

**Preliminary Design Review** 



## FISH & CHIPS

#### <u>FeatherCraft</u> Integrated <u>Structural</u> Housing & <u>Computer, Hardware</u> Interface Processing <u>Suite</u>

 Team: Larry Burkey, Jorge Cervantes, Lewis Gillis, Evan Graser, Andrei Iskra, Megan Howard, Taylor Maurer, Davis Peterson, Maggie Williams
 Customer: Michael Brown
 Advisor: Joe Tanner

### RREY PROJECT MOTIVATION



- Commercialization of International Space Station provides a launch opportunity not only to cubesats but larger 100 kg spacecraft
- Spacecraft are launched on ISS cargo resupply missions, allowing for softstowed configuration and less stress on structure in launch environment
- Surrey Satellite Technology US plans to offer the FeatherCraft system as a cost-effective platform for payloads of 45 kg or less.



## PROJECT STATEMENT:



The 5 kg FeatherCraft structure shall provide support for a 100 kg total mass commercial spacecraft with reduced structural manufacturing time and materials cost, and enable the spacecraft to survive launch to and deployment from the ISS for a nadir facing mission.



















### **FUNCTIONAL BLOCK DIAGRAM:**









### FUNCTIONAL REQUIREMENTS:



| FR 1 | The Feathercraft structure design shall have a mass of less than 5 kg.                                                                                                                                                                              |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR 2 | The Feathercraft structure design shall <b>reduce manufacturing time and material cost</b> from SST-US's typical spacecraft estimates.                                                                                                              |
| FR 3 | FeatherCraft Structure shall be designed to <b>deploy from the ISS.</b>                                                                                                                                                                             |
| FR 4 | FeatherCraft structure design shall interface with SST-US-provided spacecraft components and mission design.                                                                                                                                        |
| FR 5 | An <b>equivalent manufactured STM</b> of the FeatherCraft structure design shall be used to <b>demonstrate the feasibility of the FeatherCraft structure</b> through a <b>random vibration test</b> to the requirements of NASA GEVS documentation. |



Structure

Testing

Electrical Hardware

Software

Conclusion



## CRITICAL PROJECT ELEMENTS:



| Structure:                                                                                                   | Electrical Hardware:                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Extreme load cases (FR3)</li> <li>Adhesives (FR4)</li> <li>Manufacturability (FR2 and 5)</li> </ul> | <ul> <li>Accelerometers (FR5)</li> <li>Signal Conditioning (FR5)</li> <li>Data Transfer (FR5)</li> </ul> |  |  |
| Testing:                                                                                                     | Software:                                                                                                |  |  |
| <ul> <li>Soft-stowed configuration</li> </ul>                                                                | • Python (FR5)                                                                                           |  |  |



## **STRUCTURE OVERVIEW**







### **MECHANICAL DESIGN TRADE STUDY:**

|                         |           | Metallic<br>Weight<br>Relieved<br>Panels | Honeycomb<br>Weight-<br>Relieved<br>Panels | Columns  | Traditional<br>Design |
|-------------------------|-----------|------------------------------------------|--------------------------------------------|----------|-----------------------|
| Criteria:               | Weight:   | Score:                                   | Score:                                     | Score:   | Score:                |
| Material Cost (FR 2)    | 16%       | 10                                       | 6                                          | 8        | 9                     |
| Mass (FR 1)             | 35%       | 2                                        | 10                                         | 9        | 2                     |
| Ease of Manufacturing   |           |                                          |                                            |          |                       |
| (FR 2)                  | 26%       | 7                                        | 6                                          | 7        | 5                     |
| Ease of Analysis (FR 5) | 23%       | 8                                        | 8                                          | 6        | 8                     |
| Weighted Total:         |           | 5.95                                     | 7.86                                       | 7.63     | 5.26                  |
| Project<br>Overview     | Structure | Testing                                  | Electrical<br>Hardware                     | Software | Conclusion 1          |

## DESIGN OVERVIEW:





## INTEGRATION:

- Customer supplies:
- Solar Panels (mass analogs)
- Avionics (mass analogs)
- Payload (mass analog)
- Propulsion Plate

#### We supply:

Structure



#### Side Panels:

- Woven Carbon Fiber skin
- Aluminum Honeycomb Core



- Al Skin
- Al Honeycomb Core





Testing

Electrical Hardware

Software

Conclusion





## STRICTURAL CONNECTIONS:



#### Panels

- Slots allow physical interface with middle plate
- Outer face sheets are bonded to column sides
- Endplates
  - Slots allow connection to middle plate
  - Bolt into helicoil threaded plug
    - Greater adhesive area



Project Overview

Structure

Testing

Electrical Hardware

Software

Conclusion



## **STRUCTURE FEASIBILITY**





### **STRUCTURE FEASIBILITY**

- Feasible design < 5kg (FR 1)</p>
- STM will handle specified vibration loads in X, Y, Z (FR 3,5) (GSFC-STD-7000 2005.04)
- Nominal acceleration
   1σ = 1.29 grms (FR 3)



#### **Quasi-Static Load Assumptions:**

- static load = 9.81  $m/s^2$
- 4σ dynamic load = 5.16 grms

F = ma

 $F = mg(1 + (4 \times 1.29))$ 

F = 6.55 kN



### VIBRATION LOADING:





Interfaces are analyzed using worst case loading (FR 3)

Electrical

Hardware

| Axis: | Description:              | Type of<br>load: | Factor of<br>Safety: | Design<br>Margin: |
|-------|---------------------------|------------------|----------------------|-------------------|
| X     | Tube – Plate<br>Interface | Shear            | 1.9                  | 12.8              |
|       | Column                    | Buckling         | 3.9                  | 6.8               |
| V     | Column                    | Bending          | 1.9                  | 0.25              |
| Ŷ     | Side panel                | Bending          | 1.9                  | TBD               |
| 7     | Middle panel              | Bending          | 1.9                  | 0.034             |
| ۷     | Mid panel tabs            | Shear            | 1.9                  | 6.5               |

Testing

Structure

Project

Overview

Factor of Safely (FOS):  $FOS = 1.9 \times Expected Stress$ (GSFC-STD-7000 2005.04)

Design Margin: Material Strength FOS × Expected Stress

#### Design Margin > 0 FEASIBLE

Conclusion

18

Software

### MIDDLE PANEL BENDING:



19

Assume: simply supported plate, uniform load

**Maximum Deflection = 6 mm** 

 $y = \frac{2K_1qb^4\lambda}{E_ft_fh^2} = 6mm$ 



#### Edges are simply supported

| Axis:   | Nominal Stress<br>(MPa)   | Stress<br>Description | Maximum Stress<br>$\sigma_{max} = \sigma_0 * FOS (MPa)$ | Material<br>Property<br>$\sigma_{ult}$ (MPa) | Design<br>Margin: |
|---------|---------------------------|-----------------------|---------------------------------------------------------|----------------------------------------------|-------------------|
| -       | $\sigma_n$ = 56           | Normal                | $\sigma_{max}$ = 106.4                                  | 110                                          | 0.034             |
| Ζ       | $\tau_c = 0.2$            | In-plane shear        | $\tau_c = 0.38$                                         | 260                                          | 6000              |
| P<br>Ov | roject<br>verview Structu | re Testing            | Electrical<br>Hardware Softw                            | ware Con                                     | clusion           |

SATELLITE TECHNOLOGY US **ADHESIVES:** 

Adhesives will be used for mounting all subsystem components and most structural components (FR 1, 2 4, 5)

- Hysol EA 9394 Aerospace Adhesive
  - 1 grt attainable online \$184.89 \$210.00 (FR 2)
- Scotch-Weld 2216 Epoxy
  - 1 grt attainable online \$275.74 \$282.58 (FR 2)
  - Removable with heat

#### **Assumptions:**

Project

Overview

- Properties assume aluminum (ASTM D) adhesion (small scale testing to confirm for carbon fiber)
- Volume estimate assuming thin film (0.005in)

Structure

Testing

Hardware



20

| ,                                  | Property<br>(25°C)Tensile Lap<br>ShearT-peel shearDensityMass needed |     | Hysol EA<br>9394          | Scotch-<br>Weld 2216   |  |
|------------------------------------|----------------------------------------------------------------------|-----|---------------------------|------------------------|--|
|                                    |                                                                      |     | 28.9 MPa                  | 22.1 MPa               |  |
|                                    |                                                                      |     | 0.88 N/mm                 | 4.37 N/mm              |  |
|                                    |                                                                      |     | 1360<br>kg/m <sup>3</sup> | 1330 kg/m <sup>3</sup> |  |
|                                    |                                                                      |     | 0.3 kg                    | 0.3 kg                 |  |
| Low mass fulfills FR 1<br>FEASIBLE |                                                                      |     |                           |                        |  |
| leo                                | ctrical                                                              | Sot | ftware                    | Conclusion 7           |  |



