

Project ELSA

Europa Lander for Science Acquisition

Team: Darren Combs, Gabe Frank, Sara Grandone, Colton Hall, Daniel Johnson, Trevor Luke, Scott Mende, Daniel Nowicki, Ben Stringer

Customer: Joe Hackel (Ball Aerospace)

Advisor: Dr. Robert Marshall

Project Overview Communications


____>

Power

Avionics

_____>

Structure

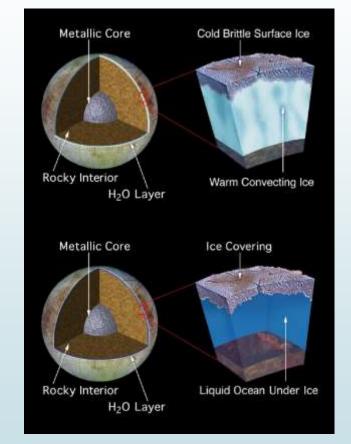
Summary

Backup Slides

Project Overview

Project Statement

The ELSA team will build the Earth based, "tabletop equivalent", of a spherical probe that would be sent to the surface of Europa. The goal of the ELSA project will be to develop and integrate the communications and avionics systems with a scientific payload chosen by the team. This project is motivated by the Europa mission concept developed by Ball Aerospace.



Motivation for Project: Europa

Moon of Jupiter

- Icy surface with active geology
- Previous flybys suggest possibility of subsurface /ocean
- Identified by NASA as a "High Priority Target" for its potential to support life

