test Test Results Systems Project 39							

Small Scale LiDAR Test Results: DR Verification

DR	Satisfied?	Associated CPE	Associated Level of Success	Explanation
1.1 Max. Range	YES	CPE-1	Level 2	Max. range was found to exceed 30 m
2.1 Resolution	YES	CPE-1 CPE-2	Level 2	Point spacing is less than 5 cm for scans up to 4.5 m away
2.2 Accuracy	YES	CPE-1 CPE-2	Level 2	Average measurement error falls within the 10 cm requirement
2.3 Precision	YES	CPE-1 CPE-2	Level 2	Measurement variation across trials does not exceed the 10 cm requirement

Test Overview

Test Results

Systems P Engineering Man

Test Results

Test Name	Duration	Equipment	Location
Mount Pull Test	1 week	Hook scaleMount + magnets	Open parking space
Small Scale LiDAR (SSL) Test	4 weeks	Test boardLiDAR sensor + laptop	Controlled indoor + outdoor environment
Comprehensive System Test (CST)	5 weeks	 LiDAR sensor + laptop Mount + magnets Vehicle Electrical hardware 	Low-traffic road with underpass
Google Maps API Comparison	2 weeks	 Processing computer 	Homebase (with WiFi)

Predictive Models

- Google Maps API (Ground Truth)
- Ouster OS1-32 Gen 2 Datasheet
- NCHRP Inspection Guidelines

Google Maps API Overlay

Validation of Predictive Models

- <u>Google Maps API</u> The Walnut Underpass point cloud was aligned with the Google Maps data without scaling and was not within the accuracy requirement (<10 cm error)
- <u>Ouster OS1-32 Gen 2 Datasheet</u> The range (as applicable to bridge height and width) of the LiDAR sensor was validated to be consistent with the manufacturer-provided specifications
- <u>NCHRP Inspection Guidelines</u> The point cloud was dense enough for engineering surveys via mobile LiDAR

Purpose & Objectives Design Description Test Overview

Test Results

Systems Engineering

DR 2.1

The point cloud shall have an instantaneous point density (resolution) of at least **400 points per square meter** directly above the sensor.

Expected point density from <u>analysis</u> with previous sensor configuration (looking up) **1440 pts/m**²

Model prediction & test result satisfy requirement V

Avg. <u>measured</u> point density from drive test @ 20 MPH with new sensor configuration (not looking up) **572 pts/m**²

Purpose & Objectives Design Description Test Overview

Test Results

Systems Engineering

The sensor shall have an average **measurement accuracy** of at least 10 cm.

	Measurement (Point Cloud)	Ground Truth (Google Earth)	Accuracy (Error)	10 cm Requirement Satisfied?
Bridge Span (Avg.)	34.77 m (σ = 0.58 m)	34.74 m	3 cm (0.08 %)	YES
Bridge Width (Avg.)	45.01 m (σ = 0.45 m)	46.63 m	162 cm (3.47 %)	NO

NOTE: Bridge point cloud measurements were averaged over nine trials at the same speed.

Purpose & Objectives

> Test Overview

Design

Description

Test Results

Systems Engineering

Purpose &

Objectives

Design

Description

Comprehensive System Test (CST) Results

DR	Satisfied?	Associated CPE	Associated Level of Success	Explanation
1.2 Height	YES	CPE-1	Level 2	The scanned Walnut Underpass height was 6.7 m. This is greater than the requirement of 5.1 m.
1.3 Coverage	YES	CPE-1	Level 2	Scanning coverage width of the Walnut Underpass exceeded the requirement of 7.2 m
2.1 Point Density	YES	CPE-1 CPE-2	Level 2	572 pts/m ² for the Walnut Underpass (underside only) is greater than the required 400 pts/m ² .
2.2 Accuracy	NO	CPE-1 CPE-2	Level 2	The calculated width error (between the point cloud and ground truth data) for the Walnut Underpass was 162 cm. This is more than the maximum 10 cm error.
7.1 3D Mesh	YES	CPE-2	Level 2	An interactive 3D mesh was created for the Walnut Underpass (while in motion and self-localizing).

Test Results

Systems

Engineering

Project

Management

Test

Overview

Functional Requirement Verification

Req. ID	Functional Requirement	Satisfied?	Verification Test(s)
FR 1	The system shall utilize a 3D LiDAR sensor to survey infrastructure of interest.	YES	SSL, CST
FR 2	The LiDAR sensor shall collect and output usable 3D point cloud data (x, y, and z coordinates).	YES	SSL, CST
FR 3	The system shall be capable of localizing itself during normal driving conditions even when GNSS services are not readily available.	YES	CST
FR 4	The on-board processing unit shall be capable of data storage, handling, and interfacing between components.	YES	SSL, CST
FR 5	The system shall be capable of mounting onto a vehicle and operating while the vehicle is in motion.	YES	Pull Test, CST

Purpose &
ObjectivesDesign
DescriptionTest
OverviewSystems
Test ResultsProject
Management47

Purpose &

Objectives

Design

Description

Functional Requirement Verification

Req. ID	Functional Requirement	Satisfied?	Verification Test(s)
FR 6	The system shall incorporate a power source that is capable of continuously supplying power to all applicable components.	YES	CST
FR 7	The point cloud and localization data shall be consolidated and post-processed into an interactive 3D map/model.	PARTIAL	SSL, CST
FR 8	The on-board communications unit shall be capable of wirelessly transferring point cloud and localization data directly to a network server.	YES	CST
FR 9	The system shall be capable of initiating and terminating data collection with minimal passenger interaction.	YES	CST
FR 10	The system shall conform to all relevant safety regulations and guidelines.	YES	Pull Test, CST

Test Results

Test

Overview

48

Project

Management

Systems

Engineering

Objectives

Description

Overview

Challenges in Achieving Full Customer Vision

Engineering

Management

Uses and Future Work

Alternative Applications of FLASH

- Automatic cataloging and organization
- Low cost large-scale visualization
- Rapid mapping of large areas

