

Project ELSA Europa Lander for Science Acquisition

Team: Darren Combs, Gabe Frank, Sara Grandone, Colton Hall, Daniel Johnson, Trevor Luke, Scott Mende, Daniel Nowicki, Ben Stringer

Customer: Joe Hackel (Ball Aerospace)

Advisor: Dr. Robert Marshall

Project

Planning

- Project Overview
- Design Solution
- Requirements and Risk
- Testing and Verification
- Project Planning

Project Overview Design Solution Requirements Testing and Area and Risk Verification

Project Overview

Project Overview

Design

Solution

Requirements and Risk

Project Planning

Testing and

Verification

3

The ELSA team will **design and build a probe (the NeoPod) to collect, store, and transmit data via RF** to a Ground Station.

The NeoPod will operate in a stationary position for a **100 hour mission lifetime in a laboratory environment on Earth**, with a short distance between the NeoPod and the Ground Station.

> Project Overview Design Solution Requirements Testing and Project Verification Planning

Motivation for Project: Europa Mission

- Moon of Jupiter (85 hour orbit)
- Icy surface with an active geology and possibility of a subsurface ocean
- Identified by NASA as a "High Priority Target" for its potential to support life
- Ball Aerospace has developed a concept for a mission to Europa
 - Polar orbiter (100 km, 95° inclination) deploys probe to surface
 - Probe collects data and then transmits it back during every pass

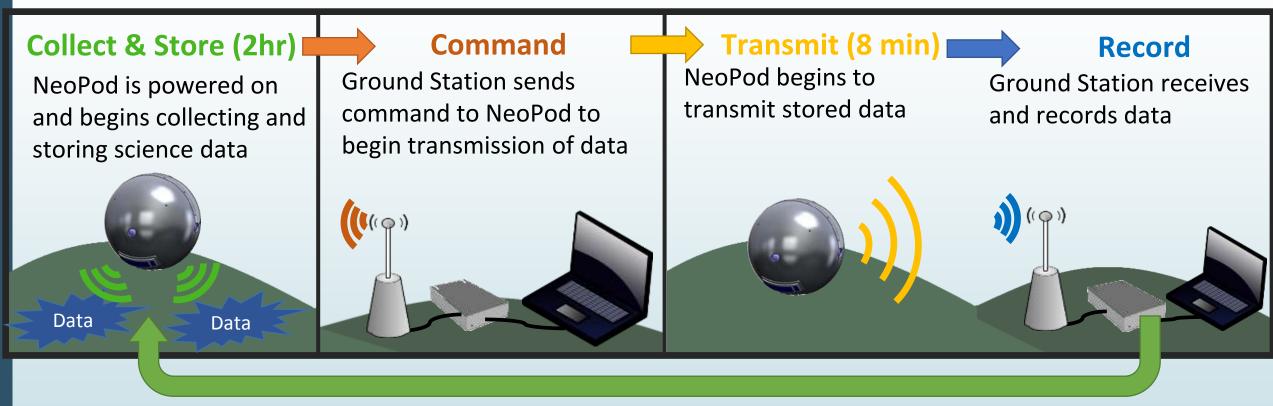
Design

Solution

4D Ball

Requirements and Risk Testing and Verification

Project Planning

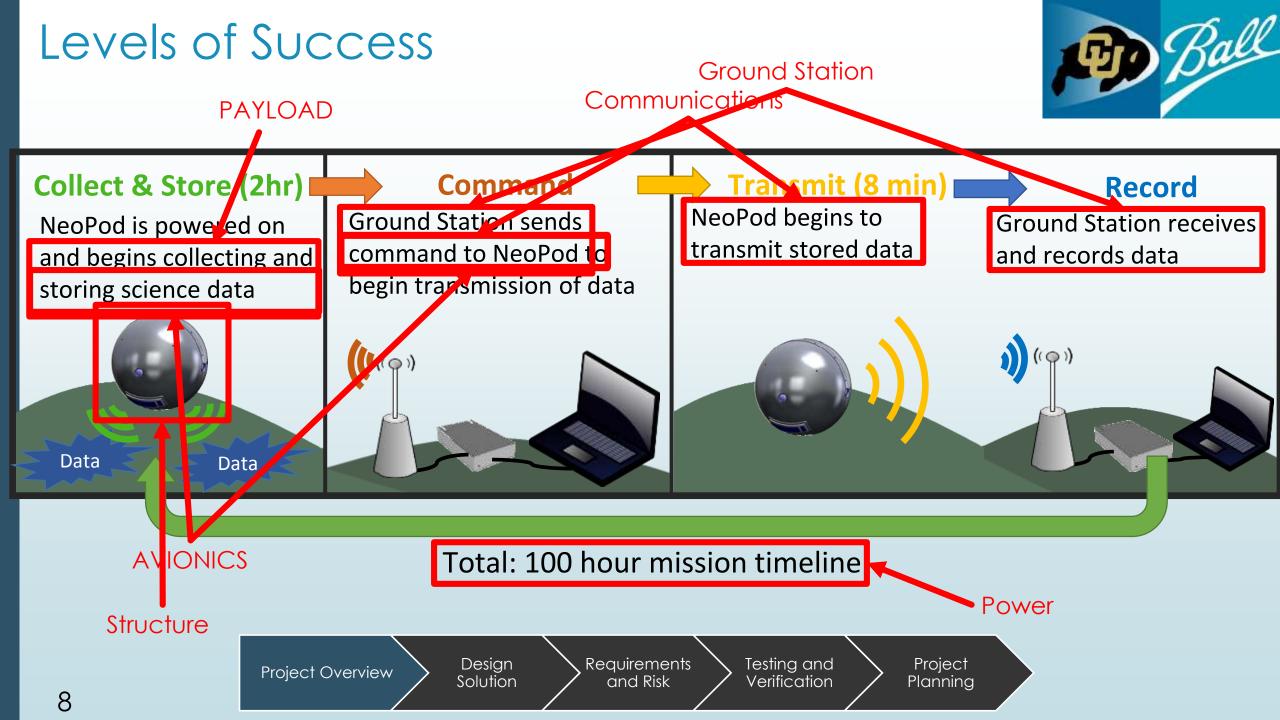

ELSA Mission Objectives

- SCI 0: NeoPod shall collect scientific data relevant to the study of Europa
- COM 0: NeoPod shall communicate with the Ground Station
- INT 0: NeoPod shall integrate with existing mission architecture

ELSA CONOPS

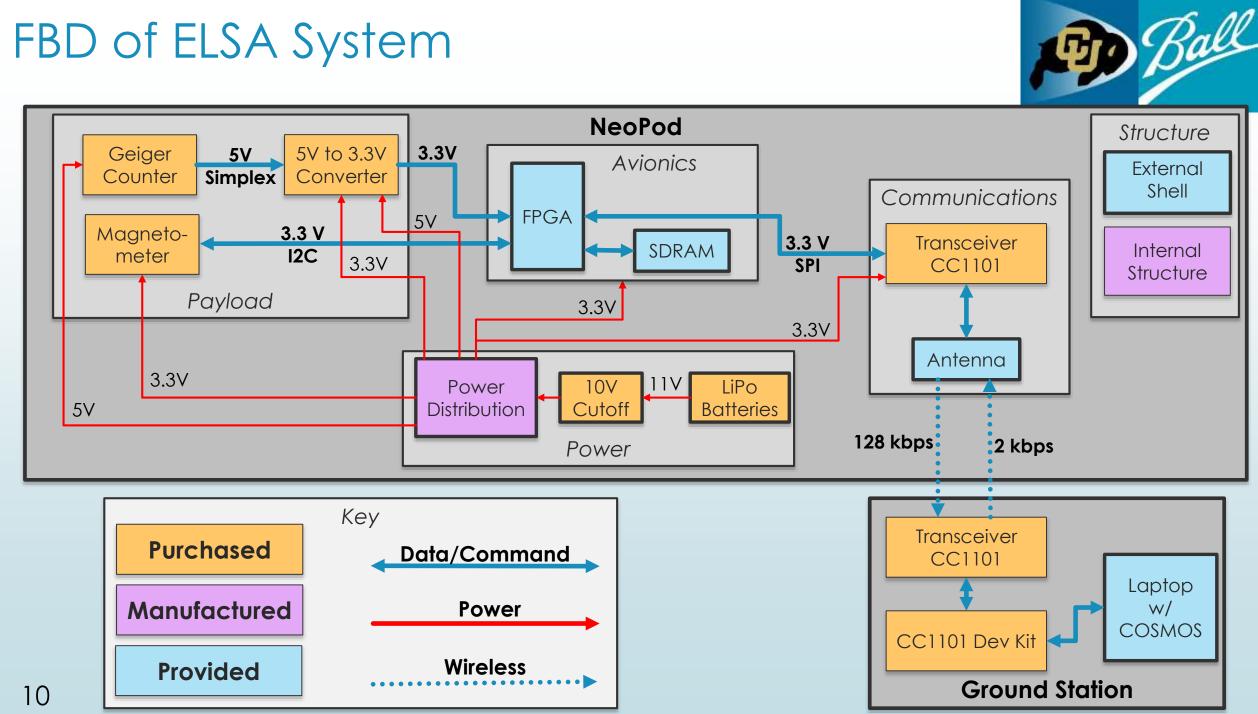
Total: 100 hour mission timeline

Project Overview

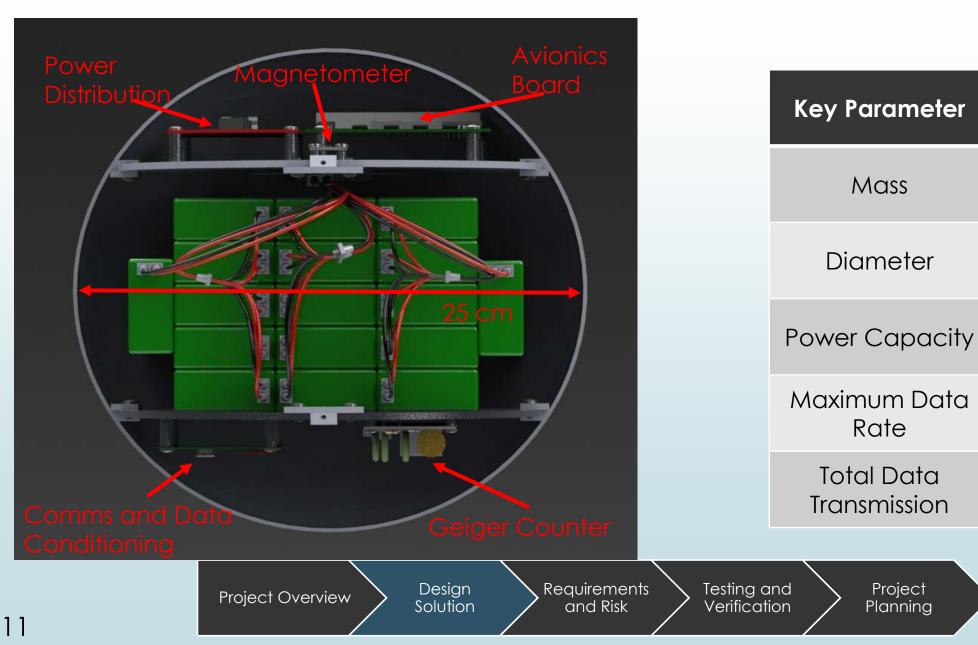

Requirements and Risk

Design

Solution


Testing and Verification Project Planning

7



Design Solution

FBD of ELSA System

ELSA: Key Parameters

Value

9 kg

25 cm

834 Wh

128 kbps

52 MB

Requirements and Risk

Project Overview

> Rev

Design

Solution

Requirements and Risk Testing and Verification Project Planning

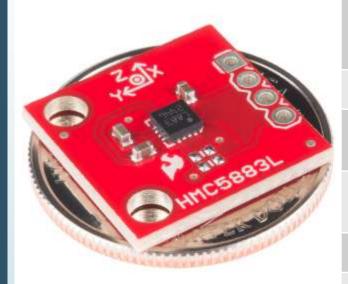
12

Critical Project Elements

Designation	CPE	Description
CPE-1	Avionics Hardware Integration and FPGA Software	Avionics Board must interface with all components and structures . Lack of previous team FPGA experience.
CPE-2	Communications System Design	Two-way communication between NeoPod and Ground Station . Multiple data types.
CPE-3	Powers System Design	Accurate models to ensure power is supplied for 100 hour mission lifetime. Custom PCB and circuit design necessary.
CPE-4	Mechanical Integration	All components must satisfy mass and volume requirements. Internal components must not exceed thermal tolerances .

CPE-1: Requirements

Avionics Hardware Integration and FPGA Software


Requirement:	Description:	Motivation:
SCI 1	NeoPod shall contain two scientific instruments	Customer Specified Requirement. Will add potential scientific value of probe
SCI 3.1.4	Avionics subsystem shall limit data flow from sensors to less than 353 MB over the 100 hour mission	Communications system can transmit a maximum of 353 MB of data over 100 hours
SCI 3.2	Avionics subsystem shall store data collected from sensors	System must store all data collected from sensors
COM 5	Avionics subsystem shall interface with communications subsystem	Necessary in order to send data as well as accept commands

Sensor Payload

Magnetometer:

