

Project ELSA

Europa Lander for Science Acquisition

Test Readiness Review

Team: Darren Combs, Gabe Frank, Sara Grandone, Colton Hall, Daniel Johnson, Trevor Luke, Scott Mende, Daniel Nowicki, Ben Stringer Customer: Joe Hackel (Ball Aerospace)

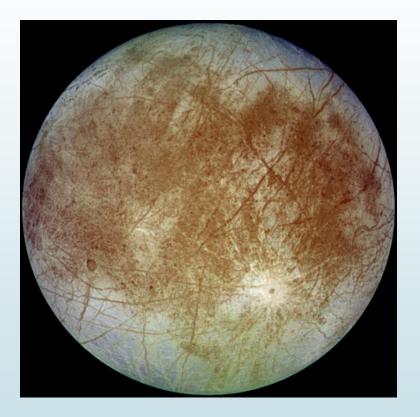
Advisor: Dr. Robert Marshall

- Project Overview
- Schedule
- Budget
- Test Readiness

Project Overview

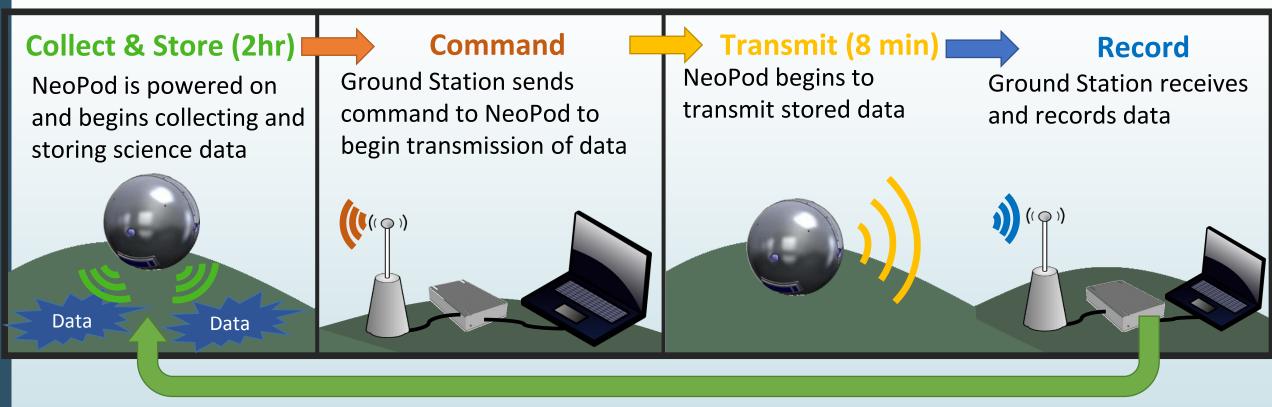
3

The ELSA team will **design and build a probe (the NeoPod) to collect, store, and transmit data via RF** to a Ground Station.

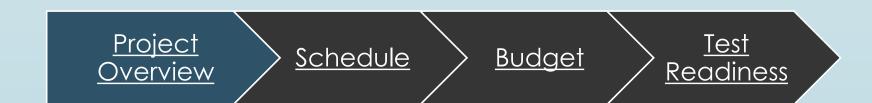

The NeoPod will operate in a stationary position for a **100 hour mission lifetime in a laboratory environment on Earth**, with a short distance between the NeoPod and the Ground Station.

Motivation for Project: Europa Mission

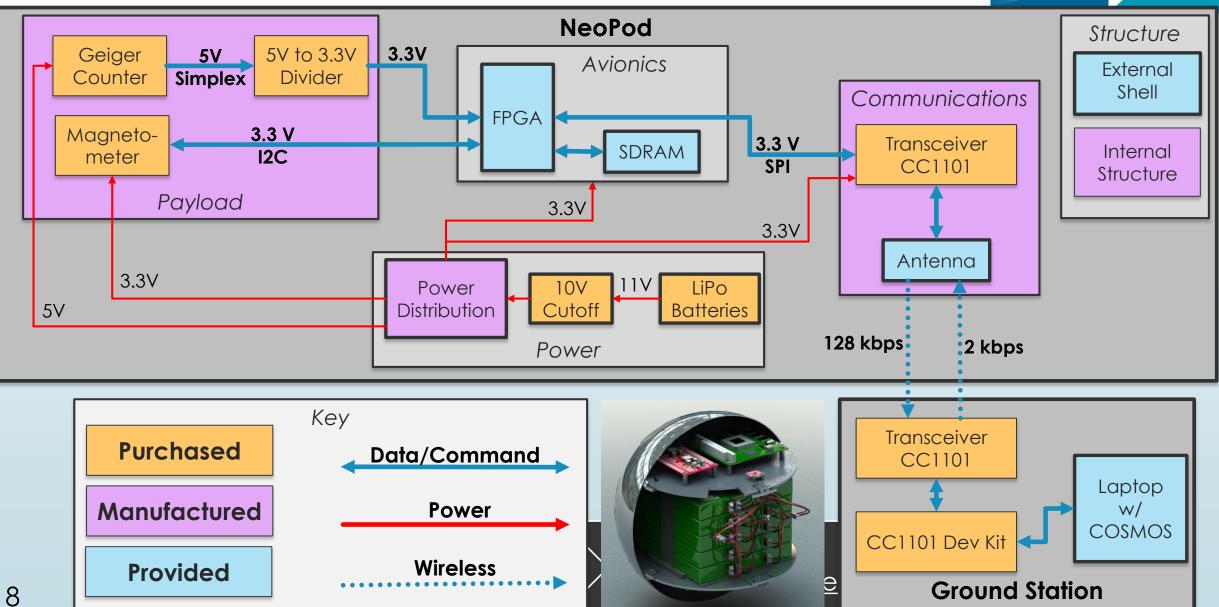
- Moon of Jupiter (85 hour orbit)
- Icy surface with an active geology and possibility of subsurface ocean
- Identified by NASA as a "High Priority Target" for its potential to support life
- Ball Aerospace has developed a concept for a mission to Europa
 - Polar orbiter (100 km, 95° inclination) deploys probe to surface
 - Probe collects data and then transmits it back during every pass


"Do science, get it back." -Joe Hackel (Customer)

- SCI 0: NeoPod shall collect scientific data relevant to the study of Europa
- COM 0: NeoPod shall communicate with the Ground Station
- ► INT 0: NeoPod shall integrate with existing mission architecture



ELSA CONOPS



Total: 100 hour mission timeline

FBD of ELSA System

Ball

Critical Project Elements

Designation	CPE	Description
CPE-1	Avionics Hardware Integration and FPGA Software	Avionics Board must interface with all components and structures. Lack of previous team FPGA experience.
CPE-2	Communications System Design	Two-way communication between NeoPod and Ground Station. Multiple data types.
CPE-3	Powers System Design	Accurate models to ensure power is supplied for 100 hour mission lifetime. Custom PCB and circuit design necessary.
CPE-4	Mechanical Integration	All components must satisfy mass and volume requirements. Internal components must not exceed thermal tolerances.

Full System Levels of Success Comparison

Level 3 Success	VS.	Level 4 Success
Flat-Sat Test Demonstration of Full Integration	VS	Fully Integrated Test
8 hours of Testing	VS	100 hours of Testing
Meets all Requirements (Some by Analysis)	VS	Demonstrates Full Success of Mission Design and Concept
Limited Battery and Thermal Model Validation	VS	Full Battery and Thermal Model Validation
Have Met Level 1 Success		On Track for Level 4 Success
10 Project Overview Schedu	<u>ule B</u>	<u>udget</u> <u>Test</u> <u>Readiness</u>

Executive Summary

- Changes from MSR
 - New and Improved 3D printed casing
 - Test stand designed
 - Changes to schedule reflecting one week delay
- Schedule
 - Completed Initial component testing and development
 - Working on component integration now to prepare for testing in March
 - 15 days remaining margin + Spring Break

Project

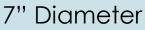
Overview

Budget

11

Majority of procurements acquired: ~\$2800 remaining

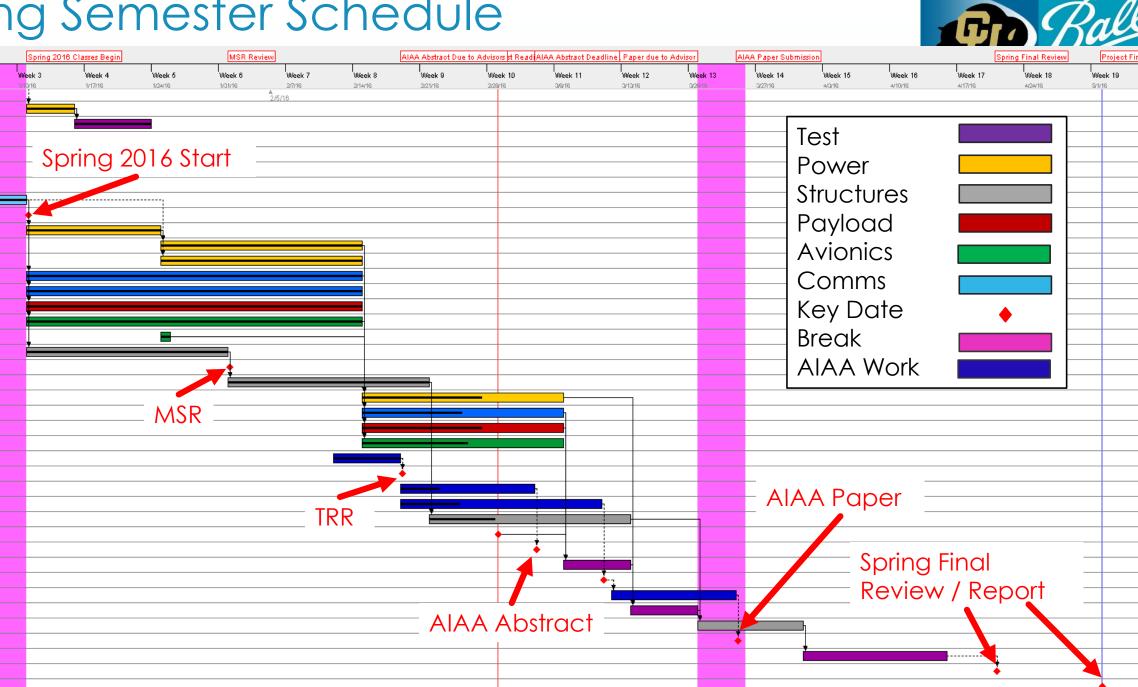
<u>Schedule</u>


<u>Budget</u>

No Budget Concerns

<u>Test</u>

Readiness



Schedule

12

Spring Semester Schedule

Spring Critical Path

	5	Spring 2016	Classes Begin		MSR Re	view		AIAA Abstract Due	to Advisors <mark>et</mark> Read	AIAA Abstract Deadl	ine, Paper due to	Advisor	AIAA Paper S	ubmission			Spring Final Review	Project Fin
l <mark>eek 2</mark> Dr16	Wee 1/10/	ek 3 r16	Week 4 1/17/16	Week 5 1/24/16	 Week 6 1/31/16	Week 7 2/7/16	Week 8 2/14/16	Week 9 2/21/16	VVeek 1D 2/29/16	Week 11 Grants	Week 12 artart6	Week 13 3/20/16	Week 14 3/27/16	Week 15 4/0/16	Week 16 4/10/16	Week 17 4/17/16	Week 18 4/24/16	Week 19 \$/1/16
			-			2/5/16												
														Test				
														Test				
														Powe	r			
														Struct	ures			
														Paylo				
	<u>+</u>			į										Avion				
														Comr				
								vionic	cIntor	aration				Key D	ate		•	
				-					s IIIICí	giunoi				Break				
					_			esting						AIAA				
					*													
								•										
									_									
													NeoP	od				
																		<u> </u>
											* *		nteg	ration		-ully Ir	ntegrat	ed 📃
									Sat Te	sling					S	Sphere	e Testir	ng 📙
													•	*				
																	•	
4																		•

Completed Tasks Since MSR:

Week 6

1/01/16

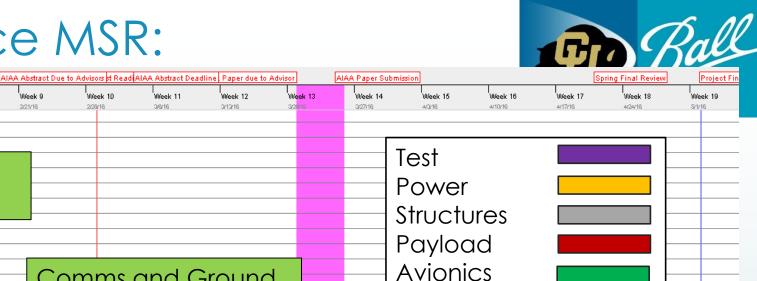
Week 5

1/24/16

pring 2016 Classes Begin

MSR Review

Power System


Assembly (15 hrs)