Future System Improvements

- Significant improvements using GNSS
- Multiple LIDAR units and improved IMU
- Color cameras for contextualizing meshes
- Cutting edge SLAM packages:
 - New version of Ouster's SLAM-LMAO
 - FAST-LIO v2 (eta Apr. 2021)
 - LILI-OM (released Feb. 2021)
 - Kudon SLAM (eta Fall 2021)

Purpose &

Objectives

Test Overview

Test Results

Systems Engineering

Systems Engineering

The Systems Engineering "V"

Fall Semester

- Research and Trade Studies
- Requirement Development
- Risk Assessment
- FMEA Approach
- Risk Mitigation

Systems

Engineering

54

Project

Management

FLASH

Project Trade Studies

LiDAR Trade Study

		Velodyne Puck Hi-Res	Ouster OS0-32	Ouster OS1-16 (Gen 1)	SICK MRS1000	Livox Mid-100	Velodyne Puck
Criteria	Weight	Score	Score	Score	Score	Score	Score
Accuracy	7.5%	4	3	2	1	5	4
Range	7.5%	4	1	2	3	5	4
Field of View	30%	3	5	4	2	1	3
Cost	20%	1	2	4	3	5	3
Data Output	20%	3	5	4	2	3	3
Platform Integration	5%	4	3	3	5	3	4
Mass	5%	3	4	5	2	1	3
Power	5%	5	3	3	4	1	5
Total	100%	2.9	3.7	3.65	2.45	2.9	3.3

On-Board Computer Trade Study

		Single Board Computer	Mini Computer (Intel Nuc)	Laptop Computer
Criteria	Weight	Score	Score	Score
Data Storage	30%	2	4	5
Linux Compatibility	30%	1	5	5
Cost	10%	5	3	2
Ease of Use	30%	1	2	5
Total	100%	1.7	3.6	4.7

Software Trade Study

		Google Cartographer	LIO-SAM	LIOM	LOAM
CRITERIA	WEIGHT	Score	Score	Score	Score
External IMU	15%	5	5	4	1
Indep. GPS	30%	4	5	4	3
Compatibility	25%	3	5	3	3
User Engagement, Ease of Use	30%	3	3	2	2
Total	100%	3.6	4.4	3.15	2.4

Purpose &

Objectives

Design Description Test

Overview

Test Results

Systems Engineering

Project Management

Requirements Flow Down

The Systems Engineering "V"

Spring Semester

- Software Development
- LiDAR Testing
- Small Scale Testing
- System Testing
- Software Pipeline Completion

Purpose &

Objectives

Design

Requirement Verification

Risk Assessment Approach

Systems Engineering Key Lessons

- Importance of well developed design requirements
- Track outcomes from every test iteration and compare with functional requirements
- Prioritize risk assessment to prevent requirement failures
- Keep backups to COTS products and open-source software

Project Management

Project Management Approach

Project Management Approach

Management Successes	Management Difficulties
Splitting work between subteams and enabling work to go on parallelly	Identifying difficulty of a task at the CDR stage
Assigning work to give more man-power to portions of project which are more urgent	Risk mitigation practices should have been tracked better
Smoothly collaborating in virtual environment	Keeping track of schedule when pieces of project changed rapidly

Project Management Lessons Learned

- Designate time based on risk factors for scheduling through the integration and testing phase
- Have an agile approach for software based
 projects, will keep real expectations of scheduling
 and work better with team as software portions can
 change quickly
- Have tag-ups with full team as frequently as possible so that whole team is up to date

Test Overview

> Test Results

Systems Engineering

Planned Budget (CDR)

- Added components for mass data storage and system transport (-\$1,700)

Design Description

Purpose &

Objectives

Test Overview > Test Results

Systems Engineering

Realistic Labor and Project Costs

Hours Worked by Team (as of 15th April 2021)	2430 hours
Estimated Per Hour Aerospace Engineering Salary	\$31.25 per hour
Total Personnel Cost (2430h * \$31.25/h)	(\$75,938)
Total Overhead (200%)	(\$151,874)
Material Cost	(\$3,188)
Total Industry Cost	(\$240,000)
Purpose & Design Test Objectives Description Overview Test Results	Systems Project

Thank You! I

Smead Aerospace

-

Questions?

FUNCTIONAL LIDAR ASSESSMENT of STRUCTURAL HEALTH

Backup Slides

Requirements Flow Down

FR 1	The system shall utilize a 3D LiDAR sensor to survey infrastructure of interest.
FR 2	The LiDAR sensor shall collect and output usable 3D point cloud data (x, y, z coordinates).
FR 3	The system shall be capable of localizing itself during normal driving conditions even when GNSS services are not readily available.
FR 4	The on-board processing unit shall be capable of data storage, handling, and interfacing between components.
FR 5	The system shall be capable of mounting onto a vehicle and operating while the vehicle is in motion.
FR 6	The system shall incorporate a power source that is capable of continuously supplying power to all applicable components.
FR 7	The point cloud and localization data shall be consolidated and post-processed into an interactive digital 3D map/model.
FR 8	The on-board communications unit shall be capable of wirelessly transferring point cloud and localization data directly to a network server.
FR 9	The system shall be capable of initiating and terminating data collection with minimal passenger interaction.
FR 10	The system shall conform to all relevant safety regulations and guidelines.
	Table 1: FLASH System Functional Requirements