Communications

Power

Avionics

Structure

Logistics

Backup Slides

Summarv

Altitude: 100 km Period: 126 min Inclination: 95°

NeoPod free fall to South Pole

Europa

Command

128 kbps data rate

NeoPod

Orbiter

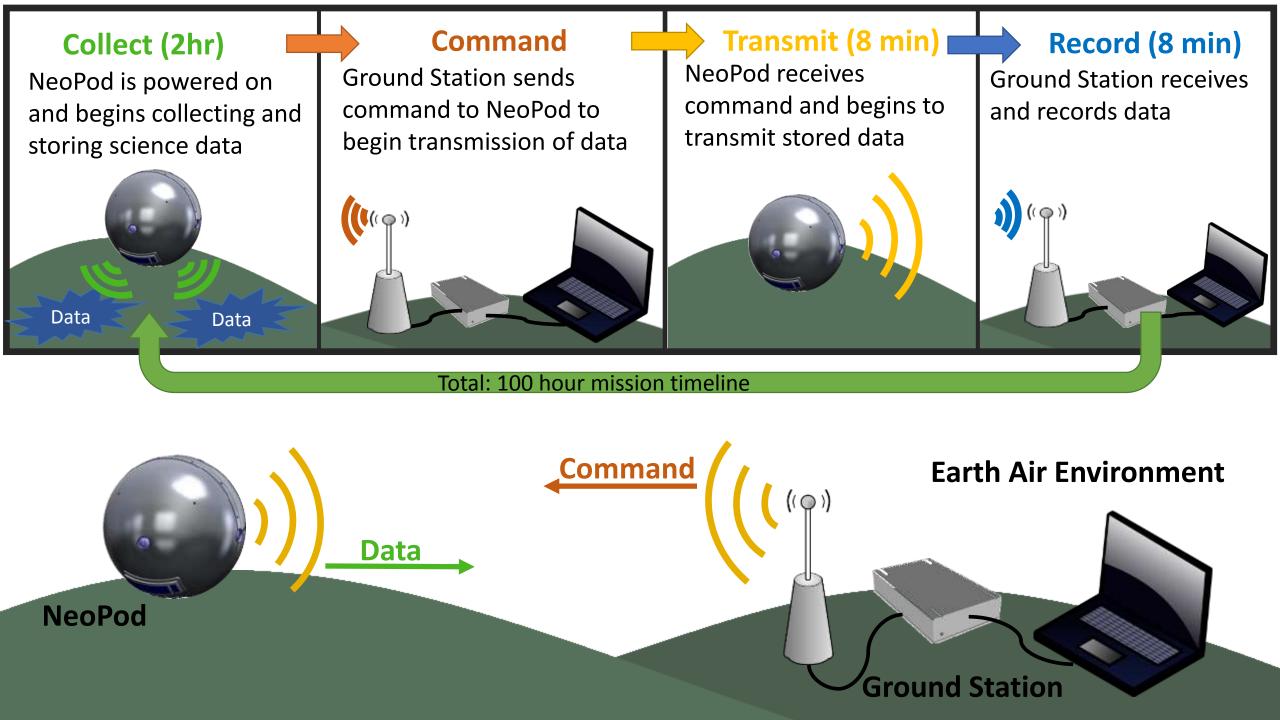
Data Transfer

Magnetometer Data

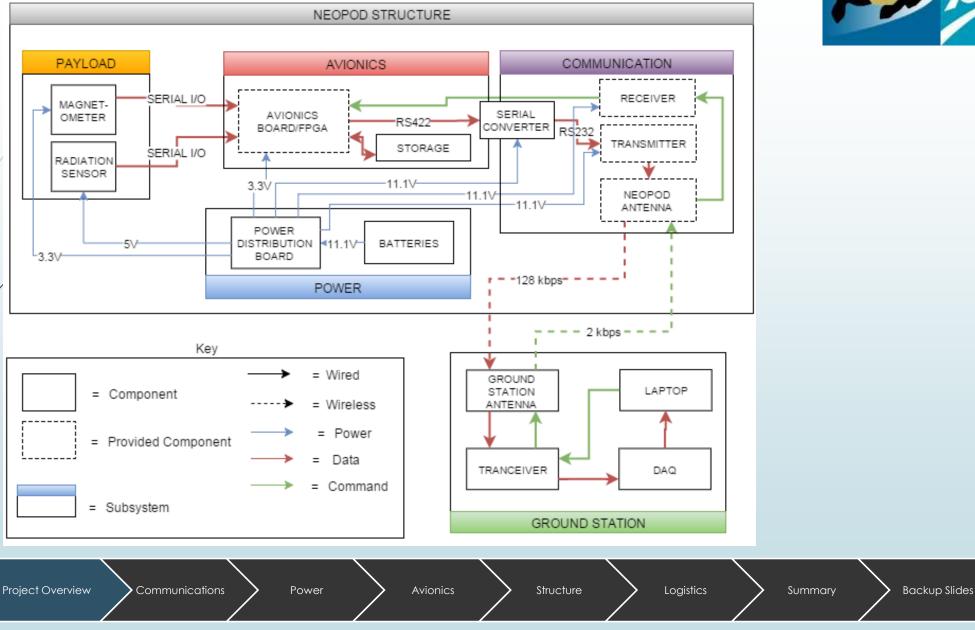
100 hr surface lifetime

Radiation Data

ELSA Mission Objectives

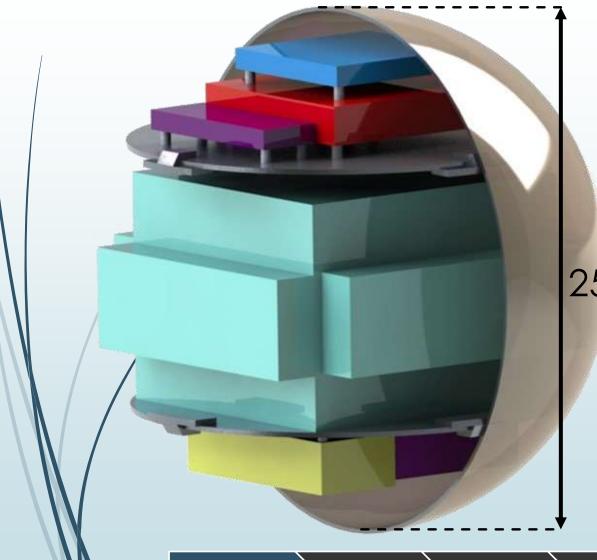


SCI 0: NeoPod shall collect scientific data relevant to the study of Europa


COM 0: NeoPod shall communicate with the Ground Station

► INT 0: NeoPod shall integrate with existing mission architecture

Functional Block Diagram



Baseline Design

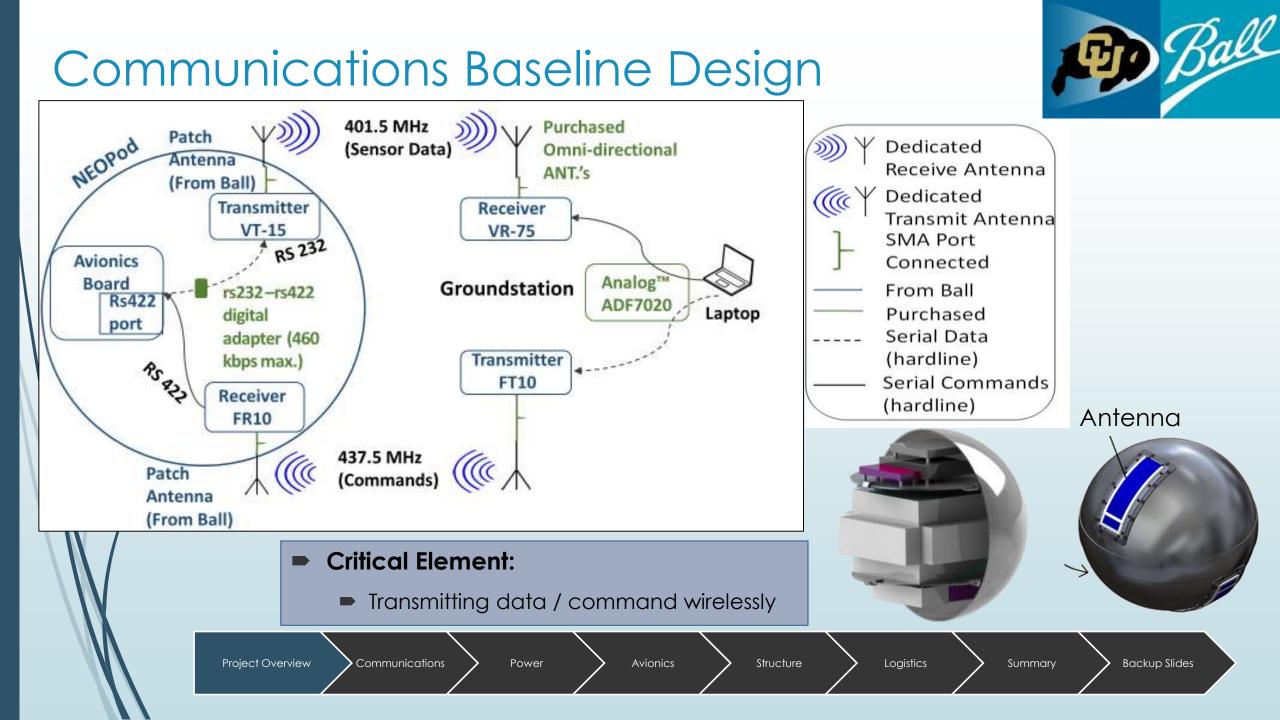
Structures Baseline Design

Critical Elements:

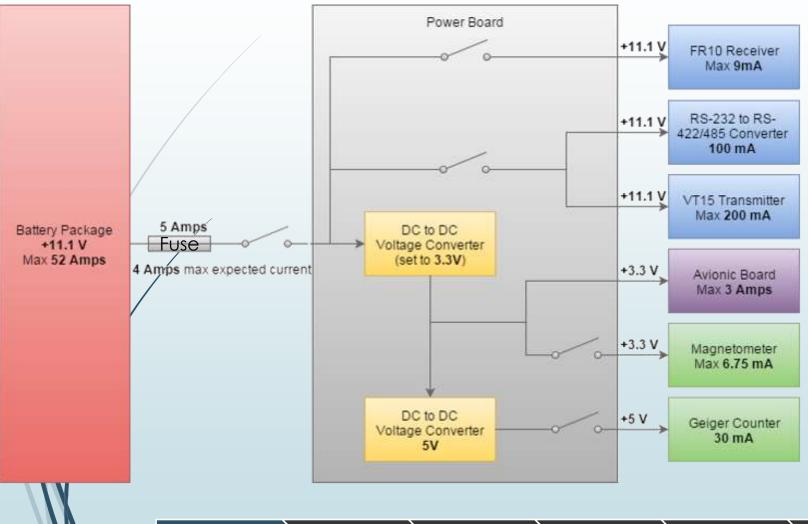
- Housing all components within sphere
- Mounting internal structure to sphere

25 cm

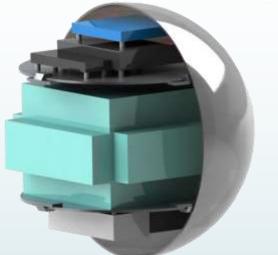
Avionics


Red – Avionics Board Blue – Power Board Light Blue – Batteries Yellow – Science Payloads Purple – Communications