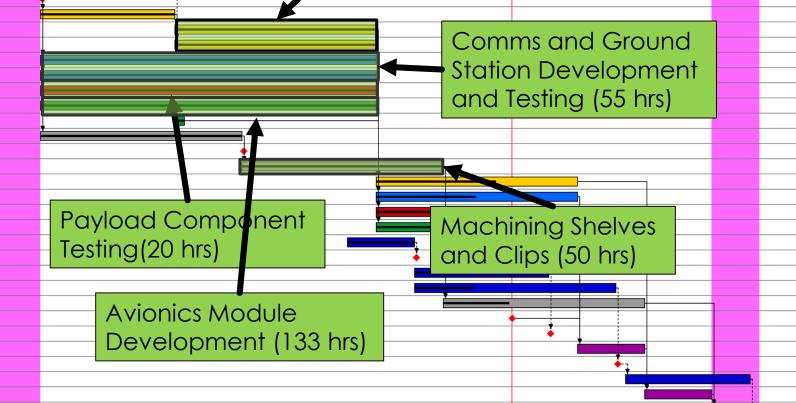
Week 7

2/7/16

Week 8

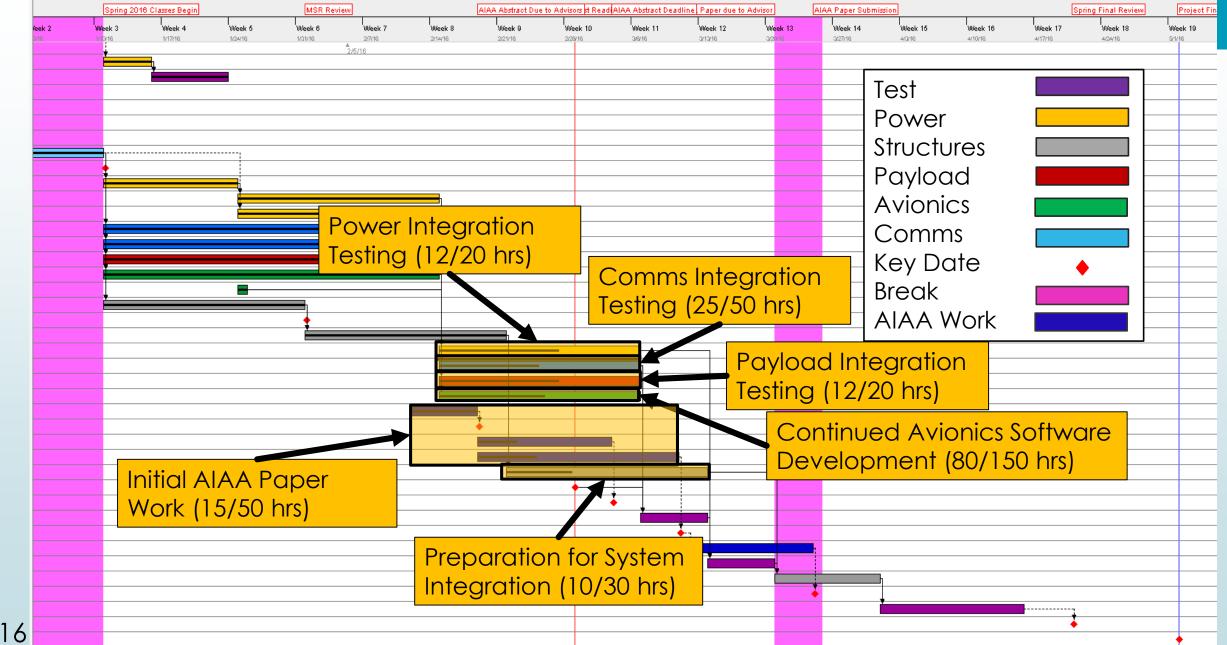
Week 9

Comms

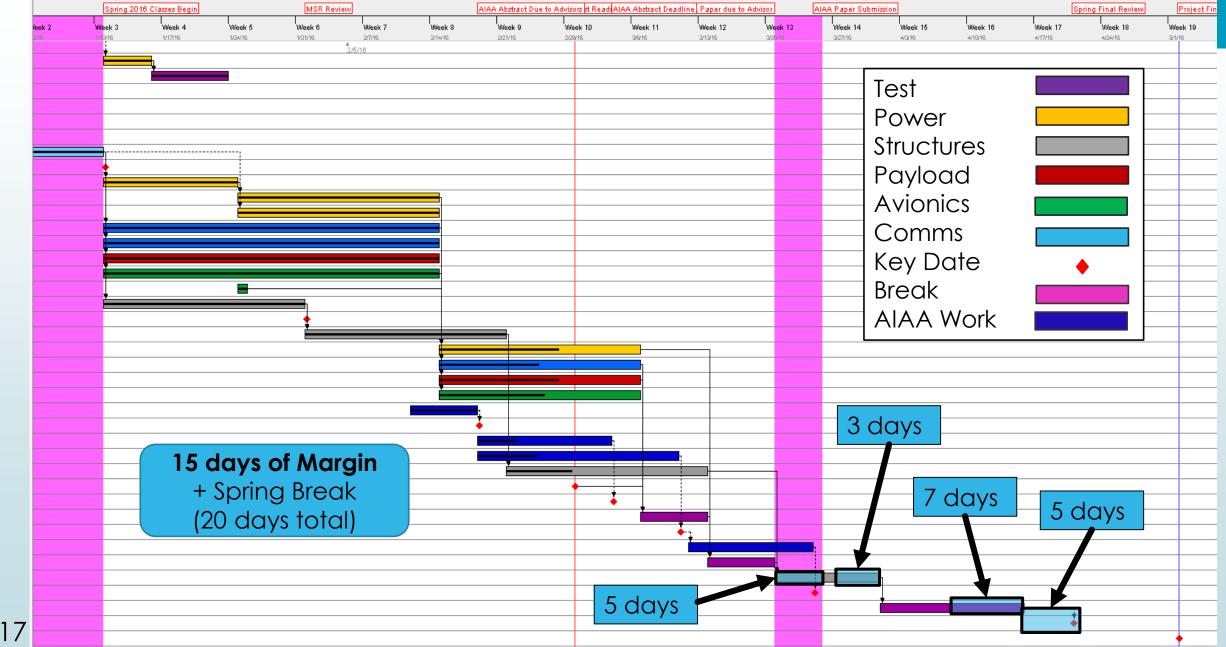

Break

Key Date

AIAA Work


Week 12

Week 11


Tasks In Progress

Spring Semester Margin

Budget

18

Procurement Status

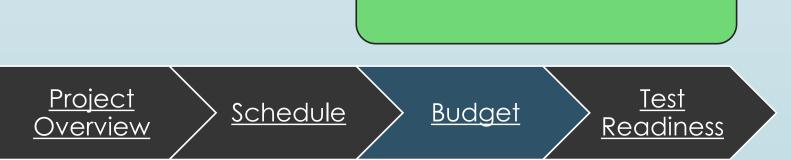
Received Procurements

- Voltage Divider PCB Rev. 2: DELIVERED
- ESD Ionizing Fan: DELIVERED

Pending/Future Procurements (Total: \$200)

- Sensor PCB Revision 2 ~ \$60
- Material for Back-up Shelves ~\$140

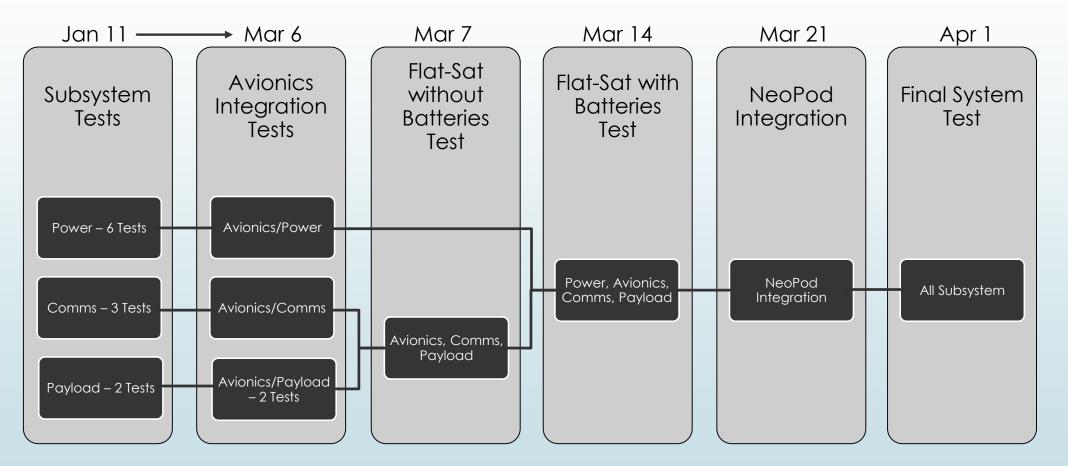
AIAA Conference


Cost for 5 team members: \$1160

No Budget Risk to Project

<i>(</i> , , , , , , , , , , , , , , , , , , ,		ELSA Budget	
\$6,000.00			
\$5,000.00			
\$4,000.00		\$1513 (Margin)	
\$3,000.00		\$1160 (AIAA)	\$5,000
\$2,000.00	\$200		
\$1,000.00	\$2,206.11	\$2,327	
\$0.00	Actual Cost	Projected Cost Including Margin	Project Budget

Part	Projected Cost	Actual Cost	Difference	Projected + Margin
Batteries (x20)	\$640.00	\$404.88	\$235.12	\$768.00 (4 Batt.)
CC1101 Transceiver Kit	\$500.00	\$471.42	\$28.58	\$1000.00 (100%)
Wires, Connectors, Cables	\$400.00	\$239.09	\$160.91	\$1200.00 (200%)
Testing Equipment	\$240.00	\$236.35	\$3.65	\$265.00 (10%)
Metals and Fasteners	\$177.00	\$194.23	\$17.23	\$531.00 (200%)
Sensors	\$165.00	\$179.85	\$14.85	\$330.00 (100%)
Printed Circuit Boards	\$100.00	\$153.55	\$53.55	\$400.00 (300%)
Avionics Programmer	\$50.00	\$51.25	\$1.25	\$100.00 (100%)
DC/DC and Logic Converters	\$35.00	\$68.83	\$33.83	\$70.00 (100%)
Power Safety Devices	\$20.00	\$40.45	\$20.45	\$80.00 (300%)
Miscellaneous	-	\$166.21	\$166.21	-
Total:	\$2327	\$2206.11	\$120.89	\$4744


Test Readiness

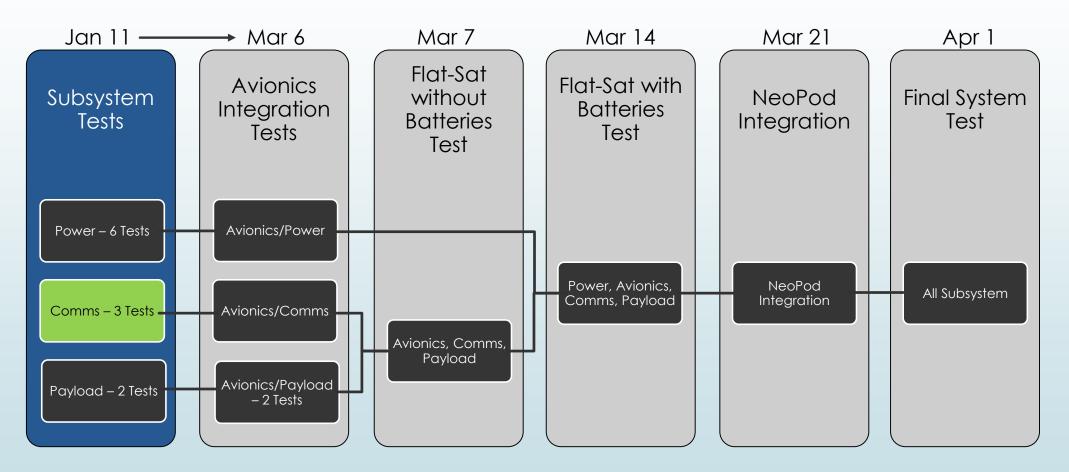
22

Test Plan Overview

Requirement Mapping

Subsystem Tests	Avionics Integration Tests	Flat-Sat without Batteries Test	Flat-Sat with Batteries Test	NeoPod Integration Task	Final System Test
Payload L1 – L2	Payload L3	Power L1	Power L2	Structure L3 – L4	Power L4
Communication L1 – L4	-	_	-	_	-
Ground Station Avionics – L1 – L4 L2 – L4		-	_	-	
SCI 1	SCI 3	_	_	-	SCI 2
COM 1.1 – 1.2, 2.1 – 2.2, 2.4, 3.1 – 3.2, 4.2 – 4.3	COM 1.3, 5	COM 3.3, 4.1	-	_	COM 2.3
INT 3, 5.2 – 5.3	-	INT 6, 9	INT 6	INT 1 – 2, 4, 5.1, 8	INT 6, 7, 10
RF Link	-	*RF Link	*RF Link	-	*RF Link
-	_	-	Power	—	*Power
-	-	-	-	—	Thermal

Key Levels of Success Functional Requirements Models


All Requirements mapped to Verification Method

Subsystem Tests

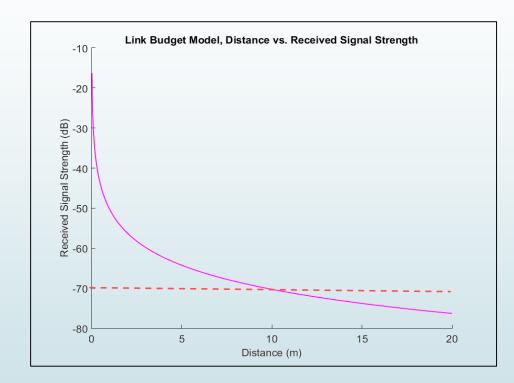
Rell Ball

Objective: Demonstrate subsystem functionality before integration with Avionics

RF Link Budget Test

- Objective:
 - 1. Determine the operating capabilities of communications system
 - 2. Find optimal location at which to run future tests
 - 3. Validate RF Link Model
- Key Requirements:
 - 1. COM 2 NeoPod shall send data over RF
 - 2. COM 4.1: Ground Station shall store received data from NeoPod

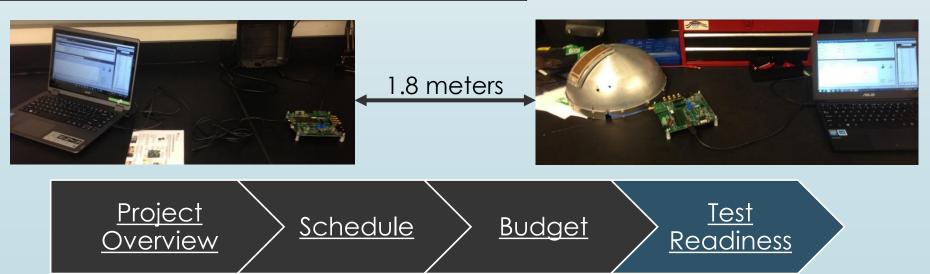
Levels of Success:


- 1. Communications Level 1: Transmit and validate a known packet of 10 bytes over RF
- 2. Ground Station Level 1: Record and validate a known packet of 10 bytes over RF
- How It Reduces Risk:

26

- 1. Demonstrates that RF link is realistic and matches expected link budget
- Associated Model: Link Budget Model

Link Budget Test Logistics


- Objective: Determine Operating Capabilities of Communications System
- Location: Bobby's Lab on 01/26/16
- Duration: **2.5 Hour Test**

Measurements: Received Signal Strength (RSSI) and Packet Error Rate (PER)

Equipment	Procurement
CC1101 Development Kits x 2	Procured from Texas Instruments
NeoPod Patch Antenna	Ball Aerospace
Attenuators x 3 (5dB, 6dB, 11dB)	Professor Palo/Bobby's Lab
Laptops x 2 w/ Smart RF Software	Installed from Texas Instruments

Test Procedure:

- 1. Assemble **10 different attenuation configurations** to simulate increased distance
- 2. Send **3 trials of 1000 packets** at each simulated distance

Link Budget Test Results

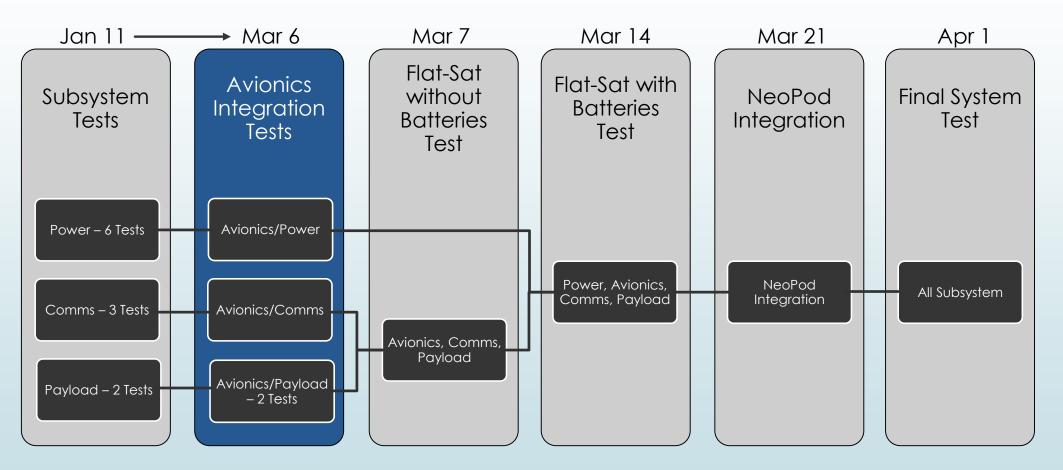
In Operable Zone:

- Achieved 0.005% PER
- 3 Packet Errors out of 21000 sent
- Maximum Test Distance: 3.8 m

Requirements Verified:

1. COM 2 – NeoPod shall send data over RF

2. COM 4.1/4.3 – Ground Station shall store received data and display metrics on performance of system
3. Level 1 Success Achieved for Communications System

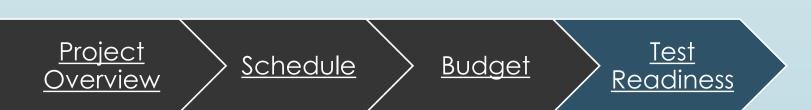


Avionics Integration Tests

Objective: Test functionality of avionics system and other subsystems

HD Ball

Avionics Integration Tests



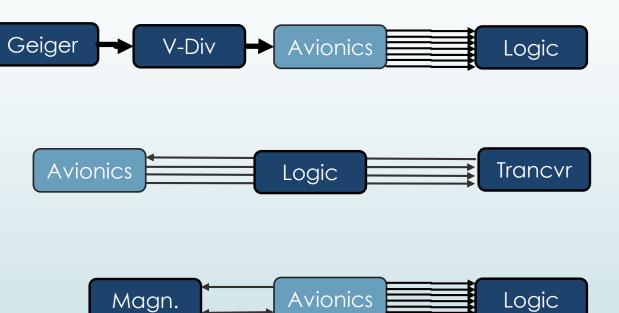
Avionics

Communications

Objective:

- Demonstrate functionality of various subsystems integrated with avionics system
- Key Requirements:
 - 1. COM 5: NeoPod communications system shall interface with avionics system
 - 2. SCI 3.1: Avionics subsystem shall control data flow from sensors
- Levels of Success:
 - 1. Avionics Level 2: Ball provided board handles data input and sends to communication system in real time
 - 2. Payload Level 3: Sensor sends collected data from instrument to avionics system
- How It Reduces Risk:
 - 1. Demonstrates that software functions as intended and increases confidence before integrating into full system

Payload


Avionics

Avionics Integration Logistics

Power Connections

31

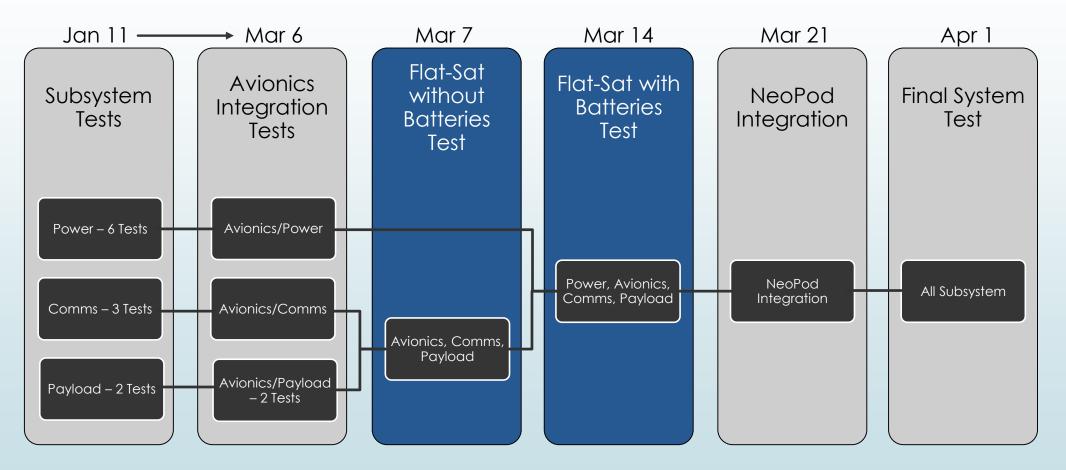
- Subsystems receive independent power with common ground
- Digital Connections over Avionics GPIO's
 - Geiger Test: Data Stream
 - Transceiver: SS, SCLK, MISO, MOSI
 - Magnetometer: SCL, SDA
- Test Data Outputs over Avionics GPIO's
 - Desired data can be monitored for debugging
- All connections recorded with Logic Analyzer
- All operations will follow ESD Safety Protocols