### **ADHESIVES ANALYSIS:**

Assume: 50% effective adhesion area

- Largest component
  - Communications module: 10 kg,
  - 160 x 135 x 60 mm
- Normal Stress

#### **Peel Stress**

- Assuming uniform stress distribution
- Moment = 19.3 Nm
- Max induced stress = 286 N















### **MANUFACTURING:**

- FR 2,5
- Most weight relief and support tabs are 2D
  - Achievable with Water Jet Cutter
    - Available at the Physics machine shop
    - Min. Radius = .006"
    - Positional Tolerance < .005"</p>

Structure

Panel edges still need milling









19 in





Electrical Hardware

Software

Conclusion



### **MANUFACTURING:**

- **Machining of Panel Edges** 
  - Required allow overlap of face sheet
  - Fiber layer will possibly fray and delaminate from core.
  - Design options still being weighed





0.5 mm

24



(d)

Fravin

Spalling

(a)

# **OVERVIEW**

## TESTING





## RANDOM VIBRATION TEST:



Profile specified by NASA Document (DR 5.2):

- ISS Pressurized Volume Hardware Common Interface Requirements
- Random Vibration Profile Characteristics
  - 20 Hz. 2000 Hz. Frequency Range

Structure

Project

**Overview** 

Random vibration loads specified for different frequencies

Electrical

Hardware

Software

- Unattenuated Load= Known maximum launch load of 9.47 grms
- Attenuated Load = Predicted load in foam & CTB of 1.29 grms

Testing

Fulfil FR 5 **FEASIBLE** 

26

Conclusion

## TEST FACILITY:

- Facility: Cascade Tek
  - 1530 Vista View Dr, Longmont, CO (~30min) (DR 5.2)
- Cost: \$1800 for 8 hour use of Vibration Table
  - Currently factored into budget, may be donated by Surrey
  - May require less than 8 hours, requires preliminary testing
- Testing will occur in March with direct assistance from Cascade Tek test engineers



## STRUCTURE MOUNTING:

- Structure will be wrapped in specified Pyrell ½" Foam (DR 5.4)
  - Attenuates Vibration Loading

Project

**Overview** 

- Two ratchet straps will secure the structure to the table
  - Hooked to ½" by 13 eyebolts
     (4), bolted directly to vibration table

Structure

Testing



Software



Electrical

Hardware

Above: Cascade Tek Vibration Table Left: Example structure wrapping & strapping configuration

> Fulfil FR 5 FEASIBLE

Conclusion

28











### **DAQ HARDWARE FBD:**













### **Accelerometers:**







### **ACCELEROMETERS:**

#### **Resources:**

- Trudy Schwartz
- Christine Buckler (ITLL) for barrowing accelerometers and cables
- The Modal Shop for renting accelerometers for 30 days

Fulfil FR 5 FEASIBLE

Project

**Overview** 

| 10.2 mm |  |
|---------|--|

Single Axis (PCB-333B30)



### Tri-axial (PCB-356A16)

| ) for  | Accelerometer | Buy<br>Price | Rent Price          | Mass      | Size                 |
|--------|---------------|--------------|---------------------|-----------|----------------------|
|        | Single axis   | \$297        | \$60/ month         | 4 grams   | 10.2x16.0x10.2<br>mm |
|        | Tri-axial     | \$931.50     | \$200/<br>month     | 7.4 grams | 14.0x20.3x14.0<br>mm |
| Struct | cure Testing  | g El<br>Ha   | ectrical<br>ardware | Software  | Conclusion           |





### **DATA AQUISTION BOARD:**





### **DATA ACQUISITION CIRCUIT:**





**Resources:** 

- Trudy Schwartz and the Instrumentation Shop
- TIRESIAS project involved a similar accelerometer circuit
- PCB Piezoelectric and ADC manuals for circuit designs
- Altium Designer software available for student use
- PCB Designer Software through Advanced Circuits available

Fulfil FR 5 FEASIBLE

Conclusion

35





### **Data Transfer:**








All channels sample and hold simultaneously by toggling **convert** pin









First 8 data channels collected and stored.









Second 8 data channels collected and stored.











Next 8 data channels collected and stored.





**Overview** 





Hardware



Conclusion

41

# SOFTWARE OVERVIEW









43

#### **SOFTWARE:**







#### **DESIGN:**

- Python, packaged as executable (.exe)
- GUI created for user input
- Implement already created python modules and libraries
- Plot quasi-real-time PSD (power spectral density) plots (DR 5.6.3)
- Capability of saving data to Excel (.xls) (DR 5.6.4)
- Transferable to a PC via USB (DR 5.6.5)





# SOFTWARE FEASIBILITY









- Serial interface
  - PySerial
- FFT function
  - NumPy
- Excel implementation
  - xlwings, xlsxwriter
- PSD plotting
  - matplotlib

- Executable packager
  - cx freeze
- GUI Development
  - Qt, tkinter
- All libraries have been downloaded and verified with current Python version

Fulfil DR 5 FEASIBLE





## CONCLUSION











#### **Presented Today**







**Budget Reduction:** 

- Rent Accelerometers
- **Borrow Co-Axial** Cables
- Less expensive panel materials
  - Nomex Core
  - Solid Aluminum

50



#### **FEASIBILITY AND NEXT STEPS**



|      | Functional Requirement                                                                                                                        | Feasibility Shown                                                                                         | Next Steps                                                                                                                              |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| FR 1 | Design shall have a mass of less than<br>5 kg.                                                                                                | Mass budget ✓                                                                                             | Detailed <b>mass estimates</b> of fasteners, adhesives                                                                                  |  |  |
| FR 2 | Design shall <b>reduce manufacturing</b><br><b>time and material cost</b> from SST-US's<br>estimates                                          | Manufacturing options ✓<br>Budget✓                                                                        | Manufacturing time estimates and small scale testing, final component selection                                                         |  |  |
| FR 3 | Structure shall be designed to <b>deploy</b> from the ISS.                                                                                    | Vibration Loading ✓<br>Baseline Design ✓                                                                  | Numerical FEM modelling                                                                                                                 |  |  |
| FR 4 | Design shall interface with SST-US-<br>provided spacecraft components and<br>mission design.                                                  | Adhesive Analysis ✓<br>Structural Analysis ✓                                                              | Adhesive research and small scale testing                                                                                               |  |  |
| FR 5 | An equivalent manufactured STM<br>shall demonstrate the feasibility of<br>the structure through a random<br>vibration test to NASA standards. | Hardware Design ✓<br>Software Feasibility ✓<br>Vibration Testing Feasibility ✓<br>Manufacturing Options ✓ | Detailed hardware design and<br>selection, software package testing,<br>schedule vibration table test,<br>testing manufacturing options |  |  |
|      | Project<br>Overview Structure                                                                                                                 | Testing Electrical<br>Hardware                                                                            | Software Conclusion 51                                                                                                                  |  |  |





### **PATH MOVING FORWARD :**

| ОСТ                                      | NOV                               | DEC             | JAN     | FEB                          | MAR                   | APR                    |
|------------------------------------------|-----------------------------------|-----------------|---------|------------------------------|-----------------------|------------------------|
| Finaliz<br>comp                          | ing designs and<br>ponent testing |                 |         | Manufacturing<br>and creatir | g structure<br>ng DAQ | Validation of<br>Model |
| FEM modelling, detailed circuit analysis |                                   | Winter<br>Break |         | Vibratio<br>Testin           | on<br>g               |                        |
|                                          |                                   | CDR<br>FFR      |         | MSR                          | TRR                   | SFR<br>PFR             |
|                                          | Project<br>Overview Stru          | ucture          | Testing | Electrical<br>Hardware       | Software              | Conclusion 52          |





[1] Materion Coroporation. AlBeMet Property Datasheet. Elmore, OH: Beryllium & Composites, n.d. Print.