Purpose & Objectives

Design Description

Test Overview & Results Systems Engineering Project Management

Requirements Flow Down

- DR 1.1 The system shall have a measurement range of no less than 30 meters.
- DR 1.2 The system shall be capable of scanning bridges 5.1 m (16.7 ft) in vertical clearance above road level.
- DR 1.3 The system shall have a scanning coverage width of at least 7.2 m (24 ft) directly above the LiDAR sensor.
- DR 2.1 The point cloud shall have an instantaneous point density (resolution) of at least 400 points per square meter directly above the sensor.
- DR 2.2 The sensor shall have an average measurement accuracy of at least 10 cm.
- DR 2.3 The sensor shall have a range measurement precision (repeatability) of at least 10 cm.
- DR 3.1 The system shall implement a GNSS-independent post-processing technique to produce a point-cloud map from the raw data.
- DR 4.1 The system shall accommodate a cumulative data size of at least 64 GB.
- DR 4.2 The on-board computer shall be compatible with Linux.
- DR 5.1 The mounting structure shall withstand drag forces associated with a vehicle speed of no more than 65 mph.
- DR 6.1 The power system shall require no more than a 12VDC input.
- DR 6.2 The power system shall be capable of supplying 25W of continuous steady-state power.
- DR 7.1 The point cloud shall be used to create a 3D mesh which can be visualized, interacted with, and modified as necessary.
- DR 8.1 The system shall be capable of transmitting data at a range of 10 meters.
- DR 8.2 The system shall be capable of transmitting data at a minimum rate of 15 Mbps.
- DR 9.1 The system shall begin data collection no less than 50 m away from the infrastructure and shall terminate 50 m after infrastructure of interest.
- DR 9.2 The system shall provide a means of manual data collection initiation and termination via a passenger operated interface.
- DR 10.1 The system shall adhere to all applicable Federal Motor Vehicle Safety Standards (FMVSS).
- DR 10.2 The LiDAR sensor shall adhere to laser safety regulations under IEC 60825-1:2014.

Comprehensive System Test (CST) Results

System Storage & Transportation

Small-Scale LiDAR (SSL) Test Procedure

General Procedure

- 1) Scan test board at incremental distances (1.5 to 4.5 m) in shaded environment with sensor stationary
- 2) Repeat with sensor translating parallel to board
- 3) Process saved data (raw .bag files) through SLAM to generate point cloud for each test case
- 4) Evaluate correspondence between output point cloud and true test board features/dimensions

Features Discernment @ 3.5 m

Arrows indicate 5 cm features

Design Description

> Test Overview

> Test Results

Systems Project Engineering Management

Small-Scale LiDAR (SSL) Test Overview

Objective/Rationale

Verification of sensor performance and operation with respect to requirements + predictions

Test Importance

Designed to Determine/Verify:

Purpose &

Objectives

- DR 1.1: Max. Measurement Range ≥ 30 m
- DR 2.1: Point Spacing (Resolution) ≤ 5 cm
 - Equivalent to Point Density ≥ 400 pts/m²
- DR 2.2: Accuracy ≤ 10 cm (comparison to truth)

Design

Description

• DR 2.3: Precision ≤ 10 cm (variation across trials)

Test

Overview

Test Results

Systems Engineering

Small-Scale LiDAR Test Results: Feature Discernment

	Minimum Feature Size Identified	Maximum Distance of Identification
Square Holes	TBD	TBD
Circular Holes	TBD	TBD
Square Extrusions	TBD	TBD
Circular Extrusions	TBD	TBD

Some analysis of testing results remains. This information will be included in the PFR.

Small-Scale LiDAR Test Results: Accuracy & Precision

Accuracy reference points: test board length/width, feature sizes

Measurement = Averaged over multiple trials per distance

	Distance 1		Distance 2		Distance 3	
	Measurement	Error	Measurement	Error	Measurement	Error
Test Board Width						
Test Board Height						

Need to include truth values somewhere

Also comment on results from color panels (qualitative description of noise should do)

Mount Pull Test Outcome

Risk Reduction

Prove that risk of LiDAR falling off vehicle is extremely low

Test Importance

<u>System Safety</u>: LiDAR sensor secured against drag forces associated with driving at 65 mph

<u>V&V</u>: Critical to project success

Small-Scale LiDAR (SSL) Test Outcome

- LiDAR performance characterization before field deployment
- Ensure that data can be collected, stored, and viewed reliably
- Ensure that point cloud meets requirements

Purpose &
ObjectivesDesign
DescriptionTest
OverviewSystems
Test ResultsProject
EngineeringProject
Management

Software: Pipeline Validation Tests

Purpose & ObjectivesDesign DescriptionTest Overview
& ResultsSystems
EngineeringProject
Management

Software: CARLA Simulation Flow Diagram

Software: CARLA Simulation

Objective/Rationale

Rapid test of software pipeline by providing raw LiDAR and IMU data of a virtual environment with the exact parameters of our sensor package.

Screen capture of map to be imported onto CARLA

General Procedure

- 1) Import map from CARLA Asset library of a bridge/structure to sample data
- 2) Set up simulation LiDAR Parameters to match Ouster's (from data sheet and orientation)
- 3) Connect simulated LiDAR to ROS Nodes in our script, record bag file
- 4) Play bag file in LIO-SAM and VINS-Mono algorithm to get Mesh
- 5) Take note of parameters to be changed and repeat from step 4

Software: CARLA Simulation

Test Importance

<u>SLAM Functionality:</u> a CARLA Simulation will prove that the output of SLAM can match ground truth data.

Verifying DR 3.1 and DR 7.1

Post processing efforts will be able to produce a useable 3D model outside of GNSS services.

Validation Method

Measurements of output will can be taken on Cloud Compare, will be compared with CARLA SImulated Map

Screen capture of map to be imported onto CARLA

Purpose & Objectives

Design Description

Test Overview & Results Systems Engineering

Software: CARLA Simulation

Expected Result (Pass Criteria)

Generated LiDAR mesh from simulated asset with <u>10cm accuracy and precision</u>

Risk Reduction

- Give confidence in algorithm implementations
- Quick modifications to code without taking real data every time

Screen capture from ROS - CARLA integration tutorial

Project Definition: Difficulties

	Challenges	Changes/Fixes	Was Change Implemented
LiDAR Orientation	-Vertical orientation could not produce viable meshes	-Horizontal orientation	Yes, but this brought up initial problems with view of underside of bridge
Data Collection Speed	-IMU drift and error at high speed -Skewed frames	-Lower data collection speed	Yes, but this introduced potential safety issues and overly dense point clouds
SLAM Algorithm	-LIO-SAM could not be manipulated to OS2 IMU configuration	-Change SLAM algorithm	Yes
Mesh Generation	-Generating closed surfaces from very dense point clouds creates artefacts	-Need to "clean"	Yes, but this can result in smoothing out small deformations
Truth Data	-Lack of truth data available		

Project Definition Satisfaction

- The key requirements of FLASH outlined a system to achieve the following:
 - Scan infrastructure with LiDAR
 - No GNSS/GPS