Results / Expected Results

- Geiger Counter Test
 - ID Byte: ASCII "G"
 - First Timestamp: 600
 - Manual Counts = Output Data
- Transceiver Test
 - Correct Register Values on Boot Up
 - Command Reception
 - Data Transmission / Reception on Ground Station
- Magnetometer Test

32

- ID Byte: ASCII "M"
- Data at .066 sec intervals
- Similar Data to Arduino Test


DS0-X 3012A, MY51135779: Mon Feb 29 12:44:04 2016 2.2405 1.0005/ Stop -Agilent Normal 1.00GSa/s Channels DC 1.00: DC 1.00: 30 00 2E 01 41 00 00 00 00 00 ave to file = [imgta] Delete Increment Enter Press to Character Save

Flat-Sat Testing

Objective: Early demonstration of system functionality prior to integration with the structure

Flat Sat without Batteries Test

Ground Station

- **Objective:** First test of fully integrated data path
 - 1. Demonstrates primary functionality of system
 - 2. Proves capability of Comms. system for full data collection period
 - 3. Provides better fidelity for thermal model

Key Requirements:

- 1. SCI 3.5: Avionics Subsystem shall store data collected from sensors
- 2. COM 3: Ground Station shall transmit commands over RF
- 3. COM 5.1.2: NeoPod communication system shall remain in transmit mode for 8 minutes upon command

Levels of Success

1. Power Level 1 – Power supplied to system using external power supply

How it Reduces Risk:

Payload

Avionics

1. By demonstrating data flow, this test reduces the risk to this aspect of future testing.

Communications

System

Flat-Sat without Batteries Test Logistics

- Objective: Fully Integrate Payload-Avionics-Communications
- Location: Trudy's Lab week of March 7th, 2016
- Duration: **3 Hour Test**

Measurements: Preliminary Component Temperatures, Redundant RSSI and PER Readings

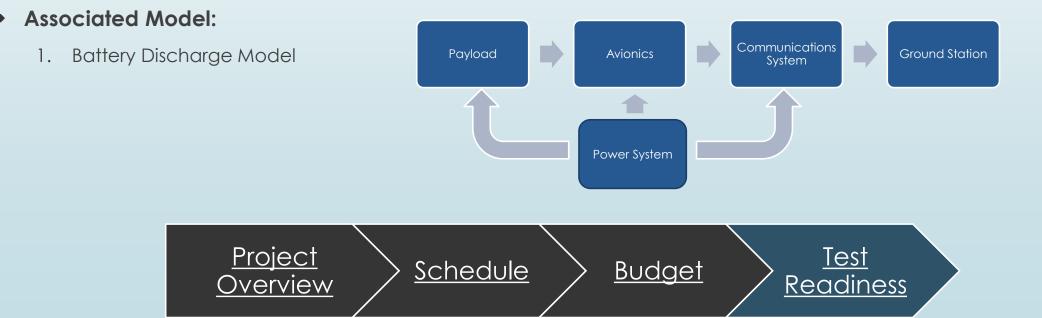
Equipment	Procurement
Laptop w/ Smart RF	Installed
TENMA EX354 Power Supply	Trudy's Lab
K-type thermocouples (x11)	Trudy's Lab
NI9213 DAQ	ITLL

<u>Safety:</u>

1. ESD Safety Procedure in place

Test Procedure:

- 1. Collect data for 8 minutes
- 2. Automated command from Ground Station
- 3. Transmit and receive data for 8 minutes
- 4. Repeat 4x
- 5. Collect data for **2 hours**
- 6. Automated command
- 7. Transmit and receive data for 8 minutes



Flat Sat with Batteries Test

- **Objective:** Test of full system functionality
 - 1. Validates first 6 hours of battery curve
 - 2. Additional confidence in overall functionality of system
- Key Requirements:
 - 1. INT 5: NeoPod shall have an independent power system

- Levels of Success
 - 1. Power Level 2 Regulated self-contained power system that supplies needed voltages within 0.3 V tolerance
 - 2. Meets Level 3 System Success
- How it Reduces Risk:
 - 1. Demonstrates confidence that system can last for full 100 hours
 - 2. All requirements can be met if this test is successful

Flat-Sat with Batteries Test Logistics

Duration: 6 Hour Test

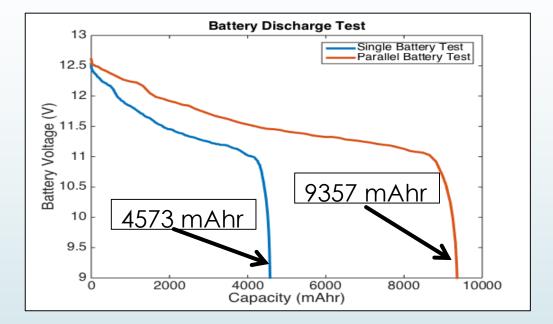
Measurements: Battery Voltage Readings, Preliminary Temperatures, PER

Equipment	Procurement
Laptop w/ Smart RF	Installed
FLUKE 287 True RMS Multimeter	Trudy's Lab
K-type thermal couples (x11)	Trudy's Lab
NI9213 DAQ	ITLL

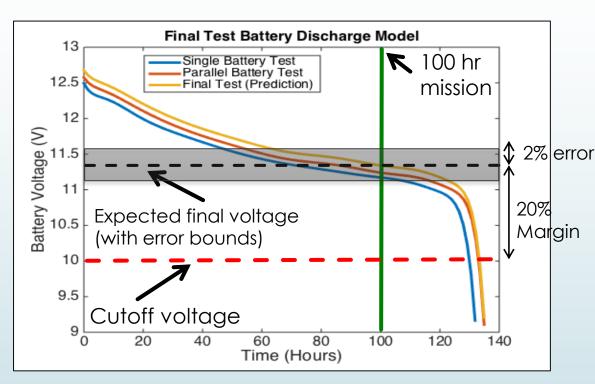
<u>Safety:</u>

1. ESD Safety Procedure in place

<u>Project</u> <u>Overview</u> <u>Schedule</u> <u>Budget</u> <u>Readiness</u>

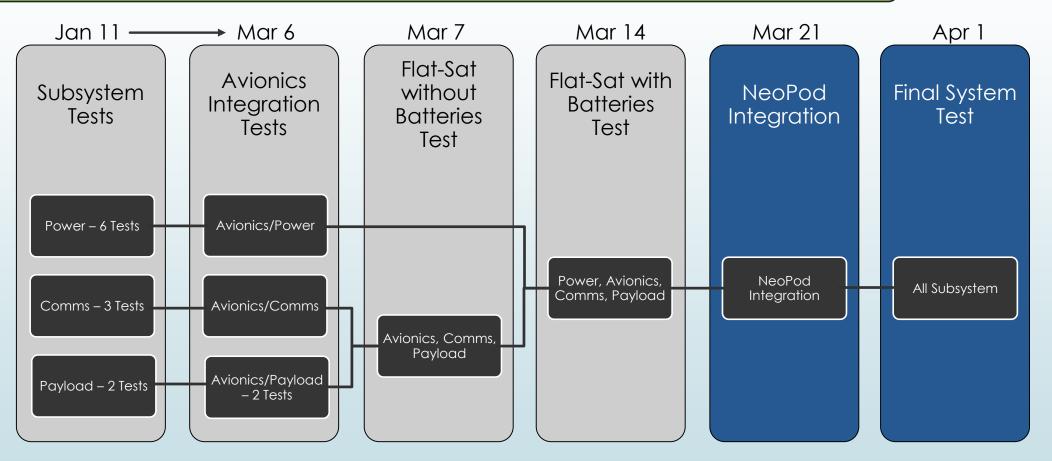


Test Procedure:


- 1. Collect data for 2 hours
- 2. Automated command
- 3. Transmit and receive data for 8 minutes
- 4. Repeat 3x

Flat Sat <u>with Batteries Test Results:</u> Battery Discharge Model

- Tests were scaled to create a model for 15 batteries
- Possible error from avionics power budget → 2% = 0.226 V
- Possible min of 11.1 V, max of 11.6 V



Expected final voltage of 11.3 V (20% margin)

Full Integrated Testing

Objective: Demonstration of fully integrated system functioning within the closed sphere for 100 hours

Red Ball

Full Integrated Test

Objective:

- Fully integrated, closed ball sphere successfully runs for 100 hours
- Key Requirements:
 - INT 6: The NeoPod's internal components shall operate under their maximum operating temperatures for duration of 100 hour test
 - 2. INT 10: NeoPod shall be capable of being powered for a 96 hour period
 - 3. SCI 2: NeoPod shall limit scientific data collection over a 100 hour period to less than 353 MB
 - 4. INT 4.2: All components and wiring shall be contained within the external shell

<u>Project</u>

Overview

Levels of Success:

1. Full System Success (Level 4)

- 2. Power Level 4: 100 hour lifespan with continuous data collection and two hour transmission cycles
- 3. Structure Level 3/4: Internal structure integration within 25 cm spherical shell and mass less than 10 kg

Test

Readiness

Associated Models:

- 1. Battery Discharge Model (Fully Validated)
- 2. Thermal Model

<u>Budget</u>

<u>Schedule</u>

Fully Integrated Test Logistics

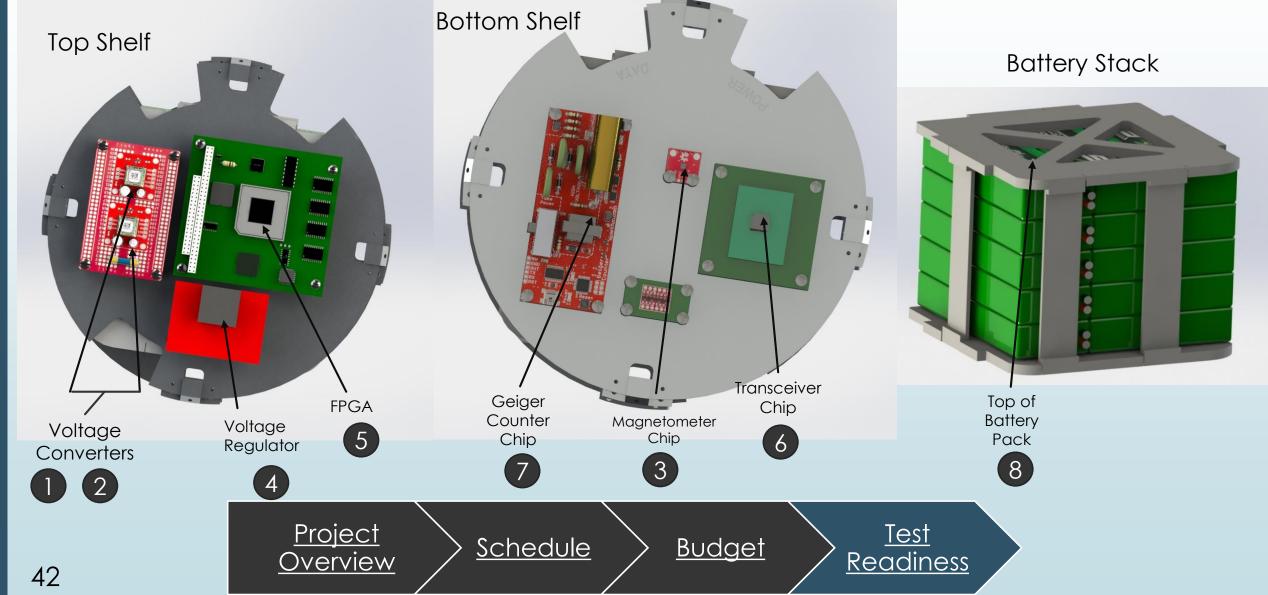
- Objective: Fully integrated, closed ball NeoPod runs for 100 hours
- Location: Trudy's Lab week of April 1, 2016
- 100 Hour Test Duration:

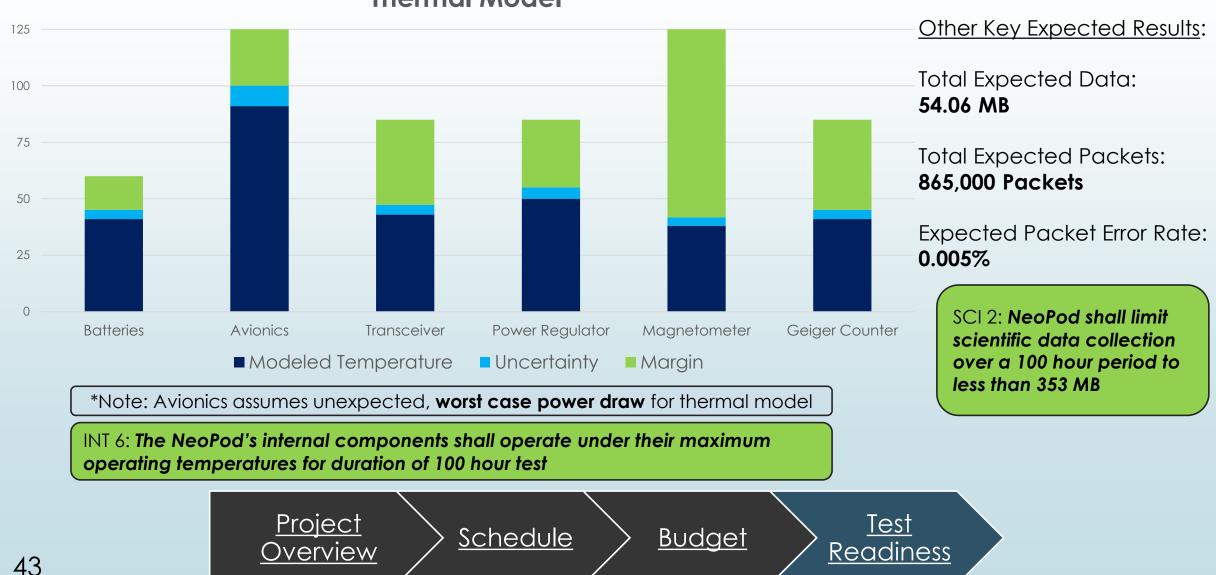
Measurements: Internal Temperatures, Redundant RSSI and PER Readings

Equipment	Procurement	
Laptop w/ Smart RF	Installed	
FLUKE 287 True RMS Multimeter	Trudy's Lab	
K-type thermocouples (x11)	Trudy's Lab	
NI9213 DAQ	ITLL	

Safety:

- ESD Safety Procedure in place
- Cutoff Values set for monitored temperatures and voltages 2.
- Two team members watching at all times in alternating 2 hour shifts 3.

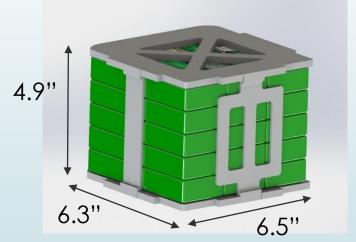

- 1. Collect data for **120** minutes
- 2. Automated command from Ground Station
- 3. Transmit and receive data for 8 minutes
- 4. Repeat 47x


Fully Integrated Test Logistics: Thermocouple Placement

Fully Integrated Test Expected Results

Thermal Model

Questions?