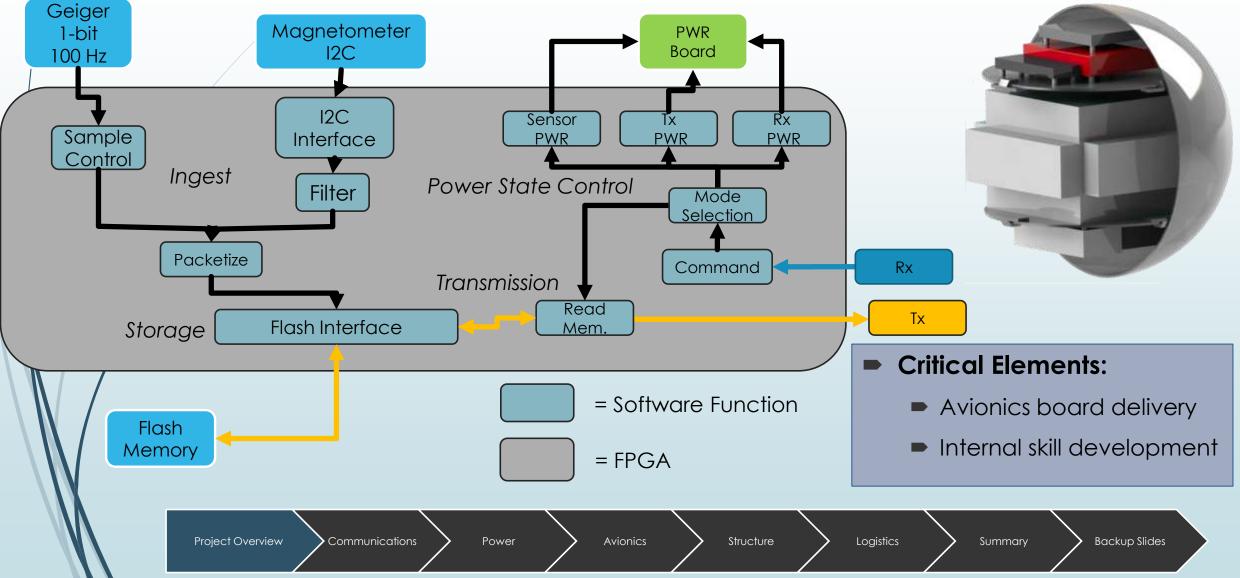
Communications


____>

Power


Summary

Power Baseline Design


Critical Elements:

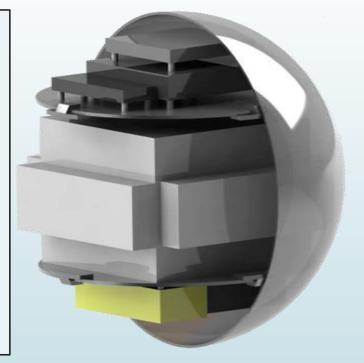
- 100 hour power requirement with a limited amount of volume
- Developing accurate power budget

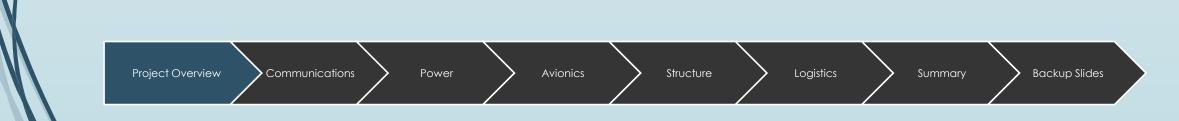
Avionics Baseline Design

Payload Selection

Results of trade study of 9 different science options

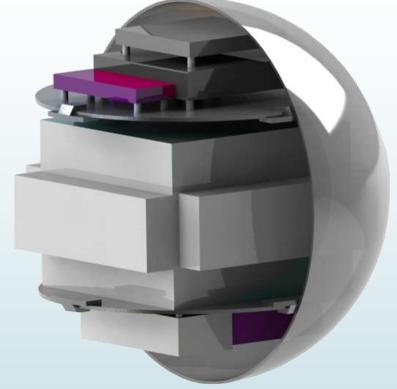
Selected Sensors


Vector Magnetometer


- Measure 3-D changes in magnetic field to study evidence of subsurface ocean
- Large variety of instruments to choose from
- Widely used on satellite missions

Geiger Counter

- A Geiger counter would measure the radiation experienced on the surface of Europa
- High levels of radiation on the surface would have an effect on potential life there, as well as any instruments or people sent from Earth


Subsystem Feasibility Studies

Power

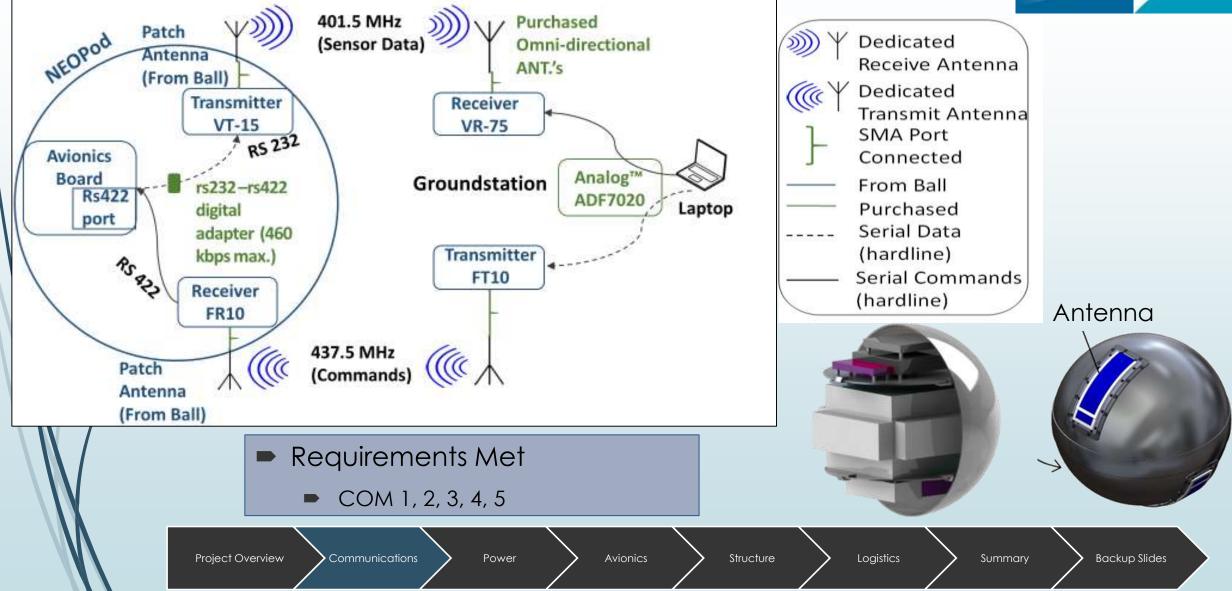
Structure

Communications Subsystem

Power

Summary

Communications Requirements

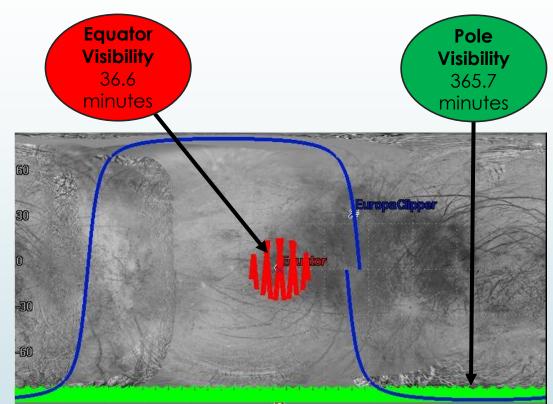


Requirement	Description	Motivation
COM 1	The NeoPod shall wirelessly accept commands	NeoPod must be able to receive a wireless command from the Ground Station in order to be able to begin the transmission of data
COM 2	NeoPod shall wirelessly transmit data	NeoPod must be able to transmit data in order to successfully complete its mission
COM 3	NeoPod shall employ antennas supplied by Ball Aerospace (x2)	Antennas conform to the external spherical shape of NeoPod
COM 4	The Ground Station shall wirelessly send commands	Mimics the activity of an orbiter
COM 5	The Ground Station shall wirelessly receive data	Used for verification of data collection and transmission