Purpose &

Objectives

- Highway speed, single passes
- Use SLAM to reconstruct point-cloud maps
- Generate meshes for structural health assessment
- Use low-cost, scalable hardware
- FLASH saw varying success with meeting these requirements
- Several setbacks were encountered during the Testing Phase
 - Most foreseen during design, but more severe than anticipated
 - Iterations on software and hardware moved very quickly during development

Test

Overview

• Ultimately, the meshes produced are *not* appropriate for comprehensive structural analysis

Test Results

Systems

Engineering

• Our reasoning is given in following slides

Design

Description

• The FLASH team has several suggestions for alternative applications for this data

Project

Management

Project Successes

- FLASH saw success in many of the original goals
- The system achieved...
 - High-density point clouds
 - Modular hardware and software design
 - Many packages/configurations tested
 - Ready for immediate implementation of improvements and extensions
 - Low-cost hardware and software
 - Competing systems cost >>100x
 - Good scalability
 - User-friendly operation
 - Minimal setup and operation time
 - No prerequisite technical knowledge required
- Meets originally outlined numerical accuracy requirements

Test Overview

Test Results

<good mesh pic>

<google API

comparison pic?>

Project Difficulties: LiDAR and SLAM

- The largest change during testing was the return to a horizontal LiDAR orientation
 - Vertical orientation change made to see **undersides** of bridges more clearly
 - After testing and gaining understanding of LiDAR SLAM, this change was problematic:
 - Feature maps very poor in other dimensions
 - No ground-plane visible (for orientation constraints)
 - Unorthodox extrinsics generally not optimized for
- Another major change was lowering data collection speed
 - Offered several advantages for quality of data
 - Lower IMU error/drift
 - Less skewing of frames
 - Zero-cost increase to point density (linearly ∞)
 - Introduced some unanticipated downsides
 - Safety concerns for driving at low speeds (mitigated by scanning during off-peak hours)
 - Overly dense point-clouds can become unwieldy
 - Runaway data requirements

SLAM Package Implementation

- Key requirements was to implement mapping using SLAM (Simultaneous Localization And Mapping)
- Focused on SLAM algorithms based on LiDAR+IMU data fusion
 - OS1 sensor package natively integrates both
 - Some visual-only packages tested
- ROS software pipeline supports multiple packages
 - Tested LOAM (visual only), LIOM, MATLAB SLAM (visual only, 2D), and **SLAM-LMAO** (Ouster developed)
 - Originally planned LIO-SAM found not to be compatible
- Modern SLAM algorithms use computer vision to identify features in point clouds
 - Must have feature rich environment for alignment to be possible
 - Must not have too detailed environment for poor feature extraction
 - SIFT and SURF features common

Design

Description

Purpose &

Objectives

• Each algorithm extremely sensitive to parameter tuning, sometimes on scan-by-scan basis

Test Results

Systems

Engineering

• Iterative approach possible, but did not see much success for FLASH

Test

Overview

<visualization of packages' relationship to each other>

Project

Management

Project Difficulties: Mesh Generation

- The meshes produced by FLASH may **not** be appropriate for structural analysis
 - Generating closed surfaces from very dense point clouds creates artefacts
 - Many false positives on structural deformities
 - "Cleaning" point clouds is necessary to create smooth, accurate mesh representations
 - Sub-sampling
 - Linear interpolation
 - Plane definitions (normal maps)
 - Removing "feature ghosts" (lack of loop closure)
 - Without cleaning, mesh files contain millions of surfaces
 - Impractical for use within structural analysis software
 - Many faces are merely artefacts from poor surface reconstruction
 - However, this may filter out the structural defects we are trying to detect

Test

Overview

Cracks get closed over

Design

Description

Purpose &

Objectives

- Small deformities smoothed out
- The data collected by the system is still very rich and accurate, especially in point form

Future Work: System Improvements

- The current hardware design could contain higher quality components
 - IMU performance greatly improves LiDAR+IMU SLAM results, esp. refresh rate
 - LiDAR scanner with less noise will produce more accurate range readings
 - Multiple LiDAR sensors
- SLAM packages very active area of research
 - SLAM-LMAO's continued development
 - FAST-LIO v2 (eta Apr. 2021)
 - LILI-OM (released Feb. 2021)
- Significant improvements could be made outside of requirements
 - GNSS
 - Non-car based solution could allow for odometry sensor integration (encoders)
- Other sensors could improve the *usability* of the data (not nec. quality)
 - Color cameras common tool for contextualizing point clouds/meshes
 - Manual ranging equipment to collect ground-truth data

Future Work: Alternative Applications

- The FLASH system could be more appropriately used in other areas of infrastructure assessment, including:
 - Data cataloging
 - Scan dozens of pieces of infrastructure in a single day with ease
 - Automatic cataloging and organization
 - Large-scale visualization potential
 - Low-fidelity visualization
 - Saves significant time in-the-field
 - Structural repairs would require full re-assessment of structures regardless
- Mobile LiDAR mapping systems could offer distinct advantages in many other fields
 - Assessment of difficult-to-reach infrastructure/terrain, either on foot or by air
 - Rapid mapping of large areas
 - With implementation of GNSS and/or loop closure capabilities
 - Create *interactive* maps when combined with color camera data (house tours, city maps, ski maps)
 - Presence detection (parking lot capacity, garbage collection, and more)

What is LiDAR? What is a Point Cloud?

96

Source: Brett Rapponotti

- LiDAR stands for Light Detection and Ranging → commonly used for 3D mapping and modeling
- Repeating the scanning process millions of times per second creates a point cloud
- Collection of measured points in space, with each being represented by an x, y, and z coordinate

ProjectDesignProjectVerificationProjectDescriptionSolutionCPEsDesignRequirementsRisks& ValidationPlanning

Evaluation of Infrastructure

FLASH data should be able to exhibit the following structural failure points:

Collecting a database of these failure points can...

Decrease Length of Routine Inspection

Track Defect Propagation

Give Context for Damage Inspections

Cheaper and faster than traditional inspection!