- [2] Sandwich Panel Fabrication Technology. N.p.: Hexcel Composites, 2001. Print.
- [3] Honeycomb Sandwich Design Technology. N.p.: Hexcel Composites, 2000. Print.
- [4] Roark, Raymond J., and Warren C. Young. Formulas for Stress and Strain. New York: McGraw-Hill, 1975. Print.
- [5] Microchip. PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family. Phoenix AZ: Microchip, n.d. PDF.
- [6] PCB Piezotronics. Aerospace Ground Test. Depew, NY: PCB Piezotronics, n.d. PDF.
- [7] ST Microelectronics. MEMS digital output motion sensor ultra low-power high performance 3-axes "nano" accelerometer. n.p.: ST Microelectronics, 2010. PDF.
- [8] PCB Piezotronics. Quote: SGL11887. Depew, NY: PCB Piezotronics, 2015. PDF.
- [9] " Alloy A286" Delta Fastner Corp. Web. 27 Sept. 2015.. < http://www.deltafastener.com/a286.html>
- [10] "The Use of Silicone Adhesives in Space Applications" Adhesives and Sealant Industry. Web. 27 Sept 2015. <a href="http://www.adhesivesmag.com/articles/85082-the-use-of-silicone-adhesives-in-space-applications">http://www.adhesivesmag.com/articles/85082-the-use-of-silicone-adhesives-in-space-applications</a>
- [11] "Kaber Small Satellite Deployment System" NanoRacks. Web. 26 Sept 2015. <u>http://nanoracks.com/wp-content/uploads/Kaber-Small-Satellite-Deployment-System-Presentation.pdf</u>
- [12] "Sandwich Panels". ACP Composites. Web. 22 Sept 2015. < <u>http://www.acpsales.com/Carbon-Fiber-Sandwich-Panels.html</u>>
- [13] "Spacecraft Thermal Control Chapter 6" 2011. Print.





## QUESTIONS





## **BACK-UP SLIDES**









#### **APPENDIX: MAIN**

| OVERVIEW:                                                                                                                   | STRUCTURE:                                                                                                                                                                                                                   | TESTING:                                   | HARDWARE:                                                                                                                                                                               | SOFTWARE:                                                 | CONCLUSION:                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|
| 2 MOTIVATION<br>3 MISSION<br>4 CONOPS – PROJ<br>5 CONOPS – SST<br>6 FBD – STR<br>7 FBD – PROJECT<br>8 REQUIREMENTS<br>9 CPE | 11 TRADE STUDY<br>12 DESIGN OV<br>13 INTEGRATION<br>14 DIMENSIONS<br>15 STR CONNECT<br>17 STR FEAS<br>18 VIBE LOADING<br>19 MID PLATE<br>20 ADHESIVES<br>21 ADHE ANNY<br>22 MASS BUDGET<br>23 MANU – WATER<br>24 MANU – MILL | 26 RAND VIBE<br>27 FACILITY<br>28 MOUNTING | 30 FBD<br>32 ACC FBD<br>33 ACC<br>34 DAQ FBD<br>35 DAQ<br>36 MICRO C FBD<br>37 CONVERT PIN<br>38 8 CH STORED<br>39 2 <sup>ND</sup> 8 STORED<br>40 3 <sup>RD</sup> 8 STORED<br>41 REPEAT | 43 SW FBD<br>44 DESIGN<br>45 FLOW DIAGRAM<br>47 LIBRARIES | 49 TOTAL COST<br>50 BUDGET<br>OPTIONS<br>51 FEAS OVERVIEW<br>52 SCHEDULE<br>53 SOURCES |





#### **APPENDIX: BACK-UP**

| <b>REQUIREMENTS</b> :                                                        |                                                                                   | INITIAL DESIGNS:                                                                                                |                                           | TRADE STUDIES:                      |                                                        | DETAILED ANALYSIS:                                                              |                                                                                                                 | MANUFACTURING: RADIATOR:                                                                                                                                                       |                                  |                                                |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|
| FR 1<br>FR 2<br>DR<br>3.1<br>DR<br>3.2<br>FR 4<br>DR<br>4.4                  | <u>FR 5</u><br><u>DR 5.3</u><br><u>DR 5.4</u><br><u>DR 5.6</u><br><u>DR 5.6.3</u> | STR:<br>TA<br>WRP<br>CLNM                                                                                       | DAQ:<br>DIG.<br>ACC<br>1μC<br>Multi<br>μC | STR:<br>MET. DEF<br>TS<br>MAT. PROP | DAQ:<br>ACC MET. DEF<br>ACC TS<br>HW MET. DEF<br>HW TS | SW:<br>MET.<br>DEF<br>TS                                                        | STR:<br>NAT FREQ<br>MID PL<br>BEND<br>FOS &<br>LOADS<br>TUBE –<br>PLATE<br>CLMN BUCK<br>SP FAIL 1<br>SSP FAIL 2 | ADHESIVES:<br>MASS<br>PROPERTIES<br>OUTGASSIN<br>G<br>SCOTCH<br>2216                                                                                                           | TILE SAW<br>END MILL<br>E. CLOSE | DESCRIP.<br>RADIATION<br>PLOT<br>CONDUCTI<br>V |
| TESTING:                                                                     |                                                                                   | SW FLO                                                                                                          | SW FLOW CHART: DAQ HARDWARE:              |                                     | BUDGET:                                                |                                                                                 | NEXT STEPS:                                                                                                     |                                                                                                                                                                                |                                  |                                                |
| PROFILE DES.<br>TABLE<br>WI GRMS<br>GRMS METHOD<br>WRAPPING<br>ACC. MOUNTING |                                                                                   | INITALIZATION<br>RUNA/C CON FBD<br>A/D CON TIMING DIA<br>ACC MOUNT<br>DATA SAMP SPEEDS<br>CHARGE AMP<br>WHY 60? |                                           | SPEEDS                              |                                                        | OUTLINED<br>VIBE DONATED<br>EEF APPROVED<br>NO ADTL. FUNDING<br>ALL THE FUNDING |                                                                                                                 | SMALL SCALE TESTING         HARDWARE         SOFTWARE         NUMERICAL MODELING         CHALLENGES         MAT. PROPERTIES         BOUNDARY COND & LOADS         EDU. LICENSE |                                  |                                                |





- FR 1: The FeatherCraft structure design shall have a mass of less than 5 kg.
  - Source: Customer requirement. Increasing the structural mass beyond 5 kg would prevent SST-US from providing a profitable weight class of payloads
  - Verification: Modeling and analysis, comparison with measurement of STM





- FR 2: The Feathercraft structure design shall reduce manufacturing time and material cost from SST-US's typical spacecraft estimates.
  - DR 2.1: Structure design material cost shall be less than \$20,000.
    - Source: Customer requirement, SST-US typically expends \$40,000 on a spacecraft material and this design shall reduce that metric by 50%.
    - Verification: Budget analysis
  - DR 2.2: Structure design manufacturing and assembling shall take less than 9 months.
    - Source: Customer requirement, SST-US typically spends 18 months on spacecraft manufacturing and assembling and this design shall reduce that metric by 50%.
    - Verification: Manufacturing estimates and analysis
  - DR 2.3: Structure design manufacturing and building labor shall cost less than \$80,000.
    - Source: Customer requirement. This is a 50% reduction of SST-US's typical manufacturing and building cost of \$160,000 and will help the company meet the goal total price of \$6 million.
    - Verification: Budget estimates and analysis





- FR 3: FeatherCraft Structure shall be designed to launch from the ISS.
  - DR 3.1: FeatherCraft structure in launch configuration shall be designed to not be damaged by simulated launch environment, up to a 9.47 grms random vibration environment with safety factors as outlined in the GEVS ISS Pressured Volume Hardware Common Interface Requirements Document Rev C.
    - Source : Customer requirement. To remain profitable, the FeatherCraft package needs to be reliable and provide a robust platform for their customers, as well as meet all NASA requirements for launch to the ISS.
    - Verification: Vibration test executed on STM in FR 6 and measurement of STM before and after vibration test





- DR 3.2 FeatherCraft structure design including mounted components shall fit within the volume of 30"x30"x19".
  - Source: The spacecraft as a whole must be placed within the Kaber volume to be deployed and begin its mission. This volume ensures at least 2" of space between the spacecraft volume and the edge of the JEM airlock. Soft stowed as defined by GEVS ISS Pressured Volume Hardware Common Interface Requirements Document Rev C.
  - Verification: Inspection of drawings, demonstration with measurement





- FR 4: FeatherCraft structure design shall interface with SST-US-provided spacecraft components and mission design.
  - DR 4.1: FeatherCraft structure design shall provide mounting positions on three sides of the structure for one 30"x30"x0.125" solar panels of mass 2 kg and two 30"x18.976"x0.125" solar panel of mass 1.5 kg.
    - *Source*: Customer requirement, three solar panel arrays in the configuration provides the customer enough power for the spacecraft
    - Verification: Modeling and analysis in STK, STM demonstration in FR 5.
  - DR 4.2: FeatherCraft structure design shall provide a mounting position for a 29.094"x18.976"x0.125" propulsion plate of mass 12 kg on Side 1.
    - Source: Customer requirement. The propulsion plate design has been finalized, and its dimensions necessitate its mounting location.
    - Verification: modeling and inspection of drawings, STM demonstration in FR 5
  - DR 4.3 FeatherCraft structure design shall have an internal structural component equally bisecting the 19" height dimension to provide mounting capabilities to the avionics components and payload components.
    - Source: Customer requirement. The mounting capabilities are necessary for the customer to assemble the spacecraft
      easily and safely. This bisecting structural component defines a payload bay and avionics bay so that a payload volume is
      defined for potential customers.
    - Verification: Inspection of drawings, Test (measure STM)