Communications Baseline Design

STK Model

Mission lifetime 100 hours


- 96 hours of data collection
- 4 additional hours for additional link time

Europa Orbiter Parameters

- Inclination 95°
- 126 minute period
- Eccentricity = 0

NeoPod Probe

- 12 degree mask angle
- Ideal 90°S latitude location (Assumed)

STK Ground Track: South Pole vs. Equator Pass Area

Data Transmission at Each Latitude

Transmitted Mission Data at Different Latitudes Over 100 Hour Period*

Latitude Location (deg South)	Total Pass Time (s)	Transmit Rate(kbps)	Maximum Data (MB)	Total Data Including 25% Margin (MB)
0	2198	128	40	30
20	2094	128	38	29
45	3010	128	55	41
60	4146	128	76	57
75	10149	128	186	139
90	21942	128	401	301

*Scenario time frame from 1 Oct. 2015, 00:00.00 UTC -> 5 Oct. 2015 04:00.00 UTC *All longitude values set to 0°

Maximized Data at Pole-> Assume Pole Location for Mission Timeline

Project Overview Communications

Structure

Logistics

Link Budget - RF

Project Overview

P Ball

Frequency401.5 MHz437.5 MHzRange100 km100 kmBit Error Rate10E-610E-6Data Rate128 kbps2 kbpsTX Power Output2 W200 mWLink Margin8.49 dB32.15 dBDesign Margin-6 dB-6 dB	Parameter	Uplink (Data from NeoPod)	Downlink (Command to NeoPod)
Bit Error Rate10E-610E-6Data Rate128 kbps2 kbpsTX Power Output2 W200 mWLink Margin8.49 dB32.15 dB	Frequency	401.5 MHz	437.5 MHz
Data Rate128 kbps2 kbpsTX Power Output2 W200 mWLink Margin8.49 dB32.15 dB	Range	100 km	100 km
TX Power Output2 W200 mWLink Margin8.49 dB32.15 dB	Bit Error Rate	10E-6	10E-6
Link Margin 8.49 dB 32.15 dB	Data Rate	128 kbps	2 kbps
	TX Power Output	2 W	200 mW
Design Margin -6 dB -6 dB	Link Margin	8.49 dB	32.15 dB
	Design Margin	-6 dB	-6 dB
Total Link Margin 2.49 dB 26.15 dB	Total Link Margin	2.49 dB	26.15 dB

Communications

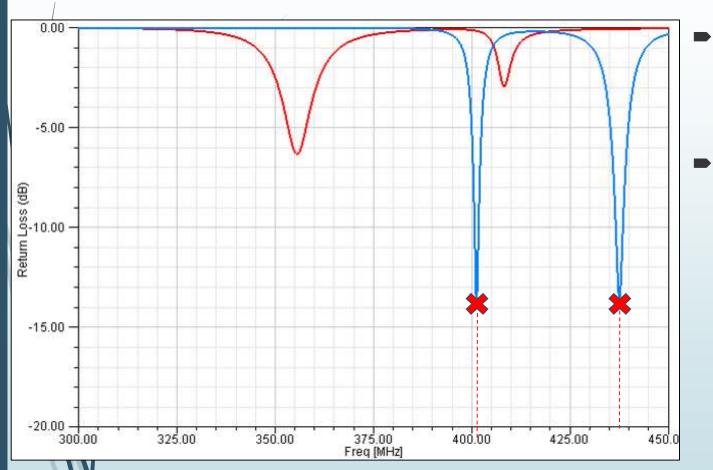
Power

Assumptions:

1) For long range test, orbiter antenna must be 25 dbi gain.

Summary

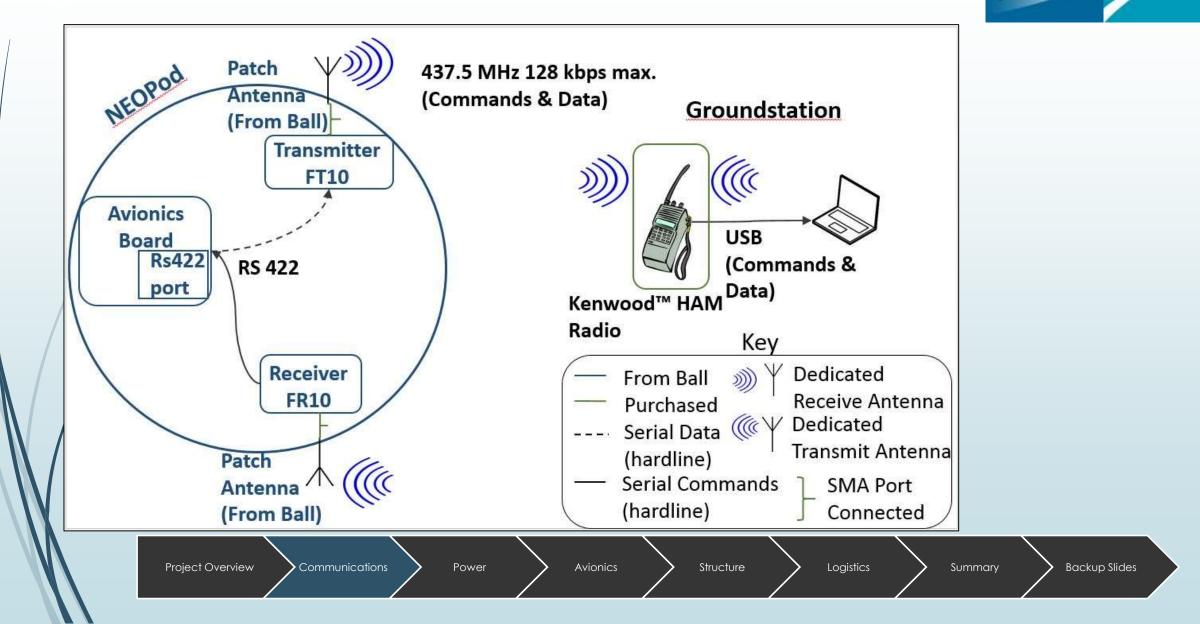
2) Europa Environment: **Negligible** atmospheric loss


Requirements Met

• COM 1, 2, 3, 4, 5

Avionics

Provided Antennas: Perceived Issue


- Appropriate Antenna Frequencies:
 - 401 MHz
 - ► 437.5 MHz
 - Transmitter Receiver Frequencies:
 - TR10/TR15: 433.0 434.8 MHz
 - ► VR15/VT75: **340.0 399.9 MHz**