Design Solution

Design Requirements

CPEs

Risks

Project

Verification & Validation

Project Planning

Candidate Bridges for Inspection

Design

Requirements

6th Ave. over Wadsworth Blvd. (Built 1972)

I-70 over Kipling Street (Built 1967)

Design

Solution

CPEs

Project

Description

I-70 over Harlan Street (Built 1967)

These bridges clearly exhibit structural deficiencies in the form of cracking, spalling, corrosion, delamination, and deformation

Verification

& Validation

Project

Risks

Source: Google Maps, Denver7 News

Project

Planning

LiDAR Internal Blockage Limitation

Bridges may be supported with beams/girders along the bridge length Bottom flanges block LiDAR beams \rightarrow some portions of underside not scanned **Obstructed areas expected to be minimal compared to areas of captured data**

Sensor Package (LiDAR + IMU)

LiDAR - Key Requirements for Scanning

The system shall have a measurement **range** of no less DR 1.1 than 30 meters. The system shall be capable of scanning bridges at least DR 1.2 5.1 m (16.7 ft) in **vertical clearance** above road level. The system shall have a **scanning coverage width** of at DR1.3least 7.2 m (24 ft) directly above the LiDAR sensor.

Project Description

Design Solution

Design Requirements

CPEs

Risks

Project

Verification Project & Validation Planning

LiDAR - Measurement Range

Enter values here

Expected Range (90% PD)				
Reflectivity	Range (High/low)		Average	
10%	31.8	53.5	42.7	
20%	45.0	63.6	54.3	
30%	55.1	70.4	62.8	
40%	63.6	75.7	69.7	
50%	71.2	80.0	75.6	
60%	77.9	83.8	80.8	
70%	84.2	87.0	85.6	
80%	90.0	90.0	90.0	
94%	97.6	93.7	95.6	

*Calculations assume worst-case sunlight \rightarrow bright day

LiDAR - Scanning Coverage

LiDAR - Key Requirements for Data Quality

The point cloud shall have an instantaneous **point density** (resolution) of at least 400 points per square meter directly above the sensor.

The sensor shall have an average **measurement accuracy** of at least 10 cm.

DR 2.3

DR 2.1

DR 2.2

The sensor shall have a **range measurement precision** (repeatability) of at least 10 cm.

Project Description Design Solution CPEs Design Requirements Project Risks

ct Verification s & Validation Project Planning

LiDAR - Point Density (Resolution)

This is the key performance metric for identifying and discerning features in the point cloud

LiDAR - Point Density (Resolution)

This is the key performance metric for **identifying and discerning features** in the point cloud. 32 vertical points per column

 Accuracy → how close are the data points to their true, real-world positions in 3D space?

- Especially important for clearance measurement
- OS1-32 can allegedly achieve 1 to 1.5 cm of accuracy
 - Very limited data exists to support this metric
 - Depends on multiple external variables

Design

Solution

Project

Description

- Testing plan has been developed to estimate accuracy in the mission environment
 - More details coming up in verification + validation

CPEs

Design

Requirements

Source: YellowScan

DR 2.2 (accuracy ≤ 10 cm) To Be Confirmed

Project

Planning

Verification

& Validation

Project

Risks

LiDAR - Range Precision

LiDAR range precision indicates the **repeatability** of consecutive range measurements Critical for **"crispness"** in the context of 3D mapping Less precision \rightarrow blurrier features

Scanning of bridge underside will be in the 2 - 20 m range, which corresponds to 1.5 cm of precision

OS1-32 Gen 1		
Range	Precision	
0.8 - 2 m	3 cm	
2 - 20 m	1.5 cm	
20 - 60 m	3 cm	
> 60 m	10 cm	

LiDAR - Range Precision

Description

Solution

LiDAR - Range Precision

Requirements

Risks

& Validation

110

Planning

Software - Key Reqs. for Point Cloud Data

The onboard computer shall provide an interface between the LiDAR and auxiliary sensors for data collection.

DR 3.2

DR43

A GNSS-independent post-processing technique shall be implemented to produce a point cloud from raw sensor data.

DR 7.1

Design

Solution

The point cloud data shall be combined with the localization data to create a **3D mesh**.

Project Description CPEs R

Design Requirements

Project Risks Verification & Validation

Project Planning

111

Software - Mesh from CloudCompare

CloudCompare will serve as primary software for point cloud visualization, refining, and mesh generation Open source, industry standard Easy framework for working with multiple scans Currently used by our customer, ASTRA

Structures: Drag Forces

Project

Description

Design

Solution

CPEs

Initial Risk Matrix

٦		Cons	equence:	Acce	otable	Tole	rable	Intole	erable	
	Very Likely (5)									
Probability	Likely (4)				Exces Vibra	ssive tions				
	Possible (3)				Scanning Mesh Obstructions Dif		Mesh Generation Difficulties		Point Resol Registrati	Cloud lution, on Failure
	Unlikely (2)				IN Incomp	IU atibility	Insufficie	ent IMU	Mou Mech Detac	nting anism hment
	Very Unlikely (1)								Power Insuff	Supply ficient
		Negligible (1)	Minor	· (2)	Moder	ate (3)	Signific	ant (4)	Seve	re (5)
			Sev	verity						

Design

Requirements

Project

Risks

Verification

& Validation

Project

Planning

Failure Modes and Effects Analysis (FMEA)

Risk	Subsystem	Description	Effect	SEV	PROB	Risk Priority Number (RPN)
Point Cloud Resolution	LIDAR	Insufficient point cloud resolution for defining structural flaws.	Catastrophic structural flaws could exist but not detected by the LiDAR if they are smaller than the maximum LiDAR point cloud resolution.	5	3	15
Registration Failure	Software	Registration is the process of merging the time-sequenced measurements to generate a final 3D point cloud.	The outputted dataset will be unusable for structural analysis whatsoever.	5	3	15
Mesh Generation Difficulties	Software	From the 3D point cloud a 3D mesh will be created to represent the geometry of the bridge.	The outputted 3D mesh will be unusable for structural analysis.	4	3	12
Excessive Vibrations	Structures	Excessive vibrations causing data collection inaccuracies.	Accuracy and precision of the LiDAR-generated point cloud could be compromised.	3	4	12