- DR 4.4 FeatherCraft structure design shall dissipate up to 100 W of heat generated equally by avionics and payload bays at an operating temperature of -20 to 50 degrees C.
  - Source: Customer requirement. The maximum power output is estimated by the customer to remain below 100W. The specifics of this analysis are presented in Section 4.1.4.
  - Verification: Analysis
  - DR 4.4.1: FeatherCraft structure design shall have a radiative material on a side of the structure facing deep space.
    - Source: Customer requirement, derived from DR 4.4. This shall be determined in the same STK analysis that determines which sides of the spacecraft experience the most direct sunlight over a year.
    - Verification: Inspection of model, STK analysis
- DR 4.5 FeatherCraft structure design shall keep side 5 open.
  - Source: Customer requirement, payload use and space for antenna(s) facing nadir.
  - Verification: modeling, demonstration in STM





- FR 5: A manufactured STM of the FeatherCraft structure design shall be used to validate the design through a modal vibration sweep and a random vibration test to the requirements of SSP 50835.
  - DR 5.1 STM shall be manufactured with sufficient similarity to the structural design such that it can be used for validation of the designed structure. It shall fulfill all of the requirements of the designed structure with the exception of the 5kg structural mass requirement, which may be exceeded.
    - Source: Customer requirement. A physical test must be performed to provide a baseline of feasibility; this can only be proved if the STM is similar to the design. However, the materials of the STM are constrained to the FeatherCraft team budget.
    - Verification: Analysis of materials
  - DR 5.2 STM shall be tested on a vibration table for a vibration profile provided in GEVS table 3.1.1.2.1.2.3.2-1
    - Source: Page 3-17 of ISS Pressured Volume Hardware Common Interface Requirements Document Rev C. It is estimated by this document that with a vibration table setting of 9.47 grms, the bubble-wrapped structure should experience 1.29 grms.
    - Verification: Inspection of test plan, test





- DR 5.3 STM shall support loads through vibration testing that are equivalent to the required loading of the designed structure.
  - Source: Validation of FR 5
  - Verification: Demonstration
  - DR 5.3.1 STM shall have a provided mass analog propulsion plate of mass and size specified in DR 3.2 mounted to side 1
    - Source: Validation of DR 5.2 and FR 5.
    - Verification: Inspection
  - DR 5.3.2 STM shall have provided solar panel mass analog plates mounted on sides determined from DR 4.1 with mass and size specified in DR 4.1
    - Source: Validation of DR 4.1 and FR 5.
    - Verification: Inspection
  - DR 5.3.3 STM shall have an internal loading of 35 kg mounted inside the structure in the avionics bay to represent the avionics mass.
    - Source: Validation of DR 4.3 and FR 5. This is the total mass of all spacecraft components SST-US intends to place inside the avionics bay.
    - Verification: Measure mass, Inspection of drawings of vibration test configuration
  - DR 5.3.4 STM shall have an internal loading of 47.5 kg mounted inside the structure in the payload bay to represent the payload mass.
    - *Source:* Validation of DR 4.3 and FR 5. This is the SST-US provided estimate it will allow for payload mass.
    - Verification: Measure mass, inspection of drawings of vibration test configuration





- DR 5.4: STM shall be wrapped in Pyrell Foam prior to testing.
  - Source: Customer Requirement stemming from ISS Pressured Volume Hardware Common Interface Requirements Document Rev C. The test shall be performed with the STM in the flight configuration.
  - Verification: Demonstration, inspection
- DR 5.5 FEM model shall be verified using structural accelerometer information.
  - Source: Provides evidence for completion of FR 6 and allows data collection for later correlation to designed structure. The number of accelerometers necessary and their positons will be determined after the structural design is determined.
  - Verification: Analysis of FEM model, inspection of drawings of vibration test configuration





- DR 5.6 A data acquisition and analysis system shall be designed and created for this test and further tests of structural STMs to validate structural properties.
  - Source: Customer requirement, it will save the project money to own a data acquisition system, and this can be used for custom data collection and future tests
  - Verification: Demonstration
  - DR 5.6.1 Accelerometers determined by DR 5.5 shall be acquired for the testing of the STM, with one tri-axial accelerometer and one single-axis accelerometer retained by the design team.
    - Source: Customer requirement. The number of accelerometers needed to validate the FEM model will be determined by the structure shape, and SST-US would like one accelerometer to base an expanded data acquisition system on if they could acquire it at the end of the project.
    - Verification: Analysis of FEM model, demonstration
  - DR 5.6.2 DAQ shall contain 60 channels for the possibility of 20 tri-axial accelerometer inputs.
    - Source: Customer requirement, although the budget of the project limits the number of accelerometers to be used for the test in spring, future tests with 20 tri-axial accelerometers may be performed and data would be taken from all 20 at the same time.
    - Verification: Analysis of circuitry and inspection of design drawings





- DR 5.6.3: Accelerometer data shall display in the form of power spectral density plots during each test
  - Source: Customer requirement, safety for structure during test, real-time performance analysis
  - Verification: Demonstration
- DR 5.6.4 Accelerometer data shall be saved during each test in an Excelcompatible format
  - Source: Customer requirement, post-test analysis
  - Verification: Demonstration
- DR 5.6.5 Accelerometer data shall be transferable via USB from the microprocessor collecting data to any personal computer running Microsoft Windows operating systems.
  - Source: Customer Requirement. To prevent errors and wasted time, data should be easy to transfer to any of SST-US' computers.
  - Verification: Demonstration













#### **WEIGHT RELIEVED PANELS:**















## **Digital Output Accelerometers:**












+ More configurations.





### **Structure Trade Study – Metric Definitions:**

|                                    | 10                            | 9                   | 8                                    | 7                            | 6                          | 5       | 4                  | 3                          | 2                                 | 1      |
|------------------------------------|-------------------------------|---------------------|--------------------------------------|------------------------------|----------------------------|---------|--------------------|----------------------------|-----------------------------------|--------|
| Material Cost:<br>[kg]             | 1                             | 2                   | 3                                    | 5                            | 7.5                        | 10      | 12.5               | 15                         | 17.5                              | 20     |
| Mass<br>[kg]                       | 4                             | 5                   | 5.5                                  | 6                            | 6.5                        | 7       | 7.5                | 8                          | 9                                 | >10    |
| Ease of<br>Manufacturing:<br>[hrs] | 10                            | 20                  | 30                                   | 40                           | 50                         | 60      | 70                 | 80                         | 90                                | 100    |
| Ease of<br>Analysis:               | A<br>monkey<br>could do<br>it | Plug<br>and<br>play | Very<br>little<br>effort<br>required | Little<br>effort<br>required | Some<br>effort<br>required | Neutral | Effort<br>required | Much<br>effort<br>required | Too<br>much<br>effort<br>required | l quit |



### **Chosen Materials**

#### **Facing Material**

Woven Carbon Epoxy (G793-5HS)

- 1 ply (.3mm, ~12 mils)
- $\sigma_{u,c} = 600 MPa$
- $\sigma_{u,t} = 700 MPa \sigma_{u,c} = 600 MPa$
- $Ex_t = 70GPa, Ex_c = 60GPa$

$$- \rho = .45 \frac{kg}{m^2}$$

Also looking at M55J fibers (0/90 Fabric)

- $\sigma_u = 827 MPa$
- $E_x = 134GPa$
- $\rho = .478 \frac{kg}{m^2}$

5052 Expanded Aluminum Honeycomb -  $\frac{1}{2}$ " thickness,  $\frac{1}{4}$ " cell size -  $\rho = 1.612 \frac{kg}{m^2}$ -  $\sigma_z = 10 MPa, E_z = 2.345GPa$ 

$$- \quad \tau_x = 4.8 M Pa, G_{xz} = .896 G Pa$$

$$- \quad \tau_y = 2.9 MPa, G_{yz} = .364 GPa$$

Also HRH10 Nomex Honeycomb

- ½" thickness, 1/8" cell size
- $\rho = 1.56 \frac{kg}{m^2}$

**Core Material** 

- $\quad \sigma_z = 11.5 MPa, E_z = .5GPa$
- $\quad \tau_x = 3 MPa, G_{xz} = .1GPa$
- $\quad \tau_y = 1.9 MPa, G_{yz} = .06 \ GPa$