Backup Slides

Battery Case Backup

- Encloses battery stack on all sides 3D printed PLA
- Top and bottom case components screwed to shelves
- Three sides will be glued together
- Front face will be pressure fit (easy battery removal)

Stand for Testing

- Will 3D print in ITLL using PLA material
- Contoured to fit NeoPod (with outer metal band)
- Rubber pads will be placed on bottom for grip

<u>Test</u>

<u>Readiness</u>

Budget

47

100 hour test schedule

Hour		Monday	Tues	sday	Wednesday		Thu	rsday		Friday
12:00 AM			Colton, 16	Dan, 10	Trevor, 18	Daniel, 14	Scott, 12	Trevor, 8	Sara, 16	Colton, 12
2:00 AM				Daniel, 16		Ben, 12		Dan, 12		Gabe
4:00 AM	Scott, 22	Daniel, 10	Darren, 10		Sara, 12		Darren, 26		Ben	
6:00 AM		Trevor, 12		Scott until		Scott, 14		Colton, 12		Scott
8:00 AM	Dan, 10		Trevor, 12	11:00 am, 20	Dan, 14		Sara, 12		Daniel	
10:00 AM		Colton, 10		Gabe @ 11:00		Colton, 16		Trevor, 26	Sara	Darren
12:00 PM	Darren, 12		Dan, 16	am, 22	Darren, 12		Gabe, 10		Dan	
2:00 PM		Gabe, 16		Ben, 8		Gabe, 18		Ben, 10		Colton
4:00 PM	Daniel, 6		Sara, 8		Daniel, 14		Scott, 10		Trevor	
6:00 PM		Sara, 18		Darren, 14		Ben, 16		Dan, 14		Gabe
8:00 PM	Ben, 14		Colton, 10		Sara, 8		Daniel, 8		Sara	
10:00 PM		Dan, 10		Daniel, 14		Trevor, 18		Colton, 12		same shift

Flat-Sat Without Batteries

Objective: Fully Integrate Payload-Avionics-Communications

- Test: Flat-Sat without Batteries Test → March 7th, 2016
- Duration: **3 Hour Test** (Includes one full two hour data collection)

Location: Trudy's Lab

			Equipment	Resolution	Procurement
Data Needed	Resolution Needed	Sampling Rate	11 K-Type Thermocouples	1.1 degrees Celsius	Trudy's Lab
Temperature	2 degrees Celsius	Once every 15 minutes	N19213 DAQ	0.02 degrees Celsius	Trudy's Lab
RSSI (Comm)	1 dB	6.5 Hz	Laptop w/ Smart RF	0.1 dB	Installed
PER (Comm)	1 packet	Every packet	TENMA EX354 Power Supply	0-34 V, 0-4 Amp	Trudy's Lab

•

- Demonstrates Successful Payload-Avionics-Communications Integration
 - Demonstrate that system can successfully transmit a full two hours of data collection in under 8 minutes

Achieves System Level 2 Success

Flat-Sat With Batteries

Objective: Integrate Independent Power System

Test: Flat-Sat with Batteries Test → March 14th, 2016

Duration: 6 Hour Test (Includes three full two hour data collections)

Location: Trudy's Lab

			Equipment	Resolution	Procurement
Data Needed	Resolution Needed	Sampling Rate	Laptop w/ Smart RF		Installed
Temperature	2 degrees Celsius	Once every 15 minutes	FLUKE 287 True RMS Multimeter	.001 Volts	Trudy
Voltage	0.01 V	Once every 15 minutes	K-type thermal couples (x11)	1.1 deg C	Trudy's Lab
PER (Comm)	1 packet	Every packet	NI9213 DAQ	.02 deg C	ITLL

<u>Budget</u>

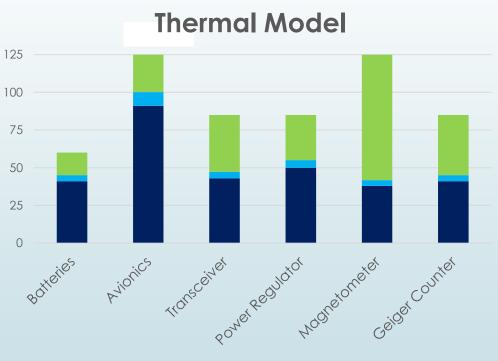
<u>Schedule</u>

- Successfully integrate independent power system
- Reduce risk and increase confidence of power system before final test
- Further validate battery characterization model

<u>Project</u>

Overview

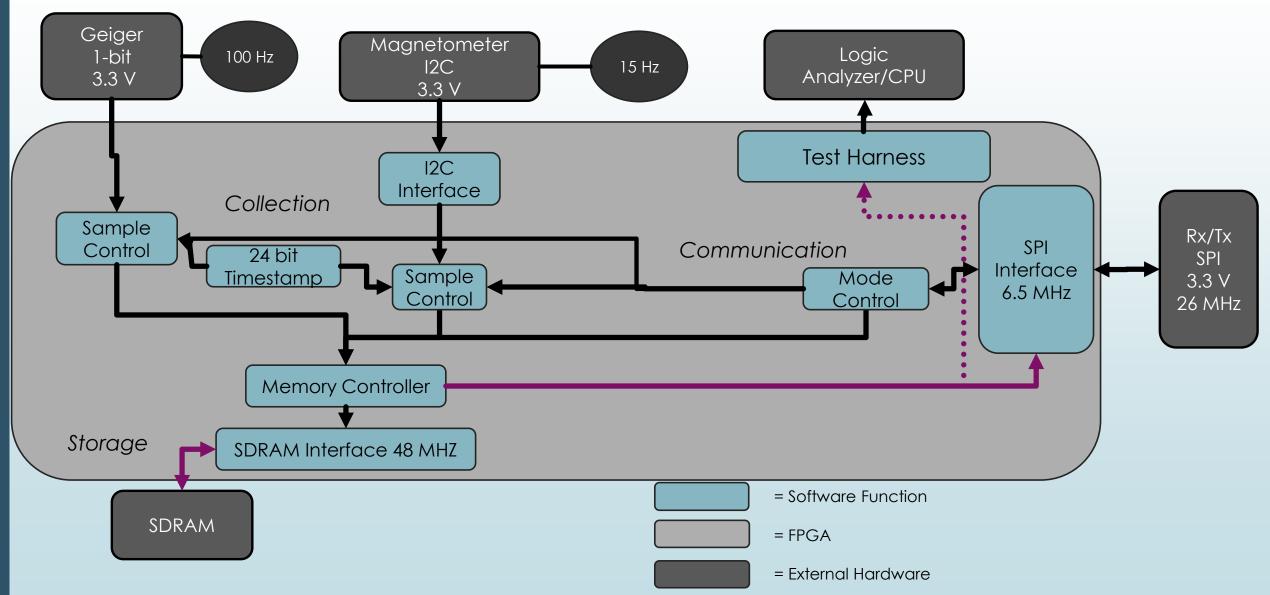
Achieves System Level 3 Success


Test

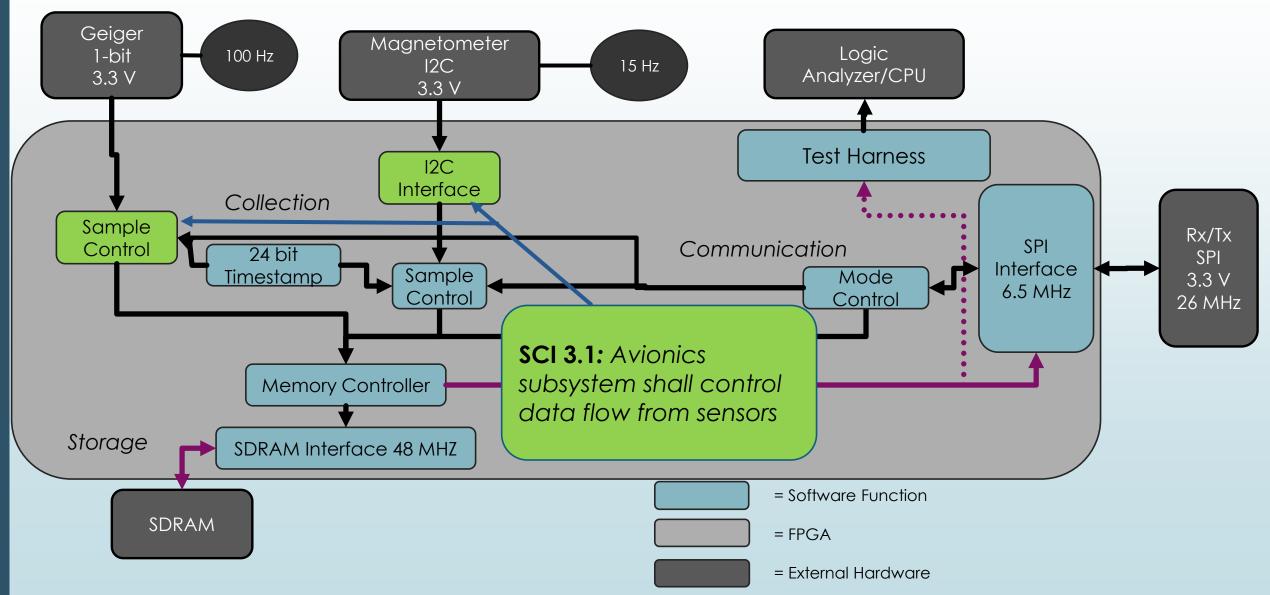
Readiness

Thermal Model Validation

Data Needed*	Resolution Needed	Sampling Rate
Temperature	2 °C	Once every
Time	1 minute	15 minutes
Fauinmont*	Resolution	Droouromont
Equipment*	Resolution	Procurement
(10) K-type Thermocouples	1.1 °C	Trudy's Lab
(10) K-type		

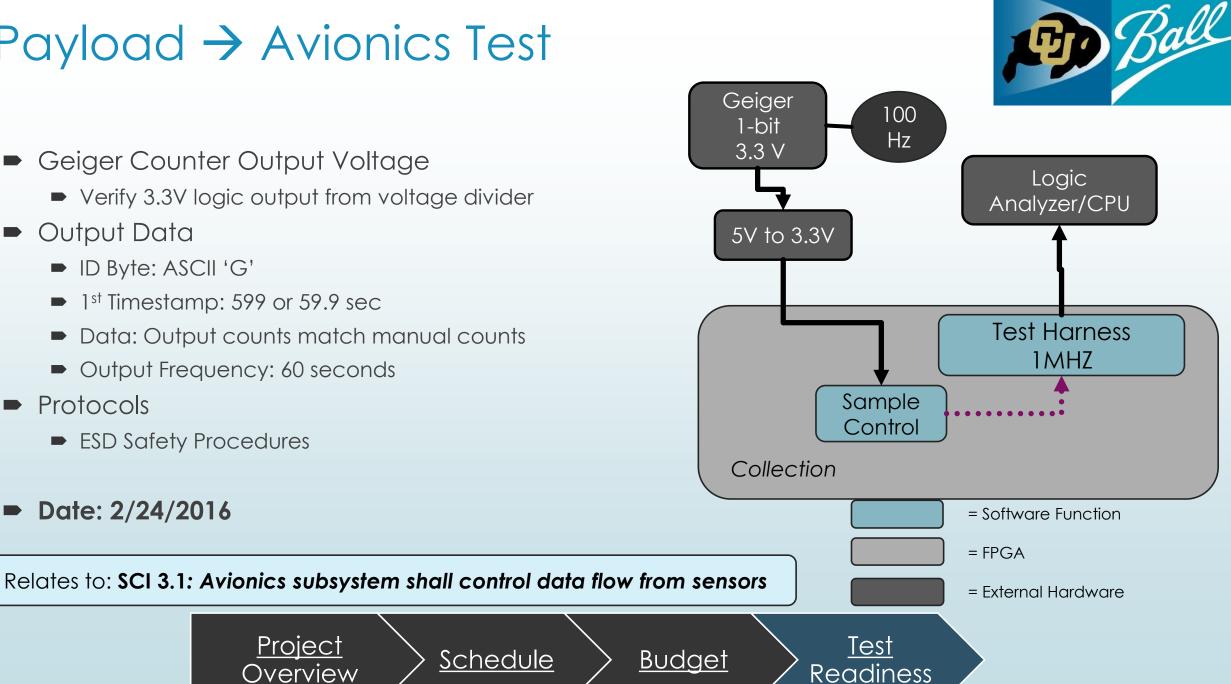


■ Modeled Temperature ■ Uncertainty ■ Margin


CPE-1: Avionics Software

CPE-1: Avionics Software

Payload \rightarrow Avionics Test


- Geiger Counter Output Voltage
 - Verify 3.3V logic output from voltage divider
- Output Data
 - ID Byte: ASCII 'G'
 - 1st Timestamp: 599 or 59.9 sec
 - Data: Output counts match manual counts

<u>Project</u>

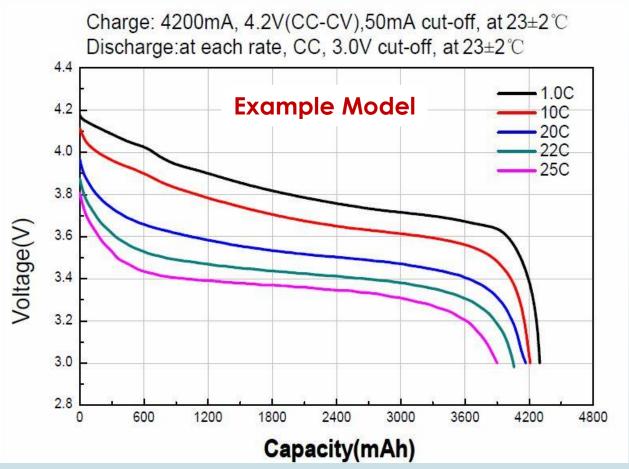
Overview

Schedule

- Output Frequency: 60 seconds
- Protocols
 - ESD Safety Procedures
- Date: 2/24/2016

Payload -> Avionics Test Results

- Voltage Divider Output: Success
 - 3.2V Maximum, 3.0V Leveloff
- FPGA Output on Logic Analyzer: Success
 - ID Byte: ASCII 'G'
 - 1st Timestamp: 599
 - Manual Geiger Counts: 19
 - ► FPGA Geiger Counts: 20


Satisfied: SCI 3.1: Avionics subsystem shall control data flow from sensors

Battery Discharge Model

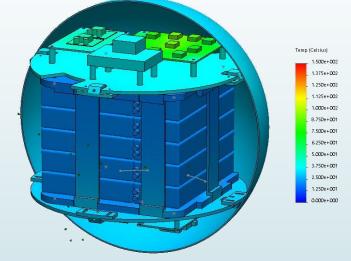
- First model from research gave expected shape of curve
- One battery was discharged from 12.4 V to 9 V to characterize the discharge curve
- Two batteries were discharged in parallel to determine the effect of using multiple batteries

Battery Discharge Test: Results

The capacity of two batteries is approximately twice that of a single battery and the shapes are similar

57

Final Test Battery Discharge Model Battery Discharge Test 13 13 **K** 100 hr Single Battery Test Single Battery Test Parallel Battery Test Parallel Battery Test 12.5 12.5 Final Test (Prediction) mission 12 12 Battery Voltage (V) 11 2.01 2.01 Voltage (V) 2% error 11.5 11 Battery ¹ 20% Expected final voltage 9357 mAhr 10.5 Margin (with error bounds) 4573 mAhr 10 10 9.5 9.5 Cutoff voltage 9 L 0 9 2000 4000 6000 8000 20 80 100 120 10000 0 40 60 140 Time (Hours) Capacity (mAhr) <u>Project</u> Test <u>Budget</u> <u>Schedule</u> Overview Readiness


- Both tests were scaled to create a model for 15 batteries
- Expected final voltage of 11.3 V (20% margin)
- Possible error from avionics power budget $\rightarrow 2\% = 0.226$ V
- Possible min of 11.1 V, max of 11.6 V

Final Integrated System Test Plan

- Description: A 100 hour test with all subsystems fully integrated into a closed sphere.
- Scheduled Test Dates: April 1-5, 2016
- Objectives:
 - 1. Validate all requirements and levels of success (Level 4)
 - 2. Validate full thermal model
 - 3. Full (100 hour) validation of power model
 - 4. Redundant validation of RF link model

Full System Test Details / Logistics

- Location: Trudy's Lab
- Measurements Needed:
 - Component Temperatures
 - 1. K type thermal couples (1.1 degree C)
 - 2. NI9213 DAQ (16 channels) from ITLL
 - Battery Voltages
 - 1. FLUKE 287 True RMS Multimeter (0.001 V resolution)

<u>Schedule</u>

<u>Budget</u>

- Safety Precautions:
 - ESD Safe Procedure Document
 - Cutoff Values set for monitored Temperatures and Voltages
 - 2 Team Members watching at all times in alternating 2 hour shifts

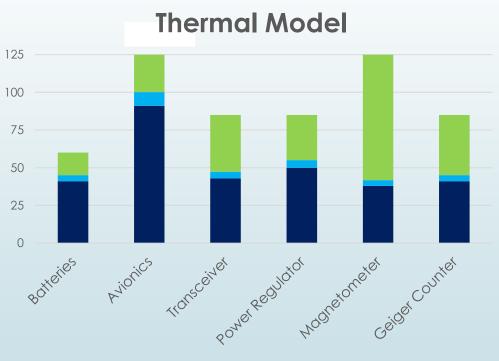
<u>Project</u>

Overview

Proposed Observation Schedule:

Hour	Monday	Tuesday
12:00 AM		same
2:00 AM		
4:00 AM		
6:00 AM		
8:00 AM		
10:00 AM		
12:00 PM		
2:00 PM		
4:00 PM		
6:00 PM]
8:00 PM		
10:00 PM	same shift	same