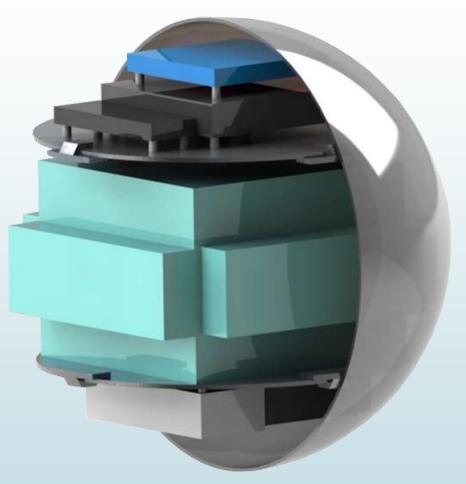
90% Success Confidence

- Custom made for Ball
- Customer Assurance
 - Pending future data points from Ball

Simplified Ground Station

PD Ball

Communications Requirements


Requirement	Description	Feasible
COM 1	The NeoPod shall wirelessly accept commands	\checkmark
COM 2	NeoPod shall wirelessly transmit data	\checkmark
COM 3	NeoPod shall employ antennas supplied by Ball Aerospace (x2)	\checkmark
COM 4	The Ground Station shall wirelessly send commands	\checkmark
COM 5	The Ground Station shall wirelessly receive data	\checkmark

Communications

Structure

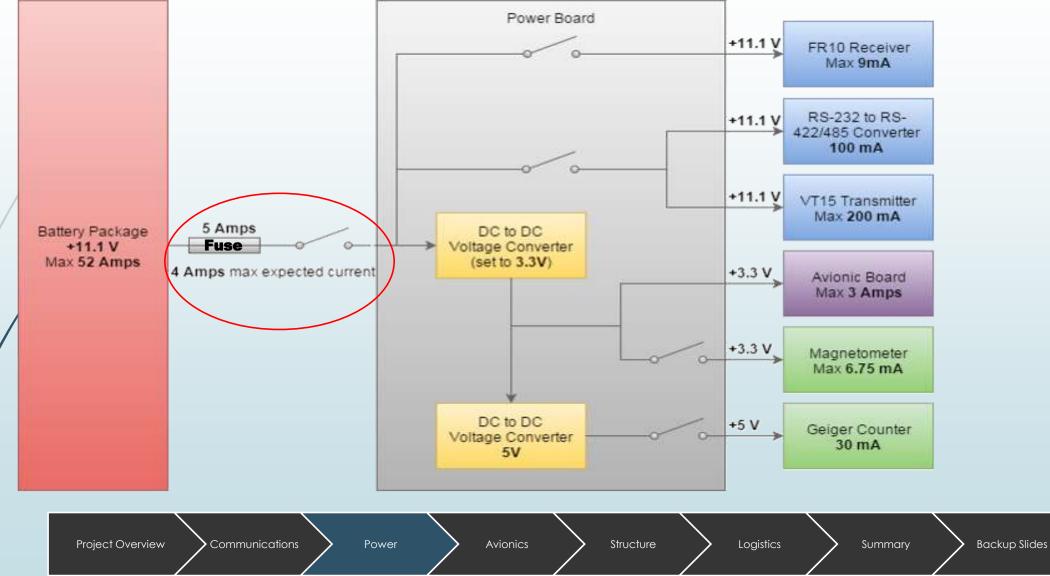
Power Subsystem

Power

Avionics

Summary

Power Requirements



Requirement	Description	Motivation
SCI 2.1	NeoPod power subsystem shall sustain the scientific instruments for a 96 hour period	Europa orbits Jupiter every 3.5 Earth days. The 96 hour period will capture data from the entire orbit.
COM 6	NeoPod communications system shall be powered by onboard power system	Derived. NeoPod must be self- sufficient.
INT 6.2	Power subsystem will provide power to the avionics subsystem	Derived. Power system must be able to power the avionics subsystem.

Power

Power Distribution Board

Battery Selection

Backup Slides

	Lithium-ion Polymer (3 Cell)	Lithium Iron Disulfide (AA)
Voltage (V)	11.1	1.5
Capacity (Ah)	5.2	3
Mass (g)	331	24
Volume (cm ³)	154	22
Total Energy (Wh)	58	4.5
Specific Energy (Wh/kg)	175.2	189.5
Energy Density (Wh/cm ³)	0.376	0.206
Rechargeable	Yes	Νο
Project Overview Communications	Power Avionics Stru	ucture Logistics Summary

Lithium-Ion Polymer Feasibility

Structural Limit: 19 batteries

Parameter:	Each Battery:	Total (19 batteries in parallel)
Power Capacity:	57 Wh	1083 Wh
Mass:	0.35 kg	6.3 kg
Volume:	154 cm ³	2926 cm ³
Cost:	\$32.00	\$610.00

Contingency Plan:

- Expand spherical structure from 25 cm to **30 cm diameter**
 - Allows for 29 batteries
 - Power Capacity: 1847 Wh

Verified With Customer

Power Budget

Component	Max Power Draw [Wh]	15% Power Margin [Wh]
Lithium polymer 5200mAh	+1083	-163
Sparkfun DC/DC Converters	-59	-9
Geiger Counter	-15	-3
9 DOF Sensor Stick	-2	-0.5
Avionics Board	-572	-86
FR10 Receiver	-111	-17
VT15 Transmitter	-12	-2
RS-232 to RS- 422/485 Converter	-7	-1
Project Overvie	w Communications	Power Avionic

B Ball

Backup Slides

Calculation Assumptions:

1. Probe is placed on South Pole

2. DC-DC 90% Efficiency

3. All components at maximum operating conditions

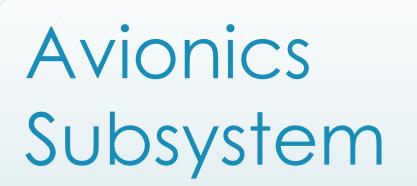
Totals	[Wh]
Available + Margin	1083 -163
<mark>Needed</mark> + Margin	- <mark>776</mark> -118.5
Remaining Power	25 Wh
•	25 W

