

ASEN 4028: Senior Design Projects Spring 2021

Manufacturing Status Review

FLASH: Functional LiDAR Assessment of Structural Health

February 4th, 2021

Team: Kunal Sinha, Ishaan Kochhar, Ricky Carlson, Fiona McGann, Jake Fuhrman, Shray Chauhan, Erik Stolz, Julian Lambert, Courtney Kelsey, Andrew Fu

Customer: ASTRA – Andrew Gisler, Chris Prince, Erik Stromberg

Advisor: Professor Dennis Akos

Overview

Motivation: Infrastructure Analysis

Statistics

- 614,387 bridges in the US
- 200,000+ are over 50 years old
- 17% of bridges are inspected annually
- Infrastructure monitoring market valued at \$1.78B in the U.S.

Motivation

• More precision, efficiency, and less manpower required per bridge is the goal

Overview

Schedule

Manufacturing

Budget

Objective & Mission Statement

Project Objective

The system shall provide a low-cost and efficient way to monitor and assess infrastructure.

Mission Statement

Design, build, and deploy a dynamic, vehicle-based LiDAR sensor package which will scan infrastructure while in motion to produce a high-quality 3D map/model that can be used by engineers to assess structural health.

Budget

Top-Level Design Overview

FLASH: Functional LiDAR Assessment of Structural Health

FLASH Concept of Operations

Single Infrastructure Inspection

FLASH: Functional LiDAR Assessment of Structural Health

FLASH Concept of Operations

Single Infrastructure Inspection

Critical Project Elements

Designation	Element	Components	Why critical?		
CPE-1	Sensor Package	Scanning LiDAR sensor + integrated IMU	High-resolution, precise, and accurate data collection is key to insightful 3D mapping and model generation		
CPE-2	Data Processing Software	ROS* and SLAM*-based pipeline + commercial software package (CloudCompare)	Will require the most time and effort; consolidation of LiDAR and IMU data into a high-quality point cloud or mesh is not a straightforward process		
CPE-3	Vehicle Platform	Magnetic mounts + custom-fabricated housing	Sensor package must be secure up to highway spec and must not pose a safety concern		
*ROS = Robot Operating System		perating System	*SLAM = Simultaneous Localization and Mapping		
Overview Schedule Manufacturing Budget					

Software Design Overview

FLASH

Functional Block Diagram (FBD)

Schedule

Team Schedule: Software

Schedule: Structures and On-Board Setup

Manufacturing Overview

01	Structures	 LiDAR Sensor Housing 3D-Printed Prototype (SLA) CNC AI-6061 	
02	Software	 Sensor Communication ROS Core SLAM (Lio-SAM) Mesh Generation 	
03	Electronics	Electrical Interfacing	
04	Test Setup	 CARLA Simulation Small-Scale LiDAR Operational Test 	33.2

> Overview

Schedule

Manufacturing

Budget

Manufacturing: Structures

Hardware Scope & Status

To-Be Manufactured

• 3D-Printed Prototype

- Assess fitting of LiDAR sensor, cable, and magnets + adjust design
- Request for printing by: 2/4/2021
- Finalized Aluminum CNC Structure
 - Request for CNC by: 2/15/2021

COTS Items

- Magnets
 - Purchase by: 2/16/2021 √
- Attachment Screws
 - Purchase by: 2/15/2021

Budget

Housing Fabrication

Preliminary CNC Model (before fit check)

Final CNC Structure Assembly Complete: 2/17 - 2/18

Housing Dimensions

Manufacturing: Software

Software: Overview

Overview Schedule Manufacturing

Budget

The area outlined in red are the external tools used to refine the point cloud and generate the final solid mesh.

Overview

Schedule

CloudCompare^{V2}

Manufacturing

Generate smooth mesh object Final output to be passed on to customer for structural analysis

Budget

3D point cloud data Output generated by LIO-SAM

Manufacturing: Electronics

Electrical Interfacing

Manufacturing: Test Setup

Small-Scale LiDAR Operational Test

- <u>Objective:</u> Baseline verification of stationary sensor operation
 - Data collection/transfer, point cloud visualization, and 0 feature discernment
- How is the sensor output (point cloud) affected when these factors are varied:
 - Feature size and shape Ο
 - Feature depth Ο
 - Target distance Ο
 - Target color/material (for reflectivity) Ο
 - Ambient lighting (night vs. day) Ο
- Items to be acquired and modified:
 - 24" x 36" poster board -Ο
 - Craft foam block 0

foam block

8 8

음

red

System Integration Plan

Structures

- Magnetic attachment to vehicle
- Provides thermoregulation
- Accommodates interface cable

Electronics

- Input power from the vehicle
- Inverter distributes power to all necessary components

Software

- UDP Ethernet connection from LiDAR interface box to laptop
- WiFi-enabled for data transfer

Schedule

Manufacturing

Software: Carla Simulation

Simulated Physical Environment

- Create <u>simple</u> test environment from physical world (open, straight road)
- LiDAR sensor specifications and locations inputted
- Automatically add levels of noise or uncertainty to give more realistic outputs

Seamless Integration with ROS Melodic

- Dev build of software tested in real-time
- No risk to LiDAR unit during testing
- ROS Master and .bag behave exactly same as physical tests

