

Preliminary Design Review Team FLASH

Kunal Sinha, Ishaan Kochhar, Ricky Carlson, Fiona McGann, Jake Fuhrman, Shray Chauhan, Erik Stolz, Julian Lambert, Courtney Kelsey, and Andrew Fu

Presentation Layout

1. Project Description

- Motivation
- Objectives
- CONOPS
- FBD

2. Baseline Design

- LiDAR Sensor
- IMU Sensor
- Data Processing Software
- Mounting Mechanism

3. Baseline Feasibility

- LiDAR Feasibility
- IMU-LiDAR Integration Feasibility
- Mounting Mechanism Feasibility
- Power Availability Analysis

4. Status Summary and Strategy

- Plan for Future Studies
- Financial Outlook

Project Description

Project Description

Baseline Design

Baseline Feasibility

Status Summary and Strategy

3

Motivation: Bridges

- 614,387 bridges in the US
- 200,000+ are over 50 years old
- 1 in 9 deemed structurally deficient
- Structurally deficient bridges are crossed 174 million times each day

Baseline Design

- 17% of Bridges are inspected annually
- Cost of traditional inspection:
 - \circ UBIV: up to \$1M
 - Operational Cost: \$3.5k p/d
- Infrastructure Monitoring Market valued at \$1.78B in the U.S.
- Estimated to grow to \$6.3B by 2029

Motivation: Current Innovations

Traditional Inspection vs. UAS Assisted Inspection Savings Traditional Inspection Cost UAS Assisted Inspection Cost \$45.000 \$40.000 \$35.000 \$30,000 \$25,000 Cost \$20,000 \$15,000 \$10.000

- Manually operated drone imagery •
 - Lower cost but similar manpower Ο required, not always cheaper
- Higher precision, less time & manpower per bridge is the goal

\$5.000 19538 Bridges

Figure 5.1 Traditional Inspection vs. UAS Assisted Inspection Savings

Project Description

Baseline Design

Objectives

Project Objective:

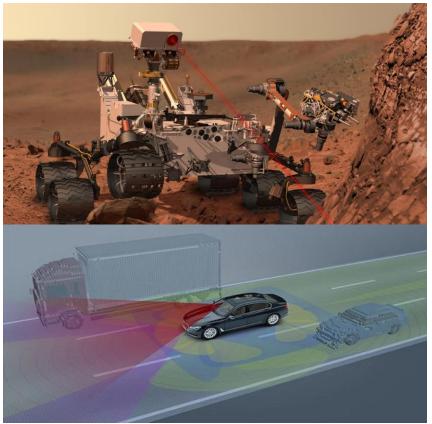
The system shall create an efficient and cheap way to analyze infrastructure.

AUTODESK' RECAP Sign In A Connect* $-\Box$ 200.255 ٩

Mission Statement:

Design, build, and deploy a dynamic, vehicle-based **infrastructure analysis** sensor package using **LiDAR**.

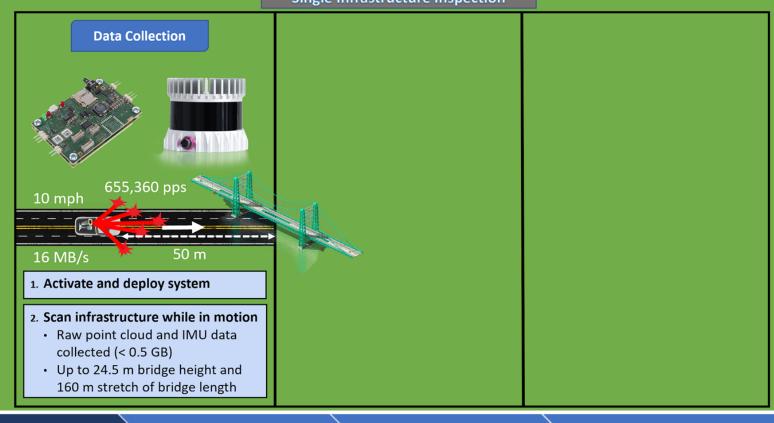
• The system shall **scan** its surroundings while in motion to produce a **3D map/model** that can be used by structural engineers to assess infrastructure.



Further Applications

3D Map creating system uses:

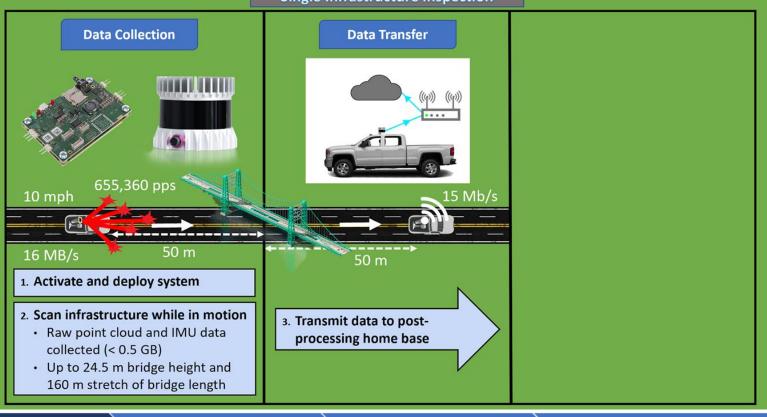
- Self-Driving Cars
- Mapping Planetary bodies
- Cave inspection
- Forest surveying
- Underwater exploration
- Battlefield mapping



FLASH: Functional LiDAR Assessment of Structural Health

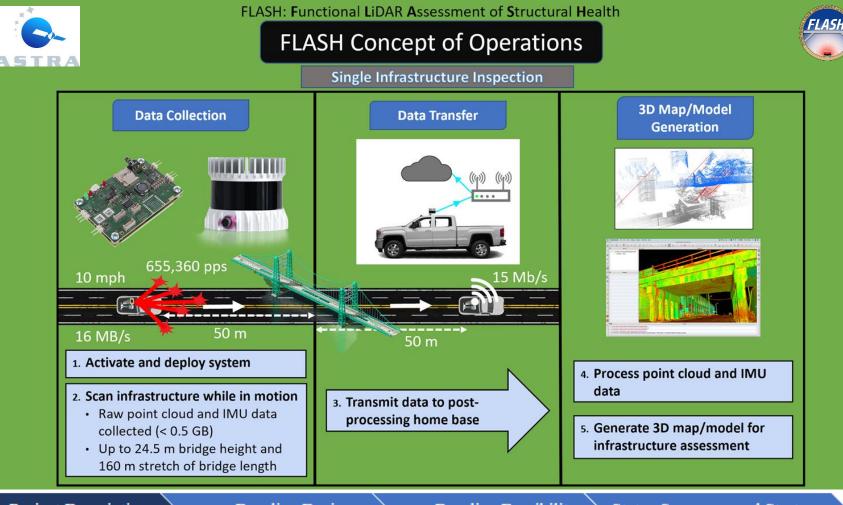
FLASH Concept of Operations

Single Infrastructure Inspection



FLASH: Functional LiDAR Assessment of Structural Health

FLASH Concept of Operations

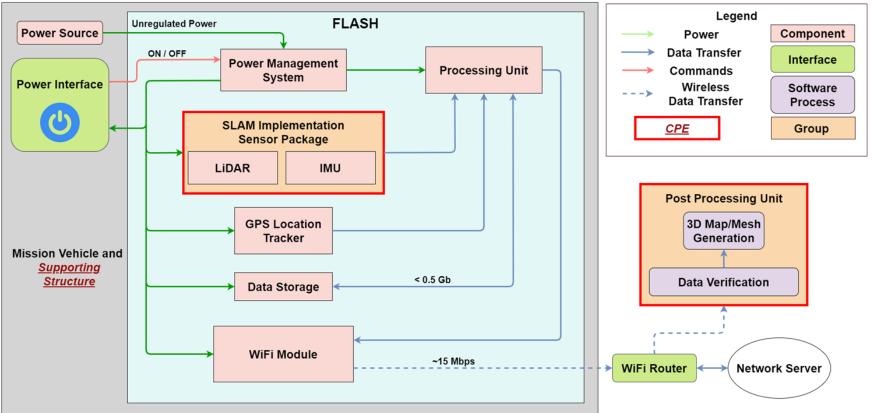

Single Infrastructure Inspection

Project Description

Baseline Design

Project Description

Baseline Design


Baseline Feasibility

Status Summary and Strategy

Functional Block Diagram (FBD)