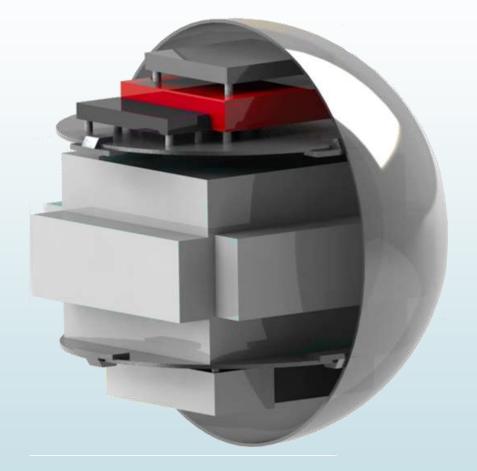
Requirements Met

Structure

• COM 6, SCI 2.1, INT 6.2

Summary

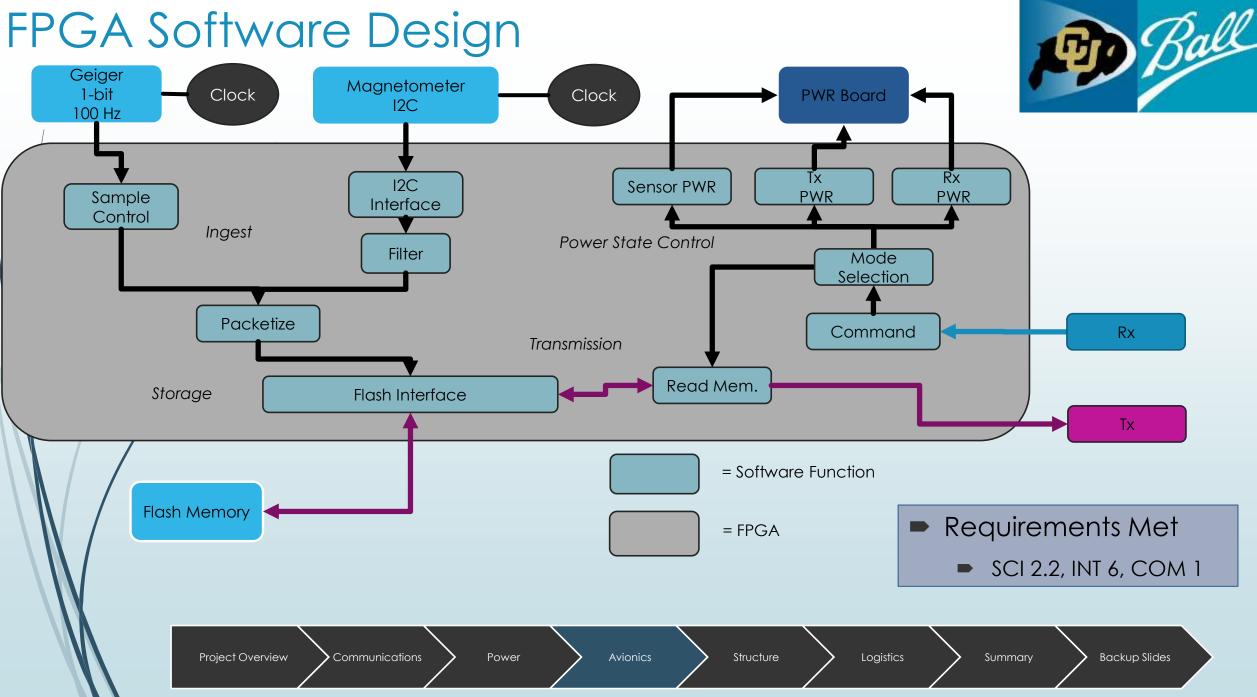

Logistics


Power Requirements

Requirement	Description	Feasible
SCI 2.1	NeoPod power subsystem shall sustain the scientific instruments for a 96 hour period	\checkmark
COM 6	NeoPod communications system shall be powered by onboard power system	\checkmark
INT 6.2	Power subsystem will provide power to the avionics subsystem	\checkmark

Communications

Avionics Requirements

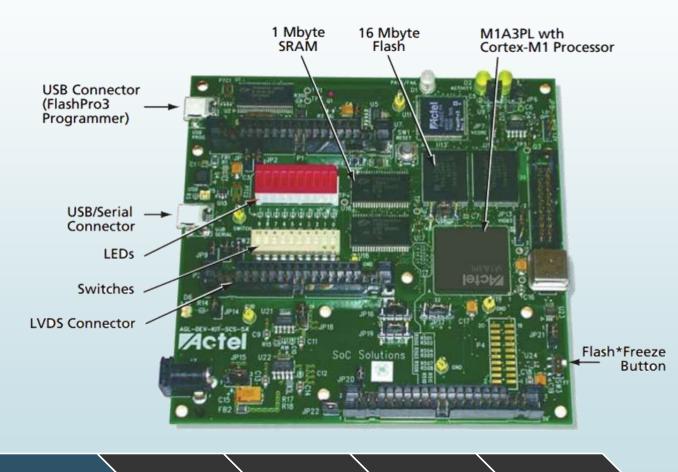

Requirement	Description	Motivation
SCI 2.2	NeoPod sensors shall integrate with avionics subsystem	The avionics system must process data from the payloads for transmission
INT 6	NeoPod shall have an avionics board that will store data from sensors and relay data to communication system	Avionics board is a component provided by Ball Aerospace for integration in the system.
COM 1	The NeoPod shall wirelessly accept commands	The avionics system must responds to commands sent from ground station
СОМ 2.3	NeoPod shall transmit data at as near as possible to a maximum of 128kbps	Avionics subsystem must meet data throughput requirements

Communications

Summary

PD Ball **Avionics Board Overview** Ball Aerospace Avionics Board NAND Flash Mem FPGA 8 Gb 1.5 V**CMOS XCVR** 48 MHz SDRAM 504 kbits RAM 256 Mb, 100 MHz **LVDS Receiver** 3 Million Gates >400 Mbps 66 MHz, 66-Bit PCI Voltage Regulator 1.5 V **LVDS** Driver Reprogrammable 90 mm >400 Mbps Oscillator **RS-422** Receiver 48 MHz 100kbps-10Mbps Requirements Met **RS-422** Driver Reset / Watchdog 100kbps-10Mbps 3.3 V COM 2.3 96 mm Project Overview Avionics Communications Structure Logistics **Backup Slides** Power Summary

FPGA Software Design


Current Status – Software Development

- ProASIC3L Development Kit (\$600)
 - Provided at no charge by Microsemi
 - Received 10/6/2015
- Software: Libero SoC Platinum
 - Awaiting response for licensing
- Ball Aerospace Avionics Board
 - Expected delivery 1/22/2016

Communications

Microsemi ProASIC3L Development Board

Summarv

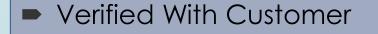
Instructional Milestones

Level	Task
0	Understand dev environment/tools and FPGA development
1	FPGA flashes a light
2	Inputs logic value, blinks light according to true or false
3	Inputs 2 logic values, flash separate lights according to true or false
4	Inputs logic values, stores values in FIFO or RAM, outputs logic value
5	Inputs logic values, stores values in flash memory (Goal: 10/26/2015)
6	Inputs sinusoidal signal, stores values in flash memory, reads from memory, outputs to serial port (Goal: 11/9/2015)
7	Repeat 6, add a logical input that turns output on or off (Goal: CDR)
X	

Contingency Plan

Cutoff Dates

- Board Design and Documentation Delivery 10/30/2015
 - Complete avionics design documentation delivered from Ball
- Internal Knowledge Evaluation
 - Feasibility based on knowledge progress rate
- Avionics Board Delivery