Project Description Design Solution Design Requirements

CPEs

nts Project Risks Verification & Validation

Project Planning

Budget

Procurement Updates

ltem	Quantity	Total Cost	Procurement Status	Lead Time	Criticality to Project Success**
Lenovo Legion V Laptop	1	\$999.99	Received	N/A	Desirable
Rubber Magnets (for Mounting)	4	\$59.40	Received	N/A	Important
Power Inverter	1	\$35.96	Received	N/A	Desirable
Ouster OS1-32 Gen 2 LiDAR	1	\$3,585.00*	On Order	~2 weeks	Critical
Mounting Structure (3D Printed - Plastic)	1	\$40.00	On Order	~2 weeks	Important
Mounting Structure (CNC 6061 Aluminum)	1	~\$50.00	Planned	~2 weeks	Desirable

*ASTRA to purchase

**Criticality to upcoming manufacturing schedule (all will be critical to project completion)

Overview

Schedule

> Manufacturing

Procurement Updates

ltem	Quantity	Total Cost	Procurement Status	Lead Time	Criticality to Project Success**
Lenovo Legion V Laptop	1	\$999.99	Received	N/A	Desirable
Rubber Magnets (for Mounting)	4	\$59.40	Received	N/A	Important
Power Inverter	1	\$35.96	Received	N/A	Desirable
Ouster OS1-32 Gen 2 LiDAR	1	\$3,585.00*	On Order	~2 weeks	Critical
Mounting Structure (3D Printed - Plastic)	1	\$40.00	On Order	~2 weeks	Important
Mounting Structure (CNC 6061 Aluminum)	1	~\$50.00	Planned	~2 weeks	Desirable
Total Funds Spent: \$1,135.35 Pilot Deposit: \$200.00 Remaining Funds: \$3,664.65					
Overview Schedule Manufacturing Budget					

Updated Cost Plan

Current Budget Estimate:
\$1,487.39
Total Budget Allocated:
\$5,000.00
Remaining Budget:
\$3,512.61

 ASTRA has agreed to purchase our OS1-32 LiDAR sensor (\$3585.00)

Cost Plan (Pre-	Margin)	Subsystem	Total Cost (\$)	
\$134.40 , 11%		Sensor Package	\$0*	
 Sensor Package Software Structures Electronics/Communications 	Sensor Package	Software	\$0	
	Software	Structures	(\$134.40)	
	 Structures Electronics/Communications 	Electronics/ Communications	(\$1035.95)	
		Total	(\$1170.35)	
		Cost Margin	10%	
*Option to include E (\$1,495.00) if deeme	xternal IMU d necessary	Pilot Deposit	(\$200.00)	
after testir	ng	Total w/ Margin	(\$1487.39)	

Overview

Schedule

Manufacturing

Budget

Backup Charts

Evaluation of Infrastructure

FLASH data should be able to exhibit the following structural failure points:

Collecting a database of these failure points can...

Decrease Length of Routine Inspection

Track Defect Propagation Give Context for Damage Inspections

Cheaper and faster than traditional inspection!

Overview

Schedule

> Manufacturing

ring > Budget

Housing Fabrication

Preliminary CNC Model (before fit check)

Software Pipeline - ROS

ROS provides a powerful framework for generically interfacing between OS and hardware systems Primarily based off of networking protocols We will be using TCP over ethernet Industry standard, directly supported by Ouster Outputs single .bag file which will be ingested by LIO-SAM automatically during post-processing

Data from LiDAR and IMU fed into ROS Kinetic nodes/topics ran on a Linux Ubuntu 18.04 native install on system laptop

DR 4.3 (Gather sensor data on-demand) Satisfied

Software Pipeline - CloudCompare

CloudCompare will serve as primary software for point cloud visualization, refining, and mesh generation Open source, industry standard Easy framework for working with multiple scans Currently used by our customer, ASTRA Offers many built-in tools for modifying and refining data **Outlier filters** Point classification tools ...many, many more! Runs mesh generation algorithm(s) as plugins Highly configurable Can write custom plugins if customer prefers alternative/proprietary mesh generation algorithm

Software: Google Maps API Comparison

- Purpose
 - Ground-truth data for infrastructure usually non-existent
 - Google Maps offers comprehensive freely available 2D positional data and visualization options
- Description
 - Completed point cloud and mesh data will be aligned to visual and numerical data outputted by Google Maps API
 - This will expose any large-scale flaws in infrastructure geometry in map, such as drift or discontinuities
- Configuration
 - Point cloud and mesh output from Data Quality Test will be aligned to corresponding Google Maps location
 - 2D projections will be made if necessary
- Expected result
 - X/Y drift errors quantified over duration of scan

Software: Carla Simulation

[&]quot;lidar_point_cloud ", Cameras and Sensors, https://carla.readthedocs.io/en/stable/cameras and sensors/, Nov. 2020

- LiDAR: 32 channel, 10Hz, 50m range
- IMU: 6 axis, Accel. Gyro.
- Vehicle speed: (10 to 60mph), height: 1.6m
- Model: Simulated infrastructure

Requirement

A GNSS-independent post-processing technique shall be implemented to produce a point cloud from raw sensor data.

Validation Method

Carla will test our software pipeline by providing raw LiDAR and IMU data of a virtual environment with the exact parameters of our sensor package.

Expected Result

LIO-SAM registration and mapping will provide a point cloud that mirrors the virtual environment.

Software - Carla Simulation

- <u>Objective:</u> Use carla to generate artificial lidar data to test software
 - Point cloud generation verification
- Variables to be controlled:
 - Custom virtual scanning environment
 - Lidar scan rate and orientation
 - Gyroscope output
 - Virtual vehicle speed
- Items to be acquired and modified:
 - Custom scanning environment in Carla

Manufacturing Schedule

In Progress