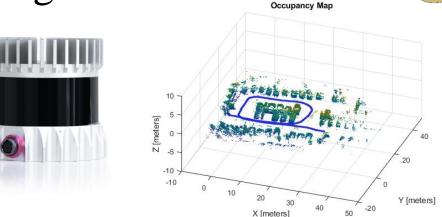
Project Description

Baseline Design

Baseline Design

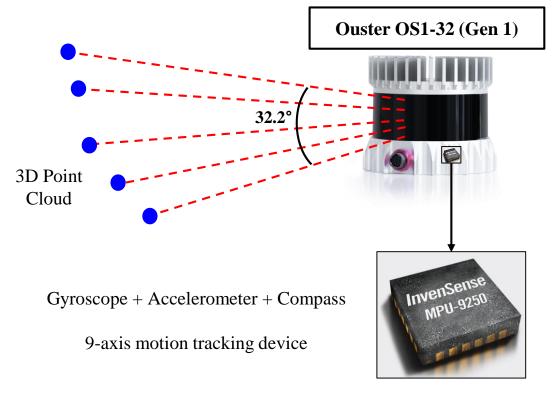
Project Description

Baseline Design



Baseline Design

Critical Project Elements (CPEs)


- Sensor Package
 - LiDAR Sensor
 - IMU System
- Data Processing Software
 - Point cloud registration (CloudCompare)
 - SLAM Algorithm
- Vehicle Platform
 - Mounting Mechanism

Baseline Design – Sensor Package (LiDAR+IMU)

Key Specifications (LiDAR)			
Range	120 m (for target reflectivity of 80%)		
Precision	+/-1.5 - 10 cm		
Horizontal Resolution	1024 channels		
Vertical Resolution	32 channels		
Field of View	33.2° (V), 360° (H)		
Cost	\$3500 (customer-purchased)		
Data Output	16.1 MB/s (129 Mbps) 655,360 points per sec		
Power Consumption	14 - 20 W (Steady State)		

Baseline Design

Data Processing - Point Cloud Registration

- Raw LiDAR and IMU data must be correlated to common coordinate frame, known as registration
 - Simultaneous Localization and Mapping (SLAM)used to improve pose estimates
 - LiDAR measurements outputted separately to IMU
 - Kalman filter combines signals in iterative process
- CloudCompare: open-source registration and visualization software package
 - Input: raw LiDAR files (.LAZ, .xyz)

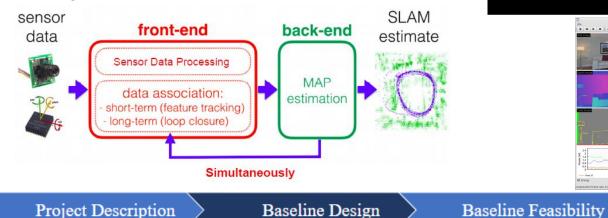
Project Description

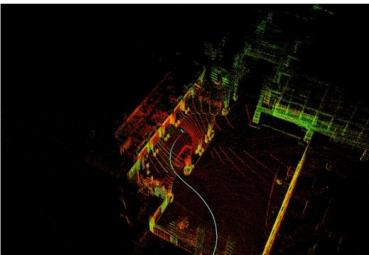
Output: registered point cloud and/or 3D model (many file formats

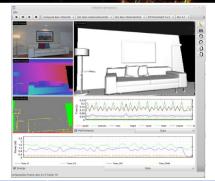
Baseline Design

Baseline Feasibility

Status Summary and Strategy




SLAM Algorithms



Simultaneous Localization And Mapping

• Constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.

Status Summary and Strategy

Baseline Design - Mounting Mechanism

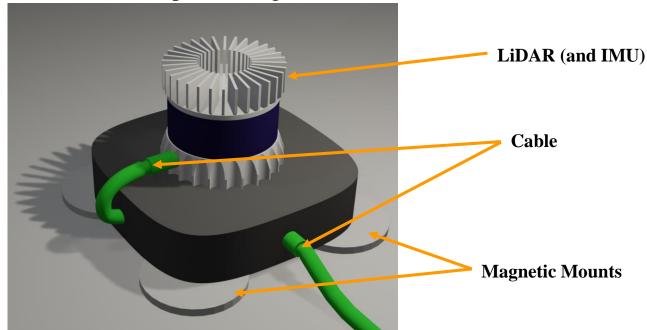
- System mounted through magnetic attachments
- Holds housing structure onto roof of vehicle

Key Specifications		
Mass	0.52 kg (1.15 lb)	
Cost	\$14.15 (per 5 magnets)	
Size	720 cm ³ (73.9 in ³)	
Diameter	60 mm (2.4 in)	
Carrying Capacity	22.7 kg (50 lb)	

Project Description

Baseline Design

Baseline Design - Housing Structure


Conceptual Design

Items to be included inside housing:

- Power Management System
- GPS Sensor
- Processing Unit
- WiFi Module
- Data Storage
- Computer

Items to be included inside vehicle:

• Power Source

Baseline Design

Baseline Feasibility

Project Description

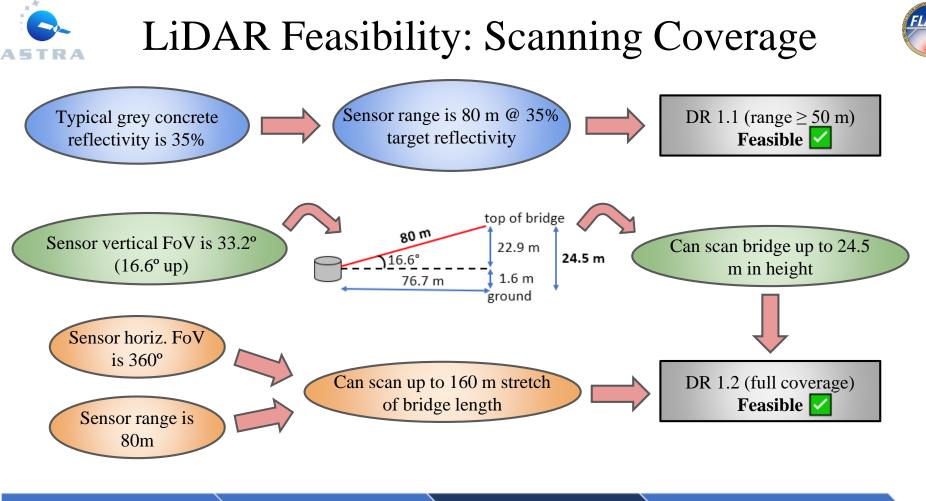
Baseline Design

LiDAR Feasibility Overview

- LiDAR is the centerpiece of FLASH and overall project success depends upon collection of highquality 3D point cloud data
- Key LiDAR feasibility elements are scanning coverage, point spacing, and measurement error

Governing Requirements

FR 1	The system shall utilize a 3D LiDAR sensor to survey infrastructure of interest.	