Test

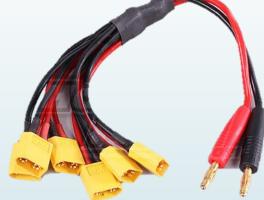

Readiness

Thermal Model Validation

Data Needed*	Resolution Needed	Sampling Rate
Temperature	2 °C	Once every
Time	1 minute	15 minutes
Equipment*	Resolution	Procurement
Equipment* (10) K-type Thermocouples	Resolution 1.1 °C	Procurement Trudy's Lab
(10) K-type		

■ Modeled Temperature ■ Uncertainty ■ Margin

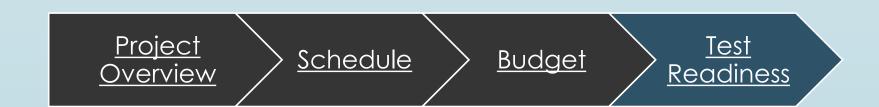
Flat-Sat With Batteries Test Plan


- Description: A six hour test that simulates three full two hour data collection periods
- Scheduled Test Dates: March 14th, 2016

Objectives:

- 1. Successfully integrate independent power system
- 2. Reduce risk and increase confidence of power system before final test
- 3. Further validate battery characterization model

Ball

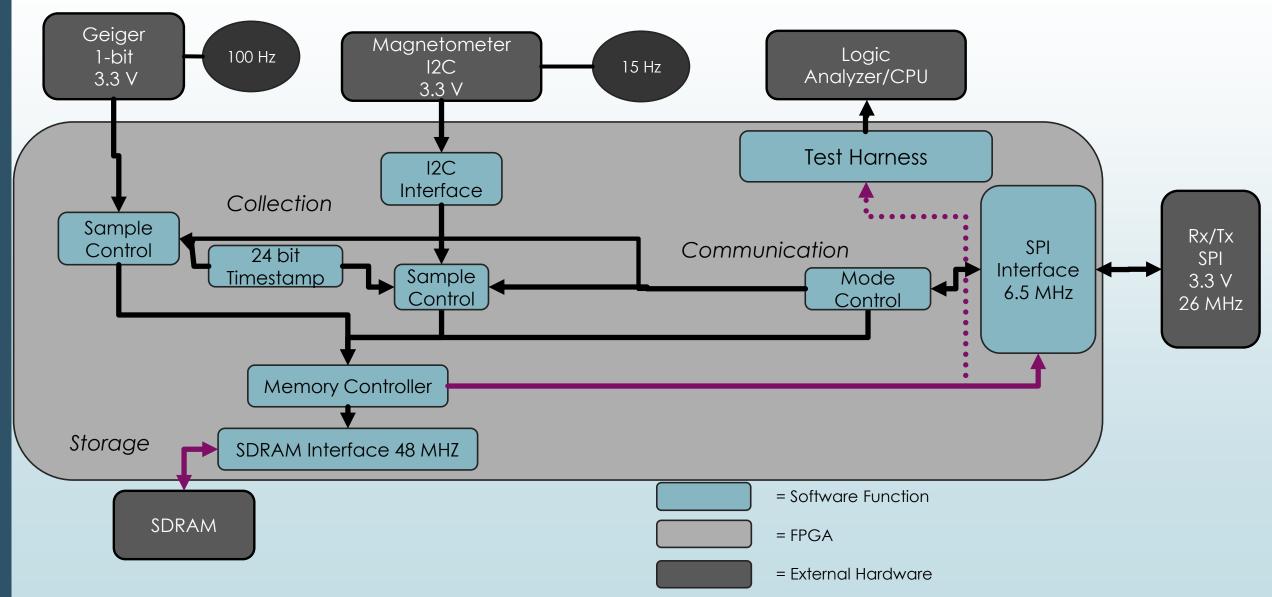


Flat-Sat without Batteries Test Plan

- Description: A three hour test that shows functionality of data collection system and transmission. Demonstrates successful full first pass.
- Scheduled Test Dates: March 7th, 2016
- Objectives:
 - 1. Successfully collect data from sensors, use avionics system and communications system to transmit back to ground station
 - 2. Demonstrate that system can successfully transmit a full two hours of data collection in under 8 minutes

Avionics

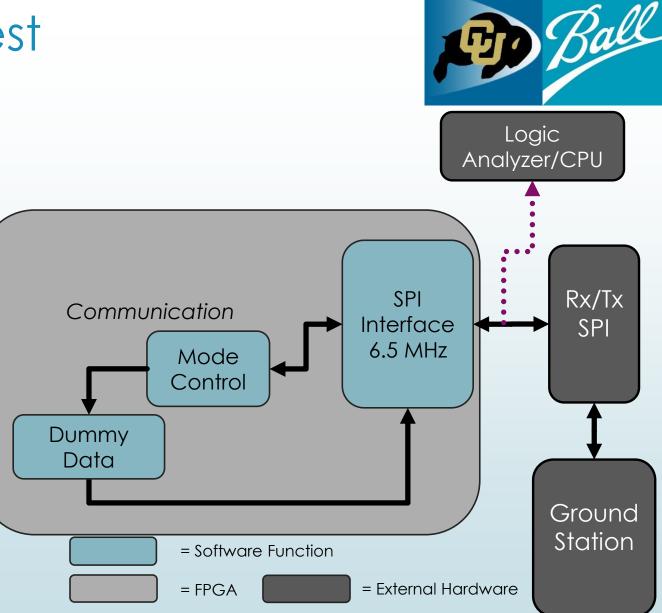
Avionics Peripherals Tests



Test	Levels of Success	Requirements Validation	Models
Transceiver \rightarrow Avionics	Ground Station L3 Avionics L2 – L4	COM 5	—
Magnetometer \rightarrow Avionics	Payload L3	SCI 3.1	—
Geiger Counter \rightarrow Avionics	Payload L3	SCI 3.1	—
Power \rightarrow Avionics	Power L2	INT 5	Power Budget

COM 5: NeoPod communications system shall communicate with avionics system **SCI 3.1:** Avionics subsystem shall control data flow from sensors **INT 5:** NeoPod shall have an independent power system

Avionics Software

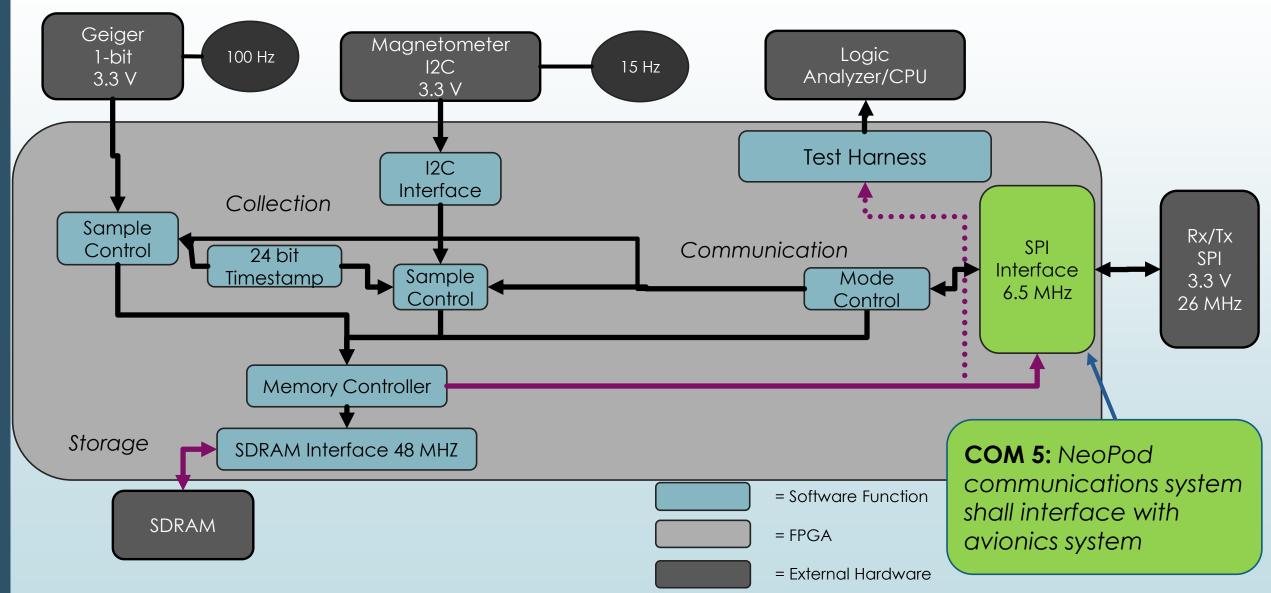


Transceiver \rightarrow Avionics Test

Boot Up Test

- Verify initial register writes are correct
- Transmission Test
 - Send command from ground station, monitor data transmission
- Protocols
 - ESD Safety Procedures
 - 1.5m Transmit Distance
- Date: 2/25/2016

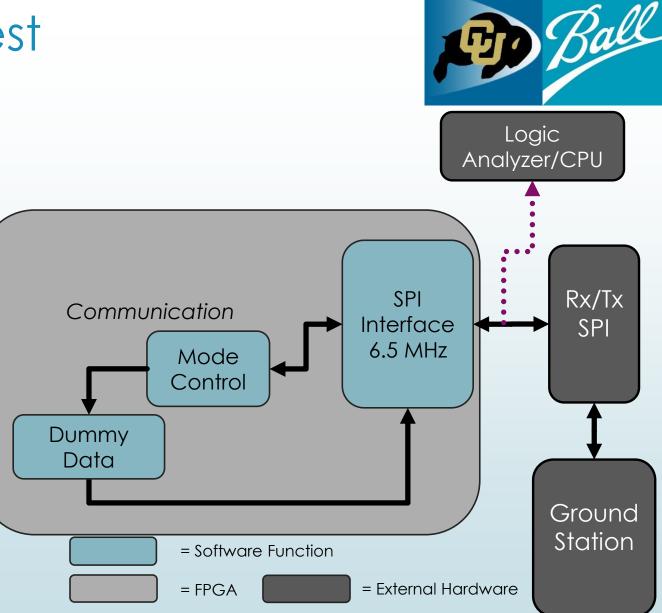
Transceiver \rightarrow Avionics Test Results


Boot Up Process:

Register Status

- Data Transmission:
 - Data Over Logic Analyzer
 - Data Received at Ground Station

CPE-1: Avionics Software

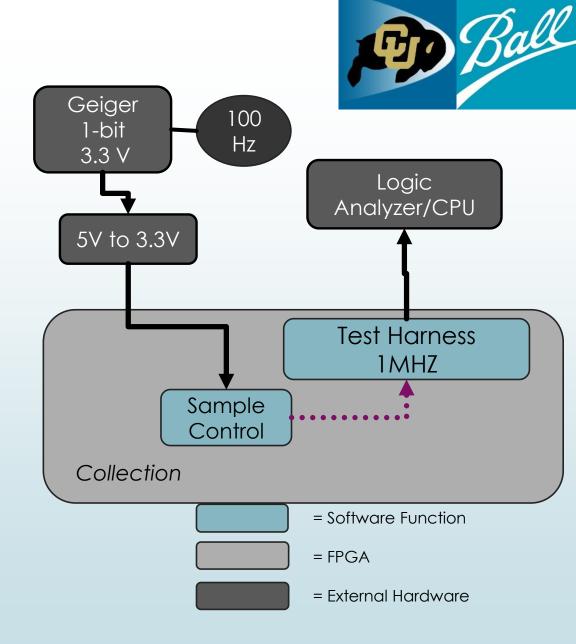


Transceiver \rightarrow Avionics Test

Boot Up Test

- Verify initial register writes are correct
- Transmission Test
 - Send command from ground station, monitor data transmission
- Protocols
 - ESD Safety Procedures
 - 1.5m Transmit Distance
- Date: 2/25/2016

Transceiver \rightarrow Avionics Test Results



- Boot Up Process:
 - Register Status
- Data Transmission:
 - Data Over Logic Analyzer
 - Data Received at Ground Station

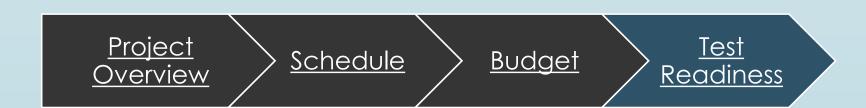
Satisfied: COM 5: NeoPod communications system shall interface with avionics system

Payload → Avionics Test

- Geiger Counter Output Voltage
 - Verify 3.3V logic output from voltage divider
- Output Data
 - ID Byte: ASCII 'G'
 - 1st Timestamp: 599 or 59.9 sec
 - Data: Output counts match manual counts
 - Output Frequency: 60 seconds
- Protocols
 - ESD Safety Procedures
- Date: 2/24/2016

Payload -> Avionics Test Results

- Voltage Divider Output: Success
 - 3.2V Maximum, 3.0V Leveloff
- FPGA Output on Logic Analyzer: Success
 - ID Byte: ASCII 'G'
 - 1st Timestamp: 599
 - Manual Geiger Counts: 19
 - ► FPGA Geiger Counts: 20

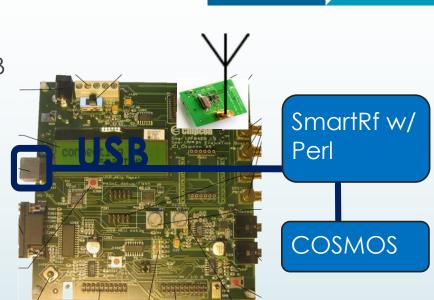

Communications Backup

Communications Subsystem Tests: CPE 2

Test	Levels of Success	Functional Requirements	Models	CPE-2 Test Completed: 01/26/16
Link Budget Validation	Ground Station L1 – L3 Comms L1 – L4	COM 1.1 – 1.2, COM 2.1 – 2.1, 2.4 COM 3.1	RF Link Model	01/20/10
Save 2 data sets from 1 stream	_	COM 4.2 – 4.3	—	
Automated commanding test	Ground Station L4	COM 3.2	—	

Ground Station Backup

- SmartRF V.7 controls ground Station
- Using SmartRF Perl scripting module to automate tests and send commands
- Set up TCP/IP connection to COSMOS to graph packet data real time.
- All integration tests have been 100% automated
- Ground Station discards and logs "bad" packets (too long or too short) in text file
- Real time display in command window of pass number and pass progress
- Can easily vary satellite pass length.
- Parses 50 byte packets at a time



Ground Station Software (COSMOS Integration)

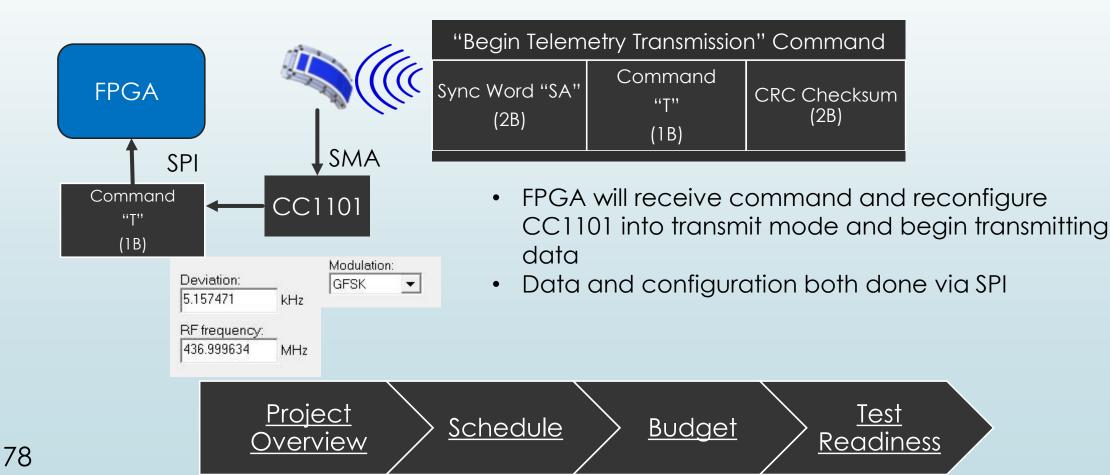
- The only program capable of interfacing with the dev. Kit via USB is SmartRF (without re-writing driver software)
- A SmartRF friendly Perl script will automatically send commands as well as direct telemetry to COSMOS for parsing
- Data will be displayed real-time and commands will be sent automatically
- Future Work:
 - Mission-specific automation and parsing software development is <u>yet</u>
 <u>to be completed</u>

Expected Completion Date: 02/05/16

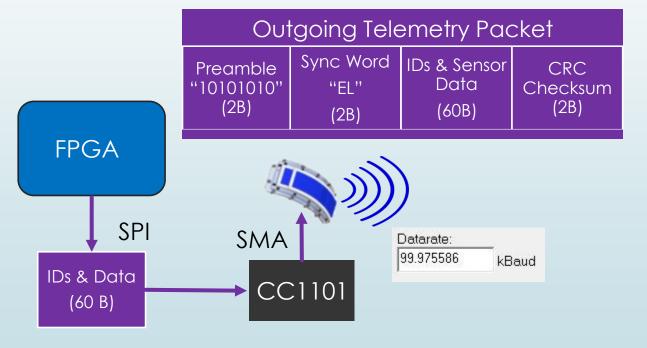
Ball

Ground Station

Communication Timeline

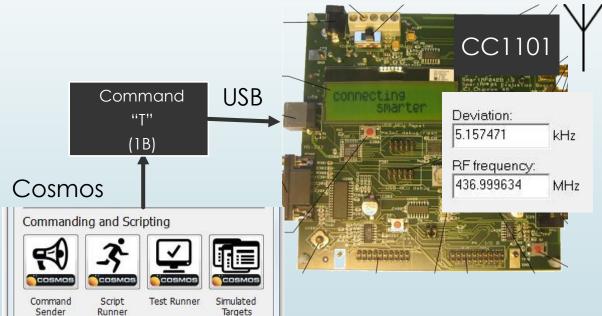

1. Avionics configure transceiver mode to RECEIVE	< 1 ms
2. Wait for ground station to send TX command	120 min
 Ground Station sends TX command. 	
 Ground Station transitions to receive mode. 	
 3. Avionics process command, configure transceiver mode to TRAN 	ISMIT < 1 ms
 A. Avionics sends data to transceiver 	8 min
 Simultaneous write/read. Max read/write time allowable: 833 µs 	
Read Time ~ 300 ns	
 Write Time ~ 200 ns 	
5. Return to step 1.	