116

Risk Mitigation Methods

Risk	Mitigation Method				
Point Cloud Resolution	Apply maximum LiDAR data collection setting (maximum horizontal channels and rotation rate); reduce vehicle speed during data collection if needed.				
Registration Failure	Design ROS pipeline with maximal compatibility for interchanging SLAM routines if LIO-SAM fails to produce high-quality output. (i.e. Google Cartographer)				
Mesh Generation Difficulties	Survey and prepare for experimenting with alternative competing mesh generation algorithms that are compatible with CloudCompare.				
Excessive Vibrations	Apply thermal paste and/or shock-absorbing material to structural housing; research effects of vibrations on LiDAR performance.				
Project Design CPEs	Design Project Verification Project Requirements Risks & Validation Planning				

Post-Mitigation Risk Matrix

ļ		Cons	sequence:	Acce	ptable	Tole	erable	Intol	erable	
Probability	Very Likely (5)									
	Likely (4)			Excessive Vibrations		ssive tions				
	Possible (3)	Scanning Obstructions	Exces Vibrati	sive ons	Scanning Obstructions		Mesh Generation Difficulties		Point (Resolu Registratio	Cloud Ition, on Failure
	Unlikely (2)		Insufficie	nt IMU	Mesh Givitle ration In Définipaltileis ity		Insufficie	ent IMU	Mour Registi Mecha Faili Detacr	iting ration anism ure iment
	Very Unlikely (1)	IMU Incompatibility	Power S Insuffic	upply cient	Mounting Mechanism Detachment				Picoiat 6 IResófi	Slappdy client
		Negligible (1)	Minor	· (2)	Moder	ate (3)	Significa	ant (4)	Sever	e (5)
	Severity									
	Project Description	Design Solution CPEs	Des Require	ign ments	Proje Risl	ect ks	Verificatio & Validatio	n on F	Project Planning) 11

Risk Summary

	Risk	Summary			
	R1 Registration Failure R2 Point Cloud Resolution				
	R2	Point Cloud Resolution			
	R3	Mesh Generation Difficulties	Legend		
	R4	Mounting Mechanism Detachment	Did Not Occur		
	R5	Excessive Vibrations	Occurred, No Major Impact		
	R6 Insufficient IMU		Occurred, Major Impact		
	R7	Power Supply Insufficient			
	R8	Scanning Obstructions			
	R9	IMU Incompatibility			
Purpo	se & Obje	ctives > Design Description > Test Overv & Result	iew Systems Project s Engineering Management 119		

Applications of this System

- Damage identification and evaluation
- Clearance measurement
- General bridge monitoring and documentation
 - Central repository of bridge scan data over time
 - Side-by-side comparison of bridges
 - Estimation of future workloads

Communications: Onboard Computer

DR 4.1

The system shall accommodate a cumulative data size of at least 5 GB.

DR 4.2

The memory unit shall be compatible with a UDP connection over gigabit ethernet.

DR 4.3

The onboard computer shall provide an interface between the LiDAR and auxiliary sensors for data collection as well as a wireless communication interface for uploading purposes.

Project Description Design Solution Design Requirements

CPEs

ts Pr

Project Risks Verification & Validation

Project Planning

121

LiDAR Error Analysis

LiDAR Error Analysis: Candidates

Precision decrement due to sunlight

Probability of Detection (PD)

Reflectivity of the object

For a single point on a known target at a fixed distance:

Probability _	# true positives	
of detection	# total measurements	Source: Ouste

Potholes / Obstructions in the road Range: Lambertian Reflectivity Examples

LiDAR Error Analysis: Sunlight

LiDAR Error Analysis: Reflectivity

Range: Lambertian Reflectivity Examples

Target reflectivity affects precision of range measurements Concrete: 30% reflectivity Retroreflectors: 90% reflectivity (e.g. stop signs, traffic cones, etc.)

LiDAR Error Analysis: PD

Design

Requirements

Project

Risks

Probability of Detection (PD)

Design

Solution

CPEs

Project

Description

Known Range	150	< Enter values here
Reflectivity (%)	30%	< Enter values here
Probability of detection	90%	 Enter values here

Reflectivity	Range (High	/low)	Average
10%	86.6	114.0	100.3
20%	122.5	135.5	129.0
30%	150.0	150.0	150.0
40%	173.2	161.2	167.2
50%	193.6	170.4	182.0
60%	212.1	178.4	195.3
70%	229.1	185.4	207.3
80%	244.9	191.7	218.3
94%	265.5	199.6	232.5

			(50% PD)	pected Range	Ex
		Average	/low)	Range (High	Reflectivity
	7	13	151.9	115.4	10%
	0	17	180.7	163.3	20%
	0	20	200.0	200.0	30%
	9	22	214.9	230.9	40%
	7	24	227.2	258.1	50%
	3	26	237.8	282.8	60%
Source	3	27	247.1	305.4	70%
	0	29	255.5	326.5	80%
Ouster	0	31	266.0	353.9	94%

Verification

& Validation

Project

Planning

LiDAR Error Analysis: Potholes

127

Ouster conducted extensive vibration tests on the Ouster LiDARs while they were functioning Test Results: Passed **Overall 8% measurement error in a** vibratid vironment Driver will need to bid potholes during testing

LiDAR - Bridge Height

USDOT Federal Highway Administration (FHWA) regulation Vertical clearance height of highway and pedestrian bridges \rightarrow **5.1 m (16.7 ft)** Requirement dependent on satisfying measurement range (DR 1.1) and point cloud resolution (DR 2.1) DR 1.1 and DR 2.1 satisfied \rightarrow DR 1.2 satisfied

LiDAR Point Volume

Points per Second	655360
Frame Rate	10 Hz
Horizontal Points	2048
Vertical Points	32

Assuming vehicle speed of 60 MPH (26.82 m/s)

Every 26.82 meters traveled \rightarrow 655360 points collected

50 meter travel distance under bridge \rightarrow **1.22 million points total**

LiDAR Data Budget

Assuming vehicle speed of 10 mph* (4.47 m/s) + bridge width of 50 m = 11.2 seconds under bridge

Sensor data rate of 66.23 Mbps + 11.2 seconds under bridge = 740.8 Mb = **92.6 MB of data**