### Accelerometer Trade Study – Metric Definitions:

|                                                      | 10                  | 9                   | 8                                 | 7                            | 6                          | 5                    | 4                  | 3                          | 2                                 | 1          |
|------------------------------------------------------|---------------------|---------------------|-----------------------------------|------------------------------|----------------------------|----------------------|--------------------|----------------------------|-----------------------------------|------------|
| Unit Cost                                            | < \$1               | \$1-\$5             | \$5-\$10                          | \$10-\$50                    | \$50-\$100                 | \$100-<br>\$250      | \$250-<br>\$500    | \$500-<br>\$750            | \$750-<br>\$1000                  | >\$1000    |
| Reliability                                          | 90-100%             | 80-90%              | 70-80%                            | 60-70%                       | 50-60%                     | 40-50%               | 30-40%             | 20-30%                     | 10-20%                            | 0-10%      |
| Ease of<br>interface<br>to the<br>structure          | A baby<br>can do it | Plug<br>and<br>play | Very little<br>effort<br>required | Little<br>effort<br>required | Some<br>effort<br>required | Neutral              | Effort<br>required | Much<br>effort<br>required | Too<br>much<br>effort<br>required | l quit     |
| Ease of<br>design<br>(including<br>time<br>invested) | Done!               | Very<br>easy        | Easy                              | Somew<br>hat easy            | Neutral                    | Some<br>what<br>hard | Hard               | Very<br>hard               | Uber<br>hard                      | Impossible |
| Size/mass                                            | 0 - 0.5g            | 0.5 - 1g            | 1 - 1.5g                          | 1.5 - 2g                     | 2 - 2.5g                   | 2.5 - 3g             | 3 - 3.5g           | 3.5 - 4g                   | 4 - 4.5g                          | >4.58      |





## **Accelerometer Trade Study:**

|                                          |         | Digital<br>Accelerometers | Buy Piezoelectric<br>Accelerometers | Rent Piezoelectric<br>Accelerometers |
|------------------------------------------|---------|---------------------------|-------------------------------------|--------------------------------------|
| Criteria:                                | Weight: | Score:                    | Score:                              | Score:                               |
| Unit Cost                                | 37.5%   | 8                         | 2                                   | 5                                    |
| Reliability                              | 37.5%   | 1                         | 10                                  | 9                                    |
| Ease of Interface to the<br>Structure    | 5%      | 6                         | 9                                   | 9                                    |
| Ease of Design (including time invested) | 15%     | 4                         | 10                                  | 10                                   |
| Size/mass                                | 5%      | 8                         | 2                                   | 2                                    |
| Weighted Total:                          |         | 4.625                     | 6.55                                | 7.3                                  |





|                             | 10                  | 9                   | 8                                    | 7                            | 6                          | 5               | 4                           | 3                          | 2                              | 1          |
|-----------------------------|---------------------|---------------------|--------------------------------------|------------------------------|----------------------------|-----------------|-----------------------------|----------------------------|--------------------------------|------------|
| Manufacturing<br>Difficulty | A baby<br>can do it | Plug and<br>play    | Very<br>little<br>effort<br>required | Little<br>effort<br>required | Some<br>effort<br>required | Neutral         | Effort<br>require<br>d      | Much<br>effort<br>required | Too much<br>effort<br>required | l quit     |
| Total Cost                  | <\$20               | \$20-\$75           | \$75-<br>\$150                       | \$150-<br>\$250              | \$250-\$375                | \$375-<br>\$525 | \$525-<br>\$700             | \$500-<br>\$700            | \$700-<br>\$1000               | >\$1000    |
| Complexity of<br>Design     | No work<br>involved | Extremely<br>Simple | Very<br>Simple                       | Simple                       | Somewhat<br>simple         | Neutral         | Somew<br>hat<br>Comple<br>x | Complex                    | Extremely<br>Complex           | Impossible |
| Reliability                 | 90-100%             | 80-90%              | 70-80%                               | 60-70%                       | 50-60%                     | 40-50%          | 30-40%                      | 20-30%                     | 10-20%                         | 0-10%      |





## **DAQ Hardware Trade Study:**

|                             |         | Digital DAQ | Single $\mu C$ | Multiple $\mu C$ |
|-----------------------------|---------|-------------|----------------|------------------|
| Criteria:                   | Weight: | Score:      | Score:         | Score:           |
| Manufacturing<br>Difficulty | 10%     | 7           | 4              | 3                |
| Total Cost                  | 40%     | 8           | 4              | 5                |
| Complexity of Design        | 10%     | 5           | 4              | 3                |
| Reliability                 | 40%     | 1           | 9              | 8                |
| Weighted Total              |         | 4.8         | 6.0            | 5.8              |

#### SATELLITE TECHNOLOGY US **Software Trade Study – Metric Definitions:** 8 6 5 2 10 9 7 4 3 1 \$50-\$100 \$200-\$250 \$250-\$300 \$300-\$350 \$350-\$450 \$100-\$150 \$150-\$200 \$400-\$450 Free >\$450 Cost Too Ease of A baby Plug Very little Little Some Much Effort much implement effort effort can dó and effort effort Neutral l quit effort required ation it play required required required required required Resident Courses Manuals You can experts Peers. Peers. taught Profs., Few Select abunda No help ask along , few some Resources Available on this, online books peers, with online ónline nt from any your online resourc offer easy online lower mom resourc resourc resource tutorial material es resources for help level material es es S resources 81

82





 $\mathbf{O}\mathbf{Z}$ 

### **Data Analysis Software Trade Study:**

|                        |         | Python | Perl   | LabVIEW |
|------------------------|---------|--------|--------|---------|
| Criteria:              | Weight: | Score: | Score: | Score:  |
| Cost                   | 20%     | 10     | 10     | 5       |
| Ease of implementation | 60%     | 6      | 4      | 7       |
| Resources Available    | 20%     | 9      | 9      | 8       |
| Weighted Total         |         | 7.4    | 6.2    | 6.8     |



## **Natural Frequency**

- Tough without a good numerical model
- For sandwich panels, bending stiffness is:

$$- D = \frac{E_f}{(1-\nu^2)} \left(\frac{t^2 h^2}{2t}\right) = 1455Nm$$

• From *Roark*,

$$- f_n = \frac{K_n}{2\pi} \sqrt{\frac{Dg}{qa^4}}$$

• 
$$K_1 = 19.7, K_2 = 49.3 \text{ (from } \frac{a}{b} = 1\text{)}$$

$$q = \frac{6.16 \cdot 9.81 \cdot 80}{.761^2} = 9.38 KPa$$

- a = .7614m
- First two modes: 6.7 Hz, 16.7 Hz
- Bad from a spacecraft point of view should be ~30-60
- More study needed
  - Frequency coupling in Cargo Transport
  - Stiffeners (post in middle of plate)





Edges simply supported





## **Factors of Safety and Loads**

#### NASA: GSFC-STD-7000 April 2005

| Туре                           | Static           | Sine | Random/Acoustic |
|--------------------------------|------------------|------|-----------------|
| Metallic Yield                 | 1.25             | 1.25 | 1.6             |
| Metallic Ultimate              | 1.4 <sup>3</sup> | 1.4  | 1.8             |
| Stability Ultimate             | 1.4              | 1.4  | 1.8             |
| Beryllium Yield                | 1.4              | 1.4  | 1.8             |
| Beryllium Ultimate             | 1.6              | 1.6  | 2.0             |
| Composite Ultimate             | 1.5              | 1.5  | 1.9             |
| Bonded Inserts/Joints Ultimate | 1.5              | 1.5  | 1.9             |

- Safety factor of 1.9 is chosen to apply to all analysis
- Additional FOS=2 is applied to buckling due to moment growth with deflection, this shall prevent catastrophic failure.

Jacob Job Wijker, Spacecraft Structures, © 2008 Springer-Verlag Berlin Heidelberg

| Table 6.2 | Transportation | limit load factors | [NASA-HDBK-7005] |   |
|-----------|----------------|--------------------|------------------|---|
|           |                |                    |                  | - |

| Medium/Mode                                                         | Longitudinal load<br>factors         | Lateral load<br>factors             | Vertical load<br>factors            |
|---------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Water                                                               | ±0.5                                 | ±2.5                                | ±2.5                                |
| Air                                                                 | ±3.0                                 | ±1.5                                | ±3,0                                |
| Ground <ul> <li>Truck</li> <li>Rail (humping shocks)</li> </ul>     | $\pm 3,5$<br>$\pm 6.0$ to $\pm 30.0$ | $\pm 2.0$<br>$\pm 2.0$ to $\pm 5.0$ | ±4.0 to ±15.0                       |
| <ul> <li>Rail (rolling)</li> <li>Slowly moving<br/>dolly</li> </ul> | ±0.25 to ±3.0<br>±3,1                | ±0.25 to ±0.75<br>±0.75             | $\pm 0.2$ to $\pm 3.0$<br>$\pm 2.0$ |

The transportation loads should be included in the design analysis unless special protection is provided to assure that they contribute negligible damage compared with the other (flight) loads.