Communications

Delivery of hardware from Ball

Contingency Plan

Default to ProASIC3L Development Kit as primary avionics package

Project Overview

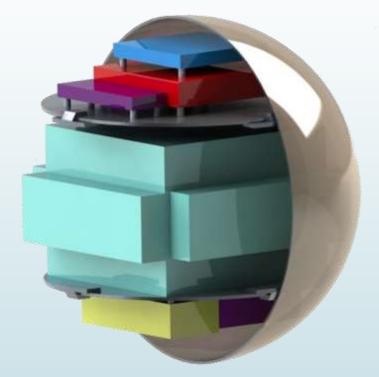
Power

Structure

1/22/2016

Summary

11/9/2015


Avionics Requirements

Requirement	Description	Feasible
SCI 2.2	NeoPod sensors shall integrate with avionics subsystem	\checkmark
INT 6	NeoPod shall have an avionics board that will store data from sensors and relay data to communication system	
COM 1	The NeoPod shall wirelessly accept commands	\checkmark
СОМ 2.3	NeoPod shall transmit data at as near as possible to a maximum of 128kbps	\checkmark
Project	Overview Communications Power Avionics	Structure Logistics Summary Backup Slides

Structure Subsystem

Communications

Power

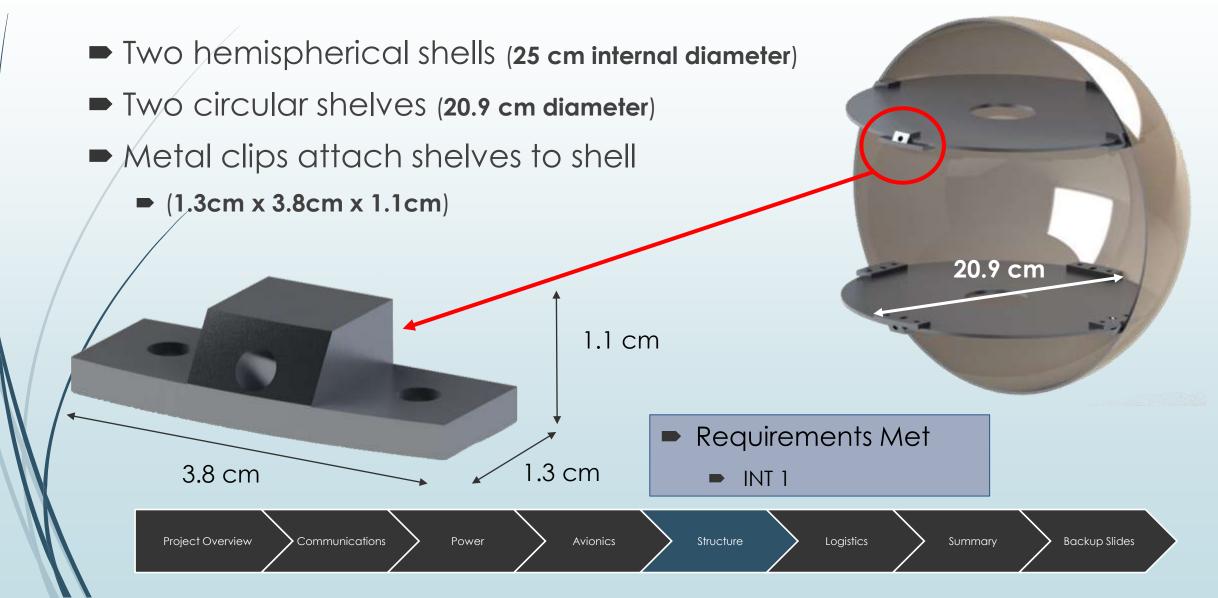
Avionics

Structure

Summary

Structure Requirements

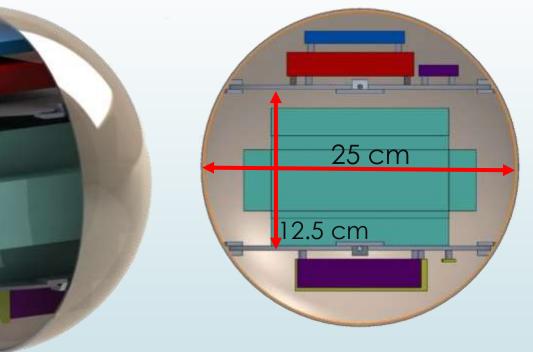
Requirements	Description	Motivation
INT 1	NeoPod shall have an internal structure that attaches the components to the external shell	The NeoPod is required to be fully integrated with all essential components mounted within the structure.
INT 2	NeoPod shall have a mass less than 10 kg	Mass limitation based on orbiter. This does not apply to the CAD model of the NeoPod with extra shell thickness for radiation shielding.
INT 3	NeoPod shall have a maximum diameter of 30 cm	Limited by space on orbiter.