The system shall collect and output usable 3D point cloud data (x,y,z).

- Customer-specified requirement
- Associated DRs (1.1, 1.2) address measurement range and scanning coverage
- Will be critical for 3D map/model creation
- Associated DRs (2.1 2.3) address data accuracy, resolution, and output quantity

Project Description

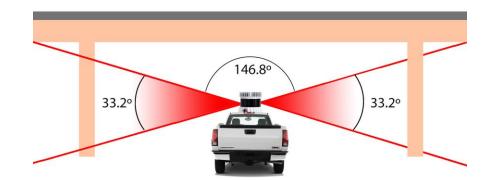
FR 2

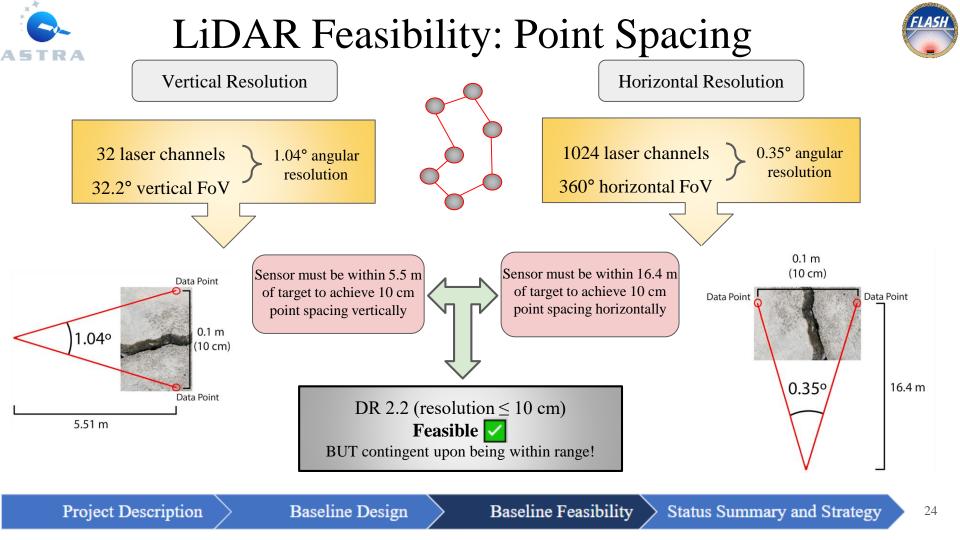
Baseline Design

Project Description

Baseline Design

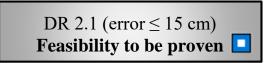
Baseline Feasibility


Status Summary and Strategy



LiDAR Feasibility: Scanning Coverage (cont.)

- As the vehicle passes directly under infrastructure, there will be a 146.8° "blind spot" due to limited vertical FoV
- Data for this "blind spot" will be captured as the vehicle approaches or leaves the infrastructure

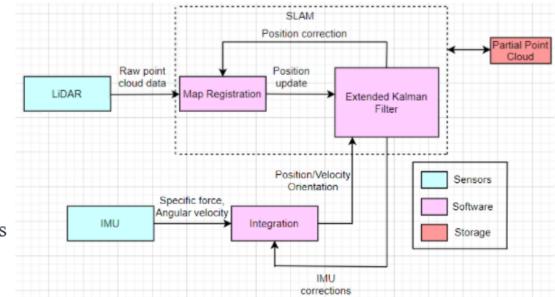


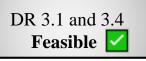
LiDAR Feasibility: Measurement Error

- Accuracy → How close are the measured points to the true/actual position of the structure being scanned?
- LiDAR point accuracy depends on external conditions \rightarrow not necessarily a datasheet spec
- Typical accuracy for mobile mapping LiDAR units is 2-4 cm (\$5,000 \$10,000)
- Future Testing Plan \rightarrow Once the Ouster OS1-32 LiDAR is obtained:
 - LiDAR sensor will be used to scan a specific surface with known position
 - Processed point cloud data will be compared to known measurement
 - LiDAR measurement error (average and standard deviation) will be computed

- It is crucial that the system is able to localize itself to a high level of accuracy without the aid of GNSS services.
- This ensures that GPS data is not required to construct the 3D model

Project Description


Baseline Design

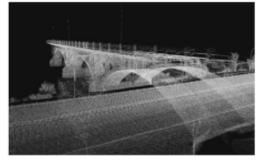


IMU/LiDAR Integration Feasibility

- Kalman filter Linear quadratic estimation algorithm
 - Combines sensor data from multiple sources to reduce noise/uncertainty
 - Input series of measurements observed over time
 - Output estimated state as well as associated uncertainty

Feasibility Analyses -- Data Processing

FR 2 2 The LiDAR sensor shall collect and output usable 3D point cloud data.


Accuracy Requirements (DR 2.1)

- Point cloud must be outputted to useable 3D model
- Compare 3D model to ground truth data collected by manual surveying and Google Maps API
- Organize point cloud and models into larger selectable maps via geotags

DR 2.1 (Error <15cm) **Feasibility to be proven**

Project Description

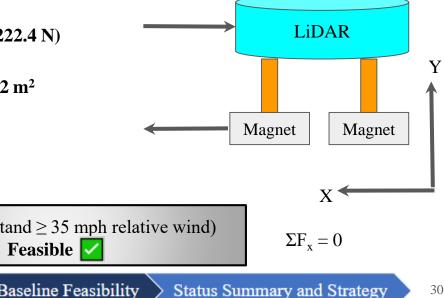
Baseline Design

Feasibility Analysis -- Mounting Mechanism

FR 5 The system shall be capable of mounting onto a vehicle and operating while the vehicle is in motion.

Customer-specified requirement
 Associated DRs (5.1, 5.2, 5.3) address holding capacity, withstanding drag forces, road vibration tolerance

- Magnet mechanism fulfills this FR:
 - Can easily **attach/detach** from any vehicle with metal roof
 - Designed for car top signs / ski racks
 - Tested at high speeds
 - Widespread COTS usage
 - High customer reviews (average: 4.4 / 5 stars)



Feasibility Analysis -- Mounting Mechanism

The system shall be capable of mounting onto FR 5 a vehicle and operating while the vehicle is in motion.