- Current design is based on quasi-static load of 6.16 times the surface acceleration
- Structure can handle truck transportation loads

# STRUCTURE DETAIL: Tube - Plate



85

**Assume:** 8 bonding places, fs=1.9, 50% effective bonding area tt = 1/16'' (thickness of tube wall); W = 1'' (inside width) L = 1''(length of glue-in insert);  $A = W^*L^*4^*0.5$  (m2)  $\tau = F * \frac{fs}{A} : \{1.20546*10^6 \text{ Pa}\}$ epoxyShearStr=22.1\*10<sup>6</sup> Pa Design Margin =  $\frac{epoxyShearStr}{\tau^2}$ - 1: {**17.3333**}

## STRUCTURE DETAIL: Column buckling



Assume: full load is taken by 1 column, FS = 1.9\*2 W = 1.3"; L = 28"; E =  $7 * 10^{10}$  (Pa - carbon fiber fabric' modulus)  $I = \frac{2}{3} * t * W^{3}: \{3.81^{*}10^{-8} m^{4}\}; \quad Pcr = \pi^{2} * \frac{EI}{L^{2}}(N)$ CriticalLoad =  $\frac{Pcr}{2*1.9}$  : {12767 N} Design Margin =  $\frac{CriticalLoad}{E} - 1$ : {1.09}

## Sandwich Panel Failure Modes



- Main failure modes of sandwich panels:
- Skin strength (below)
- Insufficient panel stiffness (above, right)
- Panel buckling (below, right)







#### All images from Honeycomb Design Technology, Hexcel, 2000





## **Sandwich Panel Failure Modes**

- Main failure modes of sandwich panels (cont.)
- Local Compression (below)
- Skin wrinkling (above, right)
- Intra-cell buckling (below, right)







All images from Honeycomb Design Technology, Hexcel, 2000





## **Adhesives Analysis**

- Total adhesive needed
  - Assuming largest surface area, total of avionics components is 0.467  $m^2$ .
  - Payload surface area is not known, so assuming entire mid-plate is used for mounting, (30''x30'') this totals to 0.581  $m^2$ .
  - Joints are assumed to use much less adhesive than payload and avionics mounting because of the small area, so an estimate of 25% the total payload and avionics surface area is assumed for a total surface area of 1.39  $m^2$ .
  - Assumed thickness of 0.005" (standard as defined by MasterBonds.com) and adding a realistic margin of 0.001", the total volume of adhesive required is  $V = 0.000154 \ m * 1.39 \ m^2 = 0.000212 \ m^3 = 0.224 \ qrt.$
  - For mass calculations, density is taken as 1360 kg/m<sup>3</sup> thus  $m = 1360 \frac{kg}{m^3} * 0.000212 m^3 = 0.288 kg$



### **ADHESIVES:**

- Hysol EA 9394 Aerospace Adhesive
  - Customer recommended
  - 1 qrt attainable at skygeek.com \$184.89
  - 1 qrt attainable at chemcenters.com \$210.00
  - Bonded in composites lab, curing takes 24 hours with support tooling with full strength attained after 3-5 days

#### Scotch-Weld 2216 Epoxy

- Customer recommended, can be removed with heat
- 1 qrt attainable at amazon.com \$275.74
- 1 qrt attainable at ellsworth.com \$282.58
- Handling strength at 10 hours, cured for 7 days



# Scotch-Weld 2216 Epoxy



- Rated for temperatures up to 82 °C but significant drop in shear strength at this temperature (From 22.1 MPa to 2.8 MPa)
- Tested on fiber-reinforced polyester and polycarbonate
- Testing will be performed for expected heat range on carbon fiber aluminum
- Data sheet: <u>http://www.farnell.com/datasheets/692030.pdf</u>
- Safety data sheet: http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuUn\_zu8l00x4Yt9 4x\_Gnv70k17zHvu9lxtD7SSSSSS--





### Outgassing

- Adhesives
  - Hysol 9394 0.0023% CVCM (http://matdb.jaxa.jp/OutgassingRate/pdf/0204-2.pdf)
  - 2216 Epoxy 0.04% CVCM (http://multimedia.3m.com/mws/media/1539550/3mtm-scotch-weldtm-epoxy-adhesive-2216-b-a.pdf)
  - CVCM Collected Volatile Condensable Materials





### **TILE SAW TO CUT PANELS:**



#### Skil 7-inch Wet Tile Saw

ITLL recently purchased a wet tile saw for cutting ASEN 2001 carbon fiber tubes

Panels

- Could manufacture platform to make table larger and decrease blade height
- Add fence to keep stock straight

Columns

 Feasible option for quickly cutting to 30 inch length



## **COMPOSITE CUTTING END MILLS**





Harvey Tool advertises both of these end mill-style tools as ideal for composite materials. **Top: Compression tool helps** prevent delamination Bottom: Diamond cut functions as an abrasive cutter CNC router table to avoids coolant



### **EDGE CLOSE OUT:**

#### **Box Extrusion:**



- Use end mill or router table with a fly cutter to clear core
- Used where panels interface with columns

### Epoxy Fill In:



- Use block to push core back from edge
- Fill with Loctite TF 3056FR







## **RADIATOR DESCRIPTION:**

**Requirement:** Use one 19" x 30" panel of the structure as a radiator capable of dissipating 100 W

 Back of the Envelope performed using Stefan Boltzmann Law

Assumptions:

- Radiator panel is facing deep space (T<sub>∞</sub> = 4 K)
- Panel temperature ~25°C (nominal operating temperature)







### **Thermal Radiation:**

Thermal Radiation – Stefan-Boltzmann Law



 $q_{rad} = Radiated Energy$  A = Panel Surface Area  $\sigma = 5.67 * 10^{-8} \frac{W}{m^2 K^4}$   $\epsilon = Emissivity = 0.75$ T = Panel Temperature = 298K

- BotE Calculation Show that a structural (carbon fiber aluminum honeycomb) panel is capable of radiating 100 W
- Principles:
  - Stefan-Boltzmann Law. Find q as a function of panel surface area A
- Assumptions:
  - Panel is at 25°C, an estimated s/c operating temperature
  - Radiator is facing deep space
- Result:
  - Feasible within an area range of 460-570 square inches
  - Will use 460 square inches to help meet mass requirement

$$q_{rad} = A\sigma\epsilon T^4 = A * \left(5.67 * 10^{-8} \frac{W}{m^2 K^4}\right) (0.75)(298 K)^4$$





## **Thermal Conductivity**

- BotE Calculation Find the change in temperature from internal to external wall needed to conduct 100 W
- Principles:
  - 1-dimensional composite wall heat conduction
  - Thermal Resistance & Circuits
- Assumptions:
  - 1-dimensional heat conduction
  - Spacecraft nominal operating temperature of 25°C
- Result:
  - Needs ~0.3 K difference to conduct 100W
  - With deep space facing assumption, this is clearly feasible





 $R_{tot} =$ 

0.0127m

14.8 WmK + 460m2

 $q_x = \frac{T_1 - T_4}{R_{tot}} \rightarrow T_4 = T_1 - q_x R_{tot} =$ 

 $298K - 100W * 0.002904 \frac{K}{W} = 297.7 K$ 

0.0003m

 $156\frac{W}{mK} \cdot 460m^2$ 



= 0.002904 -

0.0003m

 $156\frac{W}{mK} * 460m^2$ 





## **Random Vibration Profile:**

- Gives Random Vibration (RV) max envelopes for different frequencies and ranges of frequencies in g<sup>2</sup>/Hz.
- Specifies RV max envelopes for unattenuated and attenuated environments
  - Unattenuated (9.47 grms): RV experienced by unwrapped cargo i.e. the input to the vibration table
  - Attenuated (: RV experienced by cargo wrapped in this specific configuration SECO 88 and single Cargo Transfer Bag (CTB). This is what FISH will experience in flight and what it is being designed to survive.