SCI 1: NeoPod shall

contain **two scientific**

instruments

Key Specifications

Model: SparkFun Triple Axis Magnetometer HMC5883L

Interface: I2C

Sampling Rate: 0.75 – 75 Hz

Power and Logic: 3.3VDC and 3.3V Logic

Range: ± 8e5 nT

Resolution: 500 nT

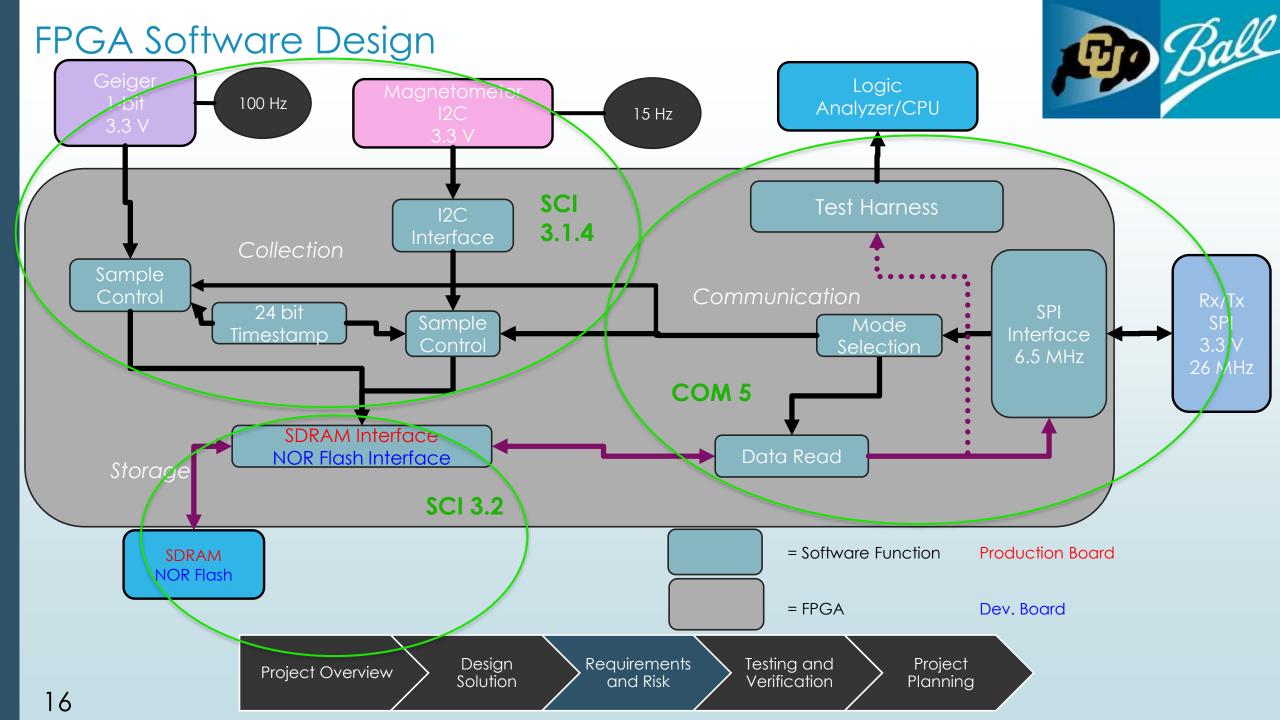
Key Specifications

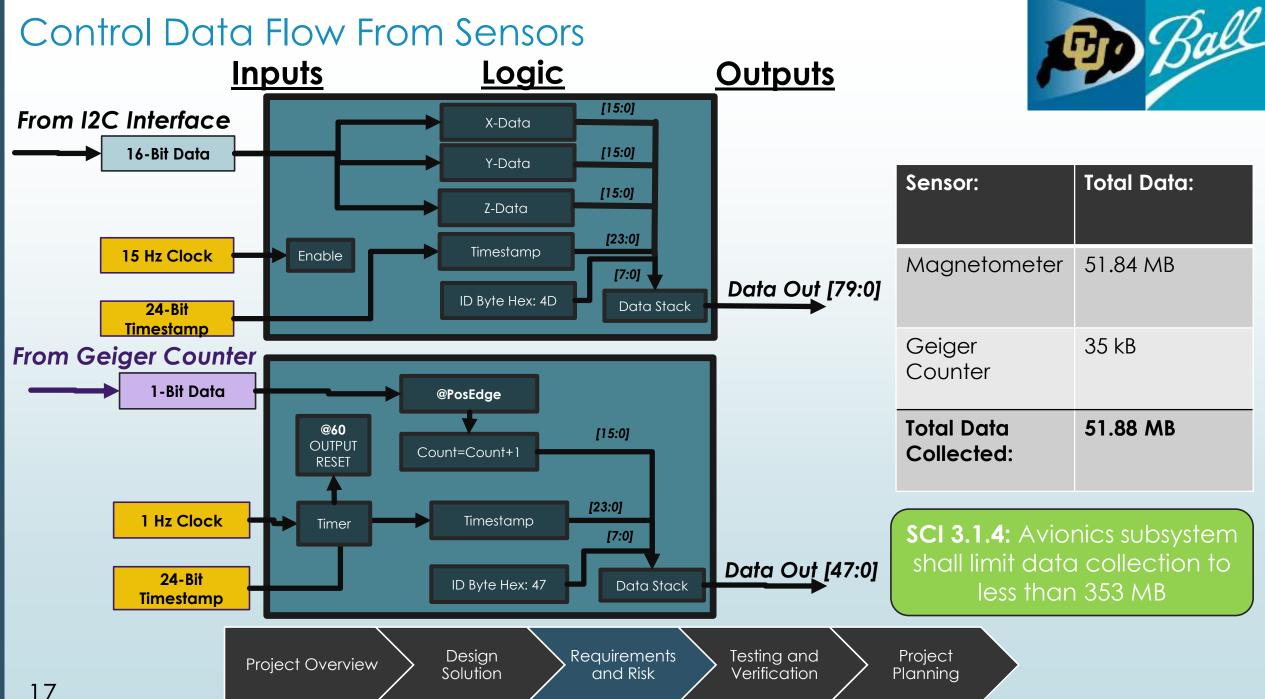
Model: SparkFun Geiger Counter

Interface: Serial

Sampling Rate: Maximum of 100 Hz

Power and Logic: 5VDC and 5V Logic

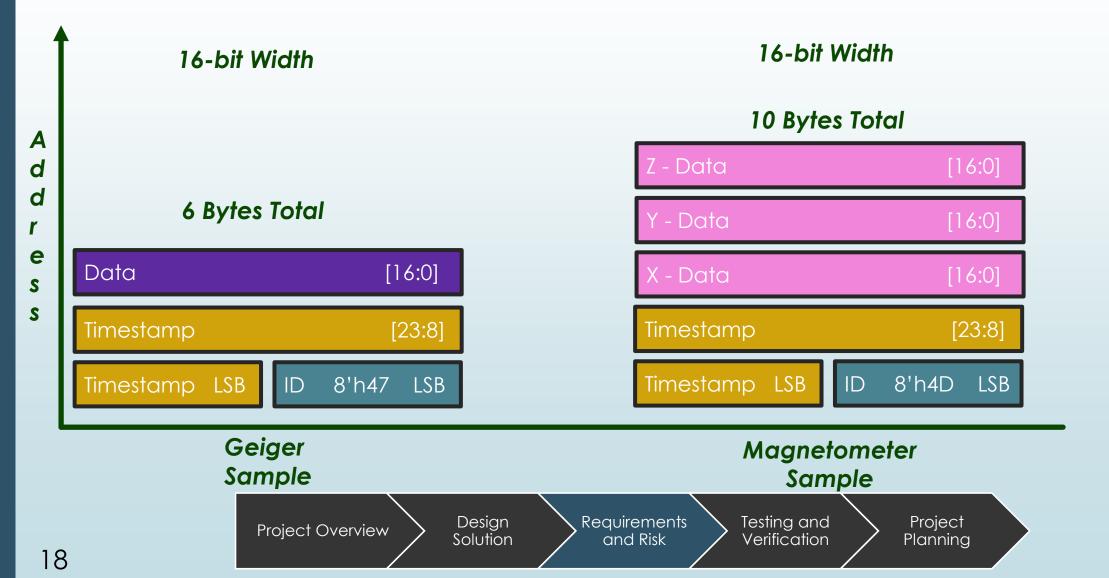

Radiation & Magnetic Field measurements would support further missions to Europa


Project Overview

Design Solution

Requirements and Risk Testing and Verification

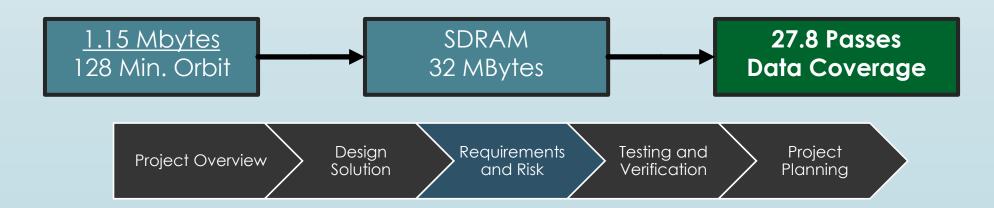
Project Planning



Control Data Flow From Sensors

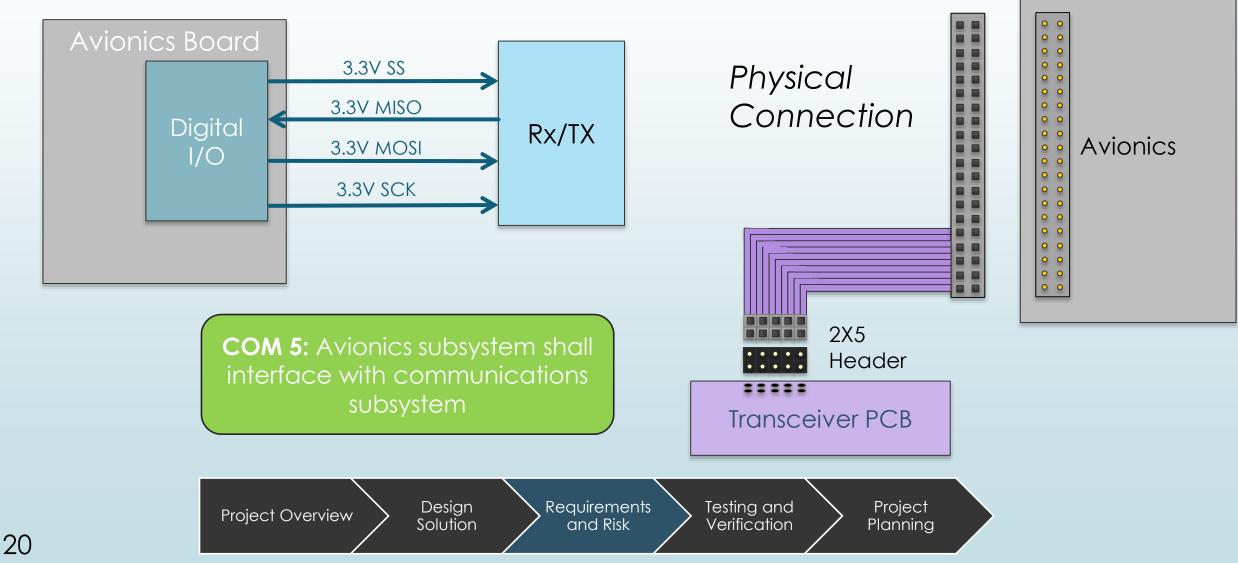
17

Data Storage: Memory Stack



Data Storage: SDRAM

- NAND Flash Storage not feasible
- Ball Avionics Board Alternate Storage:
 - 32 MB SDRAM
 - Simpler interface and control than Flash
 - Faster Performance: 20 ns Active to Command
 - Simple Addressing [Row:Column]
- Non-Volatile memory NOT needed
 - Overwriting stored data is OK

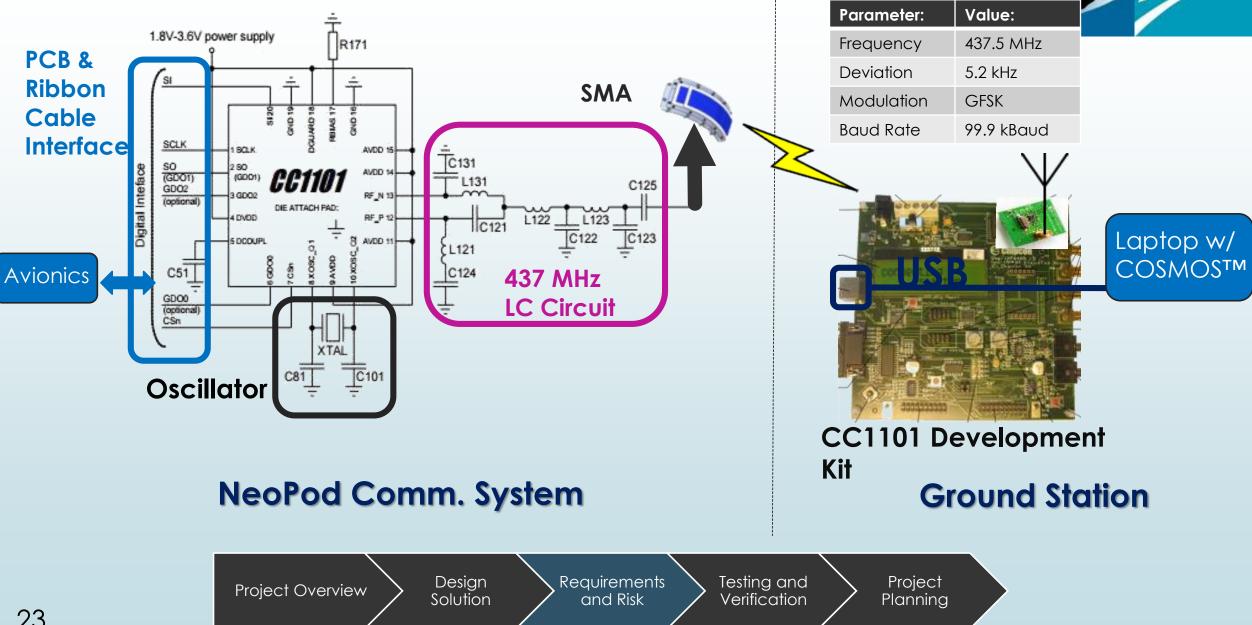

SCI 3.2: Avionics subsystem shall store data collected from sensors

Communications Interface

SPI Interface

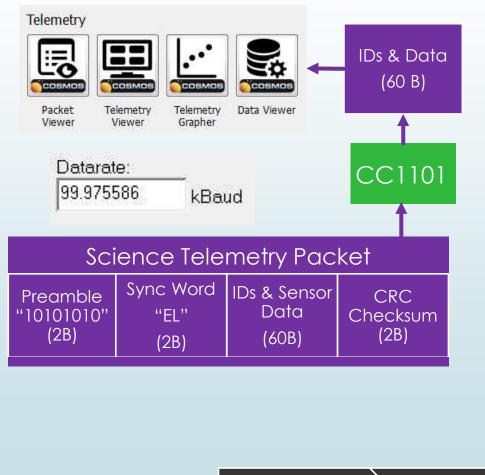
CPE-2: Requirements

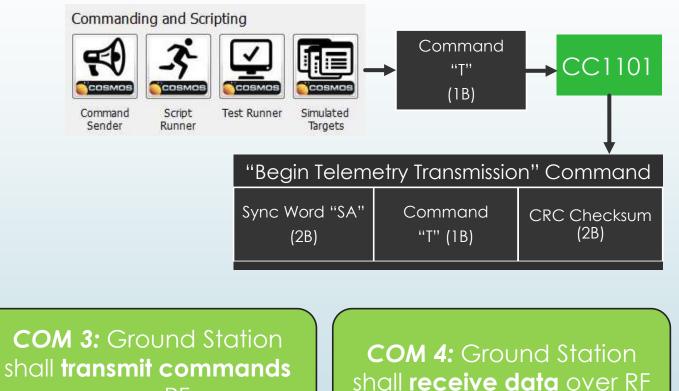
Communications System Design



Requirement:	Description:	Motivation:
COM 1	NeoPod shall receive commands over RF	NeoPod must be able to receive a wireless command from the Ground Station in order to be able to begin the transmission of data.
COM 2	NeoPod shall send data over RF	NeoPod must be able to transmit data in order to successfully complete its mission
COM 3	Ground Station shall transmit commands over RF	Mimics the activity of an orbiter.
COM 4	Ground Station shall receive data over RF	Used for verification of data collection and transmission

Rall **Communications Layout Ball Patch** Antenna **Ground Station** Shielded **USB** 437.5 MHz **CC1101 SMA Cable** (Half Duplexed) Transceiver CC1101 Laptop **CC1101** Transceiver Avionics **SPI** Dev. Kit **Board** Key NEOPod Provided **Purchased** Testing and Project Design Requirements **Project Overview** Solution and Risk Verification Planning


Communications Design (Hardware)


Ball

Ground Station Software: COSMOS and Packetization

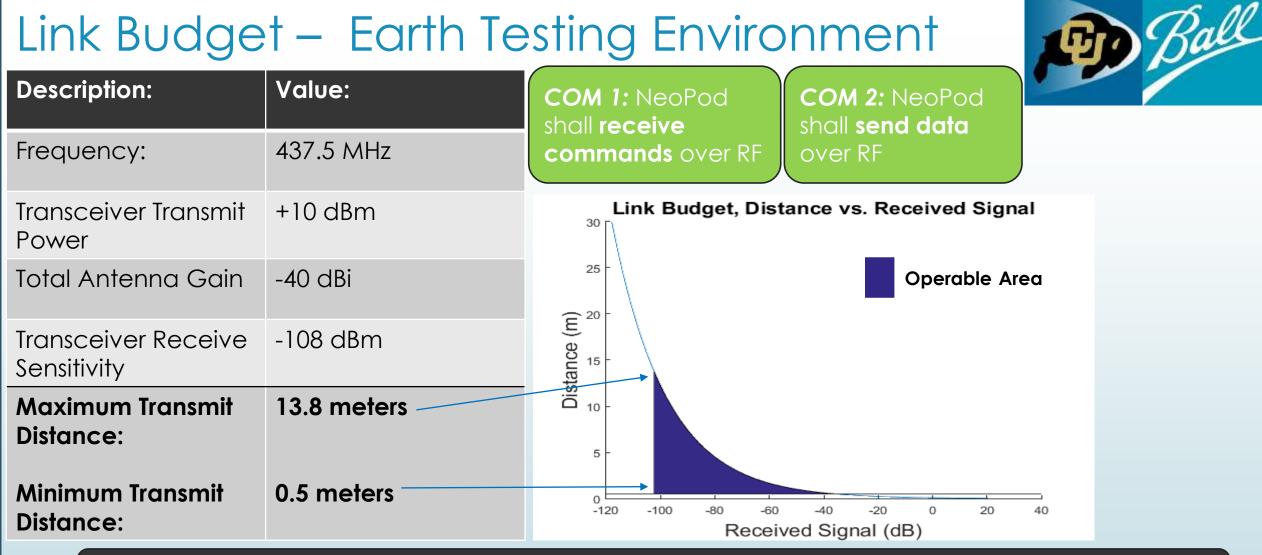
Scientific Data

Commands

PD Ball

Project Overview

Design


Solution

Requirements and Risk Testing and Verification

over RF

Project Planning

Note: Transmit distance on Europa (100 km) not in scope for this project, a more expensive, robust transceiver is needed on Europa

Project Overview

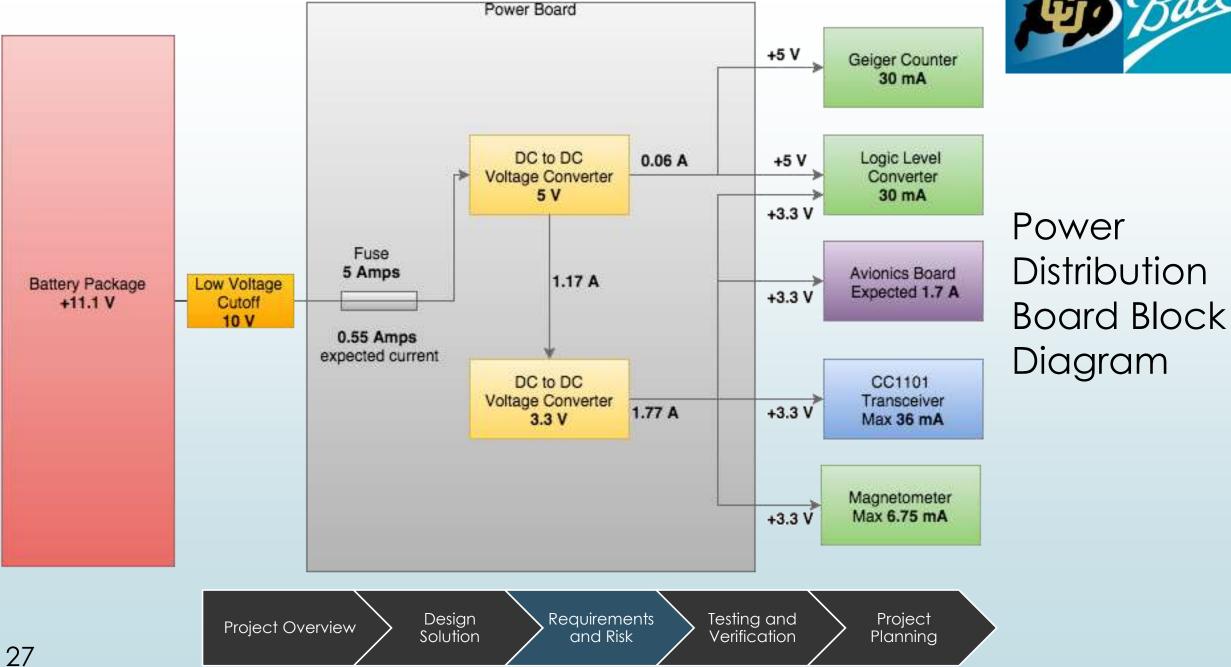
Requirements Solution and Risk

Design

Testing and Verification

Project Planning

CPE-3: Requirements

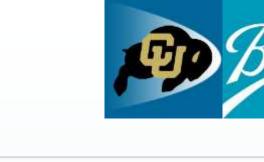

Powers System Design

Requirement:	Description:	Motivation:
SCI 3.3.1, SCI 2.2.1, SCI 2.1.2, COM 6.1	Power subsystem shall provide voltage lines of 5 V, and 3.3 V .	The power system must support the Geiger counter at 5 ± 0.25 V, and the magnetometer, transceiver, and avionics board at 3.3 ± 0.3 V.
SCI 2, SCI 3, COM 6	Power subsystem shall provide power to subsystems for a total of 100 hours	Duration of mission. Incorporates one full Europa orbit. Mission timeline requires powering sensors for 96 hours and avionics/communication for 100 hours



Battery Characterization Test

- Equipment:
 - TP 1430C Lipo Charger
 - TENMA EX354T Power Supply
 - 5200mAh Lipo Battery
- Description: Battery discharged at 2 A to 9 V (~2 hours)
 - Measurements recorded manually from charger display
 - Data recorded once every minute
 - Voltage resolution: 0.1 V
 - Capacity resolution: 1 mAH


Requirements and Risk

Design

Solution

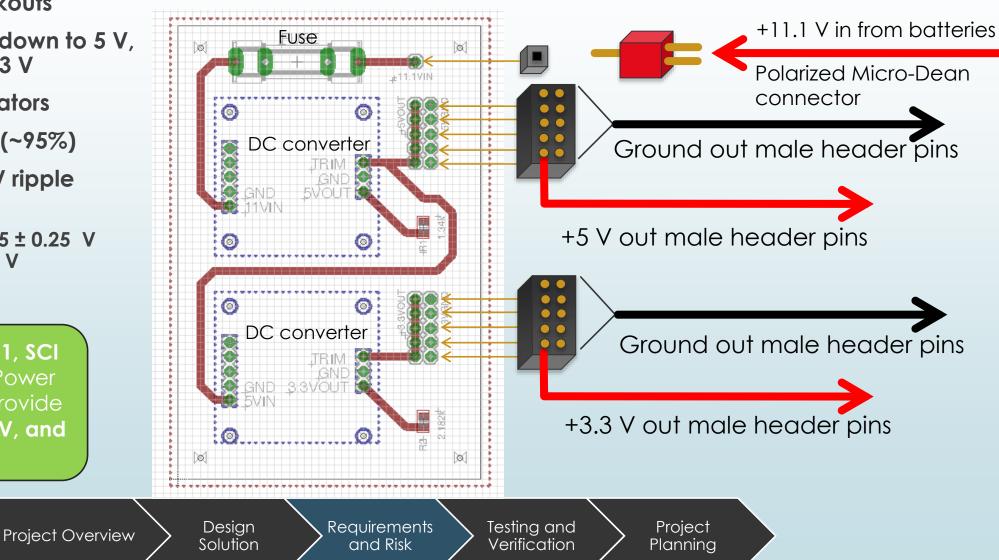
Testing and Verification

Project Planning

Battery Power Available

	Solution:	Battery Voltage vs Capacity	
Туре:	LiPo Battery pack 11.1 V (3S) 5200 mAh	Equates to 100 hour mission based on power budget	
Ideal Battery Capacity:	57.72 Wh	cutoff voltage of 10.5V	
Useable Battery Capacity (%85):	49.06 Wh	<pre> 10 85% of 9.5 ideal battery </pre>	ł
Number of Batteries:	17	8.5 capacity	
Total Power Available:	834.05 Wh	8 0 76 293 526 959 1393 1826 2259 2693 3126 3559 3992 4209 4426 Battery Capacity (mAh)	8

Power Budget



Component	Total Watt Hours over 100 hours (Wh)	Power Budget:	Power (Wh)
Geiger Counter	15	Power Available:	834.05 Wh
Magnetometer	2.19		
Avionics Board	547.6	Power Needed:	655.18 Wh
Transceiver	5.27		
DC-DC Converter	85.12	Margin:	178.86 Wh
Total Power Needed:	655.18 Wh	Ŭ	27.3% Margin
SCI 2, SCI 3, COM 6: Power subsystem shall provide power to subsystems for a total of 100 hours Project Overview Design Solution Requirements and Risk Testing and Verification Project Planning			

Printed Circuit Board Design 2 SparkFun DC/DC Converter Breakouts

- Will step 11.1 V down to 5 V, then down to 3.3 V
- Switching regulators
- High efficiency (~95%)
- Maximum ±0.1V ripple voltage
 - Can provide 5 ± 0.25 V and 3.3 ± 0.3 V

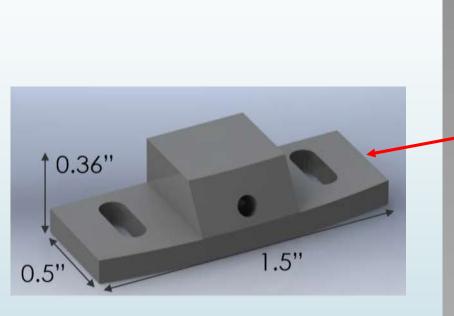
SCI 3.3.1, SCI 2.2.1, SCI 2.1.2, COM 6.1: Power subsystem shall provide voltage lines of 5 V, and 3.3 V

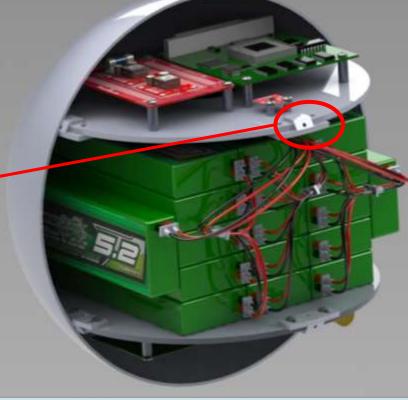
CPE-4: Requirements

Mechanical Integration

Requirement:	Description:	Motivation:
INT 1	NeoPod shall have a mass less than 10 kg	Mass limitation based on orbiter. This does not include radiation CAD model.
INT 2	NeoPod shall have a maximum diameter of 30cm	Volume limitation based on orbiter.
INT 6	The NeoPod's internal components shall operate under their maximum operating temperatures for the duration of the mission.	Safety of components, ensure no components will be damaged due to operation temperature.