- Customer-specified requirement •
- Associated DRs (5.1, 5.2, 5.3) address holding capacity, withstanding drag forces, road vibration tolerance

Constraints:

- Each magnet has a holding capacity of **50 lbs** (222.4 N) Ο
 - 16.66 lbs (74.1 N) in horizontal direction
- LiDAR area exposed to oncoming wind: 0.0062 m^2 Ο
- Factory of safety of 1.5 (49.3 N) Ο
- Maximum:
 - Force exerted by 67 mph relative wind is 9.6 N Ο
 - (Well below FOS)

DR 5.2 (withstand \geq 35 mph relative wind)

Project Description

Baseline Design

Status Summary

Project Description

Baseline Design

Baseline Feasibility

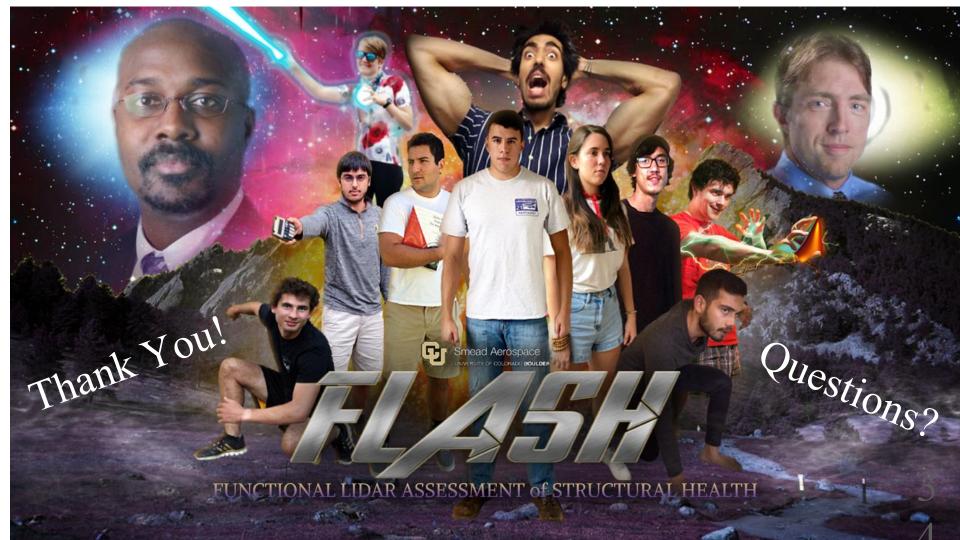
Status Summary and Strategy

31

Status Summary of Feasibility Studies

	Sensor Package (LiDAR+IMU)	Software	Mounting Structure	
Aspects shown to b feasible	 Scanning range and coverage Point spacing (resolution) 	 Preliminary IMU- LiDAR data integration plan 3D model from point cloud 	• Mounting mechanism	
Remaining studies	• Testing to determine point accuracy (measurement error)	 Choose a SLAM algorithm (trade study) compatible with CC Study algorithm accuracy dependencies 	 Component housing design Test protocol 	
Project Description Baseline Design Baseline Feasibility Status Summary and Strateg				

Preliminary Financial Outlook



- Total Project Budget: \$5,000.00
 - Total Cost w/ Margin: (\$1,312.50)
 - **Remaining Budget**: \$3,687.50
 - Loaned Hardware:
 - **ASTRA has verbally agreed to purchase and loan this LiDAR system to the team for the duration of the project
 - Margin Percentage: 25%
 - Will be refined after PRR
 - Defines worst case scenario

Subsystem	Cost	
LiDAR/IMU	\$3,500** <mark>(\$0)</mark>	
Structures	(~\$200)	
Communications	(~\$300)	
Power	(~\$100)	
Data Storage	(~\$400)	
Miscellaneous	(~\$50)	
Margin	25%	
Total Cost	(\$1312.50)	

Project Description

Baseline Design

References

[1]"National Bridge Inspection Standards - Other Programs- Federal-Aid Essentials for Local Public Agencies." Dot.Gov, 2020, www.fhwa.dot.gov/federal-aidessentials/catmod.cfm?id=87. Accessed 1 Oct. 2020.

[2]"Who We Are | ASTRA Space." ASTRA Space, 2014, www.astraspace.net/who-we-are. Accessed 1 Oct. 2020.

[3]"Study on the Resolution of Laser Scanning Point Cloud." Zhu, Ling, Yuqing Mu, and Ruoming Shi.ResearchGate. unknown, 2008. Web. 30 Sept. 2020.

[4]"UDP (User Datagram Protocol)." Rouse, Margaret. SearchNetworking, TechTarget, 2017, searchnetworking.techtarget.com/definition/UDP-User-Datagram-Protocol#:~:text=UDP%20(User%20Datagram%20Protocol)%20is,provided%20by%20the%20receiving%20party. Accessed 30 Sept. 2020.

[5]"Puck Hi-Res Lidar Sensor, Greater Image Resolution | Velodyne Lidar." Velodyne Lidar, 2019, velodynelidar.com/products/puck-hi-res/. Accessed 1 Oct. 2020.

[6]"OS0 Ultra-Wide Field-of-View Lidar Sensor for Autonomous Vehicles and Robotics." Ouster, ouster.com, 2014, ouster.com/products/os0-lidar-sensor/. Accessed 1 Oct. 2020.

[7]"High-Resolution OS1 Lidar Sensor: Robotics, Trucking, Mapping." Ouster, ouster.com, 2014, ouster.com/products/os1-lidar-sensor/. Accessed 1 Oct. 2020.

[8]"3D LiDAR Sensors | MRS1000 | SICK." Sick.Com, 2020, www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/mrs1000/c/g387152. Accessed 1 Oct. 2020.

[9]"Buy Livox Mid - DJI Store." Dji.Com, 2020, store.dji.com/product/livox-mid?vid=48981. Accessed 1 Oct. 2020.

[10]"What Is an Inertial Navigation System? - OxTS." OxTS, 14 Oct. 2019, www.oxts.com/what-is-inertial-navigation-guide/. Accessed 1 Oct. 2020.

[11]"GNSS Signal - Navipedia." Esa.Int, 2011, gssc.esa.int/navipedia/index.php/GNSS_signal. Accessed 1 Oct. 2020.

[12] orolia-admin. "Time To First Fix (TTFF)." Orolia, 9 Aug. 2019, www.orolia.com/support/skydel/ttff. Accessed 1 Oct. 2020.

[13]"Point Cloud." Mathworks.Com, 2020, www.mathworks.com/discovery/point-cloud.html. Accessed 1 Oct. 2020.

[14] Gray, David. "What Are the Most Popular Types of Point Cloud Processing Software?" Vercator.Com, 2011, info.vercator.com/blog/what-are-the-most-popular-types-of-point-cloud-processing-software. Accessed 1 Oct. 2020.

[15]Rack Attack. "Base Roof Rack Information: A Guide to Car Rack Crossbars." Rackattack.Com, 2020, www.rackattack.com/static-content/base-roof-rackinformation.aspx. Accessed 1 Oct. 2020.

[16] "50 LB Holding Power 2.4" Cup Magnets | Magnetic Round Base Mounting Magnets for Business or Car Top Signs, RB60 Pot Magnets 5 Pieces: Magnetic Sweepers: Amazon.Com: Industrial & Scientific." Amazon.Com, 2020, www.amazon.com/CMS-Magnetics-Magnets-Diameter-RB60/dp/B000WMQFQO#descriptionAndDetails. Accessed 1 Oct. 2020.

[17] CargoLoc 150 lbs. Capacity Adjustable Rooftop Rack Crossbars. "CargoLoc 150 Lbs. Capacity Adjustable Rooftop Rack Crossbars-32546 - The Home Depot." The Home Depot, 2018, www.homedepot.com/p/CargoLoc-150-lbs-Capacity-Adjustable-Rooftop-Rack-Crossbars-32546/309994583. Accessed 1 Oct. 2020.

[18] "IoT Standards & Protocols Guide | 2019 Comparisons on Network, Wireless Comms, Security, Industrial." Postscapes, 2 Jan. 2020, www.postscapes.com/internet-of-things-protocols/. Accessed 1 Oct. 2020.