### **Random Vibration Profile:**

#### TABLE 3.1.1.2.1.2.3.2-1 UNATTENUATED AND ATTENUATED RANDOM VIBRATION ENVIRONMENTS FOR END ITEMS SOFT-STOWED IN A SINGLE CTB, X/Y/Z AXIS

| Frequency<br>(Hz) | Max. Flight<br>RV Env <sup>1</sup> | 20 lb ORU in Pyrell in a Single<br>CTB |
|-------------------|------------------------------------|----------------------------------------|
| 20                | 0.057 (g <sup>2</sup> /Hz)         | 0.1465 (g <sup>2</sup> /Hz)            |
| 20-153            | 0 (dB/oct)                         | -9.76 (dB/oct)                         |
| 153               | 0.057 (g <sup>2</sup> /Hz)         | 0.0002 (g <sup>2</sup> /Hz)            |
| 153-190           | +7.67 (dB/oct)                     | 0 (dB/oct)                             |
| 190               | 0.099 (g <sup>2</sup> /Hz)         | 0.0002 (g <sup>2</sup> /Hz)            |
| 190-250           | 0 (dB/oct)                         | 0 (dB/oct)                             |
| 250               | 0.099 (g <sup>2</sup> /Hz)         | 0.0002 (g <sup>2</sup> /Hz)            |
| 250-750           | -1.61 (dB/oct)                     | 0 (dB/oct)                             |
| 750               | 0.055 (g <sup>2</sup> /Hz)         | 0.0002 (g <sup>2</sup> /Hz)            |
| 750-2000          | -3.43 (dB/oct)                     | 0 (dB/oct)                             |
| 2000              | 0.018 (g <sup>2</sup> /Hz)         | 0.0002 (g <sup>2</sup> /Hz)            |
| OA (grms)         | 9.47                               | 1.29                                   |

Note:

Unattenuated RV levels are from Table 3.1.1.2.1.2.1-1.





## FAQ: What is grms?

- I'm glad you asked, allow me to explain:
- grms is the "Root Mean Square" of acceleration, and is the preferred method to characterize Random Vibration Loading
- Random Vibration response curves are plotted as Frequency (Hz.) vs. Acceleration Spectral Density (ASD, g<sup>2</sup>/Hz.)
  - To calculate grms: Average the squared acceleration over frequency, and take the square root



## Grms Methodology Calculation of grms for random vibration test (20 Hz. – 2 kHz.):

$$grms = \sqrt{\int_0^{2000} ASD(f) \, df}$$





Sample ASD Plot for unattenuated and attenuated random vibration



## **Structure Wrapping**

- Random vibration profile applies to a specific method of storage on launch vehicle
- Structure will be wrapped in ½" Pyrell Foam Type 2
- Structure will be stowed in single Cargo Transport Bag (CTB)
- Price and attainability of both the foam and CTB are currently being investigated



FIGURE 3.1.1.2.1.2.3.2-6 AXIS OF EXCITATION







### **ACCELEROMETER MOUNTING:**

- Stiff adhesive recommended by manual
  - Superglue applied to bottom and pressed onto structure
- Signal transfer via shielded coaxial cable



\*Diagram provided by PCB



### **INITIALIZATION:** Description

- Run from an executable off a USB stick.
- Created using libraries:
  - cx freeze
  - tkinter
  - pyserial
- Chirp μC to standby







### **RUN TEST:** Description

- Run from GUI button "Start."
- Created using libraries:
  - pyserial
  - matplotlib
  - numpy
- Chirp µC to gather data





## **STOP TEST:**

#### Description

- Run from GUI button "Stop."
- Created using libraries:
  - pyserial
  - matplotlib
  - numpy
  - xlsxwriter
- Chirp μC to standby






## **RESET GUI:**

### Description

- Run automatically after a test has been stopped.
- Created using libraries:
  - pyserial
  - tkinter
- Chirp μC to standby









### **SELECTED LIBRARIES:**

| Library:   | Function:                                  | Python Release: |
|------------|--------------------------------------------|-----------------|
| cx freeze  | Converts Python to MS Executable           | 3.1 – 3.4       |
| tkinter    | GUI generation                             | 3.1 – 3.5       |
| pyserial   | Serial port communications                 | 3.0 - 3.4       |
| numpy      | Scientific computing package including FFT | 3.2 – 3.4       |
| matplotlib | Graphic plotting capability                | 3.1 - 3.4       |
| xlsxwriter | Data read and write to MS excel format     | 3.1 – 3.5       |



# Analog to Digital Converter - FBD



- 16-bit simultaneous sampling
- Bipolar input range 5V
- Single 5V supply
- Parallel port data output
- Up to 200 kSPS on every channel

## Analog to Digital Converter -Operation



t1 = 45ns tconv =  $4\mu$ s





### **Accelerometer Mounting**



- Stud mounts impractical since they would require holes in structure







uC features:

- 17.5Mbps UART
- Parallel Bit Data Port
- 70 mega instruction cycles per second

- 1. uC prompts ADC's to convert data
- 2.  $4\mu$ s wait for conversion
- 3. Data retrieval requires 120 instruction cycles on parallel port,
- 1.7µs
- 4. Data parsing requires 3 instruction cycles per channel, 180 cycles, 2.6μs
  5. Data to PC via UART 11 bit words
- (8-E-1), 75 μs
- 6. Total ~ 84μs
- 7. 4KHz requires data sample every
- 0.25 ms, leaves 0.15ms margin





### **CHARGE AMPLIFIER:**







### Why 60 Channels?

An estimate from Surrey's experienced mechanical engineer until we are able to perform a modal analysis test on the structure



**Total F** 

**Availab** 

\$5000



### **OUTLINED IN PRESENTATION:**

| Falle History # | x+/Ⅲ+1⊗+▲· | UIII EE Diophices - 1-%     | M. C. Canthe<br>Facest | ne fanne a statement fanne a statement | el j | Color Date | Austa | El El | la foend | Ener<br>≰Ger | ZT BB |  |
|-----------------|------------|-----------------------------|------------------------|----------------------------------------|------|------------|-------|-------|----------|--------------|-------|--|
| Rec +           | fi         |                             | 7                      | 1991                                   |      |            |       |       |          | -            | -     |  |
| Acres 6         |            | in the second films         |                        |                                        |      | 1.         | 1     | <br>  | 4        |              |       |  |
| Structure:      |            | Electronics HW:             |                        | Testing:                               |      |            |       |       |          |              |       |  |
| a Panels        | 2000       | Triple Axis Acc (purchase)  | 938                    | Cascade Tek (8 hours)                  | 1800 | ļ.         |       |       |          |              |       |  |
| 1 Columns       | 332        | Single Acis Acc (purchase)  | 297                    |                                        |      |            |       |       |          |              |       |  |
| Adhesive        | 200        | Power Supply                | 149                    |                                        |      |            |       |       |          |              |       |  |
| S               |            | Triple Axis Acc (rent)      | 200                    |                                        |      |            |       |       |          |              |       |  |
| 4               |            | Single Acis Acc (rent)      | 60                     |                                        |      |            |       |       |          |              |       |  |
| 3               |            | Micro Controller            | 12                     |                                        |      |            |       |       |          |              |       |  |
|                 |            | Acc PCB Board               | 33                     |                                        |      |            |       |       |          |              |       |  |
| 5               |            | Micro Controller PCB        | 33                     |                                        |      |            |       |       |          |              |       |  |
|                 |            | AD Converter                | 31                     |                                        |      |            |       |       |          |              |       |  |
|                 |            | Coaxial Cable               | 46                     |                                        |      |            |       |       |          |              |       |  |
| - 10            |            | Coaxial Cable               | 147                    |                                        |      |            |       |       |          |              |       |  |
| 10              |            |                             |                        |                                        |      |            |       |       |          |              |       |  |
| . Sub - Total   | 2532       |                             | 1946                   |                                        | 1800 | í.         |       |       |          |              |       |  |
| 13              |            |                             |                        |                                        |      |            |       |       |          |              |       |  |
| *               |            |                             |                        |                                        |      |            |       |       |          |              |       |  |
| Project Budg    | et: 6278   | Margin:                     | -1278                  |                                        |      |            |       |       |          |              |       |  |
|                 |            | 10. F                       |                        |                                        |      |            |       |       |          |              |       |  |
|                 | ** does    | NOT include: foam, shipping | cost, sale             | s tax, edge fillers**                  |      |            |       |       |          |              |       |  |
| <u>_</u>        |            |                             |                        |                                        |      |            |       |       |          |              |       |  |
|                 |            |                             |                        |                                        |      |            |       |       |          |              |       |  |