Structural Design Solution





Subsystems will be mounted to two circular shelves using standoffs/straps

Internal shelves will **be** mounted to external shell using brackets shown

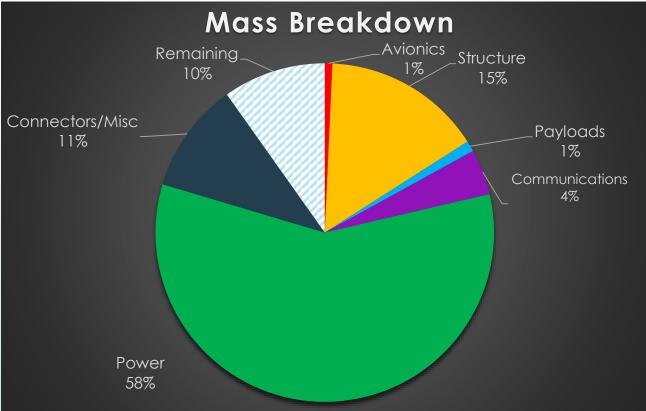
All components fit within closed sphere with a mass of **9 kg**

Project Overview

Design

Solution

Requirements and Risk


Testing and Verification

Project Planning

Mass Breakdown

Subsystem	Mass with Margin (g)	Margin:
Available	10000	
Avionics	72	20%
Structure	1525	10%
Payloads	102	20%
Communications	436	10%
Power	5826	2%
Connectors/Misc.	1057	15%
Total Mass:	9017 g	411 g
Remaining:	10% or 983 g	

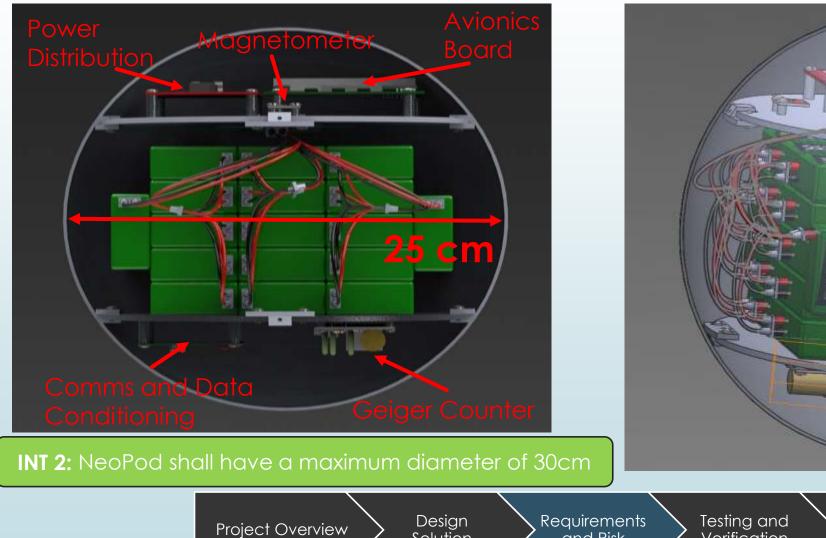
INT 1: NeoPod shall have a mass less than 10 kg

Project Overview

Design

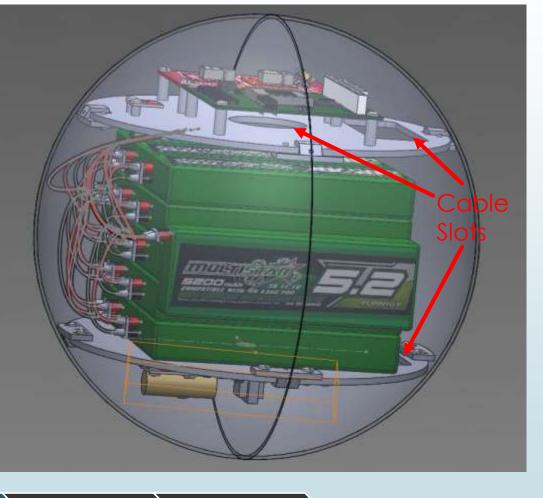
Solution

Requirements and Risk


Testing and Verification

Project Planning

34


NeoPod Structural Layout

Solution

and Risk

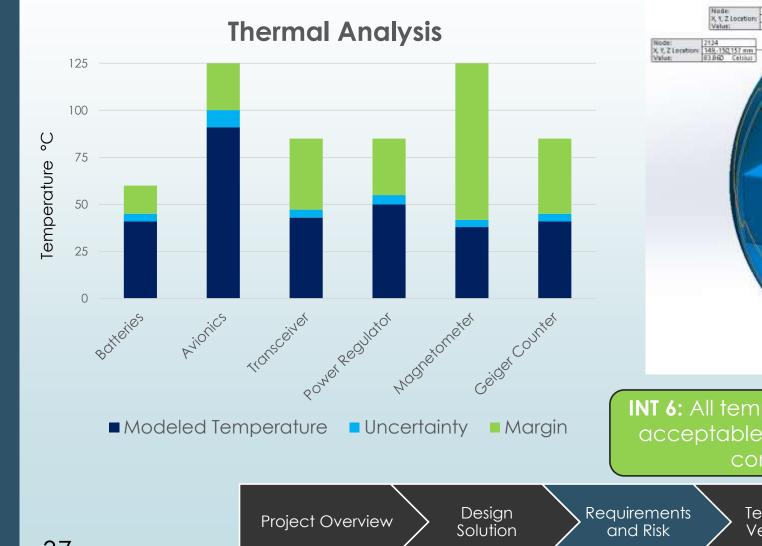
Project

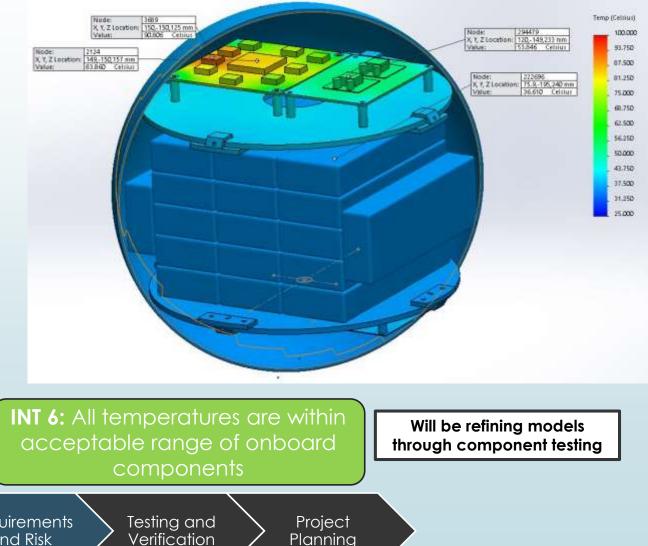
Planning

Verification

35

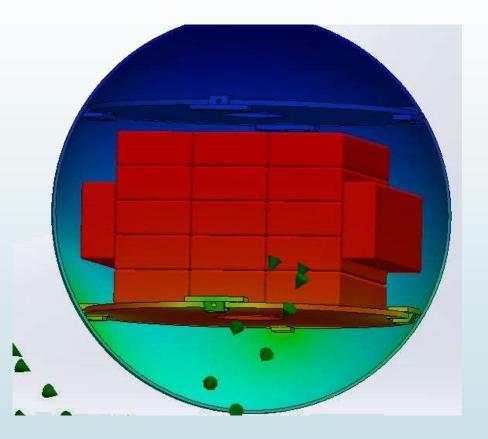
Thermal Model Assumptions:


- Done in SolidWorks
- Assumed all Chip Components made from silicon material
- All boards are FR-4 material
- Applied maximum expected operating loads to each component
- Thermal model run with **ball closed**
- Free convection on outside of the ball
- Thermal model predicts steady state temperatures
- Ambient Temperature: 25 °C



Project Overview Design Solution Requirements Testing and Project Planning

Temperatures within Operating Conditions



Worst Case Battery Thermal Model

- All power generated by batteries assumed to be heat
- 8.7 Watts/17 batteries = 0.51 Watts per battery
- Steady State Temperature: 48 °C
 - Maximum allowable battery temperature: 60 °C

INT 6.1: Batteries shall not exceed 60°C

Project Overview Design Solution Requirements and Risk Testing and Project Verification Planning

Risk Analysis

Design

Project Overview

Solution

Requirements and Risk

Testing and Verification

Project Planning

39

Risk Introduction

Likelihood	Rating		Severity	Rating
1	Very Low: 0-20%		1	No Effect on Cost/Schedule
2	Low: 21%-40%		2	Schedule Slip < 1 week
3	Medium: 41%-60%		3	Moderate Schedule Slip (~2 weeks) , Not All Requirements Met
4	High: 61%-80%		4	Major Schedule Slip (1 month), Majority of Reqs. Not Met
5	Very High: 81-100%		5	Project Failure, Damage to Components
	Project Overview	Desig Soluti		

Risk Assessment

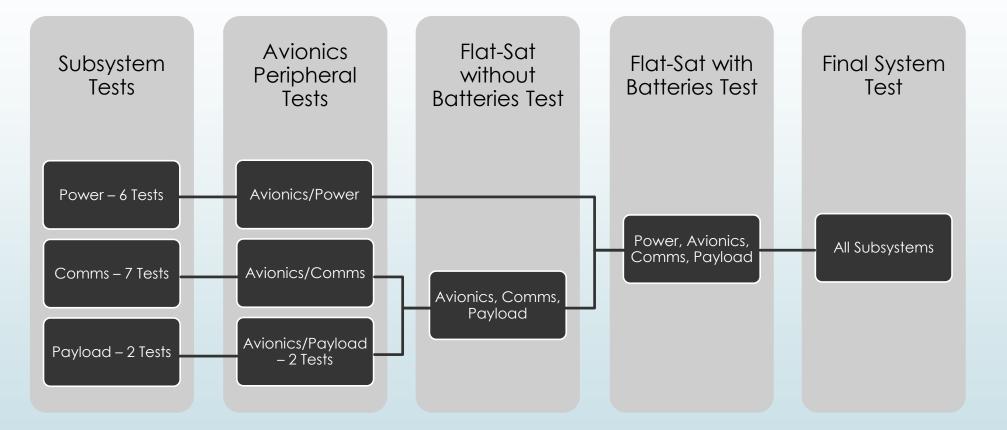
Risk	(Description			Mitigation				
RP1	: FPGA Software	FPGA Software Development learning curve. Related to CPE-1			Learning curriculum completion. Practice on development FPGA. Attend Microsemi trainings and seminars				
	: ESD mponent Safety	Possible component c ESD environment	lamage or failure if h	andled in non-	ESD environment required for all avionics development and testing, this is provided through Bobby and Trudy's lab. Internal ESD certification and training for team members handling sensitive hardware.				
RP3	: Schedule Slip	Critical path on schedule (FPGA software development and procurement) falls behind schedule affecting final testing schedule			Schedule margin built in. Development of code begun before winter break. 1/3 of team devoted to FPGA development. If Ball FPGA board is not delivered on time, COTS development FPGA has been acquired. Developed software applies to both design solution.				
	: Unable to sipate Heat	Structure unable to dis environment, compor	•		Extensive thermal model concludes that there will be low chance of overheat. Worst case, ball will be opened and placed under an external desktop fan to remove heat.				
RP5	: Power Failure		age. Over-current to system causing stop power c			ems include fuse to prevent overcurrent to system, as well as voltage cutoff circuit to or at minimum voltage limit. Battery characterization test provided evidence that del is correct.			
			S	everity			_		
		1	2	3	4	5			
po	5 (Very High)							Unacceptable	
Likelihood	4 (High)				RP3	RP1 RP2		Acceptable with	
kel	3 (Moderate)				RP4 RP5			Mitigation	
	2 (Low)							Acceptable	
	1 (Very Low)								
4	1	Project O		esign Iution	Requirements and Risk	Testing and Verification	Project Planning		

Testing and Verification

Project Overview

Requirements and Risk

Design


Solution

Testing and Verification Project Planning

42

Test Plan Overview

Project Overview Design Solution Requirements Testing and Verification Project Planning

Testing Design Requirements, Levels of Success, and Models

Project Overview

Solution

Subsystem Tests	Avionics Peripherals Tests	Flat-Sat without Batteries Test	Flat-Sat with Batteries Test	Final System Test	Кеу
Payload L1 – L2, L4	Payload L3	_	-	Power L3	Levels of Success
Power L1 – L2	Communication L1 – L4	-	-	Structure L1 – L4	Functional Requirements
Ground Station L1 – L3	Avionics L1 – L4	Ground Station L4	-	-	Models
SCI 1	SCI 3	-	-	SCI 2	
COM 1 – 4	COM 5	_	_	COM 6	
INT 3	-	INT 6, 9	INT 5 – 6, 9	INT 1 – 2, 4 – 9	
RF Link	—	*RF Link	*RF Link	*RF Link	* Redundant
—	—	—	Battery Discharge	*Battery Discharge	test for
—	—	—	—	Thermal Model	statistics
	Project Overvjew	Design Rev	quirements Testing a	nd Project	

and Risk

Verification

Planning

Battery Discharge Model Validation

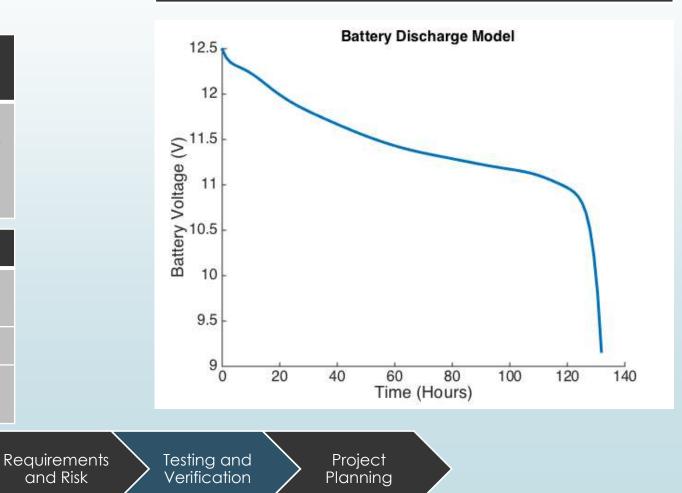
Design

Solution

and Risk

Validate Battery Discharge Model Objective:

Flat-Sat with Batteries Test → by March 17th Test:

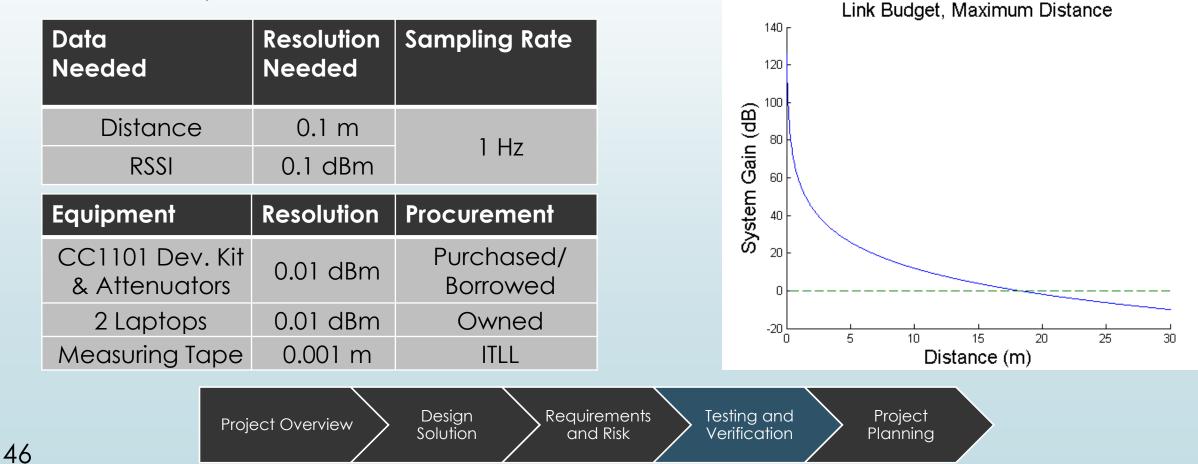

Duration: 8.5 hr w/ 2hr shifts

Location: Trudy's Lab

Data Needed*	Resolution Needed	Sampling Rate	
Voltage	.1 Volts	Once every	
Time	1 minute	15 minutes	
Equipment*	Resolution	Procurement	
Agilent 34410A Multimeter	.06 Volts	Trudy's Lab	
Laptop (clock)	> 1second	Trudy's Lab	
(17) 5200mAh Lipo Batteries	-	Purchased	

Project Overview

*additional information included in backup slide (Flat-Sat Test Logistics)


RF Link Model Validation

Objective: Validate RF Link Model

Test: Signal Strength Test with Patch Antenna → by January 31st

Duration: 1 hr

Location: Trudy's Lab

Thermal Model Validation

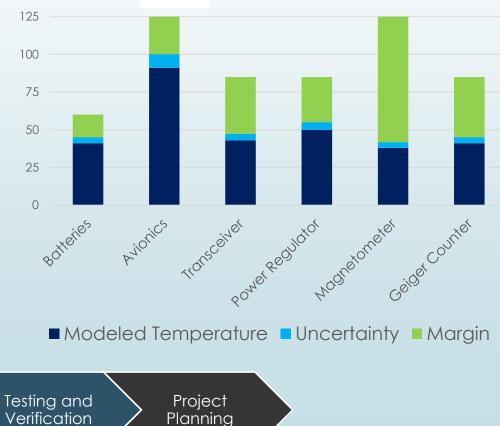
Objective:	Validate Thermal Model
Test:	Final System Test → by April 17 th

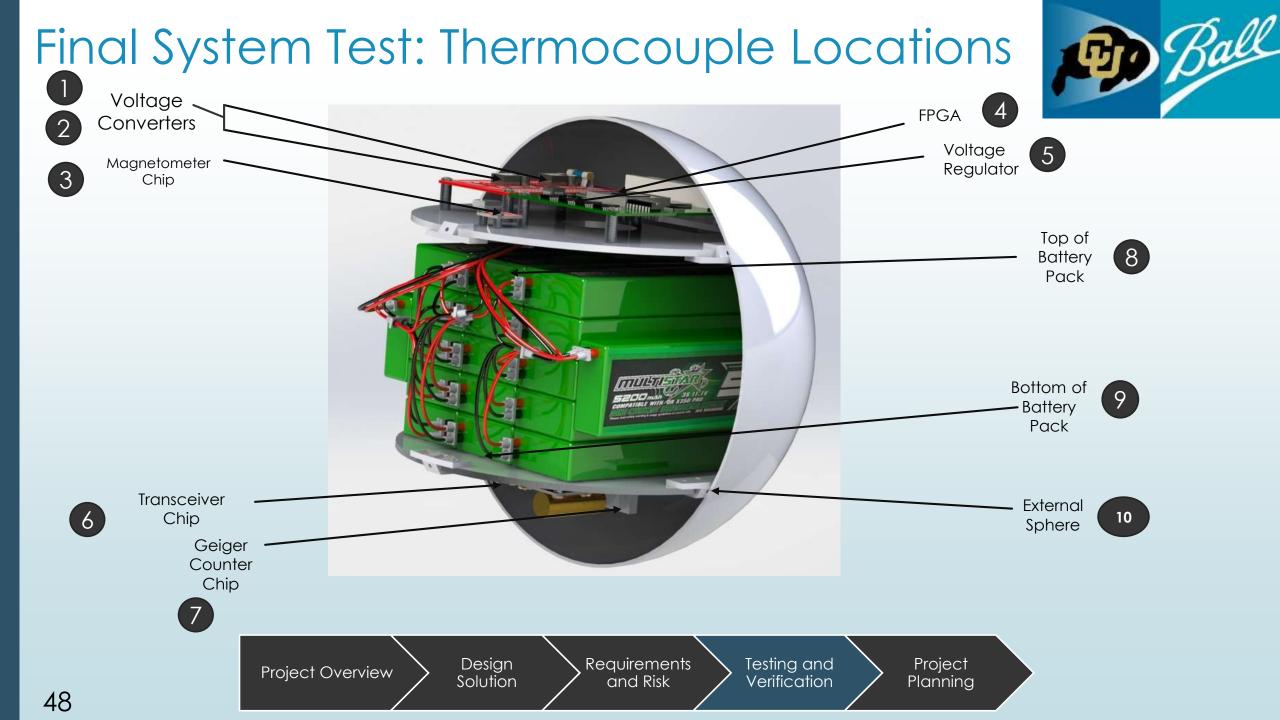
Duration	ation Data Needed*		Sampling Rate	
100 hrs.	Temperature	2 °C	Once every	
~4 hr. shifts	Time	1 minute	15 minutes	
Location	Equipment*	Resolution	Procurement	
	(10) K-type Thermocouples	1.1 °C	Trudy's Lab	
Trudy's Lab	NI9213 DAQ	0.02 °C	ITLL	
/				

Project Overview

Design

Solution

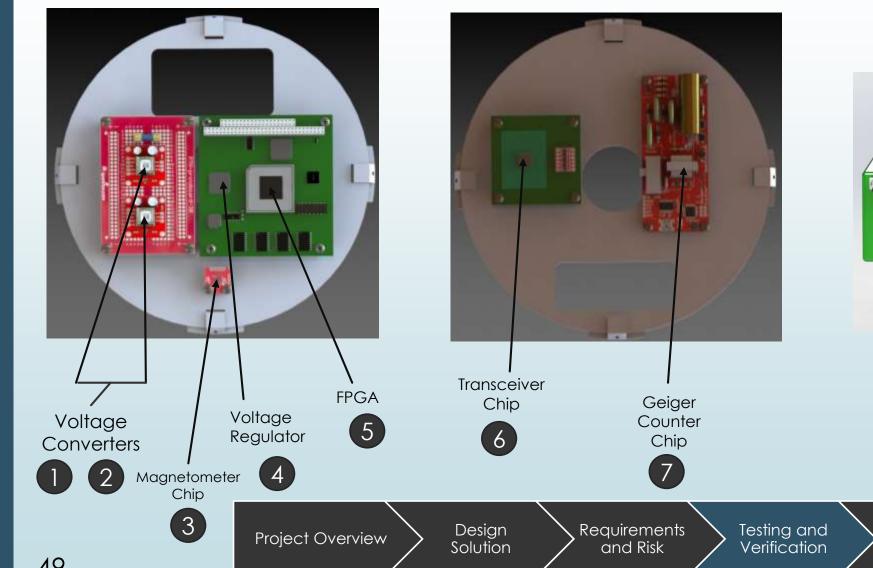

Requirements


and Risk

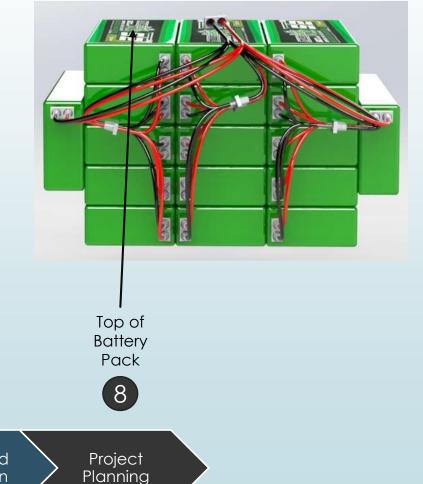
Reall Ball

*additional information included in backup slide (Final System Test Logistics)