[19]"VisibleBreadcrumbs." Mathworks.Com, 2010, www.mathworks.com/help/vision/ug/point-cloud-registration-workflow.html. Accessed 1 Oct. 2020.

[20]"MEMS Sensor: Working Principle, Types, Advantages & Its Applications." ElProCus, 22 Aug. 2019, www.elprocus.com/mems-sensor-working-and-its-applications/.

References

[21]Wikipedia Contributors. "Fibre-Optic Gyroscope." Wikipedia, Wikimedia Foundation, 16 Apr. 2020, en.wikipedia.org/wiki/Fibre-optic_gyroscope. Accessed 1 Oct. 2020.

[22] Kvh.Com, 2020, www.kvh.com/admin/products/gyros-imus-inss/fiber-optic-gyros/dsp-3000/commercial-dsp-3000. Accessed 1 Oct. 2020.

[23] "Puck Hi-Res Lidar Sensor, Greater Image Resolution | Velodyne Lidar." Velodyne Lidar, 2019, velodynelidar.com/products/puck-hi-res/. Accessed 30 Sept. 2020.

[24] "3D LiDAR Sensors | MRS1000 | SICK." Sick.Com, 2020, www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-sensors/mrs1000/c/g387152. Accessed 30 Sept. 2020.

[25] "The Battle Between MEMS and FOGs for Precision Guidance." Analog.Com, 2010, www.analog.com/en/technical-articles/the-battle-between-mems-and-fogs-for-precision-guidance.html. Accessed 1 Oct. 2020.

[26] "Point Cloud Scene Layer—ArcGIS Pro | Documentation." Arcgis.Com, 2020, pro.arcgis.com/en/pro-app/help/mapping/layer-properties/point-cloud-scene-layer-in-arcgis-pro.htm. Accessed 1 Oct. 2020.

Backup Charts

Functional Requirements

FR 1: The system shall utilize a 3D LiDAR sensor to survey infrastructure of interest.

FR 2: The LiDAR sensor shall collect and output usable 3D point cloud data.

FR 3: The system shall be capable of localizing itself even when GNSS services are not readily available.

FR 4: The on-board processing unit shall be capable of data storage, handling, and interfacing between components.

FR 5: The system shall be capable of mounting onto a vehicle and operating while the vehicle is in motion. **FR 6:** The system shall incorporate a power source that is capable of continuously supplying power to all applicable components.

FR 7: The point cloud and localization data shall be consolidated and post-processed into an interactive digital 3D map/model to quickly identify structural faults.

FR 8: The on-board communications unit shall be capable of wirelessly transferring point cloud and localization data directly to a designated headquarters.

FR 9: The system shall be capable of initiating and terminating data collection with minimal driver interaction.

FR 10: The system shall conform to all relevant safety regulations and guidelines.

Design Requirements

DR 1.1	The system shall have a measurement range of no less than 50 meters.
DR 1.2	The system shall provide scanning coverage for bridges up to 30 meters in height and 30 m in length.
DR 2.1	The point cloud data shall have an average measurement error no more than 15 cm.
DR 2.2	The point cloud resolution shall be no less than 10 cm.
DR 2.3	The sensor shall output no less than 150,000 data points per second.
DR 3.1	The system shall incorporate an inertial navigation device with bias instability of less than 2°/hr.
DR 3.2	The system shall incorporate a Global Positioning System (GPS) module with a positional error of less than 5 cm.
DR 3.3	The system shall utilize a GNSS sensor to assign geographic coordinates to collected data.

Design Requirements

42

DR 3.4	The system shall operate during GNSS service outages of no more than 10 seconds.
DR 4.1	The system shall accommodate a cumulative data size of at least 5 GB.
DR 4.2	The memory unit shall be compatible with a UDP connection over gigabit ethernet.
DR 4.3	The processing unit shall provide an interface between the LiDAR sensor, auxiliary sensors, and a hard drive.
DR 5.1	The mounting structure shall be capable of supporting a LiDAR sensor up to 5 pounds in mass.
DR 5.2	The mounting structure shall withstand drag forces associated with a vehicle speed of at least 35 mph.
DR 5.3	The mounting structure shall secure all components of the system up to a vehicle vibration frequency of 50 Hz.
DR 6.1	The power system shall supply no less than 30 V.

Project Description

Baseline Design

Design Requirements

DR 6.2	The power system shall be capable of supplying 25W of continuous steady-state power.
DR 7.1	The point cloud data shall be stitched together to create a 3D map using localization data.
DR 8.1	The system shall be capable of transmitting data at a range of 70 meters.
DR 8.2	The system shall be capable of transmitting data at a minimum rate of 15 Mbps.
DR 9.1	The system shall automatically begin data collection 50 m away from the infrastructure of interest, and shall automatically terminate 50 m after infrastructure of interest.
DR 9.2	The system shall provide a means of manual data collection initiation and termination.
DR 10.1	The system shall adhere to all applicable Federal Motor Vehicle Safety Standards (FMVSS).
DR 10.2	The LiDAR sensor shall adhere to laser safety regulations under IEC 60825-1:2014.

Project Description

Baseline Design

LiDAR Sensor Trade Study Results

44

		Velodyne Puck Hi-Res	Ouster OS0-32	Ouster OS1-16 (Gen 1)	SICK MRS1000	Livox Mid-100	Velodyne Puck
Criteria	Weight	Score	Score	Score	Score	Score	Score
Accuracy	7.5%	4	3	2	1	5	4
Range	7.5%	4	1	2	3	5	4
Field of View	30%	3	5	4	2	1	3
Cost	20%	1	2	4	3	5	3
Data Output	20%	3	5	4	2	3	3
Platform Integration	5%	4	3	3	5	3	4
Mass	5%	3	4	5	2	1	3
Power	5%	5	3	3	4	1	5
Total	100%	2.9	3.7	3.65	2.45	2.9	3.3

Table 28: Trade Study of LiDAR Sensors

Navigation Sensor Trade Study Results

		Advanced Navigation SPATIAL	Vectornav 200	Vectornav 300	Trimble BD992-INS	Gladiator Tech Landmark 60
Criteria	Weight	Score	Score	Score	Score	Score
IMU Performance	25%	5	4	4	4	5
GNSS Performance	25%	4	3	5	3	4
Additional Sensors	10%	5	4	4	4	4
Cost	20%	3	1	1	5	1
Platform Integration	10%	4	4	4	4	5
Mass	5%	5	5	5	5	4
Power	5%	4	4	4	5	3
Total	100%	4.2	3.2	3.7	4.05	3.7

Table 30: Trade Study of Navigation Sensors

Data Processing Trade Study Results

		PointFuse	ArcGIS	CloudCompare	AutoDesk	TerraSolid	MATLAB
CRITERIA	WEIGHT	Score	Score	Score	Score	Score	Score
Cost	35%	1	4	5	3	2	4
Tools/Capabilities	25%	3	2	4	5	4	3
Compatibility	20%	4	2	5	3	1	2
User Engagement, Ease of Use	20%	5	2	3	4	3	1
Total	100%	2.9	2.7	4.35	3.7	2.5	2.75

Table 32: Trade study of Data Processing Softwares

Mounting Mechanism Trade Study Results

		Fixed Attachment	Magnetic Attachment	Clamping Attachment
Criteria	Weight	Score	Score	Score
Ease of Attach/Detach	30%	2	5	4
Stability Risk	25%	5	3	4
Mass	20%	1	5	3
Cost	10%	1	5	4
Manufacturability	10%	2	5	4
Size	5%	2	5	2
Total	100%	2.45	4.5	3.7