## **PROJECT BUDGET – Surrey Pays for**



### Vibe:

間目ちゃきゃ。

### Alegan Maldana Humand - FUR Lot N. Frid B. Cleanershall Forward a ж Electronics HW: Testing: Structure: 2000 Triple Axis Acc (purchase) Cascade Tek (8 hours) Panels. 938 0 Single Acis Acc (purchase) Columns 332 297 Adhesive Power Supply 149 200 Triple Axis Acc (rent) 200 Single Acis Acc (rent) 60 Micro Controller 12 Acc PCB Board 33 Micro Controller PCB 33 AD Converter 31 Coaxial Cable 46 **Coaxial Cable** 147 Sub - Total 2532 1946 0 Project Budget: 4478 Margin: 523 \*\* does NOT include: foam, shipping cost, sales tax, edge fillers\*\* Sweet Uner Sheet (2)

### Total Funds Available: \$6800

118





| Tarter of Former Factor                 | - a - a - a - | The second secon | (1) 20 3000<br>(1) 20 3000<br>(1) 20 3000 | (i)   | Terrer Constant Sectors Sectors |      |       | No. | ote | 1   | tant tett | + lireal | Eng- | Der A<br>Titler | Rad No. |  |
|-----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|---------------------------------|------|-------|-----|-----|-----|-----------|----------|------|-----------------|---------|--|
| 0 . 10 . 4                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     | 1119      |          | 1    |                 |         |  |
| A                                       | 9 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ÷ .   | 8                               |      | . k . | 40  | 4   | . 4 |           |          | 0    | 14              | u.      |  |
| Structure:                              |               | Electronics HW - Covered<br>by EEF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |       | Testing:                        |      |       |     |     |     |           |          |      |                 |         |  |
| Panels                                  | 2000          | Triple Axis Acc (purchase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                         |       | Cascade Tek (8 hours)           | 1800 |       |     |     |     |           |          |      |                 |         |  |
| Columns                                 | 332           | Single Acis Acc (purchase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
| Adhesive                                | 200           | Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | Triple Axis Acc (rent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | Single Acis Acc (rent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | Micro Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | Acc PCB Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | Micro Controller PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | AD Converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               | Coaxial Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
| 1                                       |               | Coaxial Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                         |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
| i                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
| Sub - Total                             | 2532          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                         |       |                                 | 1800 |       |     |     |     |           |          |      |                 |         |  |
|                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
| Project Budget:                         | 4332          | Margin:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 668                                       |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
|                                         | ** does N     | OT include: foam, shipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cost, sal                                 | les t | tax, edge fillers**             |      |       |     |     |     |           |          |      |                 |         |  |
| e                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |
| 100000000000000000000000000000000000000 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |       |                                 |      |       |     |     |     |           |          |      |                 |         |  |

### Total Funds Available: \$7000

# PROJECT BUDGET – No Add. Funding

| Total  | Funds |
|--------|-------|
| Availa | able: |
| \$500  | 0     |

| Marcey - B I U - |                                                                                                                 | - III III Argenticese - 1 - % -      | 12 JT Comp | Contractor Contractor  | ni (j. Gla |
|------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|------------------------|------------|
| Tables 1         | nation of the second | <ol> <li>reprint to basis</li> </ol> |            | 10444                  |            |
| 1 1 1 2 2        | 1                                                                                                               |                                      |            | r                      |            |
| Structure:       |                                                                                                                 | Electronics HW:                      |            | Testing:               |            |
| Panels           | 2000                                                                                                            | Triple Axis Acc (purchase)           | 0          | Cascade Tek (8 hours)  | 1800       |
| Columns          | 332                                                                                                             | Single Acis Acc (purchase)           | 0          | 2 A                    |            |
| Adhesive         | 200                                                                                                             | Power Supply                         | 149        |                        |            |
|                  |                                                                                                                 | Triple Axis Acc (rent)               | 200        |                        |            |
|                  |                                                                                                                 | Single Acis Acc (rent)               | 60         |                        |            |
|                  |                                                                                                                 | Micro Controller                     | 12         |                        |            |
|                  |                                                                                                                 | Acc PCB Board                        | 33         |                        |            |
|                  |                                                                                                                 | Micro Controller PCB                 | 33         |                        |            |
|                  |                                                                                                                 | AD Converter                         | 31         |                        |            |
|                  |                                                                                                                 | Coaxial Cable                        | 0          |                        |            |
|                  |                                                                                                                 | Coaxial Cable                        | 0          |                        |            |
|                  |                                                                                                                 |                                      |            |                        |            |
| Sub - Total      | 2532                                                                                                            |                                      | 518        |                        | 1800       |
|                  |                                                                                                                 |                                      |            |                        |            |
|                  |                                                                                                                 |                                      |            |                        |            |
| Project Budget:  | 4850                                                                                                            | Margin:                              | 150        |                        |            |
|                  |                                                                                                                 |                                      | -          |                        |            |
|                  | ** does                                                                                                         | NOT include: foam, shipping o        | ost, sal   | es tax, edge fillers** |            |
|                  |                                                                                                                 |                                      |            |                        |            |
|                  |                                                                                                                 |                                      |            |                        |            |

### Addition Cost Savings Options:

- Less expensive panel material (Nomex core, foam core, aluminum)
- Aluminum column material
- Borrow all accelerometers from aerospace department and ITLL

Margin still too small to cover currently unknown costs

### **PROJECT BUDGET – All the Funding**



121

### 1 H 5+ 0- + Maglet Malthean Historical + 10-10 20007 PAGE LANCET VORMITURE INATE 07 M Inchile Press Al. ng je Constronal Formal as 8 / U - L - Drof Tarinat Parates Industries - Table Initial or Taylord 1 8 Electronics HW - Covered **Testing - Covered By** by EEF Funds: Surrey Funds: Structure: Panels Triple Axis Acc (purchase) 0 Cascade Tek (8 hours) 2000 0 Columns Single Acis Acc (purchase) 332 0 Adhesive 200 Power Supply 0 Triple Axis Acc (rent) 0 Single Acis Acc (rent) 0 Micro Controller 0 Acc PCB Board 0 Micro Controller PCB 0 AD Converter 0 **Coaxial Cable** 0 Coaxial Cable 0 2532 Sub - Total 0 0 Project Budget: 2532 Margin: 2468 \*\* does NOT include: foam, shipping cost, sales tax, edge fillers\*\* Peerl Deril Therd (F) . . .

### Total Funds Available: \$8800

BATELLITE TECHNOLOGY US

## Next Steps: Small Scale Modelling

- Vibration testing of carbon fiber plate components in ITLL
- Vibration testing of mass analogs bonded to carbon fiber with adhesive
- Obtaining foam samples for soft-stowed configuration and predicting attenuation properties on small components



**ITLL Vibration Table** 





### **NEXT STEPS - HARDWARE**

- Begin board design
  - Design the two boards and order one to begin integration
- Start acquiring hardware
  - Set numbers for resistors and capacitors
  - Begin ordering parts for first test board





### **NEXT STEPS - SOFTWARE:**

- All tools needed are downloadable and installable
  - Need to find out how they work possible limitations
  - Start creating example scripts using new libraries
- Start becoming experts with python

1





## **Numerical Modeling**

- Challenges of using ANSYS to do in-depth analysis
  - Good material properties
  - Correct use of loads, boundary conditions, and element types
  - Limitations of educational license (<40k elements)</li>





### **Material Properties**

- Using honeycomb properties provided from Hexcel corp.
  - Orthotropic
- Carbon Fiber more difficult
  - Found that fabric orthotropic properties are not enough to describe buckling
  - Used M55J fiber properties as generated by AJ Gemer, using a modeled simulated layup of alternating uni-directional cells=





LASP HyperDust Instrument CDR





### **Applications of Boundary Conditions and Loads**

- Boundary Conditions are TBD on final model
- For feasibility, used simple supports and uniform load distribution on middle panel



- Used shell elements for face skin, 3d elements for core
  - Concerned about 1-element through t
- Deflections within 10% of analytical solution
- Stresses within ~25%





### **Getting around educational license**

- Having 3 layers of elements quickly creates too many elements.
- Can use 1 layer of shell element (2D) and describe it's material properties with a layered section
- Deformation still within 16% of analytical



Stresses show ~no change

| Layer | Material                               | Thickness (m) | Angle (°) |
|-------|----------------------------------------|---------------|-----------|
| (+Z)  |                                        |               |           |
| 3     | Woven Carbon Epoxy                     | 0.0003        | 0         |
| 2     | Aluminum Core Material (5052 1/4" 127) | 0.0127        | 0         |
| 1     | Woven Carbon Epoxy                     | 0.0003        | 0         |
| (-Z)  |                                        |               |           |
|       |                                        |               |           |



### **Material Properties**

- Using honeycomb properties provided from Hexcel corp.
  - Orthotropic
- Carbon Fiber more difficult
  - Found that fabric orthotropic properties are not enough to describe buckling
  - Used M55J fiber properties as generated by AJ Gemer, using a modeled simulated layup of alternating uni-directional cells=





LASP HyperDust Instrument CDR