Thermal Model



Thermocouple Setup: Exploded View


Bottom Shelf

Top Shelf

Ball

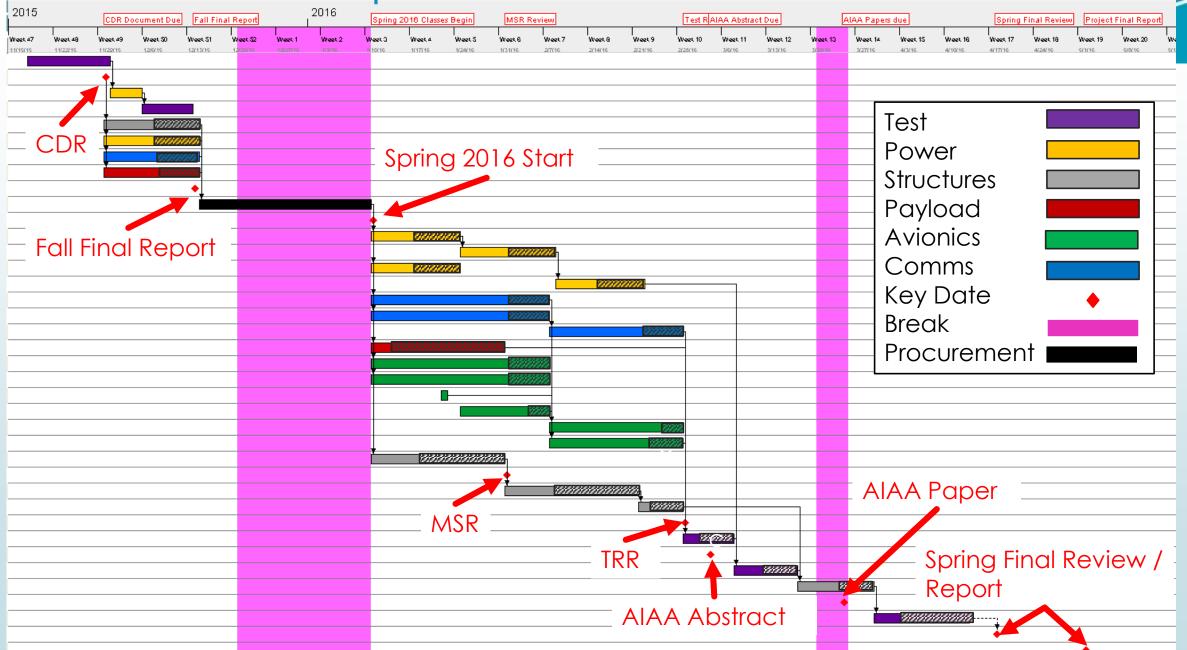
Battery Stack

49

Project Planning

Project Overview

 $\sum_{\alpha}^{\operatorname{Rec}}$

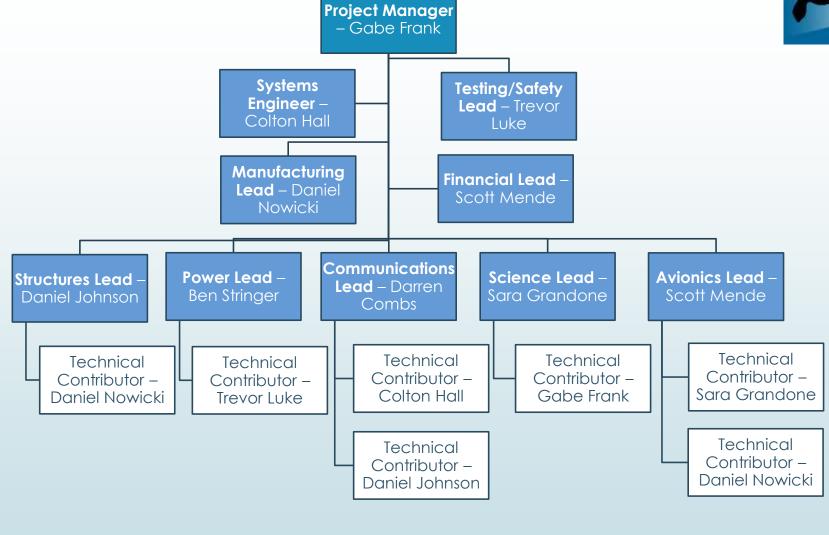

Design

Solution

Requirements and Risk Testing and Verification

Semester Plan: Important Dates

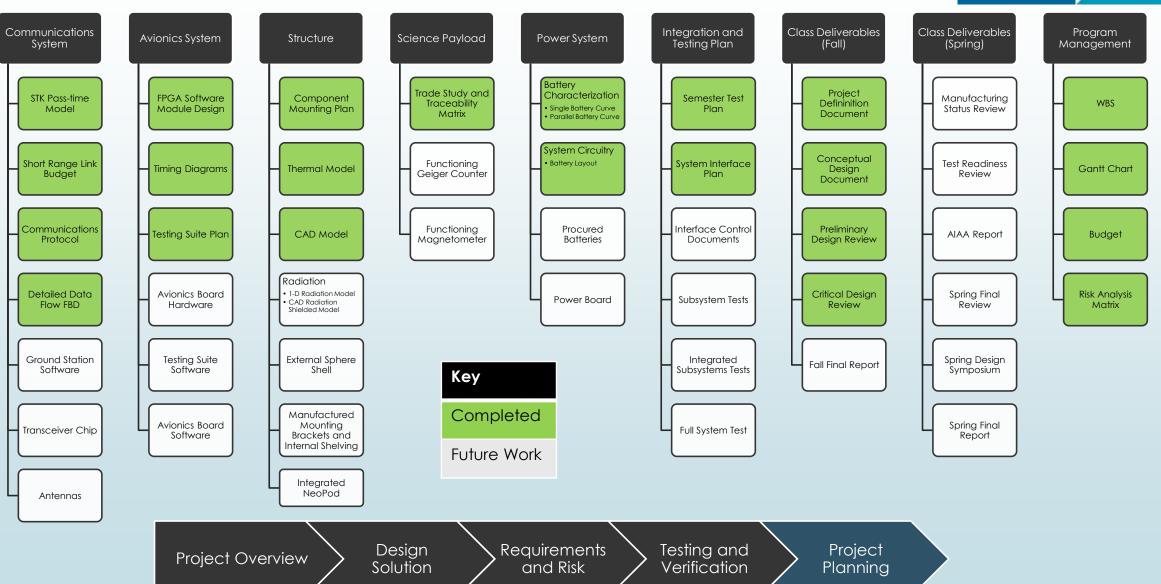
Semester Plan: "Project Phases"


	Spring 2016 Classes Begin MSR Review Test RAIAA Abstract Due eet 0 Weet 4 Weet 5 Weet 6 Weet 7 Weet 8 Weet 9 Weet 10 Weet 11 Weet 12 or16 117116 1124116 1131116 277116 214116 2121116 2128116 2128116 2128116	AIAA Papers due Spring Final Review Project Final Report Weet 12 Weet 14 Weet 15 Weet 16 Weet 17 Weet 18 Weet 19 Weet 20 We x2x116 3/27116 4/3/16 4/10/16 4/17/16 4/24/16 5/1/16 5/8/16 5/8/16 5/1
Subsystem Development and Testing	Order Parts and Wait for Delivery	Test Power Structures Payload Avionics Comms Key Date Break Procurement
2		System Testing

Semester Plan: Critical Path

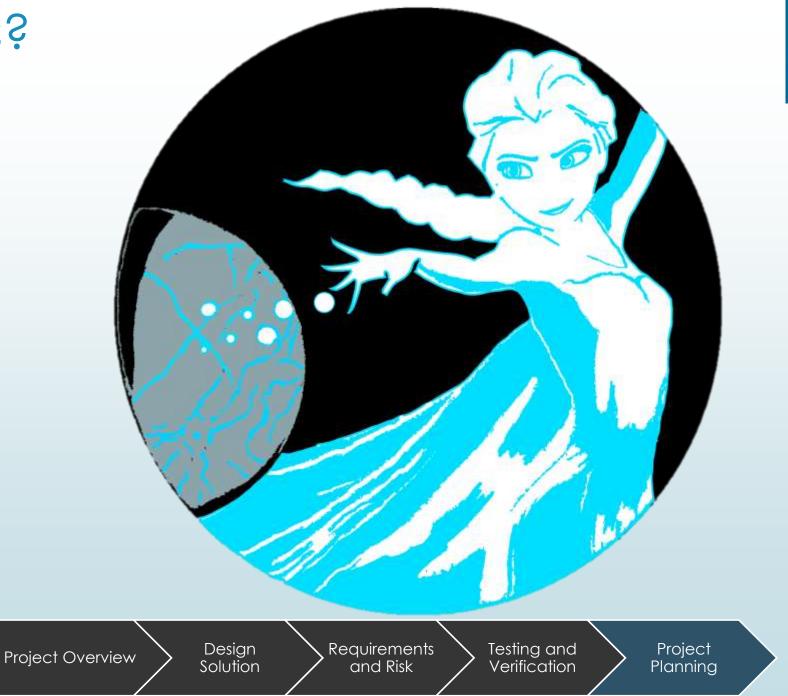
Semester Plc	an: Critical Po	ath	Poll
	2016 Spring 2016 Classes Begin MSR Weet 32 Weet 1 Weet 2 Weet 3 Weet 4 Weet 5 Weet 6 12220195 13227195 112195 1121916 1117116 1120116 1121116 Drdering Parts	Review Test RAIAA Abstract Due Week 7 Week 8 Week 10 Week 11 Week 12 277116 2114/16 2121/16 2128/16 3/6/16 3/13/16	AIAA Papers due Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 19 Week 19 Week 20 Week
		FPGA Software Testing	Payload Avionics Comms Key Date Break Procurement
	FPGA Software Development		System Testing
53			•

Organizational Chart



Project Overview Design Solution Requirements Testing and Project Planning

Work Breakdown Structure


Cost Plan

Part	Cost	Contingency	Total (\$):
Batteries (x17)	\$544.00	\$128.00 (4 batteries)	\$672.00
CC1101 Transceiver Kit	\$500.00	\$500.00 (100%)	\$1000.00
Metals and Fasteners	\$177.00	\$354.00 (200%)	\$531.00
DC/DC and Logic Converters	\$35.00	\$35.00 (100%)	\$70.00
Wires, Connectors, Cables	\$400.00	\$800 (200%)	\$1200.00
Printed Circuit Boards	\$100.00	\$300.00 (300%)	\$400.00
Power Safety Devices	\$20.00	\$60.00 (300%)	\$80.00
Sensors	\$165.00	\$165.00 (100%)	\$330.00
Testing Equipment	\$240.00	\$25.00 (~10%)	\$265.00
Total:	\$2181	\$2367	\$4548
Project O	verview Design Solution	Requirements and Risk Verification Planning	

Questions?

Sensor Payload

Magnetometer:

Key Specifications

Model: SparkFun Triple Axis Magnetometer HMC5883L

Interface: I2C

Sampling Rate: 0.75 – 75 Hz

Power and Logic: 3.3VDC and 3.3V Logic

Design

Solution

Range: ± 8e5 nT

Resolution: 500 nT

Key Specifications

Model: SparkFun Geiger Counter

Interface: Serial

Sampling Rate: Maximum of 100 Hz

Power and Logic: 5VDC and 5V Logic

Highest Payload Level of Success: Samples data and relays it to Avionics Board for onboard storage

Project Overview

Requan

Requirements and Risk Verification

Science Trade

Metric	Weight	Magnetometer	Seismometer	Imager Visual	Imager IR	Imager Micro
Science Value	15%	5	5	3	1	5
Cost	15%	4	3	3	3	1
Availability	16%	5	3	4	3	1
Complexity	20%	4	3	3	1	1
Size	22%	4	2	3	4	1
Mass	12%	4	2	4	4	1
Total	100%	4.31	2.96	3.28	2.64	1.44

Project Overview

Requirements and Risk

Design

Solution

Testing and Verification

Science Trade Cont.

Metric	Weight	Imager Zoom	Spectrometer	Radiation	Temperature	Pressure
Science Value	15%	3	5	5	1	1
Cost	15%	3	1	4	5	5
Availability	16%	4	1	4	5	5
Complexity	20%	2	1	4	3	3
Size	22%	3	2	2	5	5
Mass	12%	3	2	4	5	5
Total	100%	2.96	1.94	3.71	4.00	4.00

Project Overview

Requirements and Risk

Design

Solution

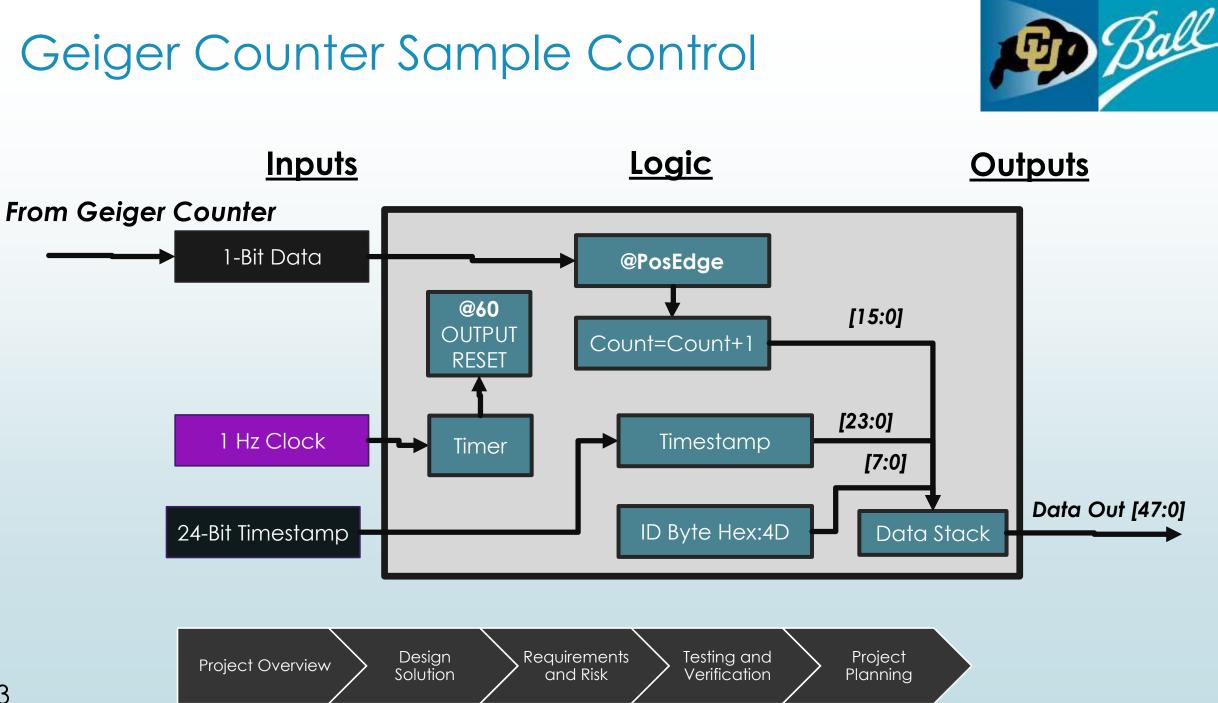
Testing and Verification

Science Traceability

Requirement ID	Magnetometer	Seismometer	Imager Visual	Imager IR	Imager Micro
SCI 0: Neopod shall collect scientific data relevant to Europa	✓ Ice shell characterization	Surface geology characterization	Surface geology characterization	X Stationary probe leads to static and not unique results	✓ Surface geology characterization
SCI 2.1: Neopod Power Subsystem shall sustain the scientific instruments for a 96 hour period.	Low Power	Low Power	Low Power	Low Power	Low Power
SCI 2.2: Neopod sensors shall mechanically and electrically	✓ Only internal interface	✓ Only internal interface	X Must interface with external structure	X Must interface with external structure	X Must interface with external structure
INT 1: Neopod shall have a mass less than 10 kg.	√ m _{mag} << .5 kg	X m _{mag} ≥.5 kg	√ m _{mag} < .5 kg	√ m _{mag} < .5 kg	X m _{mag} >.5 kg
INT 2: Neopod shall have a maximum diameter of 30cm	✓ Largest Dimension << 5 in	X Largest Dimension >> 5 in	Largest Dimension << 5 in	X Largest Dimension >> 5 in	X Largest Dimension >> 5 in
Requirements Met	5	3	4	2	2
Trade Score	4.31	2.96	3.28	2.64	1.44