Upload speed of 15 Mbps + 92.6 MB of data = 49 seconds to upload

*Represents maximum data collection for a single pass through

Software - Mesh Generation

Point Cloud

LiDAR - Primary Sources of Error

Solution to Internal Blockage

Source: Skydio

Types of Damage to be Identified in Data

Design

Requirements

- Types of damage/defects to be identified
 - Concrete spalling
 - ~15 cm or more in diameter
 - ~2.5 cm or more in depth
 - Concrete delamination
 - ~2.5 to 7.5 cm in size
 - Destructive losses due to impact 0
 - Size varies, but typically largest form of damage
 - **Corrosion in reinforcement** 0
 - ~5 to 20 cm in size

Limitations •

Long-term deformation/displacement

Design

Solution

CPEs

- On the mm scale
- Cracking 0

Project

Description

On the mm scale

Project

Risks

Source: Rollanet

Verification

& Validation

Project

Planning

LiDAR Sensor Outputs (Data Packets)

Range	Distance of point from beam origin in mm		
Signal Photons	Intensity/strength of return signal		
Ambient Photons	Estimated ambient light/noise		
Reflectivity	Estimated reflectance of target		
Timestamp	Timestamp of measurement in ns		
Measurement ID	Sequentially incrementing azimuth measurement (0 to 2047)		
Frame ID	Index of scan, increments every rotation		
Encoder Count	Azimuth angle as a raw encoder tick		
Beam Altitude	Angle of range measurement above sensor XY plane		
Beam Azimuth	Angle of range measurement w.r.t. radial line from center		

LiDAR Interface Box

$\begin{array}{l} \textbf{Data output} \rightarrow \textbf{gigabit Ethernet interface} \\ \textbf{via standard RJ45 connector} \end{array}$

 $\textbf{Power} \rightarrow 24 V \text{ DC}$ supply

How can LiDAR data be used to assess structural integrity?

Large defects and geometric deformations can simply be identified by visual examination of the point cloud

Algorithms can be applied to point clouds for more advanced detection and quantification of defects/damages

Discrepancies in periodic LiDAR scans of the same bridge can reveal long-term displacement that may be overlooked by traditional inspection

Intensity and reflectivity data can reveal surface defects such as metal corrosion, section loss, concrete spalling, and water/moisture stains

Source: UNC Charlotte

Required Resolutions for Bridge Inspection

Cause	Observations	Required resolution	Cause	Observations	Required resolution	
		1999	•		Bridge deck	
Sun shadow	Shading	lm	Abutment shift	Relative displacement	0.025m	
Rain dampness	Shading	0.5m	Pier displacement		0.025m	
Car accident		1m	Bridge deck displacement			
Section loss		0.5m	Deck punch-through	Large openings	0.5m	
Deterioration		0.1m	Deck corrosion		0.5m	
Chemical spill	Discoloring	0.1m	Wear at joint	Gap at expansion joints	0.1m	
Collision	Deformation	0.1m				
					Vearing surface	
New wear surface	Discoloring	1.0m	Cracking	Shading	0.005m	
Raveling	Local discoloring	0.5m	Potholing		0.1m	
			Rutting		0.1m	
		Railing			Curb	
Missing railing	0	0.5m	Cracking	Shading	0.005m	
Cracking	Shading	0.005m	Spalling		0.1m	
Section loss		0.1m	Alignment	Curb edge detection	0.5m	
Spalling		0.1m	Collision damage	Shading, edge detection	0.1m	
	Riv	er bank (1 miles)		22 IOOO 0.000 000 000 000000	Sidewalk	
Pollution	De-vegetation	lm	Deterioration	Shading	0.1m	
Smaller flow	River channel widening	0.5m			Drainage device	
	21	Traffic	Scaling potion		0.1m	
Increase in ADT		1m			Land use	
Increase in trucking			Surrounding land use	Changes in image	lm	
Rush hour traffic	Q			Geometry of bridg		
Loading condition			Edge detection	Horizontal misalignment	0.5m	
					Utilities	
Light shape, cables		0.1m	Traffic line		lm	

Source: UNC Charlotte

Accuracy	HIGH < 0.05 m (< 0.16 ft)	MEDIUM 0.05 to 0.20 m (0.16 to 0.66 ft)	LOW > 0.20 m (> 0.66 ft)
Density	1A	2A	3A
FINE >100 pts/m² (>9 pts/ft²)	Engineering surveys Digital Terrain Modeling Construction Automation/ Machine Control ADA compliance Clearances Pavement analysis Virtual, 3D design CAD models\baseline data BIM\BRIM Post-construction quality control As-built/As-is/repair documentation Structural inspection	 Forensics/Accident Investigation Historical Preservation Power line clearance 	Roadway condition assessment (general)
	1B	2B	3B
INTERMEDIATE 30 to 100 pts/m² (3 to 9 pts/ft²)	Unstable slopes Landslide assessment	General Mapping General measurements Driver Assistance Autonomous Navigation Automated\semi- automatic extraction of signs and other features Coastal change Safety Environmental studies	 Asset Management Inventory mapping (e.g. GiS) Virtual Tour
	1C	2C	3C
COARSE <30 pts/m ² (<3 pts/ft ²)	Quantities (e.g., Earthwork) Natural Terrain Mapping	Vegetation Management	Emergency Response Planning Land Use\Zoning Urban modeling Traffic Congestion\ Parking Utilization Billboard Management

FLASH

Suggested accuracy and point cloud density for various mobile LiDAR applications

Source: National Cooperative Highway Research Program (NCHRP)

LiDAR vs. Photogrammetry

Lidar

- 3D coordinates automatically registered from a single viewpoint
- Point clouds contain millions of points with high point density
- Higher cost implementation

Photogrammetry

- 3D coordinates extractable via multiple view shots and complicated feature matching processes
- Datapoints dependent to photo quality and digitization technique
- Lower cost implementation

LiDAR Range Resolution

- Range resolution indicates the smallest increment by which range measurements can be made → analogous to "ticks on a ruler"
- The OS1-32 Gen 1 has a range resolution of **0.03 cm (0.3 mm)** with fixed resolution per frame
- This means we can likely resolve defects with depths of 0.3 mm or more!