Table 34: Trade study of Mounting Structure

Communication Protocol Trade Study Results

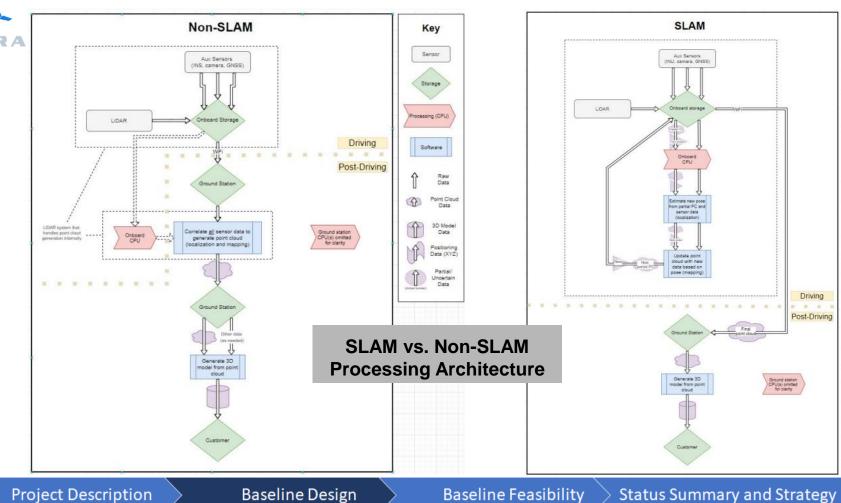

		Wi-Fi	4G LTE	Bluetooth LE
Criteria	Weight	Score	Score	Score
Range	10 %	5	5	5
Data Rate	30 %	5	5	4
Hardware constraints	35 %	3	3	3
Power	5 %	3	3	5
Cost	10 %	3	1	5
Internet Accessibility	10 %	5	5	1
Total	100%	4	3.8	3.6

Table 36: Trade Study of Communication Protocols

Project Description

Baseline Design

Baseline Feasibility

Sensor Package - Sensor Package (LiDAR/IMU)

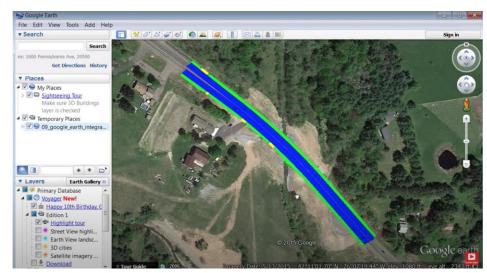
• Ouster OS1-32 comes with built-in IMU, InvenSense MPU-9250

Project Description

Baseline Design

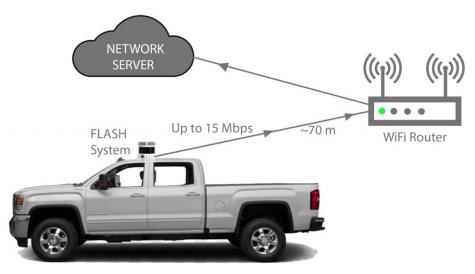
Baseline Feasibility

Status Summary and Strategy


- Update rate: 1-5 Hz
- Small and cheap
- Mainly used for documenting approximate location of infrastructure
- If GPS is available during scanning it will aid in localization

Data Processing - Geotagging

- Models will be exported with geotags
 - Large scale visualization
 - Ease of cataloging and organizing multiple scans
- Google Earth used for visualization
 - Free software
 - Model verification with data from Google Maps API
 - Keyhole Markup Language (KML) support



Communications Protocol

- WiFi (IEEE 802.11 Family of standards)
- Average data upload rate ~ 5 to 15 Mbps
- WiFi is commonly used and reliable
- Data is readily available once uploaded, from anywhere

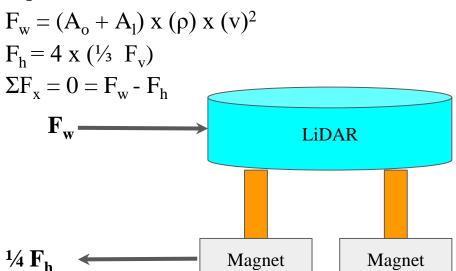
Structures Feasibility: Off-The-Shelf Products

Ski Racks Show Magnetic Attachments

- 1. Are Weather Resistant
- 2. Functions properly at highway speeds
- Reliably Hold Significant Weight
 - a. 4-6 skis (up to 80lbs)
- 4. Does Not Harm Car
- 5. Cost Range: \$50 \$260

Example Companies:

Inno Ski Racks: https://www.innoracks.com/


Structures Feasibility: Force Analysis

Variables:

Force From Wind: F_w Relative Wind (Car Speed): vAir Density (STD ATM) : ρ Area of Ouster: A_o^* Area of Legs: A_l^* Hold Capacity (Vertical) : F_v Hold Capacity (Horizontal) : F_h

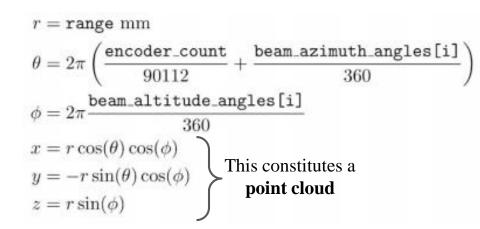
Equations:

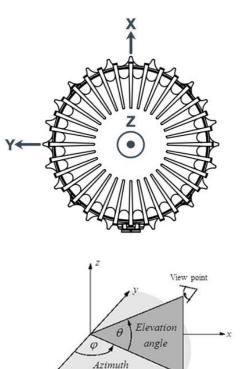
* : Indicates unknown variables

Note: Similar to a static cantilever beam (sum of forces is valid)

Structures Feasibility: Other Considerations

56


1.	Vibration Test	FEM Analysis and Vibe Table in
	a. Car Vibrations	 the PILOT
2.	Shock / Impulse Test	
	a. Potholes	 FEM Analysis and Physical
	b. Slamming on Brakes	Tests
3.	Separation of Magnets and Electronics	
4.	Detachability	 Build into Design
	a. Individual LiDAR	
	b. Full Structural Mount	 Build into Design



LiDAR Data – Coordinate Frame Transformation

- The Ouster OS1-32 outputs data in the form of range, beam_altitude_angle, and beam_azimuth_angle
- Must be transformed into 3D Cartesian x,y,z coordinates in a common "sensor frame"

angle

Baseline Feasibility

Status Summary and Strategy

OPTICAL PERFORMANCE

Data Latency

Additional Details

< 10 ms

InvenSense MPU9250; datasheet for more details: https://www.invensense.com/download-pdf/mpu-9250-datasheet/