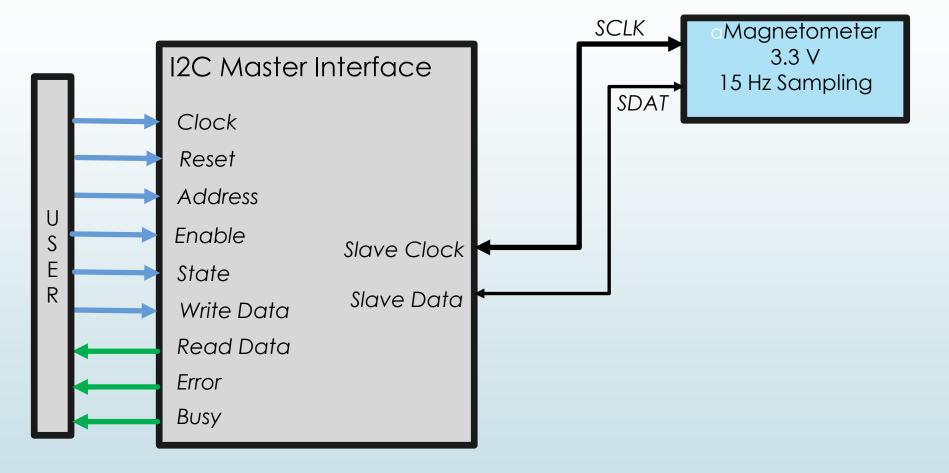
Project Overview

Requirements and Risk


Design

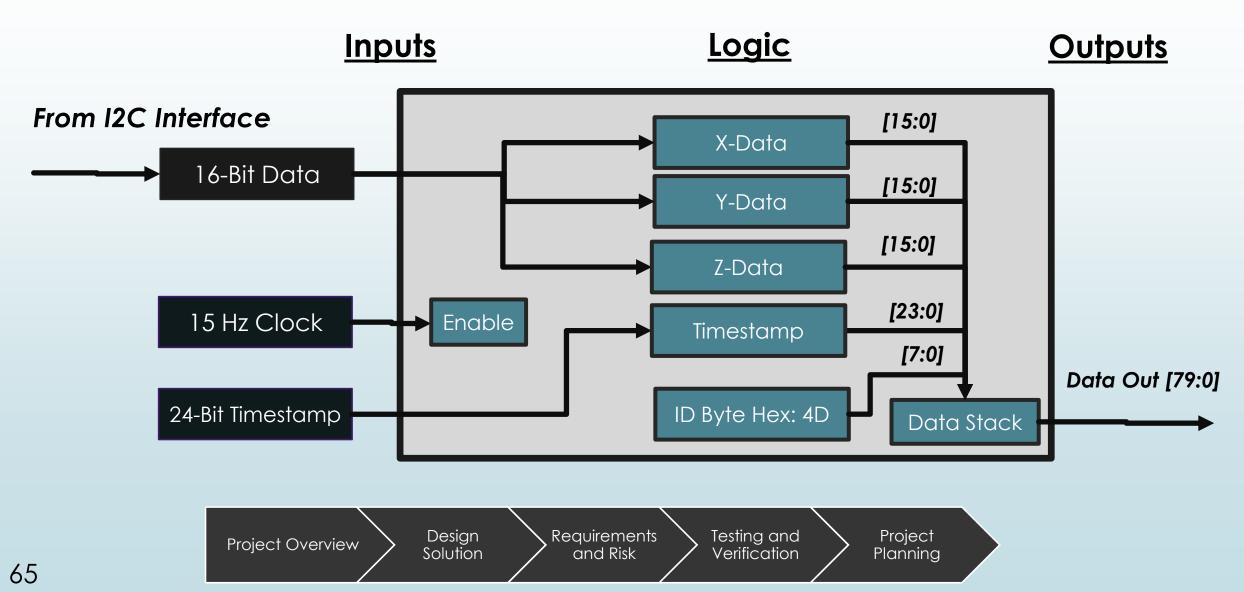
Solution

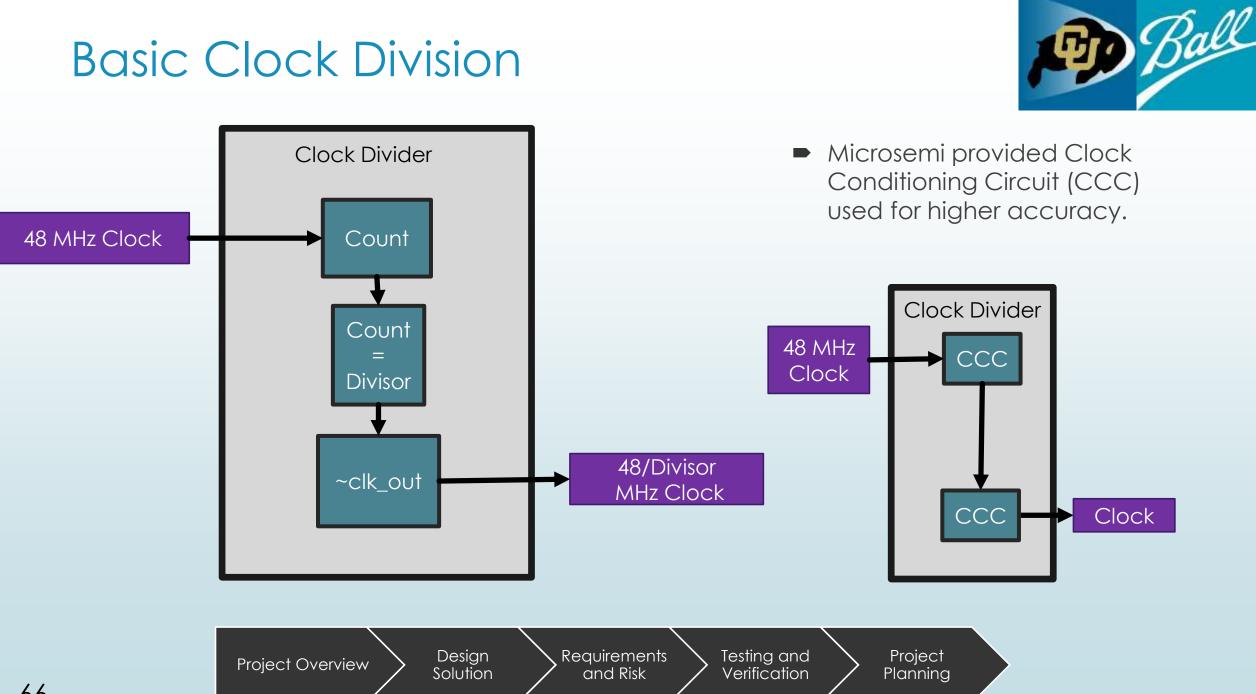
> Testing and Verification



Requirement ID	Imager Zoom	Spectrometer	Radiation	Temperature	Pressure
SCI 0: Neopod shall collect scientific data relevant to Europa	Surface geology characterization	Surface composition characterization	Surface composition characterization	X Little desired scientific value	X Little desired scientific value
SCI 2.1: Neopod Power Subsystem shall sustain the scientific instruments for a 96 hour period.	Low Power	Low Power	Low Power	Low Power	Low Power
SCI 2.2: Neopod sensors shall mechanically and electrically	X Must interface with external structure	X Must interface with external structure	✓ Only interfaces internally	X Must be isolated from electronics and interface externally	X Must interface with external structure
INT 1: Neopod shall have a mass less than 10 kg.	√ m _{mag} < .5 kg	X m _{mag} >.5 kg	√ m _{mag} << .5 kg	√ m _{mag} << .5 kg	√ m _{mag} << .5 kg
INT 2: Neopod shall have a maximum diameter of 30cm	✓ Largest Dimension < 5 in	X Largest Dimension >> 5 in	✓ Largest Dimension < 5 in	Largest Dimension << 5 in	Largest Dimension << 5 in
Requirements Met	4	2	5	3	3
Trade Score	2.96	1.94	3.71	4.00	4.00
	Project Overview Design Solution Requirements and Risk Verification Planning				

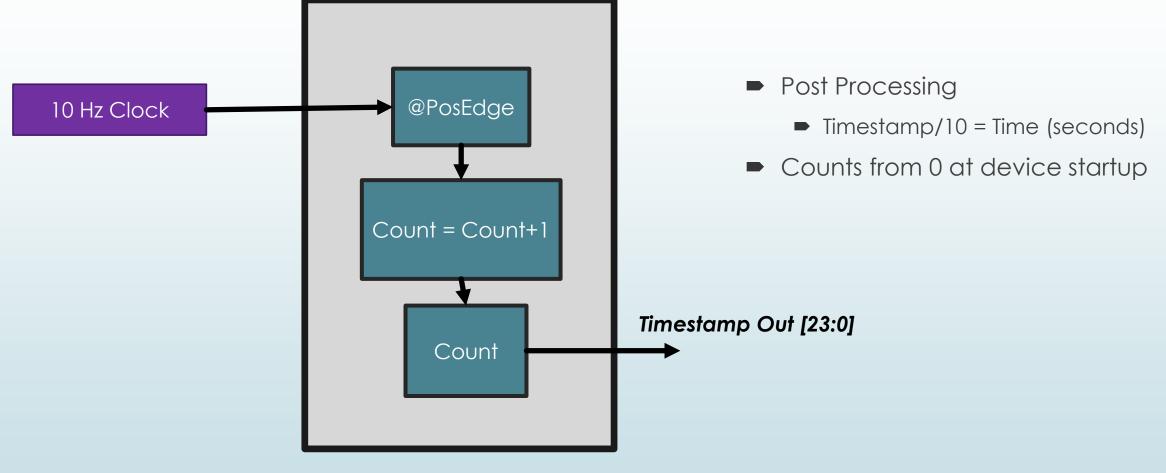
I²C Interface

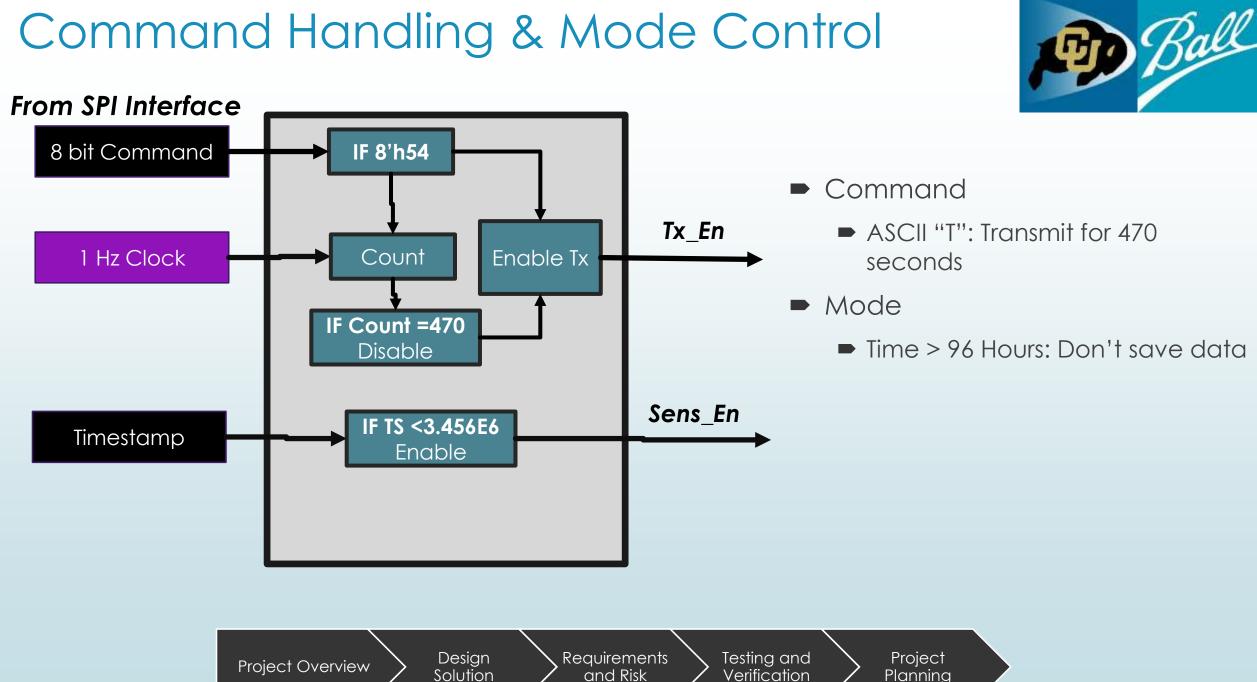


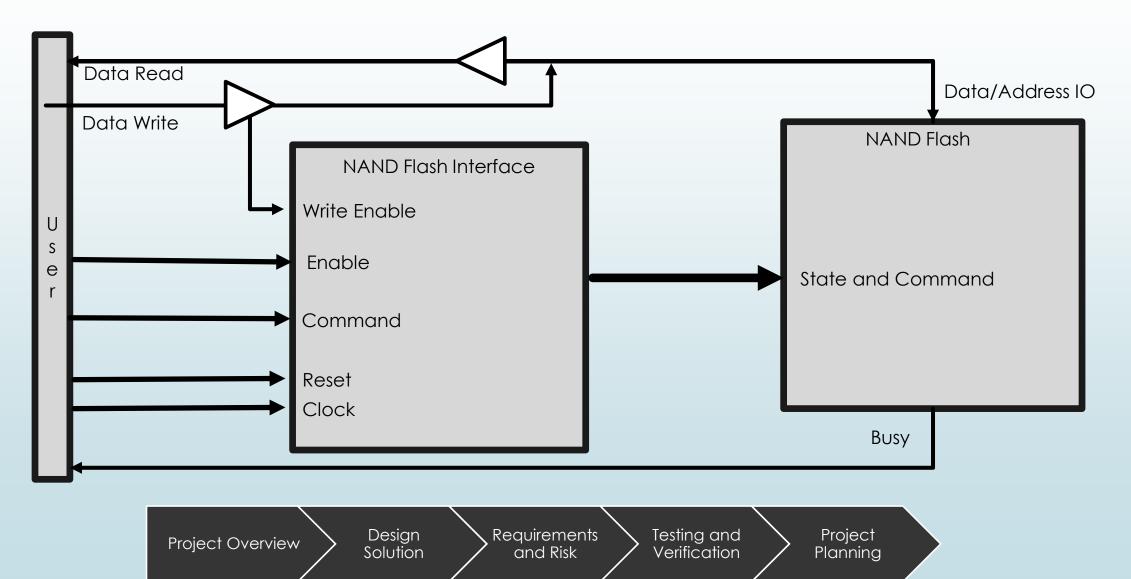


Project Overview Design Solution Requirements Testing and Project Planning

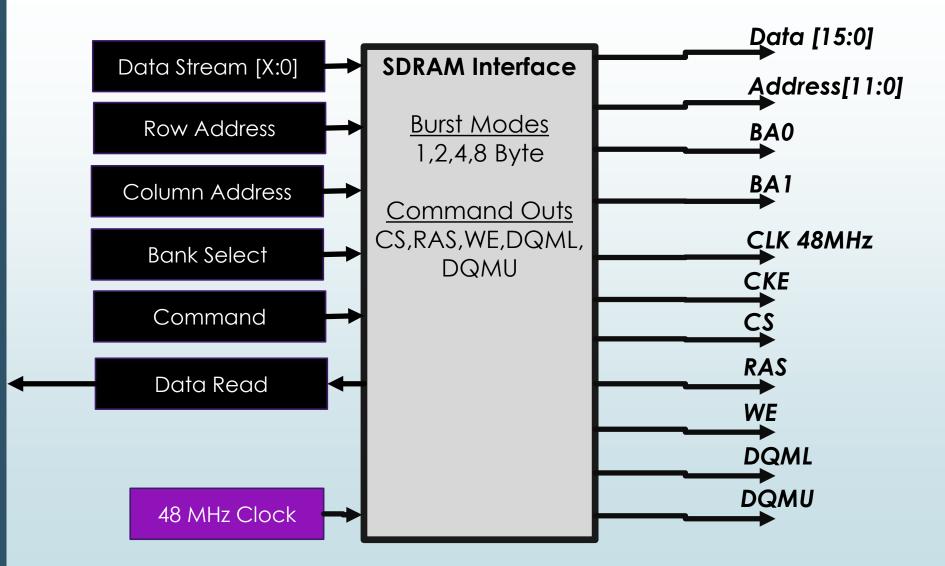
Magnetometer Sample Control

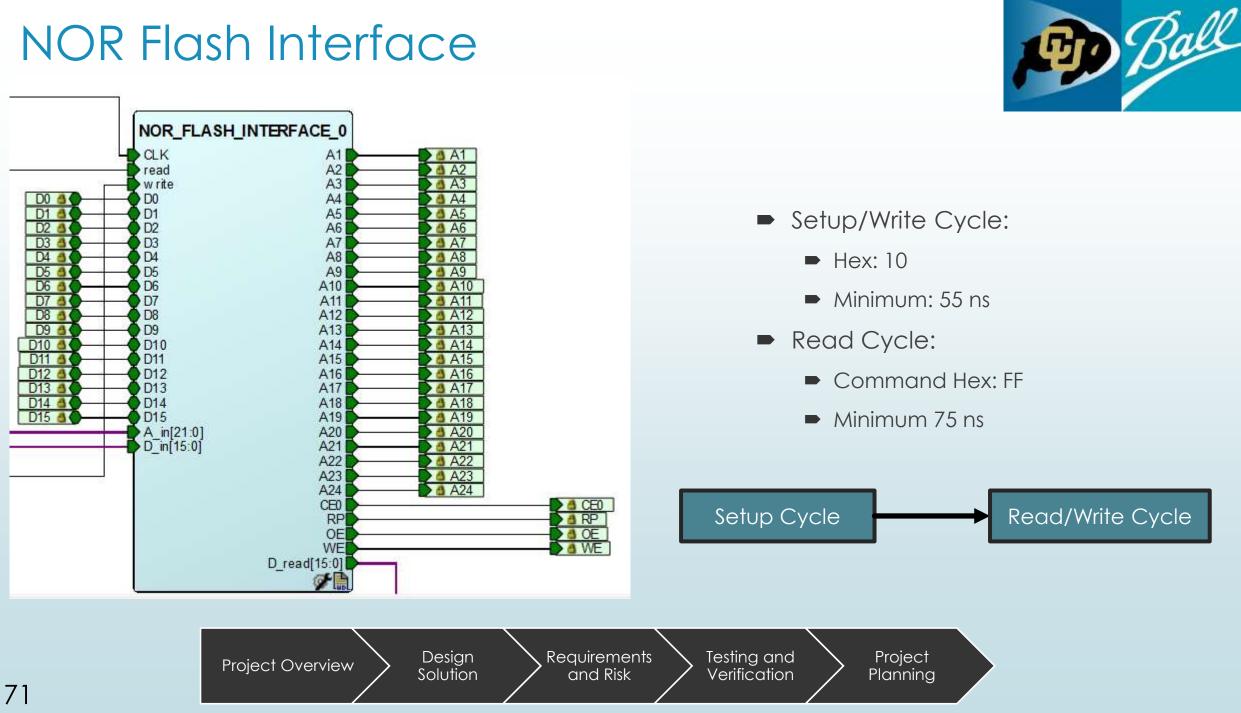


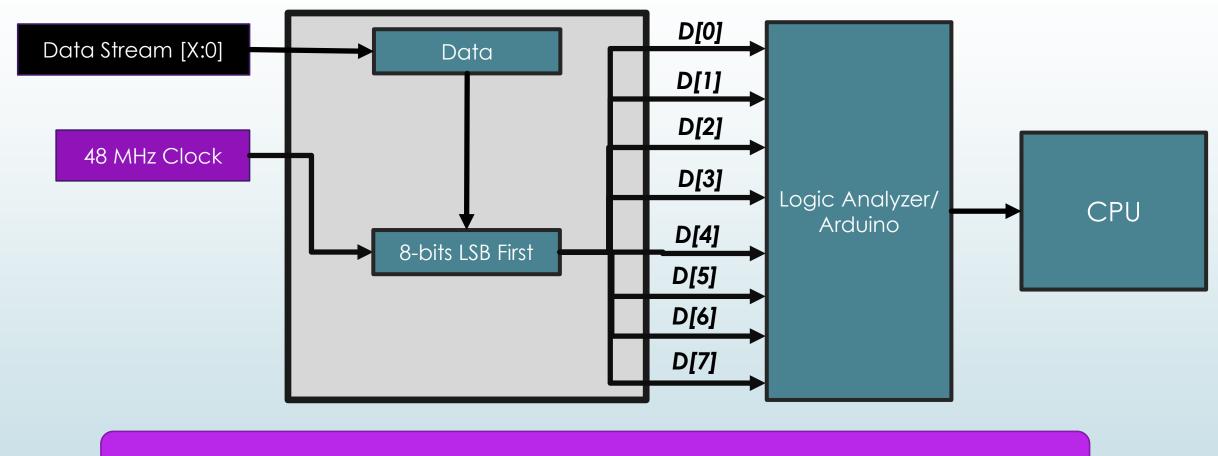

Time Stamping


Project Overview Design Solution Requirements Testing and Project Planning

Command Handling & Mode Control


NAND Flash Interface

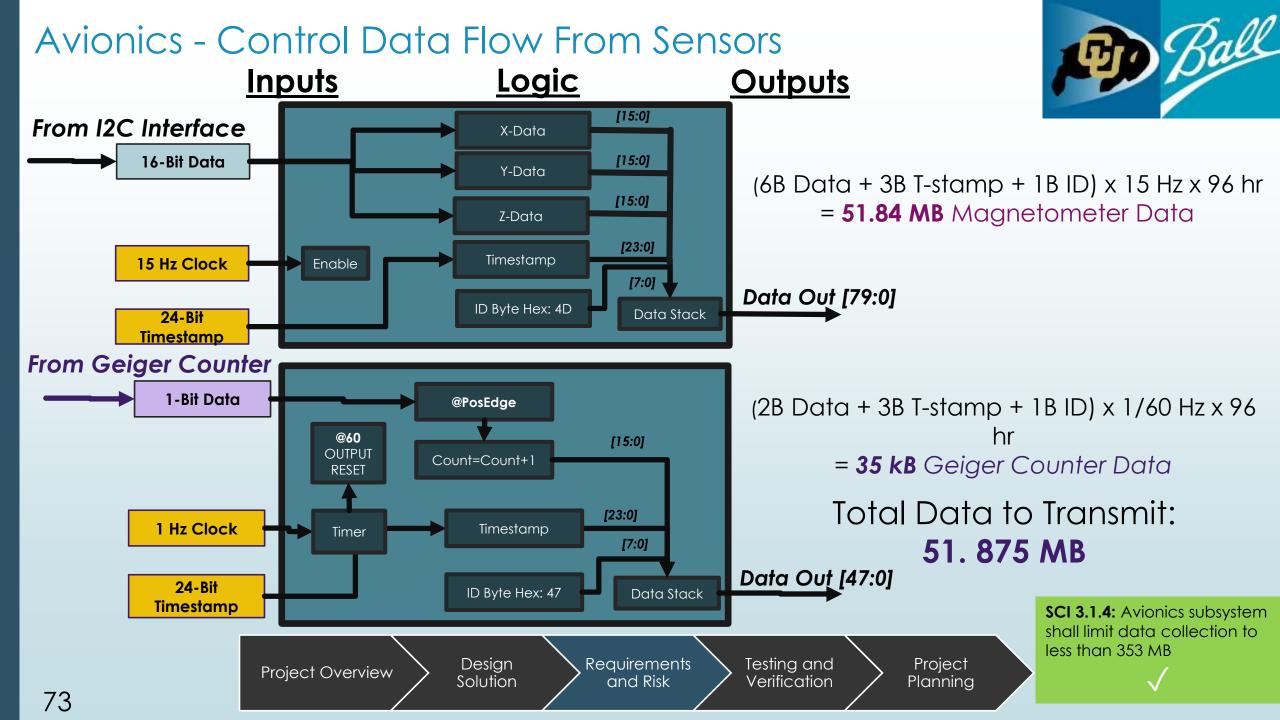

SDRAM Interface


- Use Self-Refresh Idle
- Read/Write Cycle
 - Activate
 - Bank Select
 - Row Address
 - Read/Write
 - Read/Write CMD
 - Data In/Out
- Active to CMD
 - 20 ns minimum

NOR Flash Interface

Avionics Test Harness

Data compared with data sent through communication system.