Comm: NeoPod Command Reception


Driver: COM 1.1: NeoPod shall use provided patch antennas from Ball Aerospace COM 1.2: NeoPod shall use same modulation scheme as ground station COM 1.3: NeoPod shall receive commands within 1 MHz of 437 MHz

Comm: NeoPod Data Transmission

Driver: COM 2.1: NeoPod shall use provided patch antennas from Ball Aerospace COM 2.3: NeoPod data transmission shall not exceed 128 kbps COM 2.5: NeoPod shall packetize data with appropriate overhead for RF transmission

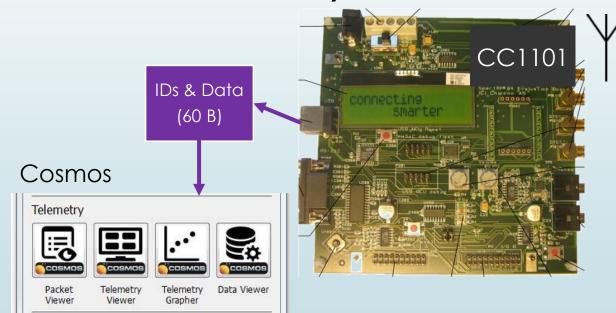

- SPI will be connected via PCB and ribbon cables
- CC1101 will packetize data and transmit at 437.5 MHz & +10 dBM
- CC1101 will be powered via on board power at 3.3 V & 30 mA
- Data rate programmable in steps of 0.2 kBaud

Comm: Ground Station Command Transmission

Driver: COM 3.1: Ground Station shall be compatible with 437 MHz frequency COM 3.2: Ground Station shall send command every 120 minutes COM 3.3: Ground Station shall packetize commands with appropriate overhead for RF transmission

~	"Begin Telemetry Transmission" Command					
))	Sync Word "SA"	Command	CRC Checksum			
	(2B)	"T" (1B)	(2B)			

- Immediately after command CC1101 will be go into receive mode (Half Duplex)
- Commands will be automated and sent using Cosmos

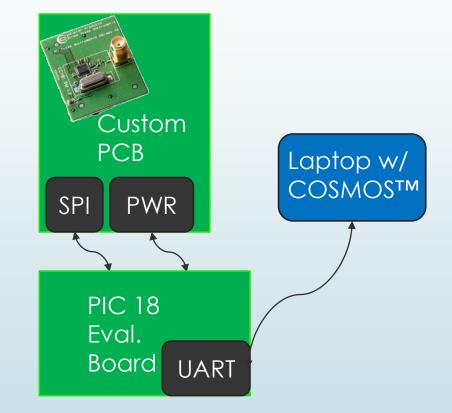


Comm: Ground Station shall receive data over RF

Driver: COM 4.1: Ground Station shall store received data from NeoPod COM 4.2: Ground Station shall separate data into appropriate file location and format COM 4.3: Ground Station shall display metrics on performance of

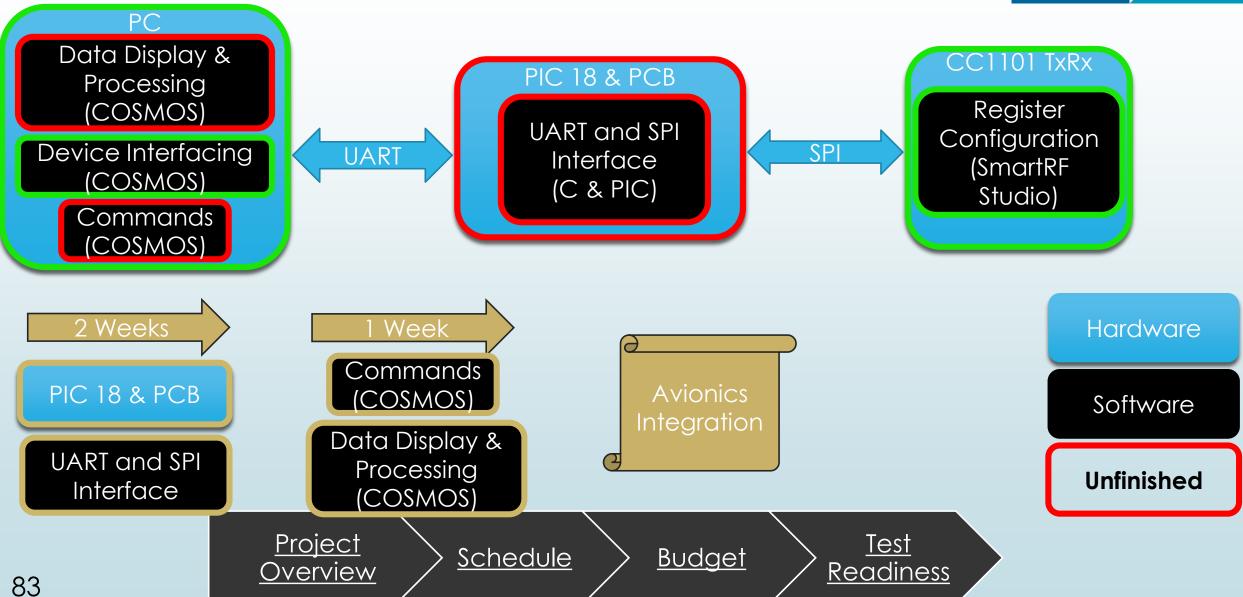
communications system

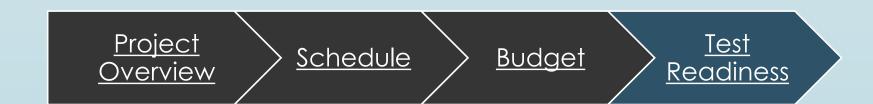
Incoming TelemetryPreamble
"10101010"
(16)Sync Word
"10101010"
(32)IDs & Data
(60 B)CRC
Checksum
(16)


- CC1101 will de-packetize data
- Cosmos will identify separate data files using the 1 Byte ID attached to each data point
- Smart RF will be used to Debug CC1101
 and display RSSI and LQI

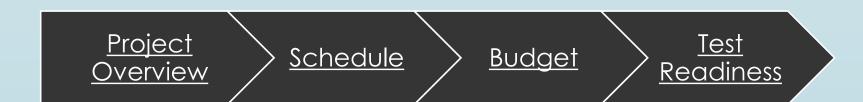
<u>Project</u> <u>Overview</u> <u>Schedule</u> <u>Budget</u> <u>Readiness</u>

Alternative Ground Station


- Successfully mechanically mated with CC1101 Transceiver headers
- Continuity has been proved
- Standoffs and avionics/power headers still need to be added on
- Functionality will be tested by attaching PCB and CC1101 to PIC18 dev. Kit provided by CU for rent


Alternative Ground Station Development Plan

Power Backup Slides

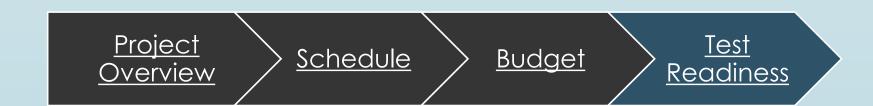


Power Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Characterize discharge curve for single battery	_	_	Power Supply
Characterize discharge curve for two batteries in parallel	-	—	Power Supply
Test individual power board components	_	INT 5.2 – 5.3	—
Test power board with TENMA EX354T Power Supply	_	_	—
Test power board with single battery	_	_	—
Test power board with battery pack	—	_	—

Power Testing

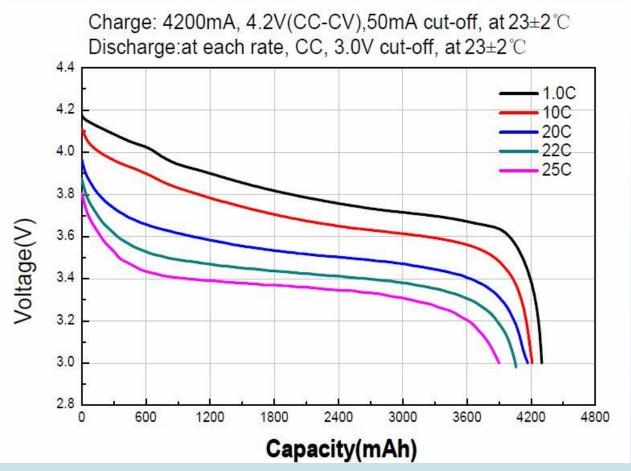
- CPE-3: Power system designed to ensure that power is supplied to all components for a 100 hour mission timeline.
- Completed Tests:
 - Power board component functionality (LVC, Fuse, DC converter)
 - Power board functionality with lab station power supply
 - Battery discharge voltage
 - Power board functionality with battery power source


- Future Tests:
 - Power board integration with other subsystems
 - Final 100 hour full system test

Component Functionality Tests

- Simple circuits designed to test each of the board components individually
- All components are operating within acceptable tolerances to meet requirements
 - LVC: Circuit broken at 10 V
 - Fuse: Circuit broken at 1.9 A
 - DC Converter: Output voltages of 5.04 V and 3.27 V (Req. 5±0.25 V and 3.3±0.3)
- Increased confidence that power board will be functional once assembled

Power Board Functionality


- Power board connected to lab station power supply
- Output voltages measured with a range of input voltages to simulate final test
 - Input: 13.13 V; Output: 5.03 V and 3.34 V
 - Input: 11.17 V; Output: 5.03 V and 3.34 V
 - Input: 9.05 V; Output: 5.03 V and 3.34 V
 - ► (Req. 5±0.25 V and 3.3±0.3)
- Increased confidence in power board design

Battery Discharge Test: Setup

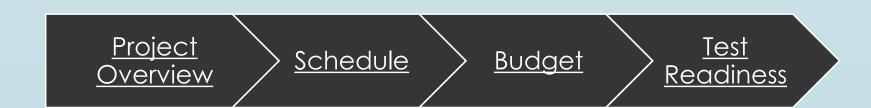
- First model from research gave expected shape of curve
- One battery was discharged from 12.4 V to 9 V to characterize the discharge curve
- Two batteries were discharged in parallel to determine the effect of using multiple batteries

<u>Project</u> <u>Overview</u> <u>Schedule</u> <u>Budget</u> <u>Readiness</u>

Power System Integration

- Full integration of all system components
- Battery pack connected to LVC
- LVC connected to power distribution board
- Output voltages measured using on average input voltage from battery
 - Input: 9.05 V; Output: 5.03 V and 3.34 V

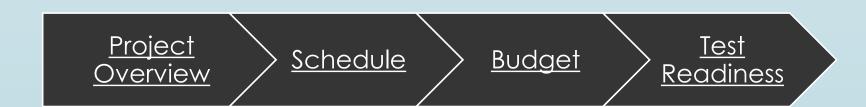
► (Req. 5±0.25 V and 3.3±0.3)



Voltage Supply Lines

Ball Ball

- We will use 2 SparkFun DC/DC Converter Breakouts
- Will step 11.1 V down to 5 V, then down to 3.3 V
- Switching regulators
- High efficiency (~95%)
- Maximum ±0.1V ripple voltage

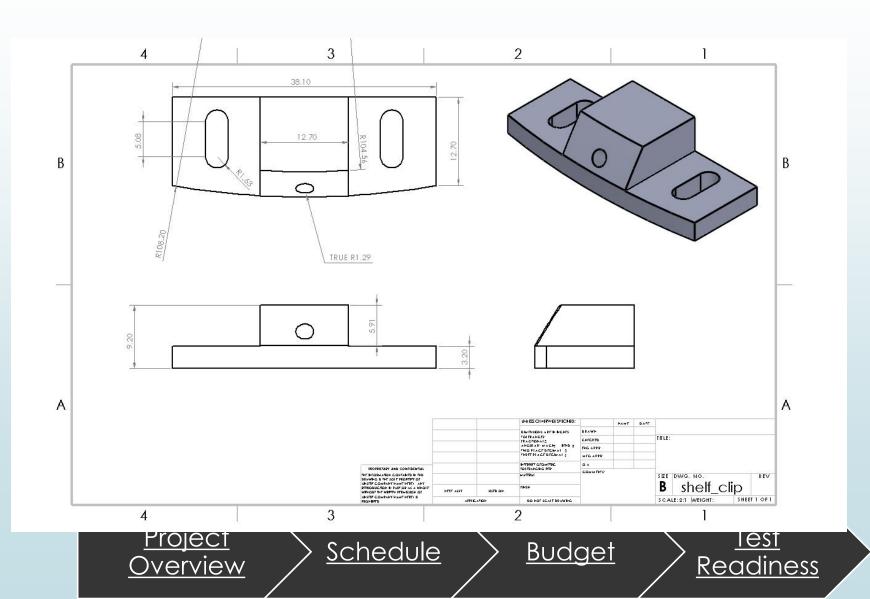


Battery Parallel Connectors (Hobbyking.com Website)

- XT-60 Parallel Connector
- Will cut off banana cable end and solder on female connector

Structure Backup

Updated Mass Budget

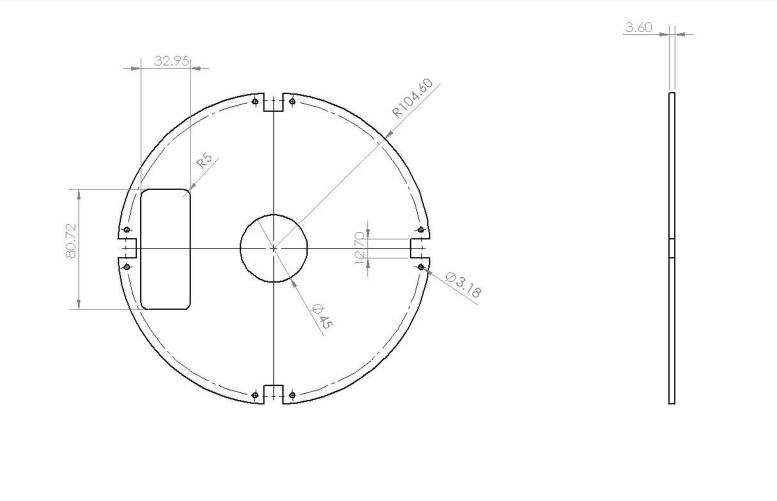

		Raw Mass	Uncertainty Category	Margin Percent	Mass With Margin	
Total mass	Requirement	10000	N/A	N/A	N/A	
Avioinics	Avionics Board	67	Measured	1	67	
Structures	Top Shelf	272	Measured	1	275	
	Bottom Shelf	281	Measured	1	284	
	Shells w/Antenna	883	Measured	1	892	
	Battery Box	122	Modeled	15	140	
	Clips	56	Modeled	15	64	
Connectors	3 Power Cable Conn.	292	Measured	1	295	
	52 Screws	46	Modeled	15	52	
	SMA Cable	11	Measured	1	11	
	28 standoffs	26	Measured	1	27	
	Misc Wires	500	WAG	20	600	
Power	15 Batteries	4965	Measured	1	5015	
	LVC	44	Measured	1	44	
	Power Board w/comps and geiger converter Board w/ level shifter	34	Measured	1	35	
Comms	Tranceiver	18	Measured	1	18	
Payload	Geiger Counter	55	Measured	1	56	
	Magnetometer	2	Measured	1	2	
Total		7673			7876	
Remaining	0				2124	