CONTROL INTERFACE

		CONTROLINTERFACE				
Range (80% Reflectivity)	0.8 m - 120 m @ 80% reflective lambertian target, 100 klx sunlight, >50% detection probability, false positive rate of 1/10,000	Connectio	'n	TCP and HTTP APIs		
	0.8 m - 105 m @ 80% reflective lambertian target, 100 klx sunlight, >90% detection probability, false positive rate of 1/10,000	Time Sync	chronization	Input sources: • IEEE1588 Precision Time Protocol (PTP)	Out ton 004 00	
Range (10% Reflectivity)	0.8 m - 60 m @ 10% reflective lambertian target, 100 klx sunlight, >50% detection probability, false positive rate of 1/10,000 0.8 m - 40 m @ 10% reflective lambertian target, 100 klx sunlight, >90% detection probability, false positive rate of 1/10,000			gPTP NMEA \$GPRMC UART message support External PPS internal 10 ppm drift clock Outout sources:	Ouster OS1-32 (Gen 1) Specs	
Range Accuracy	Zero bias for lambertian targets, slight bias for retroreflectors			Configurable 1 - 60 Hz output pulse		
Range Resolution	0.3 cm	LIDAR Op	erating Modes	Hardware triggered angle firing (guaranteed fixed	resolution per rotation):	
Range Repeatability (1 sigma / standard deviation)	0.8 - 2 m: ± 3 cm; 2 - 20 m: ± 1.5 cm; 20 - 60 m ± 3 cm; > 60 m: ± 10 cm		-	• x 2048 @ 10 Hz • x 1024 @ 10 Hz or 20 Hz		
Vertical Resolution	16, 32, or 64 channels		-	• x 512 @ 10 Hz or 20 Hz		
Horizontal Resolution	512, 1024, or 2048 (configurable)	Additional	I Programmability	Multi-sensor rotation phase tuning Queryable intrinsic calibration information:		
Field of View	Vertical: +16.6° to -16.6° (33.2°) Horizontal: 360°			Beam angles IMU pose correction matrix		
Angular Sampling Accuracy	Vertical: ±0.01° / Horizontal: ±0.01°					
Rotation Rate	10 or 20 Hz (configurable)		ICAL/ELECTRICAL			
# of Returns	1 (strongest)		nsumption	14 - 20 W (22 W peak at startup)		
LASER		Operating Connector		22 - 26 V, 24 V nominal Proprietary pluggable connector (Power + data + D	DIO)	
Laser Product Class	Class 1 eye-safe per IEC/EN 60825-1: 2014	Dimensions		Diameter: 85 mm (3.34 in)		
Laser Wavelength	850 nm	Differences	10	Height:		
Beam Diameter Exiting Sensor	10 mm			 Without cap: 58.35 mm (2.3 in) With thermal cap: 73.5 mm (2.9 in) 		
Beam Divergence	0.13° (FWHM; 16, 32, and 64 channel)	Weight		For fixed cap sensors: 396 g (14.0 oz);		
LIDAR OUTPUT		For modular cap sensors: 425 g (15.0 oz) with fin cap, 348 g (12.3		cap, 348 g (12.3 oz) without cap		
Connection	UDP over gigabit ethernet	Mounting		4 M3 screws / 2 locating 3 mm pins		
Points Per Second	327,680 (16 channel)		ACCESSORIES			
	655,360 (32 channel) 1,310,720 (64 channel)		Included Interface Box Optional Mount	PolyCarb/FR4, 100 g, 75 mm x 50 mm x 25 mm (LxWxH) adapter, 5 m sensor cable Aluminum, 530 g, 110 mm x 110 mm x 20.5 mm (LxWxH		
Data Per Point	Range, intensity, reflectivity, ambient, channel, azimuth angle, timestamp			Aluminum, 330 g, 110 min x 110 min x 20.3 min (Extra	h), 4 X Mo this notes	
Time Stamp Resolution	<1µs		EXTERIOR DIMENSIONS			
Data Latency	< 10 ms			0.00 00 00 00 00 00 00 00 00 00 00 00 00		
					4X @ 2.50 ∓ 4.00	
Connection	UDP over gigabit Ethernet		70.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOINT HOLE	
Samples Per Second	100		73.50	18.00 56 87	-2.00 X 2.37 = 2.50 Dowel, S.OT	
Data Per Sample	3 axis gyro, 3 axis accelerometer		50.10	THE HEADER S	S	
Time Stamp Resolution	< 1 µs			2 - 7	ALL HOLES ON 07200 9CD	
		<i>i</i>	01.75			

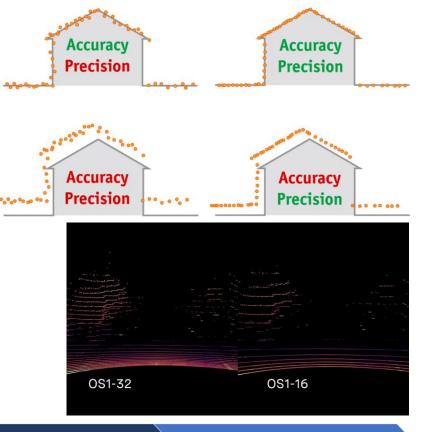
21.75-

0-

58

\$ 2.027 2.50 DOWEL

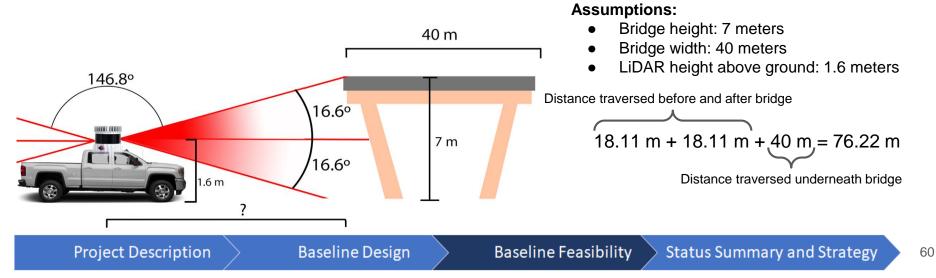
VUILE


LiDAR Accuracy vs. Resolution vs. Precision

Accuracy \rightarrow How close are the measured points to the true/actual position of the structure being scanned?

Resolution \rightarrow How far apart are the measured points? How dense is the point cloud?

Precision \rightarrow How repeatable are the measurements? How much noise is observed in the point cloud?


Baseline Design

LiDAR Feasibility: Scanning Coverage

- Given the vertical sensor field of view (33.2°) and the vertical distance between LiDAR sensor and top of bridge (5.4 m), the system will be able to achieve **full vertical coverage** as long as scanning begins at least **18.11 meters ahead** of the bridge → this falls within range spec of sensor
- Given a constant vehicle speed of 10 mph (4.47 m/s) and an active data collection distance of 76.22 meters (see calculation below), scanning will last approximately **17 seconds**
- Given the horizontal sensor field of view (360°), the sensor rotation rate (10 Hz), and the estimated scanning time (17 seconds), the system will be able to achieve **full horizontal coverage** up to a range of 60 meters (sensor spec)
- Fulfillment of **DR 1.1** (>50m range) and **DR 1.2** (complete coverage) are feasible with current configuration

LiDAR Feasibility: Vertical Point Spacing

- Data Point 1.04° 0.1 m (10 cm) Data Point 5.51 m
- The OS1-32 (Gen 1) has 32 emitter/receiver pairs, or lasers, aligned on a vertical axis
- The LiDAR has a 33.2° vertical field of view (FOV)
- The associated angle between each laser and where it strikes the inspected surface is derived from dividing the vertical FOV by the number of lasers
- This calculation yields 1.04° of vertical spacing between consecutive measured points
- The resolution distance depends on the distance between the LiDAR and the infrastructure
 - To achieve **0.1 m of resolution**, the LiDAR must be **5.51 m** away from the measured point
- **DR 2.2** (resolution of <10 cm) is satisfied when within 5.51 m range