Project Overview

Requirements and Risk

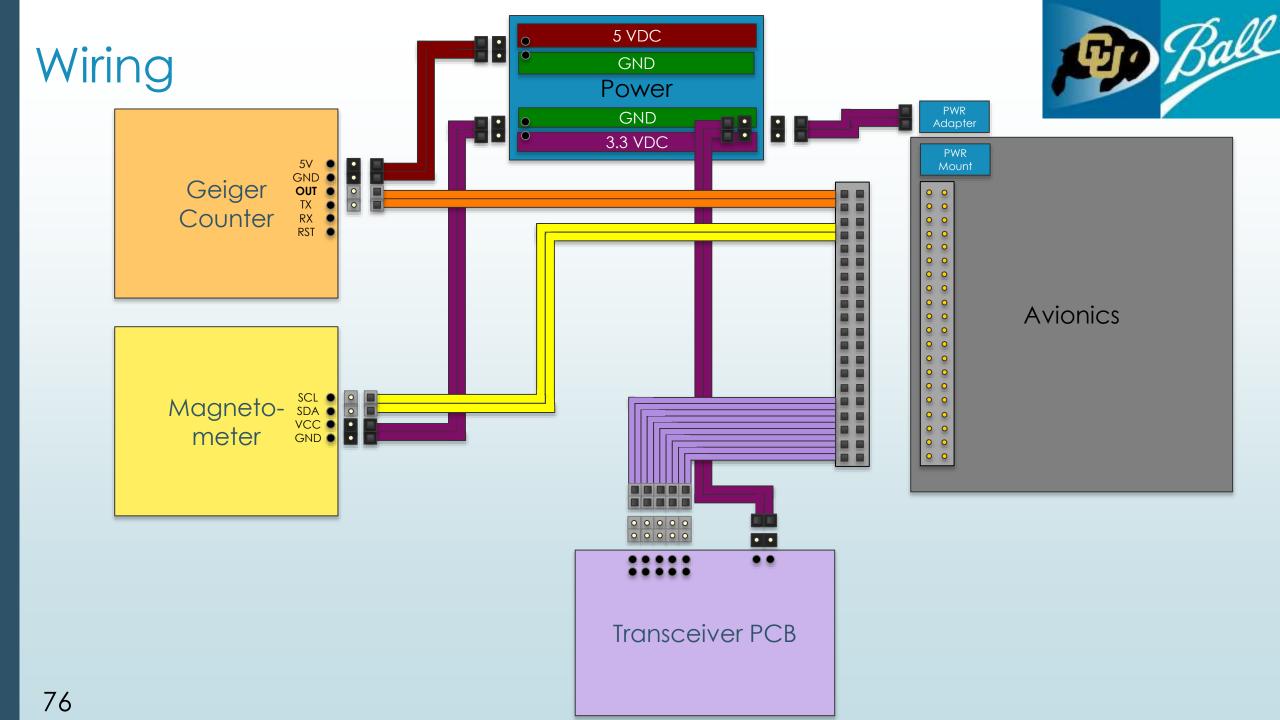
Design

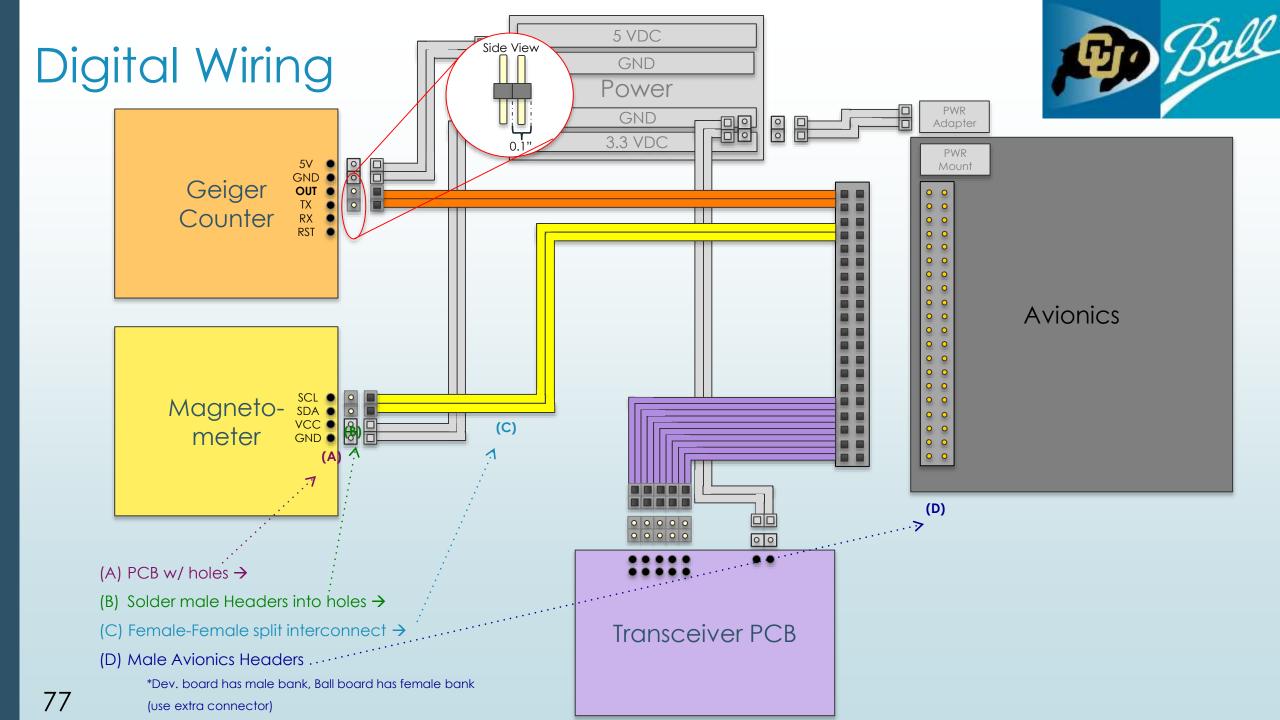
Solution

Testing and Verification

D Ball Avionics Board Overview Ball Aerospace Avionics Board NAND Flash Mem FPGA 8 Gb 1.5 V**CMOS XCVR** 48 MHz SDRAM 504 kbits RAM 256 Mb, 100 MHz LVDS Receiver 3 Million Gates >400 Mbps 66 MHz, 66-Bit PCI Voltage Regulator 1.5 V **LVDS** Driver Reprogrammable 90 mm >400 Mbps Oscillator **RS-422** Receiver 48 MHz 100kbps-10Mbps Requirements Met **RS-422** Driver Reset / Watchdog 100kbps-10Mbps 3.3 V COM 2.3 96 mm Design Requirements Testing and Project Project Overview and Risk Planning Solution Verification 74

Digital Wiring Component List



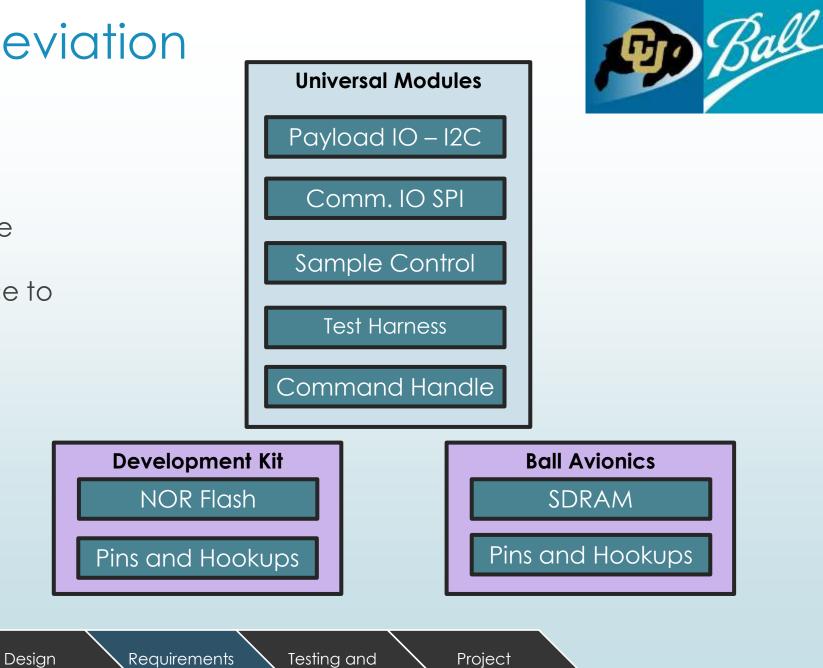

Avionics


- 1-2 x 20, 0.1" Single-ended discrete wire socket cable (SMSD-20-24C-F-24.00-S)
- 1-2 x 20, 0.1" Elevated PC/104 Socket (ESQ-120-XX-T-D-LL-XXX)
- 1-2 x 20, 0.1" Square Post Header (TSW-120-XX-T-D-XXX)

Sensors

- 2-1 x 2, 0.1" Right Angle Square Post Header (TSW-102-XX-T-S-RA)
- 2-1 x 2, 0.1" Discrete Wire Socket Housing (ISSM-02)
- Transceiver
 - 1-2 x 5, 0.1" Square Post Header (TSW-105-XX-T-D-RA)
 - 1-2 x 5, 0.1" Discrete Wire Socket Housing (ISDM-05)

Software Design Deviation


Memory Interface

- SDRAM and NOR Flash are similar, however would require a specific interface to be written
- Pins and Hookups
 - Power
 - Development Kit: 5 V
 - Ball Avionics: 3.3 V
 - Unique Pin Assignments

Project Overview

Solution

and Risk

Verification

Planning

Instructional Milestones

Level	Task
0	Understand dev environment/tools and FPGA development
1	FPGA flashes a light
2	Inputs logic value, blinks light according to true or false
3	Inputs 2 logic values, flash separate lights according to true or false
4	Inputs logic values, stores values in FIFO or RAM, outputs logic value
5	Inputs logic values, stores values in flash memory
6	Inputs sinusoidal signal, stores values in flash memory, reads from memory, outputs to serial port
7	Repeat 6, add a logical input that turns output on or off

Project Overview

Requirements and Risk

Design

Solution

Testing and Verification

Contingency Plan

Cutoff Dates

- 10/30/2015 Board Design and Documentation Delivery
 - Complete avionics design documentation delivered from Ball
- Internal Knowledge Evaluation
 - Feasibility based on knowledge progress rate
- Avionics Board Delivery
 - Delivery of hardware from Ball

Design

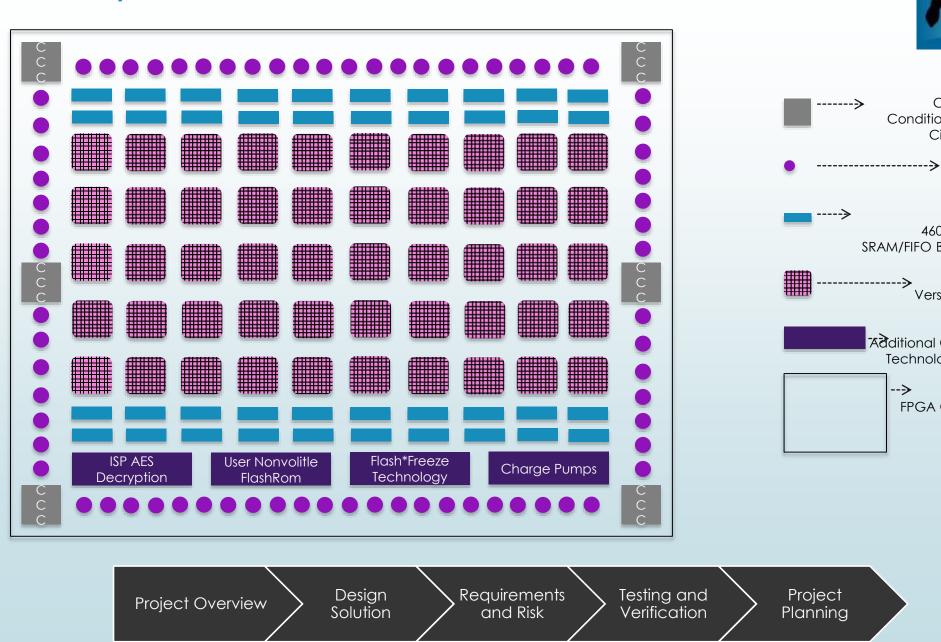
Solution

Contingency Plan

Default to ProASIC3L Development Kit as primary avionics package

Project Overview

81



Verified With Customer

- 11/9/2015
- 1/22/2016

FPGA Layout

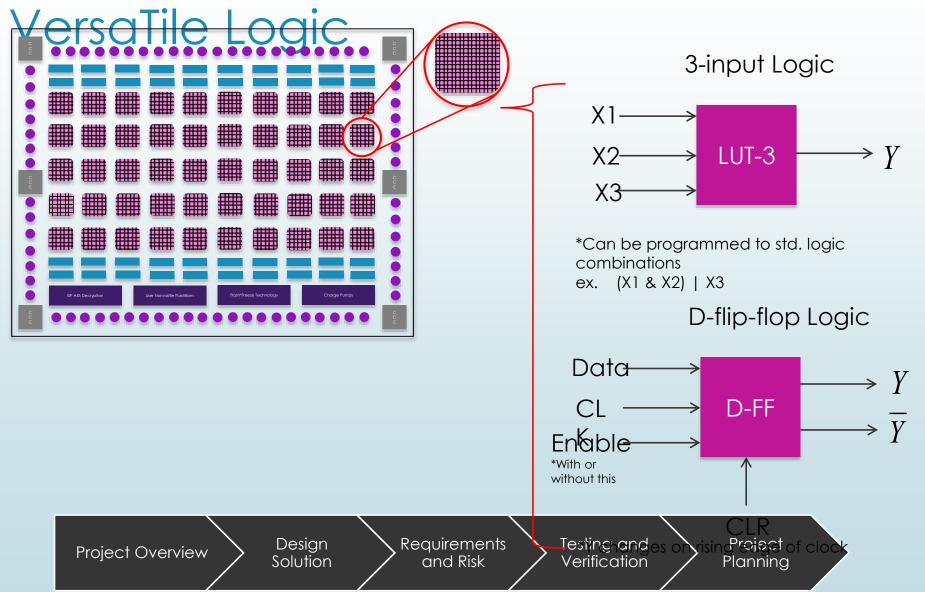
Clock

I/O

4608 bit

VersaTile

SRAM/FIFO Block

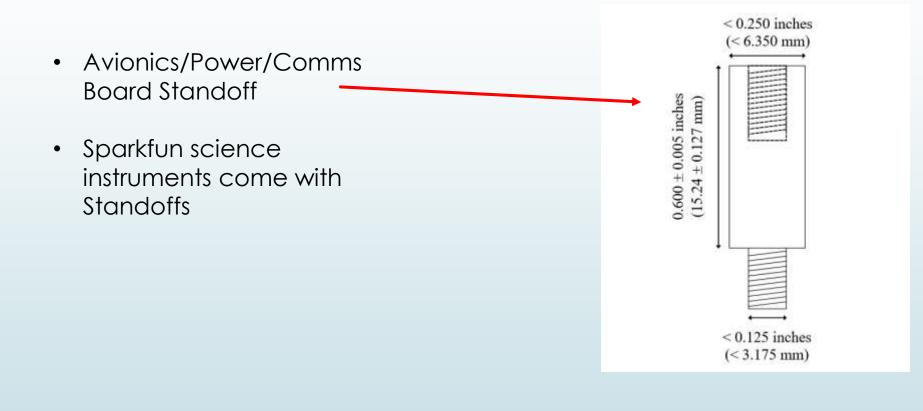

Additional Chip **Technologies**

FPGA Chip

-->

Conditioning Circuit

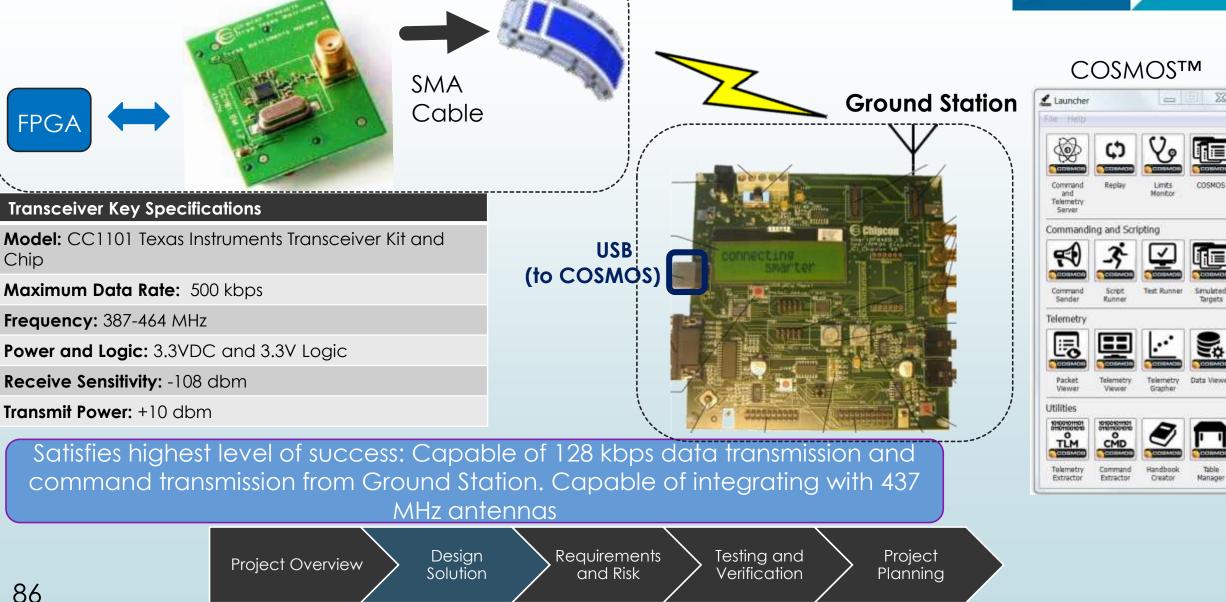
System Link Budget



Link Budget Parameter:	Value:
System Gain*	-32 dBm
Free Space Path Loss at 10 meter test	-61.95 dBm
Receiver Sensitivity	-108 dBm
Link Margin:	+14.05 dBm
Maximum Possible Distance:	18.2 m

*Assumes 4dB cable loss and -20 dB antenna gain

Standoffs and Battery Connectors


Project Overview Design Solution Requirements Testing and Project And Risk Verification Planning

Communications and Ground Station

NeoPod

£ Launcher Commany and Monitor Telemetry Sprupt Commanding and Scripting Contractor Sander Telemetry Packet Viawa Utilities TLM

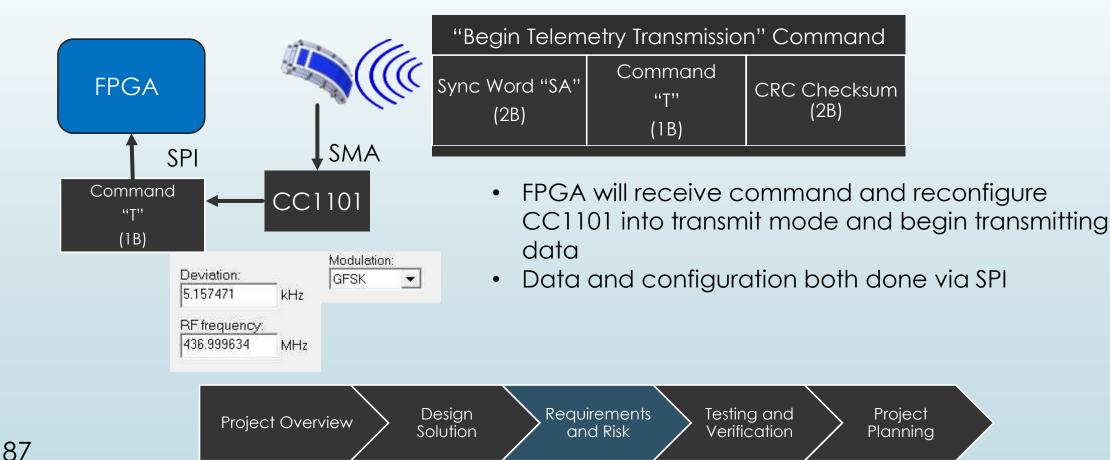
Comm: NeoPod Command Reception

Driver: COM 1.1: NeoPod shall use provided patch antennas from Ball Aerospace COM 1.2: NeoPod shall use same modulation scheme as ground station COM 1.3: NeoPod shall receive commands within 1 MHz of 437 MHz

"T"

(1B)

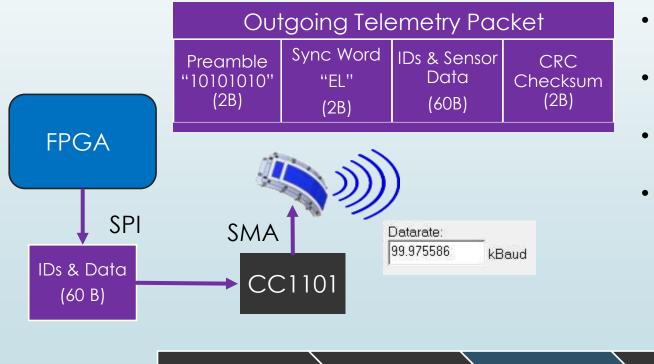
CRC Checksum


(2B)