Meets mass requirement

94

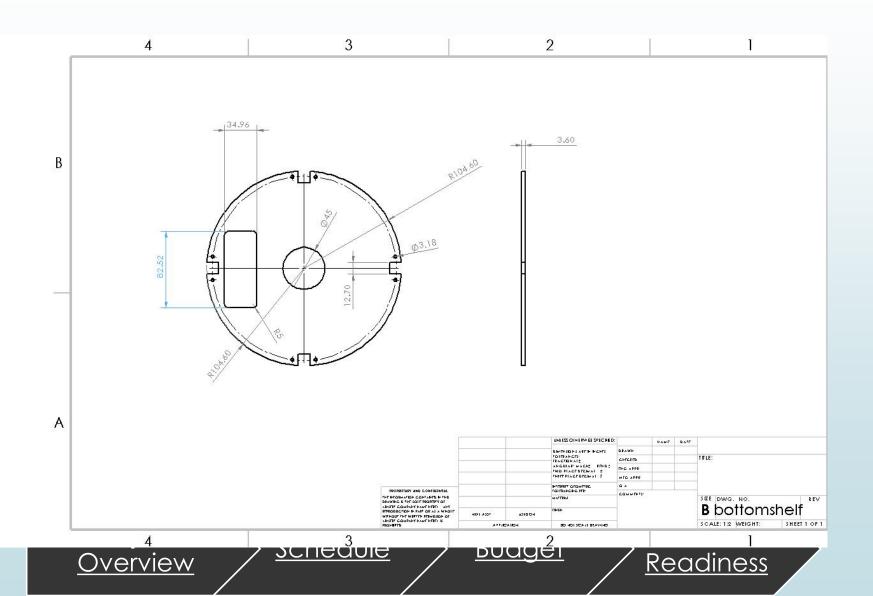
Backup Clip Drawing (dimensions in mm)

Standoffs and Battery Connectors



Top Shelf Drawing (dimensions in mm)

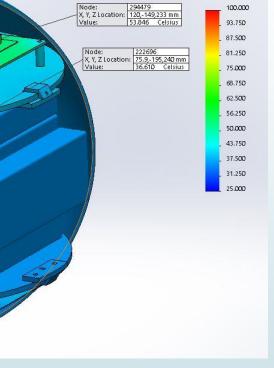
RUDGEI


<u>Readiness</u>

<u>Schedule</u>

Overview

Top Shelf Drawing (dimensions in mm)



Temperatures within Operating Conditions

Temp (Celsius)

INT 6: All temperatures are within acceptable range of onboard

Will be refining models through component testing

Payload

100

Sensor Payload

Magnetometer:

Key Specifications

Model: SparkFun Triple Axis Magnetometer HMC5883L

Interface: I2C

Sampling Rate: 0.75 – 75 Hz

Power and Logic: 3.3VDC and 3.3V Logic

Range: ± 8e5 nT

Project

Overview

Resolution: 500 nT

<u>Test</u>

Readiness

Key Specifications

Model: SparkFun Geiger Counter

Interface: Serial

Sampling Rate: Maximum of 100 Hz

Power and Logic: 5VDC and 5V Logic

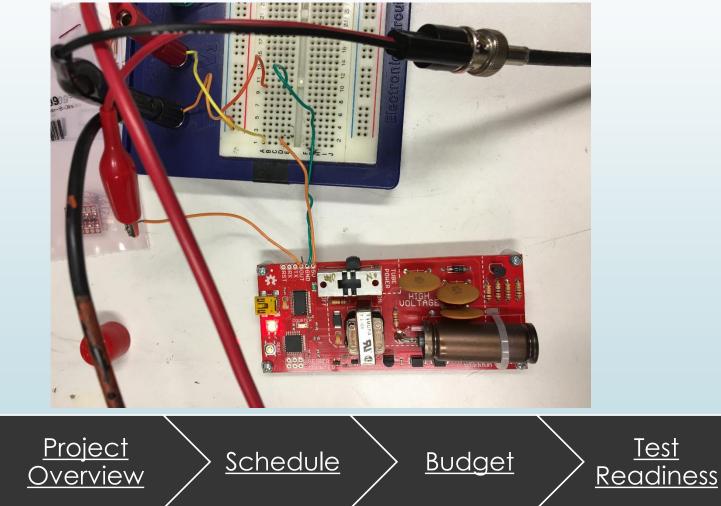
Highest Payload Level of Success: Samples data and relays it to Avionics Board for onboard storage

<u>Budget</u>

<u>Schedule</u>

Payload Acquisition and Status

Hardware Component	Acquisition Method	Status
Magnetometer	Purchased	Received/ Successfully tested
Geiger Counter	Purchased	Received/ Successfully tested
Geiger Counter Logic Converter	Purchased	Received/Unsuccessful testing \rightarrow New revision
Geiger Counter Voltage Divider	Purchased	Design In Progress



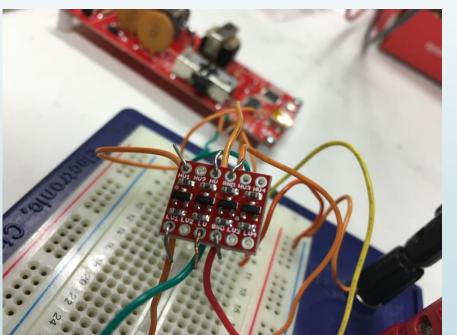
Geiger Counter Testing

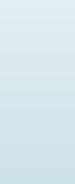
103



- Connected to Power Supply and Oscilloscope to confirm output
- Plan to test with Americium (from smoke detector) to induce higher count rates this week (Feb 4)

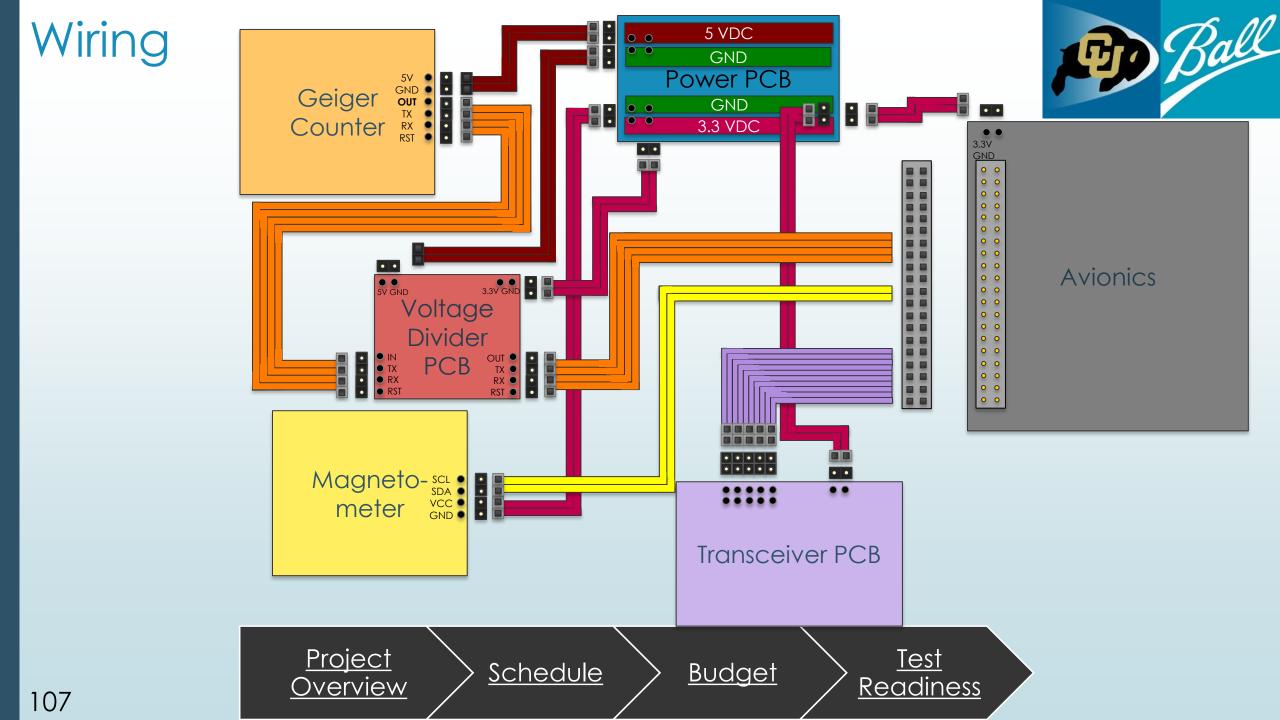
Results:

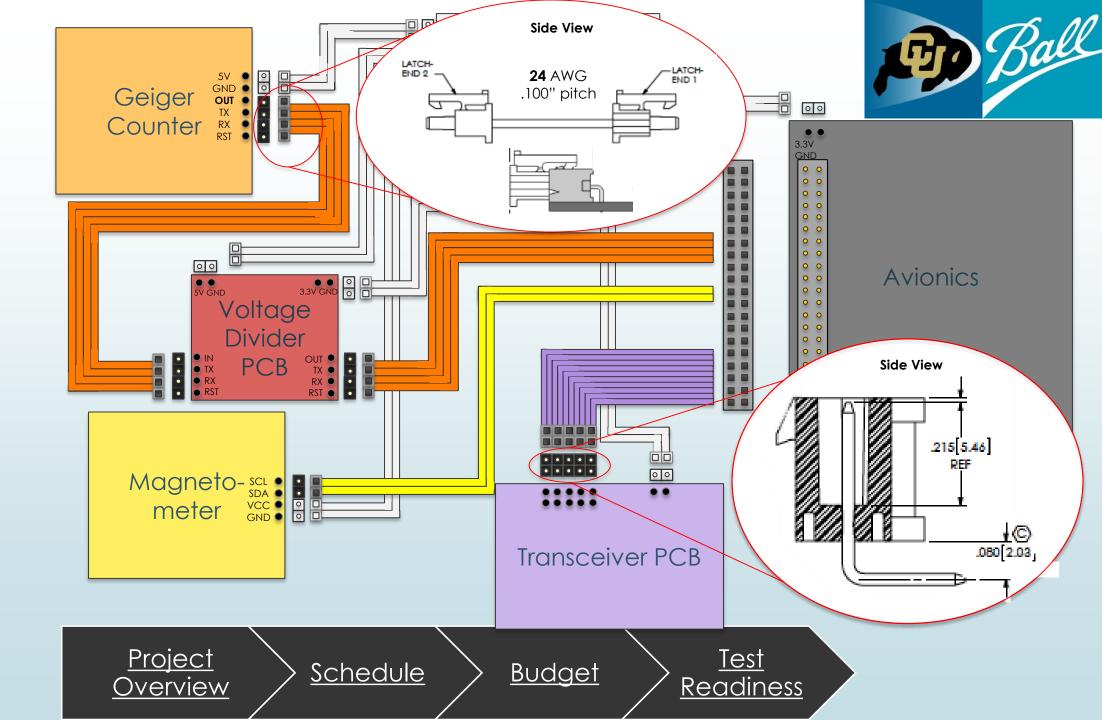

Agilent Technologies	InfiniiVision	DSO-X 3012A Digital Storage Oscilloscope	MSO Enabled	100 N 4 GSa/s	THZ MEGA 000
1 1.40V/ 2	5	42.80	10.002/	Stop	f 1 4.03V Agilent Agilent Acquisition # Normal 400kSa/s E Channels DC 1.00:1 DC 1.00:1
Trigger Menu	10 ms				II Measurements II Max(1): 4.91V Min(1): -100mV
Trigger Type Edge	Source S	lope 5			0

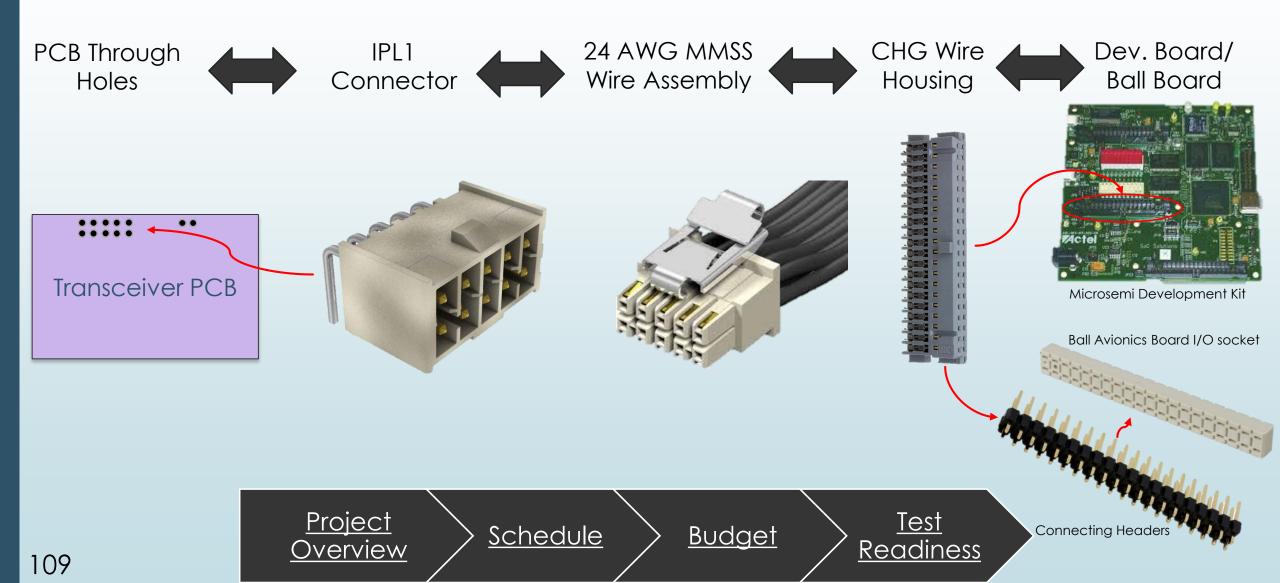

104

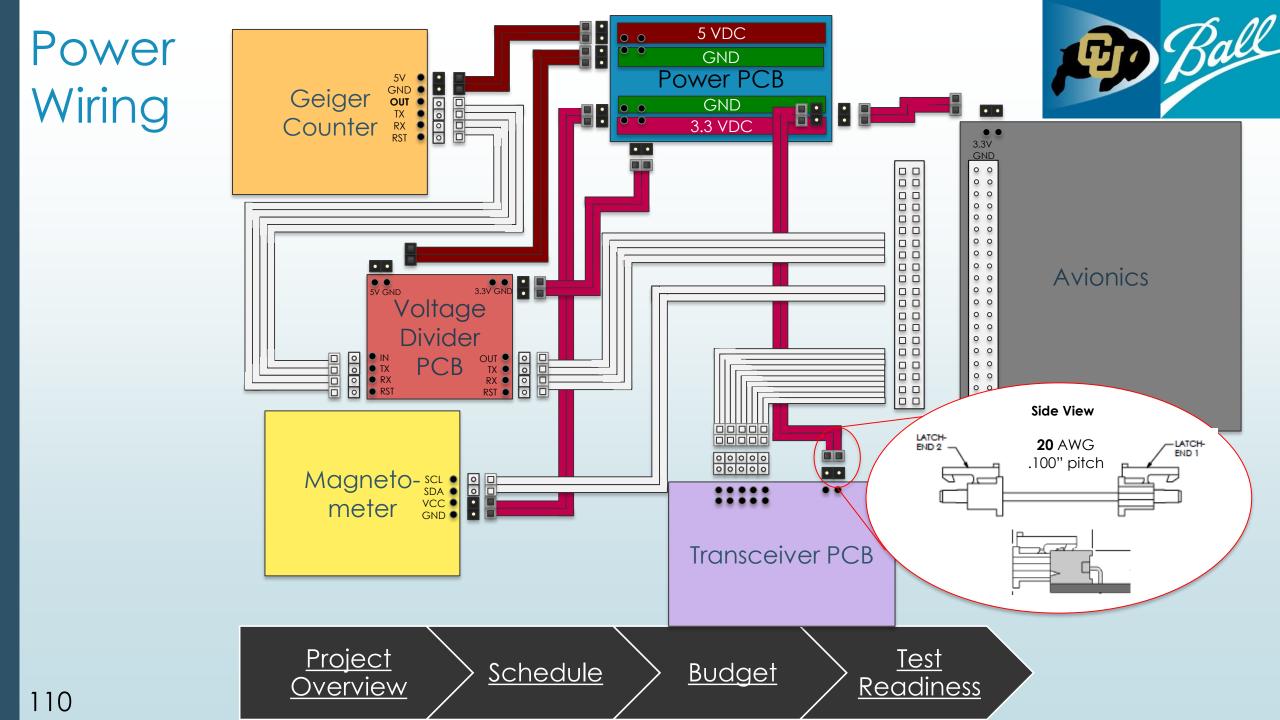
Change to Design:

- Bi-Directional Level Shifter does not work as anticipated due to signal from Geiger Counter not behaving like a digital signal.
- Pull up resistors on the Shifter mean that the signal always reads a high 5V and 3.3V
- Designing a Voltage Divider Circuit PCB to get same effect
 - Still need to test with Resistors from Trudy's Lab