LiDAR Metric Definitions

Accuracy \rightarrow How close are the measured points to the true/actual position of the structure being scanned?

Resolution \rightarrow How far apart are the measured points? How dense is the point cloud?

Precision \rightarrow How repeatable are the measurements? How much noise is observed in the point cloud?

LiDAR Bridge Height Constraint

Bridge Height Constraint is controlled by design requirement satisfaction: Satisfaction of DR 1.1 (Range \geq 30 m): ~30 m Max Height Satisfaction of DR 2.1 (Point Density \geq 400 pts/m^2): 14.6 m Max Height Satisfaction of DR 2.3 (Range Precision \leq 10 cm): ~60 m Max Height

As bridge height increases, so does the required number of pass throughs: 14.6 m bridge height -> **105 minimum pass throughs** (assuming a bridge width of 50 m)

The acceptable maximum bridge height will be determined by the **number of driveable lanes** beneath it (and corresponding maximum pass throughs) 32 vertical points per column Total Length: 0.478 m

Limiting Height Constraint: **14.6 m** (Satisfaction of DR 2.1)

Structures - Withstanding Drag Forces (MATH)

DR 5.2 The mounting structure shall withstand drag forces associated with a vehicle speed of no more than 35 mph

Constraints: Area exposed to wind: 78.8 cm² (add visual too) Wind force at 65 mph = 78.8 cm²*1.14 kg/m³ * 0.5*(30 m/s)² = **4 lbf** Magnet vertical holding capacity = 33 lb / magnet **determine final magnet type** Magnet horizontal holding capacity = 14 lb / magnet * 4 magnets = 56 lb Will be determined experimentally, depends on coefficient of friction Factor of Safety = 1.5 Structure pages to hold **6 lbs (will be determined through testing)**

Structure needs to hold 6 lbs (will be determined through testing)

Structures: Thermal Analysis

Assumptions Forced convection coefficient of air at 60 mph: 125 W/m²K LiDAR heat transfer: 6 W Material: ABS Plastic (housing), Al 6061 (housing), Anodized Aluminum (LiDAR) No gaps at contacts Boundary Conditions Maximum LiDAR temperature: 40-50°C Solar load: 1000 W/m²

Structures: Thermal Analysis

LiDAR Surface Area = $A_L = 0.0496 m^2$ Emmissivity of Anodized Aluminum = $\varepsilon = 0.77$ Stefan Boltzmann Constant = $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ LiDAR Operating Temperature = T_L = 315 K Air Temperature = T_{∞} = 298 K Conductivity of Aluminum = $k = 167 \frac{W}{mK}$ Conductivity of ABS Plastic = $k = 0.1 \frac{W}{mK}$ Length of Aluminum Plate (at LiDAR Base) = $L_A = 0.0039 cm$ Diameter of LiDAR Base = $A_B = 0.005 m^2$ Forced Convection Coefficient = $h = 167 \frac{W}{m^2 K}$

Project
Design
DescriptionDesign
SolutionProject
CPEsVerification
RequirementsProject
RisksVerification
& ValidationProject
Planning

Project Motivation

Test Results

- More than 200,000 bridges in the U.S. are over 50 years old
- Infrastructure monitoring and maintenance teams are few and far between

The project goal is to use LiDAR to create a **higher efficiency** and **lower cost** monitoring solution

Systems Project Engineering Management

What is LiDAR?

Source: Brett Rapponotti

Design

Description

Test

Overview

Purpose &

Objectives

□ LiDAR stands for Light Detection and Ranging → commonly used for 3D mapping and modeling

 Repeating the scanning process millions of times per second creates a **point cloud**

Collection of measured points in space, with each being represented by an x, y, and z coordinate

Systems

Engineering

Test Results

Project

Management

150

System Engineering Challenges

- Team Communication
- Team Skill Delegation vs Workload and Project Need
- Collaborating over virtual environment for majority of project
- Communicating with product vendors/industry experts
- Changes in project scope and focus over both semesters as more information was learned
- Lack of a maintenance plan

Systems Level Lessons Learned

• Team Schedule Conflicts

Purpose &

Objectives

- Challenges in jump from design concept to physical execution
 - Structures "design-as-you-go" challenges and adapting
 - Software- navigating a largely new and unknown terrain
- Communication with manufacturers and industry experts often was left open-ended
- Some COTS manufacturers are reliable, others aren't

Design

Description

 Project sponsors weren't reliable/certain about many core aspects of the project

Test

Overview

Test Results

Project

Management

Systems

Engineering

Ouster OS1-32 Gen 1 Qualifications

NOTE: Ouster OS1-32 Gen 1 replaces Ouster OS1-16 Gen 1 Current LiDAR selection (OS1-32) has greater accuracy and data output than scored in the original trade (OS1-16)

		Velodyne Puck Hi-Res	Ouster OS0-32	Ouster OS1-16 (Gen 1)	SICK MRS1000	Livox Mid-100	Velodyne Puck
Criteria	Weight	Score	Score	Score	Score	Score	Score
Accuracy	7.5%	4	3	2	1	5	4
Range	7.5%	4	1	2	3	5	4
Field of View	30%	3	5	4	2	1	3
Cost	20%	1	2	4	3	5	3
Data Output	20%	3	5	4	2	3	3
Platform Integration	5%	4	3	3	5	3	4
Mass	5%	3	4	5	2	1	3
Power	5%	5	3	3	4	1	5
Total	100%	2.9	3.7	3.65	2.45	2.9	3.3

Data Processing Software Trade Study

		PointFuse	ArcGIS	CloudCompare	AutoDesk	TerraSolid	MATLAB
CRITERIA	WEIGHT	Score	Score	Score	Score	Score	Score
Cost	35%	1	4	5	3	2	4
Tools/Capabilities	25%	3	2	4	5	4	3
Compatibility	20%	4	2	5	3	1	2
User Engagement, Ease of Use	20%	5	2	3	4	3	1
Total	100%	2.9	2.7	4.35	3.7	2.5	2.75

Table 32: Trade study of Data Processing Softwares