Project

Planning

Testing and

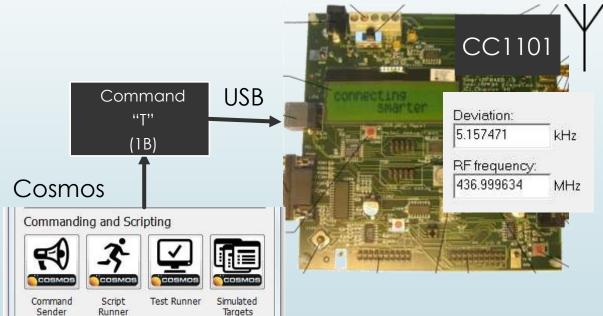

Verification

Comm: NeoPod Data Transmission

Driver: COM 2.1: NeoPod shall use provided patch antennas from Ball Aerospace COM 2.3: NeoPod data transmission shall not exceed 128 kbps COM 2.5: NeoPod shall packetize data with appropriate overhead for RF transmission

- SPI will be connected via PCB and ribbon cables
- CC1101 will packetize data and transmit at 437.5 MHz & +10 dBM
- CC1101 will be powered via on board power at 3.3 V & 30 mA
- Data rate programmable in steps of 0.2 kBaud

Project Overview


Design Solution

Requirements and Risk

Comm: Ground Station Command Transmission

Driver: COM 3.1: Ground Station shall be compatible with 437 MHz frequency COM 3.2: Ground Station shall send command every 120 minutes COM 3.3: Ground Station shall packetize commands with appropriate overhead for RF transmission

~	"Begin Telemetry Transmission" Command						
))	Sync Word "SA"	Command	CRC Checksum				
	(2B)	"T" (1B)	(2B)				

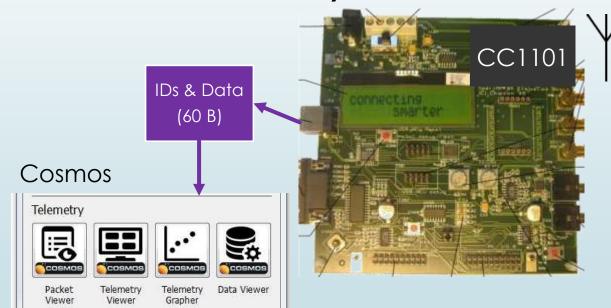
- Immediately after command CC1101 will be go into receive mode (Half Duplex)
- Commands will be automated and sent using Cosmos

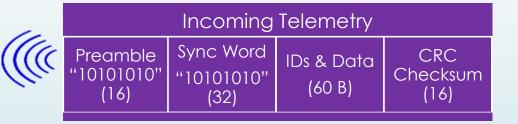
Project Overview

Req

Design

Solution


Requirements and Risk Testing and Verification


Comm: Ground Station shall receive data over RF

Driver: COM 4.1: Ground Station shall store received data from NeoPod COM 4.2: Ground Station shall separate data into appropriate file location and format COM 4.3: Ground Station shall display metrics on performance of

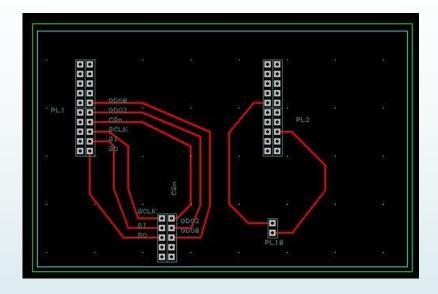
communications system

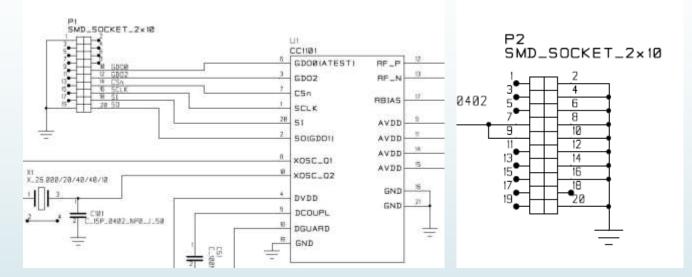
[•] CC1101 will de-packetize data

- Cosmos will identify separate data files using the 1 Byte ID attached to each data point
- Smart RF will be used to Debug CC1101 and display RSSI and LQI

Project Overview

Requirements and Risk


Design


Solution

Testing and Verification

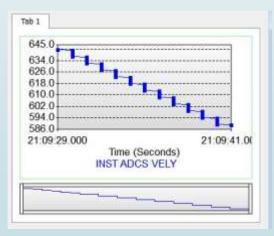
Project Planning PCB Design

Preliminary PCB Design

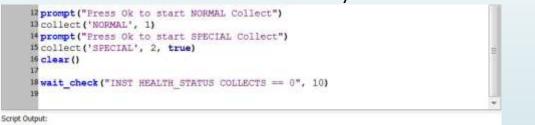
CC1101 Schematic

ile Help			
Command and Telemetry Server	Replay	Limits Monitor	COSMOS

Will serve as the dashboard for the mission


Interface	Connect/Disconnect	Connected?	Clients	Tx Q Size	Rx Q Size	Bytes Tx	Bytes Rx	Cmd Pkts	Tim Pkts
INST_INT	Disconnect	true	0	0	0	292	555394	20	7292
INST2_INT	Disconnect	true	0	0	0	0	555394	0	7292
EXAMPLE_INT	Connect	false	0	0	0	0	0	0	0
TEMPLATED_INT	Connect	false	0	0	0	0	0	0	0
COSMOS_INT	Disconnect	true	0	0	0	0	0	0	351

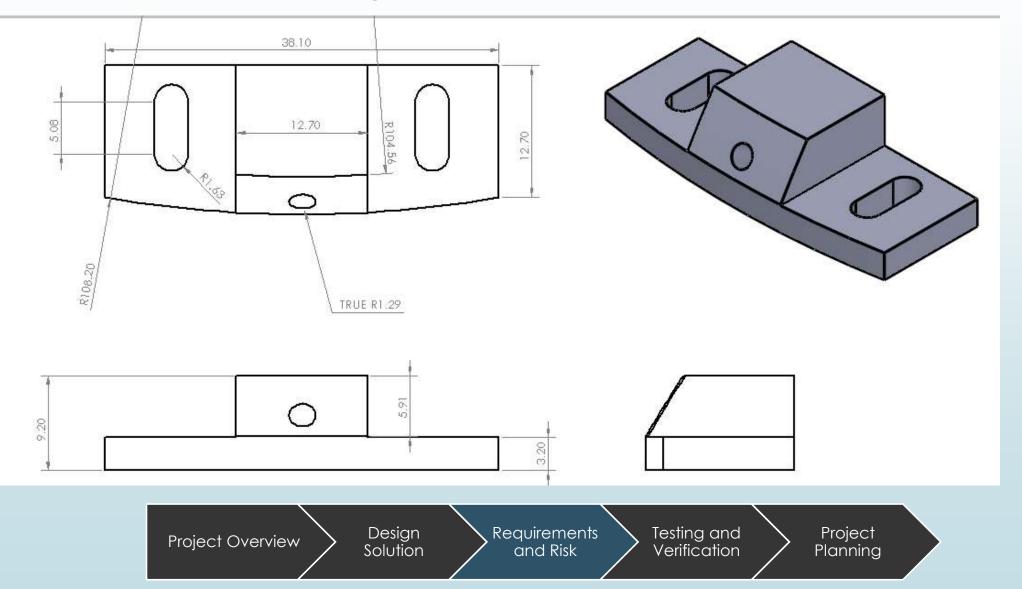
Commanding and Scripting



Can Be Used for real time and post-collection data display

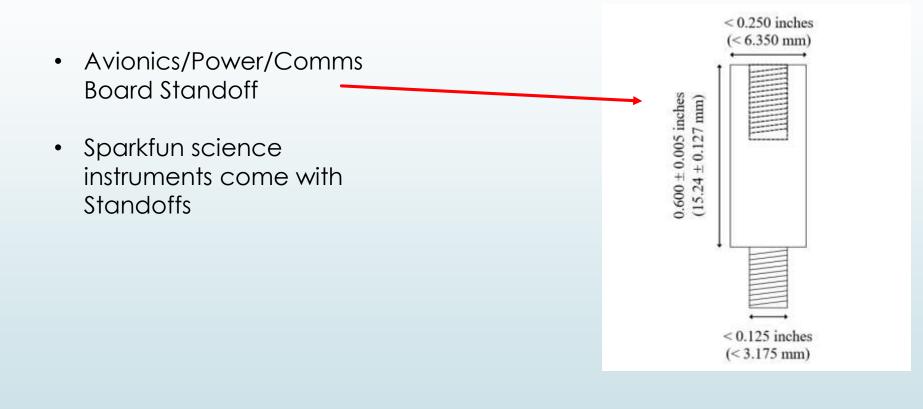
Will automate mission by sending "Begin Data Transmission" command every two hours

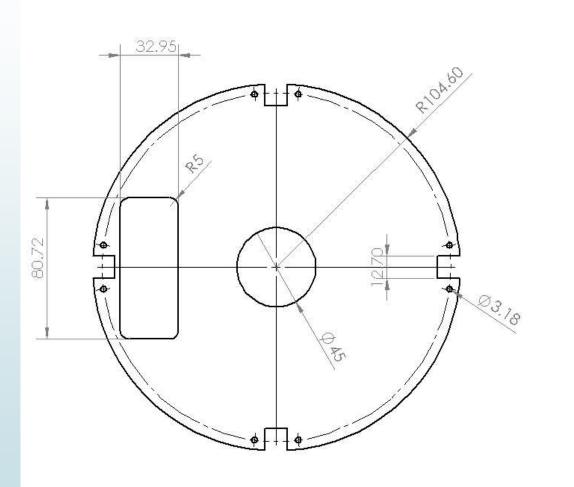
Mass Budget Backup Slide


Ð	Ball

Subsystem	Component	Raw Mass	Uncertainty Category	Budgeted Mass		
Total mass Available		10000		10000		
Avionics						
	Avionics Board	60	E	72		
Structure						
	Top Shelf	284	С	341		
	Bottom Shelf	286	С	343		
	Ball	766	M	774	1E	Estima
	8 Clips	56	С	67		
Payloads					20	Calavia
	Magnetometer	10	E	12	2C	Calculo
	Geiger Counter	70	E	84		-
	Converter for Geiger	5	E	6	3A	Datash
Comms					07	
	SMA cable	18	D	19		
	Patch Antennas	234.8	M	237	4M	Measu
	Tranceiver and Boards	150	E	180		
Power						
	Batteries	5582.8	M	5639		
	Board	100	E	120		
	2 Converters	40	E	48		
	Fuse	18	E	19		
Connectors						
	Voltage Regulator	50	E	60		
	Power Cable Connectors	330	D	347		
	52 screws	45.5	С	50		
	Misc Wires	500	E	600		
Used Mass				9017		
Margin				10%		
	pject Overview 🔪 🛛 Desig	gn 💦	Requirements 🕥 Te	esting and	S Pro	ject
i i i	Solut	ion /	and Risk 🛛 🗸 Ve	erification	/ Plan	ining

1E	Estimated	20%	Best Guess
2C	Calculated	10%	SolidWorks Model
3A	Datasheet	5%	Datasheet
4M	Measured	1%	Weighed on Scale


Backup Clip Drawing (dimensions in mm)



Standoffs and Battery Connectors

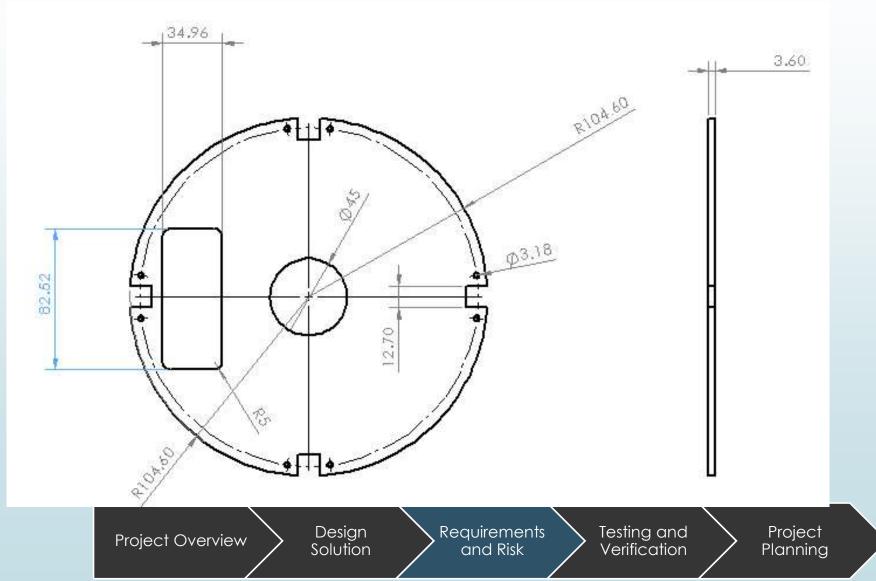
Top Shelf Drawing (dimensions in mm)

Design

Solution

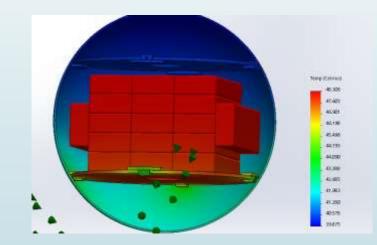
Ball Ball

Project Overview


Requirements and Risk Testing and Verification Project Planning

3.60 _11_

96


Top Shelf Drawing (dimensions in mm)

Thermal Study Backup

- Applied 8.7 Watts load total on batteries assuming that all power went to heat only.
 - Batteries reached max temp of 48 °C
 - This is unrealistic since most all of that power is transferred to components
 - Actual Wattage used = current draw^2 * internal Resistance ($P = I^2 R$)

Thermal Study Backup

- Thermal Properties of Lipo Batteries
- Not much info found online. Took weighted average of all materials inside to find thermal conductivity and specific heat

Design

Solution

Material	Percent Weight Low	Percent Weight High	Used Percent	Used Mass	Density (g/cm^3)	Gross Volume (cm^3)	Volume ratio	Thermal Coductiviy (W/mK)	Weighted Thermal Conductiviy (W/mK)	Specific Heat Capacity (J/g-C)	Weighted Specific Heat Capacity
Aluminum	2	10	10	33.1	2.7	1.24966965	0.092997626	205	19.0645133	0.896	0.08332587
Aluminum Foil	5	15	5	16.55	2.7	0.62483482	0.046498813	205	9.53225666	0.896	0.04166294
Carbon	10	30	15	49.65	2.26	2.23945225	0.166655038	1.7	0.28331356	0.71	0.11832508
Copper	5	15	10	33.1	8.96	0.37657456	0.028023838	401	11.2375591	0.39	0.0109293
Lithium Cobalt Oxide	20	40	25	82.75	2.3	3.66750875	0.272927815	5	1.36463908	1.8105	0.49413581
Lithium Salts copper chloride	1	5	3	9.93	2.07	0.48900117	0.036390375	5	0.18195188	0.39	0.01419225
Nickel	0.5	5	2	6.62	8.908	0.07575456	0.005637485	91	0.51301115	0.461	0.00259888
Organic Carbonate (calcium carbonate)	10	25	24	79.44	2.7	2.99920716	0.223194302	5.526	1.23337171	0.81994	0.18300594
Polymer	3	10	6	19.86	1.18	1.71564816	0.127674707	0.2	0.02553494	1.47	0.18768182
SUMS			100			13.4376511			43.4361514	7.84344	1.13585788
AVG									43.4361514		1.13585788

Project Overview

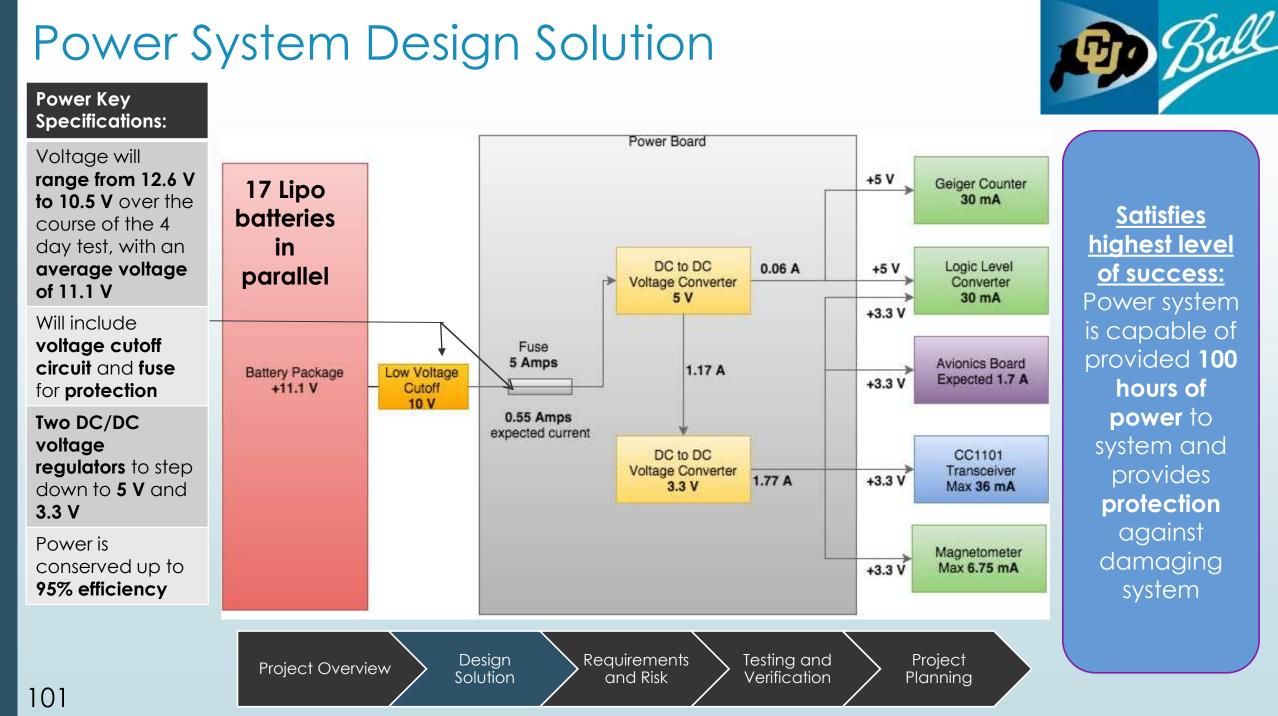
Requirements and Risk Testing and Verification

Project Planning

Thermal Model Temperatures Backup

	Modeled Temperature	Uncertainty	Margin	Uncertainty Percentage	Maximum Temperature
Batteries	41	4.1	14.9	10%	60
Avionics	91	9.1	24.9	10%	125
Transceiver	43	4.3	37.7	10%	85
Power Regulator	50	5	30	10%	85
Magnetometer	38	3.8	83.2	10%	125
Geiger Counter	41	4.1	39.9	10%	85

Project Overview


Requirements and Risk

Design

Solution

Testing and Verification Project Planning

Power System Design Solution

Safe Power System

Drivers:

- INT 5.2: Power system shall cut power if battery voltage is under 9 Volts
- INT 5.3: Power system shall not allow more than 5 Amps into system

Solution:

- Include a fuse rated up to 5 A, 125 V
- Maximum expected current 0.55 A
- Design margin of 5.25
- A Low Voltage Cutoff device set at 10 V
- Minimum safe battery voltage is 9 V
- Design margin of 11.1%

60 mm Low Voltage Cutoff Device

Devices selected to ensure the batteries will operate within safe current and voltage parameters. Requirements INT 5.2 and 5.3 satisfied.