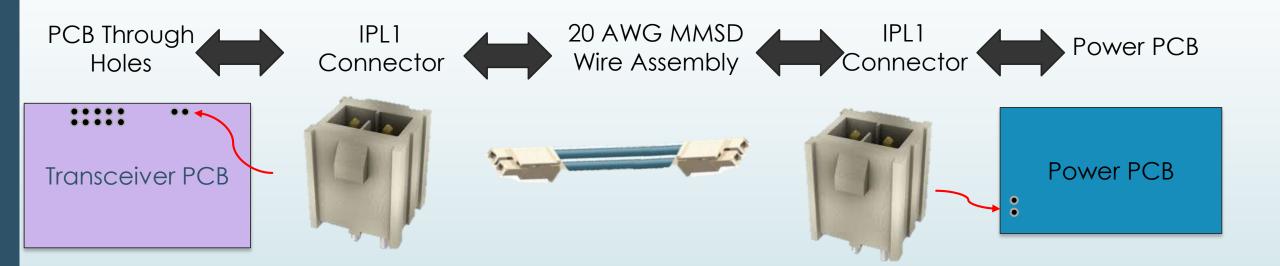



Systems Backup Slides


Digital Wiring

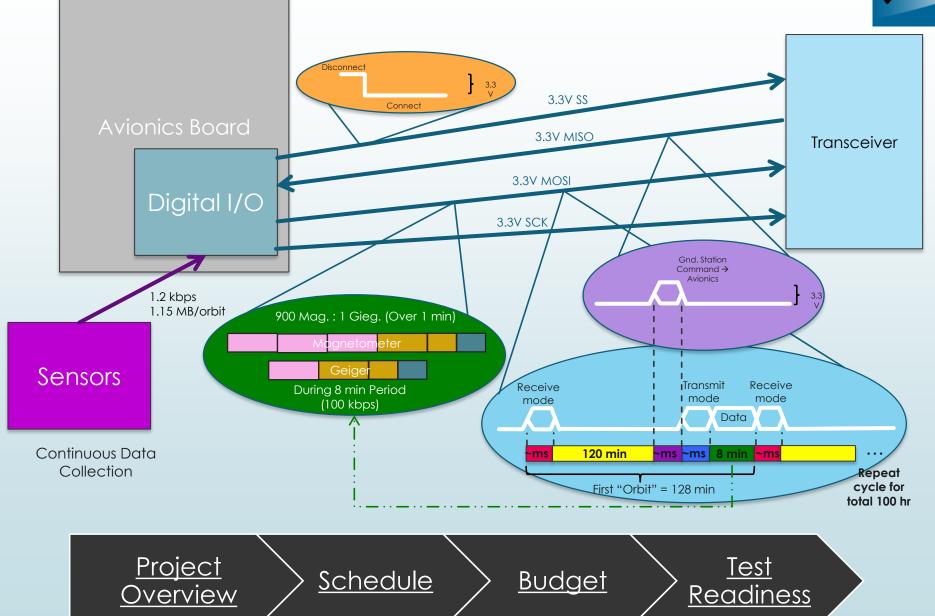

108

Digital Connectors



Power Connectors

111



Timing

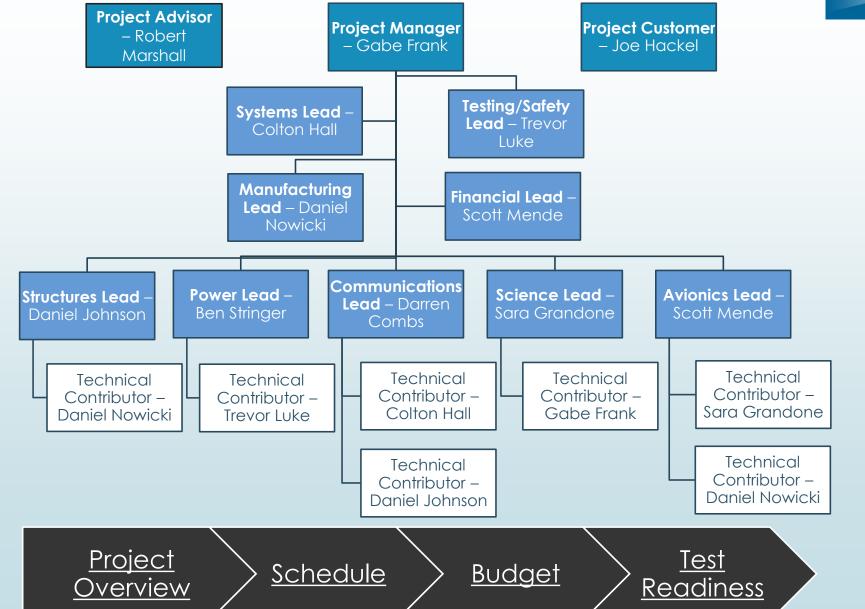
Risk Introduction

Likeliho	od Rating	Severity	Rating
1	Very Low: 0-20%	1	No Effect on Cost/Schedule
2	Low: 21%-40%	2	Schedule Slip < 1 week
3	Medium: 41%-60%	3	Moderate Schedule Slip (~2 weeks) , Not All Requirements Met
4	High: 61%-80%	4	Major Schedule Slip (1 month), Majority of Reqs. Not Met
5	Very High: 81-100%	5	Project Failure, Damage to Components
3	<u>Project</u> Overvie		<u>Test</u> <u>Readiness</u>

Risk Assessment

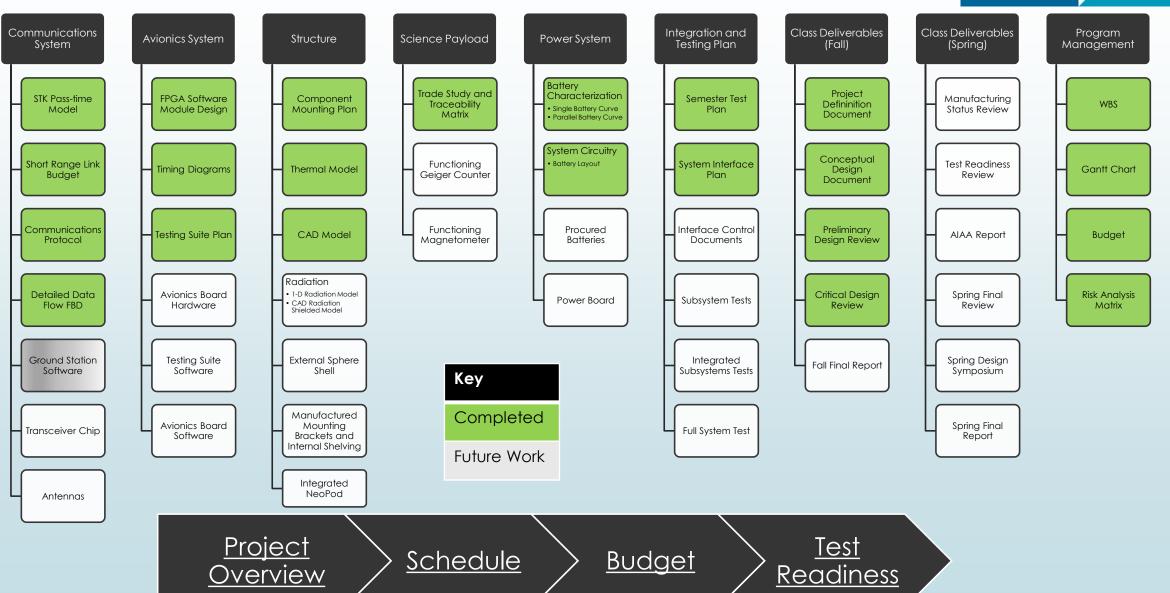
Risk	Description	Mitigation
RP1: FPGA Software	FPGA Software Development learning curve. Related to CPE-1	Learning curriculum completion. Practice on development FPGA. Attend Microsemi trainings and seminars
RP2: ESD Component Safety	Possible component damage or failure if handled in non-ESD environment	ESD environment required for all avionics development and testing, this is provided through Bobby and Trudy's lab. Internal ESD certification and training for team members handling sensitive hardware.
RP3: Schedule Slip	Critical path on schedule (FPGA software development and procurement) falls behind schedule affecting final testing schedule	Schedule margin built in. Development of code begun before winter break. 1/3 of team devoted to FPGA development. If Ball FPGA board is not delivered on time, COTS development FPGA has been acquired. Developed software applies to both design solution.
RP4: Unable to Dissipate Heat	Structure unable to dissipate the heat in an earth environment, components are damaged or inoperable	Extensive thermal model concludes that there will be low chance of overheat. Worst case, ball will be opened and placed under an external desktop fan to remove heat.
RP5: Power Failure	Power system unable to power system for full 100 hour test. Battery failure or damage. Over- current to system causing damage to components.	Safety systems include fuse to prevent overcurrent to system, as well as voltage cutoff circuit to stop power at minimum voltage limit. Battery characterization test provided evidence that power model is correct.
	components.	

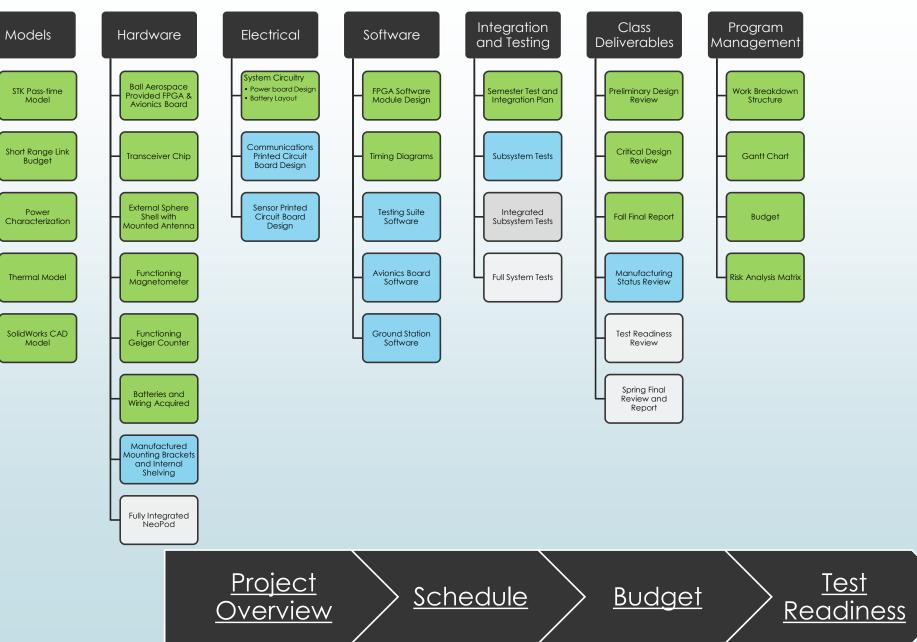
Severity 2 3 4 5 1 Likelihood Unacceptable 5 (Very High) 4 (High) Acceptable with 3 (Moderate) RP3 Mitigation 2 (Low) RP2 Acceptable 1 (Very Low) RP5 **RP4** RP1 <u>Project</u> <u>Test</u> <u>Schedule</u> <u>Budget</u> <u>Overview</u> **Readiness** 114



Project Management Backup

Organizational Chart




Work Breakdown Structure

117

Manufacturing Work Breakdown Structure

118

Key

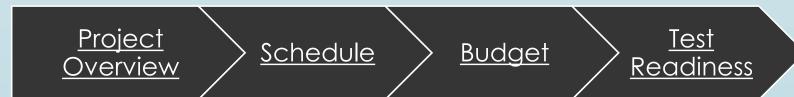
Completed

Future Work

In Work

Science Traceability Backup

Science Trade


Metric	Weight	Magnetometer	Seismometer	Imager Visual	Imager IR	Imager Micro
Science Value	15%	5	5	3	1	5
Cost	15%	4	3	3	3	1
Availability	16%	5	3	4	3	1
Complexity	20%	4	3	3	1	1
Size	22%	4	2	3	4	1
Mass	12%	4	2	4	4	1
Total	100%	4.31	2.96	3.28	2.64	1.44

Science Trade Cont.

Metric	Weight	Imager Zoom	Spectrometer	Radiation	Temperature	Pressure
Science Value	15%	3	5	5	1	1
Cost	15%	3	1	4	5	5
Availability	16%	4	1	4	5	5
Complexity	20%	2	1	4	3	3
Size	22%	3	2	2	5	5
Mass	12%	3	2	4	5	5
Total	100%	2.96	1.94	3.71	4.00	4.00

Science Traceability

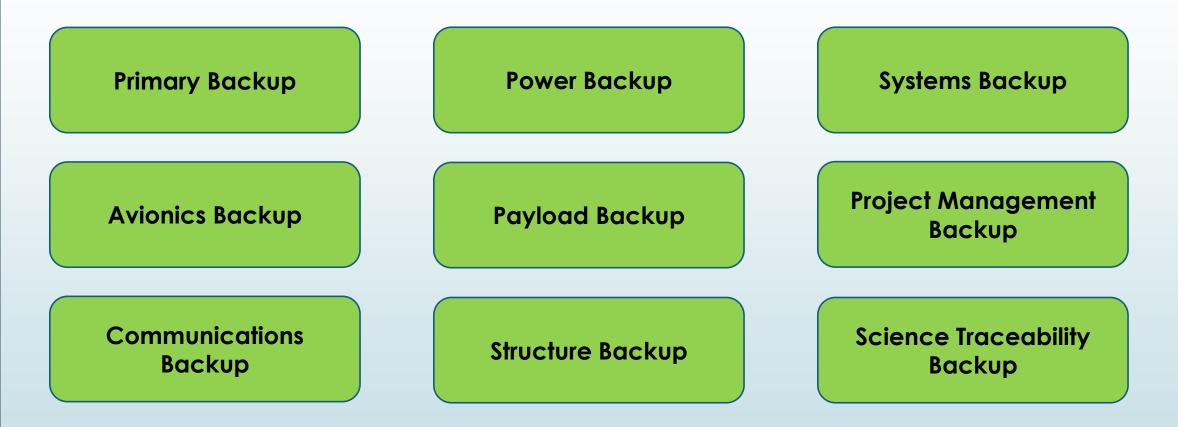
Requirement ID	Magnetometer	Seismometer	Imager Visual	Imager IR	Imager Micro
SCI 0: Neopod shall collect scientific data relevant to Europa	Ice shell characterization	Surface geology characterization	Surface geology characterization	X Stationary probe leads to static and not unique results	Surface geology characterization
SCI 2.1: Neopod Power Subsystem shall sustain the scientific instruments for a 96 hour period.	V Low Power	V Low Power	Low Power	V Low Power	V Low Power
SCI 2.2: Neopod sensors shall mechanically and electrically	✓ Only internal interface	√ Only internal interface	X Must interface with external structure	X Must interface with external structure	X Must interface with external structure
INT 1: Neopod shall have a mass less than 10 kg.	√ m _{mag} << .5 kg	X m _{mag} >.5 kg	√ m _{mag} < .5 kg	√ m _{mag} < .5 kg	X m _{mag} >.5 kg
INT 2: Neopod shall have a maximum diameter of 30cm	Largest Dimension << 5	X Largest Dimension >> 5 in	Largest Dimension << 5	X Largest Dimension >> 5 in	X Largest Dimension >> 5 in
Requirements Met	5	3	4	2	2
Trade Score	4.31	2.96	3.28	2.64	1.44

<u>Schedule</u>

<u>Overview</u>

<u>Test</u> **Readiness**

<u>Budget</u>


Science Traceability

Requirement ID	Imager Zoom	Spectrometer	Radiation	Temperature	Pressure
SCI 0: Neopod shall collect scientific data relevant to Europa	Surface geology characterization	Surface composition characterization	Surface composition characterization	X Little desired scientific value	X Little desired scientific value
SCI 2.1: Neopod Power Subsystem shall sustain the scientific instruments for a 96 hour period.	Low Power	Low Power	V Low Power	Low Power	Low Power
SCI 2.2: Neopod sensors shall mechanically and electrically	X Must interface with external structure	X Must interface with external structure	✓ Only interfaces internally	X Must be isolated from electronics and interface externally	X Must interface with external structure
INT 1: Neopod shall have a mass less than 10 kg.	√ m _{mag} < .5 kg	X m _{mag} >.5 kg	√ m _{mag} << .5 kg	√ m _{mag} << .5 kg	√ m _{mag} << .5 kg
INT 2: Neopod shall have a maximum diameter of 30cm	✓ Largest Dimension < 5 in	X Largest Dimension >> 5 in	✓ Largest Dimension < 5 in	Largest Dimension << 5 in	✓ Largest Dimension << 5 in
Requirements Met	4	2	5	3	3
Trade Score	2.96	1.94	3.71	4.00	4.00
	<u>Project</u> <u>Overview</u>	Schedule	<u>Budget</u>	<u>Test</u> <u>Readiness</u>	4.00

Backup Slide Index