LiDAR Feasibility: Horizontal Point Spacing

- The OS1-32 (Gen 1) has 1024 horizontal channels (lasers)
- The LiDAR has 360° horizontal field of view (FOV)
- To determine the horizontal angular resolution, the FOV is divided by the number of horizontal channels
- This calculation results in a horizontal angular resolution of **0.35°**
- To achieve a horizontal resolution distance of 0.1 m, the LiDAR would have to be **16.4 m** away
- For a distance of 5.51 m away, the horizontal resolution would be **0.034 m**
- **DR 2.2** (resolution <10 cm) is satisfied when within 16.4 m range
 - Vertical resolution (within 5.51 m) is the limiting factor

0.1 m

(10 cm)

0.35°

Data Point

16.4 m

Data Point

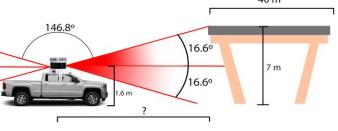
Feasibility Analyses -- Communications Protocol

Governing Requirements

The on-board communications unit shall be capable of wirelessly transferring point cloud and localization data directly to a designated headquarters

- Customer-specified requirement
- Associated DRs (8.1, 8.2) address transmission range and upload speed

Project Description


FR 8

Baseline Design

- At 5 mph and 76.22 m ~ 35s
- At 129 mbps and 35s = 4515 Mb ~ **0.56 GB**
- Data Packets will be 0.56 GB or less on average
- With a 5 Mbps upload speed it will take 15 minutes
- Google Drive offers 15 Gb of free storage (or Github)

Single board processing units are a solution to data storage and transmission

- 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless
- Micro-SD card slot for loading operating system and data storage
- Includes Gigabit Ethernet port which can connect to Ouster
- Feasibility Issue, board may not be able to accept throughput of 129 Mbps (16 MB/s)

~ \$35

Arduino Uno WiFi REV2 ~ \$44.80

Beaglebone Black Wireless ~ \$80

Baseline Design

Feasibility Analyses -- Communications Protocol

Mini PCs are a solution to data storage and transmission

- Capable of integrating classic WiFi adapter card Fast data rate capabilities.
- Can handle data throughput of 129 Mbps.
- Storage capabilities far exceed ~0.5 GB estimated file size.
- Can install common operating systems.
- Feasibility Issue, Costs will be \sim \$400 which is much greater than single board computers.

Feasibility Analyses -- Power

FR 6

The system shall incorporate a power source that is capable of continuously supplying power to all applicable components.

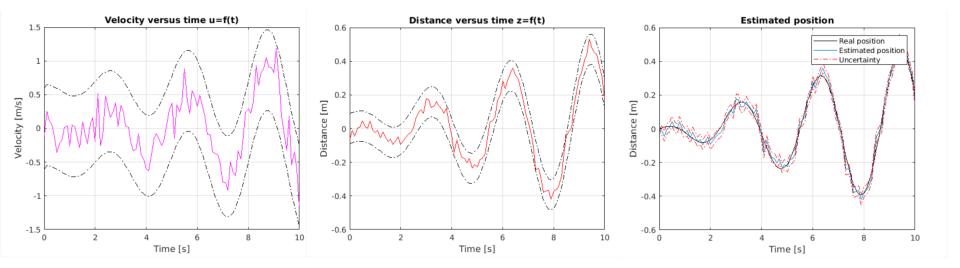
- Customer-specified requirement
- Associated DRs (6.1, 6.2) address power requirements of project

Power Solutions for Lidar System

- External Power (from vehicle)
 - Routed from 12V DC power outlet
 - Or directly from Battery
- Advantages
 - Reduces project weight
 - Constant supply during operation
- Drawbacks
 - Inconsistent running voltage (8-14V)
 - PMS needed to regulate

- Internal Power (battery)
 - Li-Ion Battery within system
- Advantages
 - Versatility independent of vehicle
- Drawbacks
 - BMS needed to regulate power
 - Increases weight and complexity
 - Limited Supply

Status Summary: Structures



- Attachment mechanism determined
- Structural housing material and shape to be determined
 - Requires final parts list
 - Determine best configuration/layout
- Structural housing test protocol
 - Construct prototype
 - Fill with approximate weight of system and dummy camera
 - Walking tests: ensure secure structure
 - Driving tests: ensure secure mounting at increasing speeds to determine speed limit
 - Rigorous driving condition scenarios:
 - Sharp turns, steep incline/decline, breaking, etc.

Kalman Filter Example

FLASH LiDAR Senior	Project	t	SIMPLE GANTT CHART by Vertex4 https://www.vertex42.com/ExcelTemplates/sin				
University of Colorado, Bould Company: ASTRA Project Start:	er Mon, 8/24	4/2020					
Display Week:	1		Aug 24, 2020 # # # # # # # 31 1 2 3 4 5 6 7	Sep 7, 2020 7 8 3 10 11 12 13 14 15 16 17 18 13 # 21 # # # # # # # # # # 1 2 3 4	Oct 5, 2020 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 # 21 # # # # # # # # # # 31 1	Nov 2, 2020 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 # 21 # # # # # #	Dec 7, 2020
TASK ASSIGNED PROGRES	START	END	M T W T F S S M T W T F S S M	1 T W T F S S M T W T F S S M T W T F S S M T W T F S S	M T W T F S S M T W T F S S M T W T F S S M T W T F S S	M T W T F S S M T W T F S S M T W T F S S M T W T F	S S M T W T F S S M T W T F S S M T
Phase 1 Fall 2020							
PDD All Members 100%	8/24/20	9/14/20					
CDD All Members 100%	9/14/20	9/28/20					
PDR All Members 100%	9/28/20	10/12/20					
CDR All Members 25%	10/12/20	11/23/20					
FRR All Members 0%	11/23/20	12/7/20					
Project Start:	Mon, 1/1	1/2021	Jan 11, 2021 11 12 13 14 15 16 17 18 19 # 21 # # # #	Feb 1, 2021	Mar 1,2021		Apr 5, 2021 # # # # # # # # # 1 2 3 4
Phase 2 Spring 2020							
MSR All Members 0%	1/11/21	2/8/21					
TRR All Members 0%	2/8/21	3/8/21					
SFR All Members 0%	3/8/21	4/5/21					
PFR All Members 0%	4/5/21	5/3/21					

Project Description

Baseline Design

Baseline Feasibility

Status Summary and Strategy

Team Organization

Kunal Sinha	Jake Fuhrman
Project Manager	Financial Lead
Kunal.Sinha@colorado.edu	Jacob.Fuhrman@colorado.edu
(303) 619-5611	(720) 334-4867
Shray Chauhan	Ishaan Kochhar
LiDAR Sensor Lead	Structural Lead
Shray.Chauhan@colorado.edu	Ishaan.Kochhar@colorado.edu
(720) 347-1083	(719) 373-7353
Courtney Kelsey	Fiona McGann
Systems Engineer	Controls and Communications Lead
courtney.kelsey@colorado.edu	fiona.mcgann@colorado.edu
(720) 335-8034	(801) 599-5103
Erik Stolz	Andrew Fu
Power Management Lead	Manufacturing Lead
Erik.Stolz@colorado.edu	Andrew.Fu@colorado.edu
(720) 355-2537	(224) 325-1228
Julian Lambert	Ricky Carlson
Software Technical Lead	Safety Lead
Julian.Lambert@colorado.edu	ricky.carlson@colorado.edu
(970) 987-1232	(303) 472-3573