Project Overview

Requirements and Risk

Desian

Solution

> Testing and Verification

Project Planning

45 mm

Voltage Supply Lines

Ball Ball

- We will use 2 SparkFun DC/DC Converter Breakouts
- Will step 11.1 V down to 5 V, then down to 3.3 V
- Switching regulators
- High efficiency (~95%)
- Maximum ±0.1V ripple voltage

Battery Parallel Connectors (Hobbyking.com Website)

- XT-60 Parallel Connector
- Will cut off banana cable end and solder on female connector

Project Overview

Requirements and Risk

Design

Solution

Testing and Verification

Project Planning

Payload Subsystem Tests

Test	Requirement/Level of Success
Magnetometer Test - compare to earth's magnetic field	SCI 1, Payload L1 – L2, L4, Power L1
Geiger Counter Test- compare to expected radiation	SCI 1, Payload L1 – L2, L4, Power L1

Comms Subsystem Tests

Test	Requirement/Level of Success/Model
Test signal strength using chip to chip with dev. kits	COM 2, Ground Station L1
Test signal strength using chip to chip with patch antenna	COM 2, Link Budget
Configure chip using 8051 before FPGA hookup	N/A
Configure chip with FPGA via SPI and check with smartRF	N/A
Use RF commands to program N.P. chip via FPGA	COM 1, COM 3, Ground Station L2
Cycle commands to data and wake to idle representing a full mission	СОМ 1, СОМ 3
Test ground station to save and display 2 separate sets of data from 1 stream	COM 4, Ground Station L3

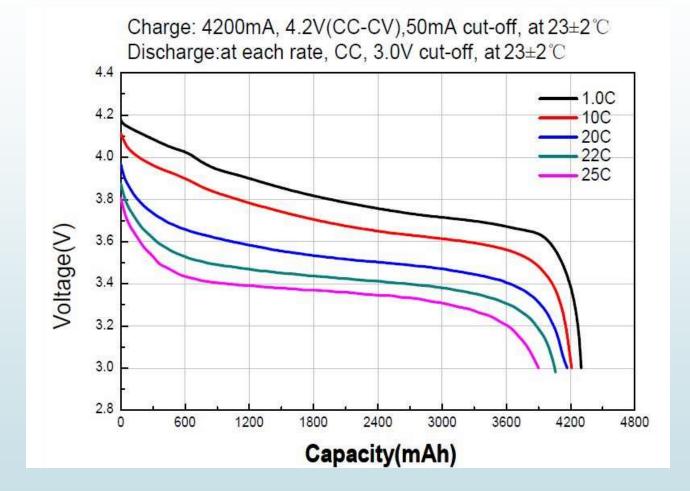
Project Overview Design Solution Requirements Testing and Project Planning

Avionics Subsystem Tests

Test	Requirement/Level of Success
Validate individual module outputs via testbench simulation	N/A
Validate total system outputs via testbench simulation	N/A
Validate individual module outputs via testbench simulation	N/A
Validate total system outputs via testbench simulation	N/A
Test functionality of simulated peripherals via O-Scope/Logic analyzer.	N/A
Validate data throughput requirements.	N/A
Validate power consumption.	N/A

Project Overview Design Solution Requirements Testing and Project Planning

Avionics Peripheral Tests



Test	Requirement/Level of Success
Test connection to power Avionics via powerboard	N/A
Test Magnetometer \rightarrow Avionics connection	N/A
Test Geiger Counter \rightarrow Avionics connection	N/A
Test Avionics/Memory <> Transceiver connection	N/A

Similar Lipo Battery Discharge Curves

Project Overview Design Solution Requirements Testing and Project Planning

Test Plans

- We are developing test procedures for all tests
- Before performing tests, we will review test plans with Trudy/Matt to make sure all safety concerns have been accounted for

Power Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Characterize discharge curve for single battery	—	—	Power Supply
Characterize discharge curve for two batteries in parallel	—	-	Power Supply
Test individual power board components	Power L1	_	_
Test power board with TENMA EX354T Power Supply	Power L1	_	—
Test power board with single battery	Power L2	_	—
Test power board with battery pack	Power L2	_	—

Project Overview

Design Solution

Requirements and Risk Testing and Verification

Payload Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Magnetometer Test - compare to earth's magnetic field	Payload L1 – L2, L4 Power L1	SCI 1	—
Geiger Counter Test - compare to expected radiation	Payload L1 – L2, L4 Power L1	SCI 1	—

Comms Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Test signal strength using chip to chip with dev. kits	Ground Station L1	COM 2	—
Test signal strength using chip to chip with patch antenna	—	COM 2	RF Link Model
Configure chip using 8051 before FPGA hookup	—	—	—
Configure chip with FPGA via SPI and check with smartRF	—	—	—
Use RF commands to program N.P. chip via FPGA	Ground Station L2	COM 1, COM 3	—
Cycle commands to data and wake to idle representing a full mission	_	COM 1, COM 3	—
Test ground station to save and display 2 separate sets of data from 1 stream	Ground Station L3	COM 4	—

Project Overview

Requirements and Risk

Design

Solution

Testing and Verification

Link Budget Validation Schematic

Avionics Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Validate individual module outputs via testbench simulation	_	_	—
Validate total system outputs via testbench simulation	_	_	—
Validate individual module outputs via testbench simulation	_	_	—
Validate total system outputs via testbench simulation	_	_	—
Test functionality of simulated peripherals via O-Scope/Logic analyzer	_	_	—
Validate data throughput requirements	—	—	—
Validate power consumption	-	_	—

Project Overview Design Solution Requirements Testing and Project Planning

Avionics Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Test Powerboard	-	_	—
\rightarrow Avionics connection			
Test Magnetometer	-	_	—
\rightarrow Avionics connection			
Test Geiger Counter	-	-	_
\rightarrow Avionics connection			
Test Transceiver	-	_	_
\rightarrow Avionics/Memory connection			

Project Overview Design Solution Requirements Testing and Verification

Moving Forward with Test Plans & Safety

- We are developing detailed test procedures for all tests, including steps to mitigate component safety hazards/concerns
- Before performing tests, we will review test plans with PAB members to make sure all safety concerns have been considered and addressed properly
- Some Component Safety Concerns:
 - Use ESD safe protocol to protect avionics board
 - Connect all tools, peripherals, hardware, and operators to a common ground during avionics board operation
 - Not shorting the leads to the batteries
 - Lipo batteries must be discharged within 48 hours being fully charged
 - Batteries should always be kept between 0°C and 60°C
 - Lipo batteries should be charged in Lipo-safe bag
 - Lipo battery assembly must not be discharged below 10V → voltage cutoff circuit

Project Overview Design Solution Requirements Testing and Project Planning

Power Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Characterize discharge curve for single battery	_	_	Power Supply
Characterize discharge curve for two batteries in parallel	—	-	Power Supply
Test individual power board components	Power L1	_	—
Test power board with TENMA EX354T Power Supply	Power L1	_	—
Test power board with single battery	Power L2	_	—
Test power board with battery pack	Power L2	_	—

Project Overview Design Solution Requirements Testing and Project Planning

Payload Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Magnetometer Test - compare to earth's magnetic field	Payload L1 – L2, L4 Power L1	SCI 1	—
Geiger Counter Test - compare to expected radiation	Payload L1 – L2, L4 Power L1	SCI 1	—

Comms Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Test signal strength using chip to chip with dev. kits	Ground Station L1	COM 2	—
Test signal strength using chip to chip with patch antenna	—	COM 2	RF Link Model
Configure chip using 8051 before FPGA hookup	—	—	—
Configure chip with FPGA via SPI and check with smartRF	—	—	—
Use RF commands to program N.P. chip via FPGA	Ground Station L2	COM 1, COM 3	—
Cycle commands to data and wake to idle representing a full mission	_	COM 1, COM 3	—
Test ground station to save and display 2 separate sets of data from 1 stream	Ground Station L3	COM 4	—

Project Overview

Requirements and Risk

Design

Solution

Testing and Verification

Avionics Subsystem Tests

Test	Levels of Success	Functional Requirements	Models
Validate individual module outputs via testbench simulation	_	_	—
Validate total system outputs via testbench simulation	_	_	—
Validate individual module outputs via testbench simulation	_	_	—
Validate total system outputs via testbench simulation	_	_	—
Test functionality of simulated peripherals via O-Scope/Logic analyzer	_	_	-
Validate data throughput requirements	—	—	—
Validate power consumption	—	—	—

Project Overview Design Solution Requirements Testing and Project Planning

Avionics Periferals Tests

Test	Levels of Success	Functional Requirements	Models
Test Powerboard	-	_	—
\rightarrow Avionics connection			
Test Magnetometer	-	_	_
\rightarrow Avionics connection			
Test Geiger Counter	-	-	_
\rightarrow Avionics connection			
Test Transceiver	-	_	_
\rightarrow Avionics/Memory connection			

Project Overview Design Solution

Requirements and Risk Testing and Verification

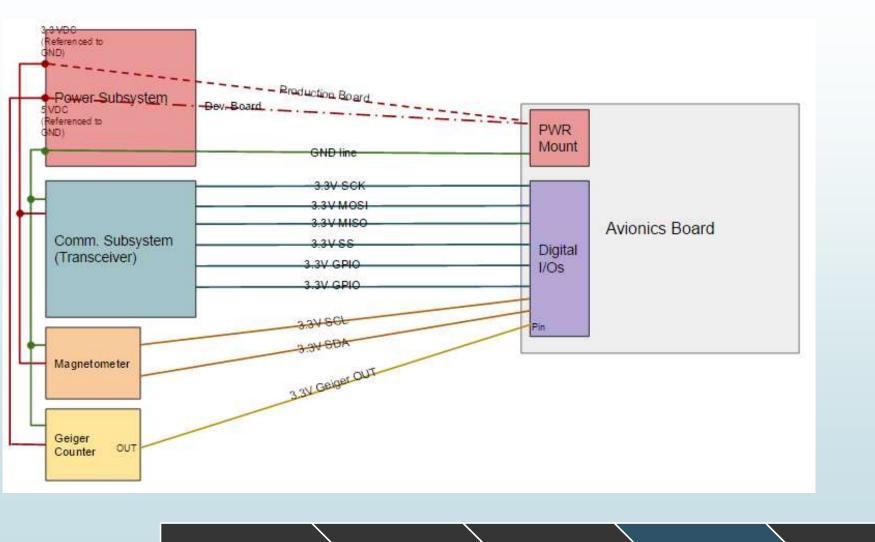
Thermal Model Validation

Objective:Validate Thermal ModelTest:Final System Test → by April 17th

*additional information included in backup slide (Final System Test Logistics)

Duration	Data Needed*	Resolution Needed	Sampling Rate	Component	Maximum Temperature (°C)	Modeled Temperature (°C)	Margin (°C)
100 hrs.	Temperature	2 °C	Once every				
\sim 4 hr. shifts			15 minutes	Batteries	60	41	+19
	Time	1 minute	10 11110103	Avionics	125	91	+34
Location	Equipment*	Resolution	Procurement	Transceiver	85	42	+42
	(10) K-type Thermocouples	1.1 °C	Trudy's Lab	Power Regulator	85	50	+35
Trudy's Lab	NI9213 DAQ	0.02 °C	ITLL	Magnetometer	125	38	+87
	Full Neopod Assembly	-	-	Geiger Counter	85	41	+44

Project Overview


Requirements and Risk

Design

Solution

Testing and Verification

Subsystem Integration Setup

Design

Solution

Ball Ball

Project Overview

Requirements and Risk Testing and Verification Project Planning

Flat-Sat Test Logistics

- Test Schedule: (2) 8.5 hour tests → February 29th March 17th
- Location: Trudy's Lab
- Data Needed: Radiation data
 - Magnetometer data
 - Time of ground station reception
 - Component temperature at least once per minute→ nearest 2 °C
- Key Equipment: Neopod assembly
 - (7-8) K-type thermocouples (available in Trudy's Lab)
 - → accurate to 1.1 °C
 - NI9213 Thermocouple DAQ (Needs to be checked out from ITLL)
 - →sampling rate: 1200 Samples/second

Design

Solution

→resolution: 0.02 °C for up to 16 thermocouples

Project Overview

Requirements and Risk

Final System Test Logistics

- Model Validation: Power Budget, Mass Budget, Thermal Model
- Test Schedule: 100 hours between March 30th April 17th
 - → 4 hour shifts, 2 people each shift
- Location: Trudy's Lab
- Data Needed: Radiation data
 - Magnetometer data
 - Time
 - Component temperature at least every 30 minutes → nearest 2 °C
- Key Equipment: Neopod assembly

(10) K-type thermocouples (available in Trudy's Lab) \rightarrow accurate to 1.1 °C NI9213 Thermocouple DAQ (Needs to be checked out from ITLL)

- → sampling rate: 1200 Samples/second
- \rightarrow resolution: 0.02 °C for up to 16 thermocouples

Project Overview

Design Solution Requirements and Risk

Structural Risk Assessment

Risks			Description					Mitigation
RP1: up	Tolerance (Stack	The clips may not mate properly to the internals of the sphere due to tolerances					Clip design modified to allow adjustment
	Mistake in hining		Designed t	oolpaths c	an behave	d	SolidCAM and CNC mill simulation too will be used extensively	
	Unable to bate Heat			Structure unable to dissipate the heat in an earth environment				Sphere will be opened and fan will be added if deemed necessary
		Severity						
		1	2	3	4	5		
-	~							Unacceptable

Likelihood 5 Acceptable with 4 Mitigation 3 Acceptable 2 RP1 RP3 1 RP2 Requirements Testing and Project Design Project Overview and Risk Solution Verification Planning 127

Sensor Risk Assessment

Geiger Col	unter is Imp	roperly Ha	ndled	For any te	st using the (Geiger Count	er there will be specific			
	Geiger Counter is Improperly Handled				For any test using the Geiger Counter, there will be specific procedures to avoid improper use. There will also be a requirement to use ESD safe equipment when handling the sensors.					
Hardware failure in sensors				Quick initial testing and calibration of sensors with pre- developed software will detect if this is a problem and allow enough time to purchase another device .						
		Sev	erity							
	1	2	3	4	5					
5							Unacceptable			
4							Acceptable with			
3			RA1				Mitigation			
2		RA2					Acceptable			
5 4 3			Sev 1 2 1 2 RA2	Severity 1 2 3 A A A A A A A A A A A A A A A A A A A	develope allow eno Severity 1 2 3 4 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	developed software v allow enough time to Severity 1 2 3 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	developed software will detect if the allow enough time to purchase and Severity			

Avionics Risk Assessment

Project Overview

Risk	Description				Mitigati	Mitigation					
RA1	Ball Avionics Delivery					Constant customer feedback will allow for early warning and preparation. Microsemi Dev Kit is valid offramp.					
RA2	ESD Failure				Proper team ESD training . Always use ESD safe work and storage environments for all avionics and interfacing activities.						
RA3	FPGA Soft	ware Deve		Attend Microsemi trainings and webinars . Use professional resources. Follow learning curriculum .							
	Severity						_				
	1 2 3					5					
σ	5								Unacceptable		
Likelihood	4								Acceptable with		
elih	3	RA1							Mitigation		
Like	2					RA3			Acceptable		

RA2

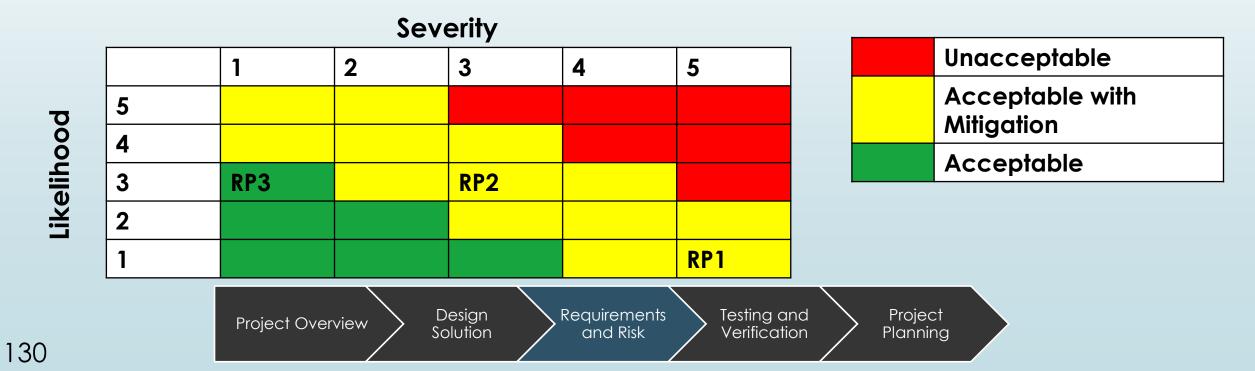
Requirements and Risk

Design

Solution

Testing and

Verification


Project

Planning

Communications Risk Assessment

Risk	Description	Mitigation
RP1	Front-end of communications equipment is damaged	Will use appropriate safety precautions when operating equipment. Use of transceiver instead of transmitter/receiver
RP2	Noise within NeoPod significantly disrupts communications system	Will buy shielded SMA cable Early integration test will allow us to characterize noise
RP3	Interference within 437.5 MHz band disrupts demonstration	Capability to switch to 401 MHz range if needed.

Power Risk Assessment

Risk	Description				Mitigation					
RP1	Project runs out of power while testing				Developing an accurate power budget and characterizing the battery capacity.					
RP2	Batteries discharge unevenly while testing				The batteries will be tested individually for defects . We have plans to do testing with batteries in parallel					
RP3	Batteries are damaged				Have included both a 5 A fuse as well as a voltage cutoff circuit . This should prevent damaging the batteries during tests. Safety precautions during charging.					
			S	everity						
		1	2	3	4	5				
σ	5							Unacceptable		
Likelihood	4							Acceptable with		
elih	3				RP2			Mitigation		
Like	2					RP3		Acceptable		
	1				RP1					
101		Project C	Overview	Design Solution	Requiremer and Risk					

References

- [1] Jet Propulsion Laboratory, Europa Lander Mission Selection, National Aeronautics and Space Administration, 2012.
- [2] Wertz, J., and Larson, W., Space mission analysis and design, Torrance, Calif.: Microcosm, 1999.
- [3] Pappalardo, R.T., S. Vance, F. Bagenal, B.G. Bills, D.L. Blanev, D.D. Blankenship, W.B. -Brinckerhoff, et al. "Science Potential from a
- Europa Lander." Astrobiology 13, no. 8 (August 2013): 740-773.
- [4] Phillips, C., 'Magnetic Fields and Water on Europa', Archive.seti.org Available: http://archive.seti.org/news/features/magnetic-fields-
- europa.php.
- [5] Kivelson, M., Khurana, K., Means, J., Russell, C., and Snare, R., 'The Galileo magnetic field investigation', Space Science Reviews, vol.
- 60, 1992.
- [6] Khurana, K., Kivelson, M., Hand, K., and Russell, C., 'Electromagnetic Induction from Europa's Ocean and the Deep Interior', Europa,
- 2009, pp. 571-586.
- [7] Díaz-Michelena, M., 'Small Magnetic Sensors for Space Applications', Sensors, vol. 9, 2009, pp. 2271-2288.
- [8] Lemisensors.com, 'LEMI-011 | localhost' Available: http://lemisensors.com/?q=LEMI-011.
- [9] Dass, C., Fundamentals of contemporary mass spectrometry, Hoboken, N.J.: Wiley-. Interscience, 2007.
- [10] Explainthatstuff.com, 'How do Geiger counters work? Explain that Stuff' Available: http://www.explainthatstuff.com/how-geiger-
- counters-work.html.
- [11] Seismo.berkeley.edu, 'Long Period Seismology on Europa' Available: http://seismo.berkeley.edu/manga/panningetal2006.pdf.
- [12] Infiltec.com, 'INFILTEC: Model QM-1.0 Long-Period Seismometer Electronics' Available: http://www.infiltec.com/seismo/inf-
- gm10.htm.

- [13] NASA Jet Propulsion Laboratory, 'The Ultra Compact Imaging Spectrometer (UCIS)'Available:
- http://www.lpi.usra.edu/meetings/ipm2012/pdf/1105.pdf
- [14] Jpl.nasa.gov, 'NASA's Europa Mission Begins with Selection of Science Instruments' Available:
- http://www.jpl.nasa.gov/news/news.php?feature=4598.
- [15] Klingman, E., 'FPGA programming step by step', Embedded Available: http://www.embedded.com/design/prototyping-and-
- development/4006429/2/FPGA-programming-step-by-step.
- [16] House, Andrew WH. "Programming Soft Processors in High Performance Reconfigurable Systems." Reconfigurable Computing (2008):
- 87-89 Available: http://www.eecg.toronto.edu/wosps08/papers/house.pdf
- [17] Don Arbinger and Jeremy Erdmann, T., 'Designing with an embedded soft-core processor', Embedded Available:
- http://www.embedded.com/design/mcus-processors-and-socs/4006632/Designing-with-an-embedded-soft-core-processor.
- [18] Bourque, B., 'Arduino vs. Raspberry Pi: Mortal enemies, or best friends?', Digital Trends Available:
- http://www.digitaltrends.com/computing/arduino-vs-raspberry-pi/.
- [19] Arduino.cc, 'Arduino Compare' Available: https://www.arduino.cc/en/Products/Compare.
- [20] Netduino.com, 'Netduino :: Netduino 3 : Tech Specs' Available: http://www.netduino.com/netduino3/specs.htm.
- [21] Raspberrypi.org, 'Raspberry Pi Model Specifications Raspberry Pi Documentation' Available:
- https://www.raspberrypi.org/documentation/hardware/raspberrypi/models/specs.md.
 - [22] Beagleboard.org, 'BeagleBoard.org black' Available: http://beagleboard.org/black.
- [23] Solar System Exploration, 'Radioisotope Thermoelectric Generator (RTG)' Available: https://solarsystem.nasa.gov/rps/rtg.cfm.

- [24] Clyde-space.com, 'Power Storage' Availa space.com/products/spacecraft batteries/us
- [25] Sparkfun.com, 'Polymer Lithium Ion Battery 2000mAh PRT-08483 SparkFun Electronics' Available:
- https://www.sparkfun.com/products/8483. -
- . [26] Energizer.com, 'Energizer Ultimate Lithium Batteries' Available: http://www.energizer.com/batteries/energizer-ultimate-lithium
 - batteries.

rules.

.

- [27] Frenzel, L., 'What's The Difference Between FDD And TDD?', Electronicdesign.com Available:
- http://electronicdesign.com/communications/what-s-difference-between-fdd-and-tdd.
- [28] Sparkfun.com, 'SparkFun Geiger Counter SEN-11345 SparkFun Electronics' Available: https://www.sparkfun.com/products/11345.
- [29] Raspberry Pi, 'Camera Module Raspberry Pi' Available: https://www.raspberrypi.org/products/camera-module/.
- [30] Afar.net, 'FCC Rules for Wireless Equipment operating

Project Overview

Solution

Design

Requirements and Risk

Testing and Verification