Communications

Power

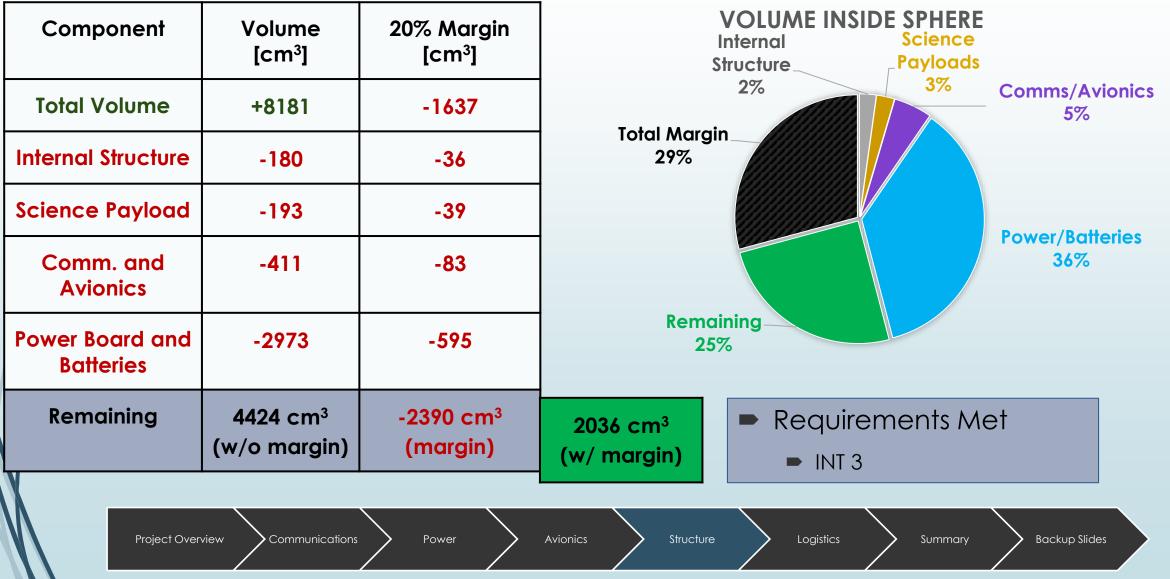
Summary

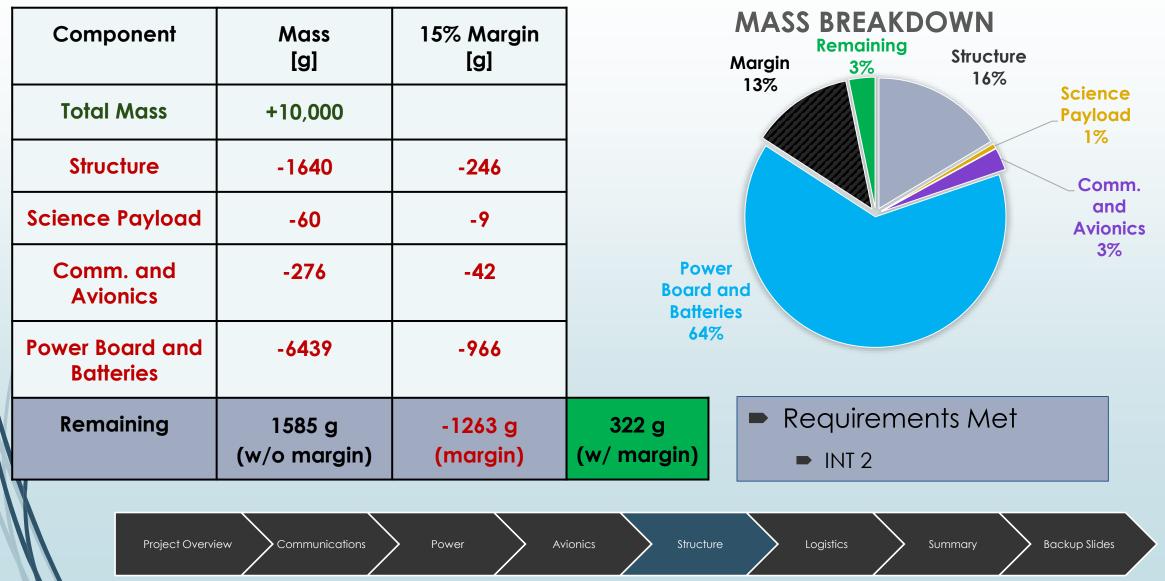
Basic Structure



Fitting Hardware

Contains all hardware


- Red Avionics Board
- Blue Power Board
- Light Blue Batteries
- Yellow Science Payloads
- Purple Communications
 - **Requirements** Met
 - - INT 1


Volume Budget

Mass Budget

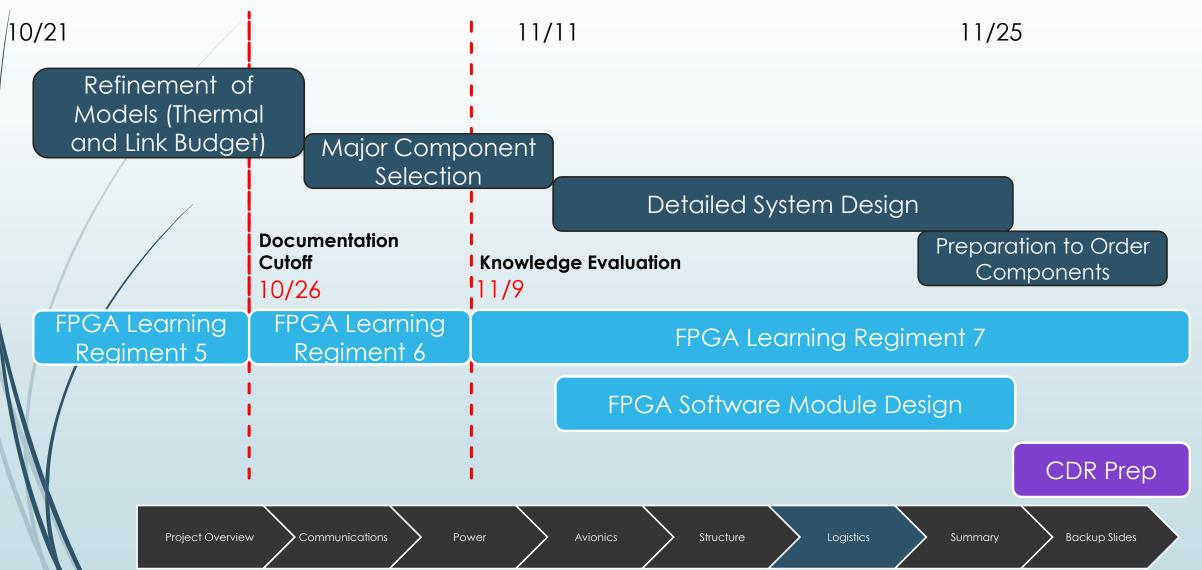
Structures Requirements

Requirements	Description	Feasible
INT 1	NeoPod shall have an internal structure that attaches the components to the external shell	
INT 2	NeoPod shall have a mass less than 10 kg	\checkmark
INT 3	NeoPod shall have a maximum diameter of 30 cm	

Logistics

> Power

Budget

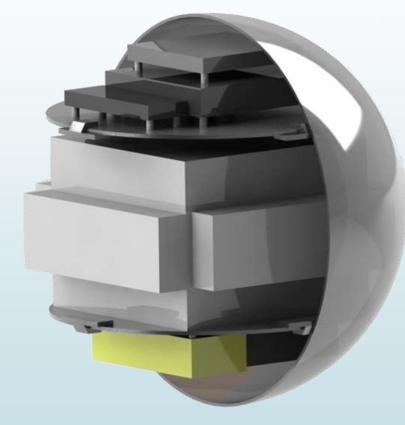


Backup Slides

Subsystem	Low Estimate	High Estimate
Communications	\$110	\$1110
Power	\$750	\$815
Avionics	\$52	\$750
Structure	\$180	\$250
Payload	\$200	\$500
Margin	\$1000	\$1000
TOTAL	\$2292 (\$2708 left)	\$4425 (\$575 left)
Project Overview Commu	unications Power Avionics	Structure Logistics S

Schedule

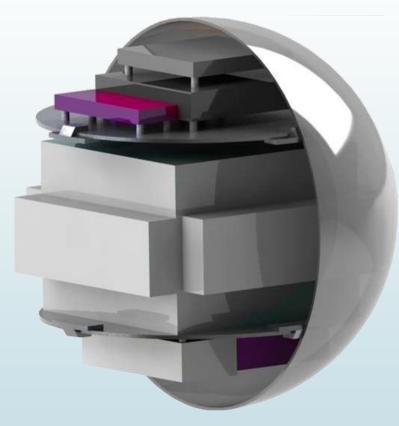
Summary


Power

Payload:

- Instruments will collect relevant science data
- Can integrate with
 avionics board

Payload	Feasible
Communications	
Power	
Avionics	
Structure	
Logistics	

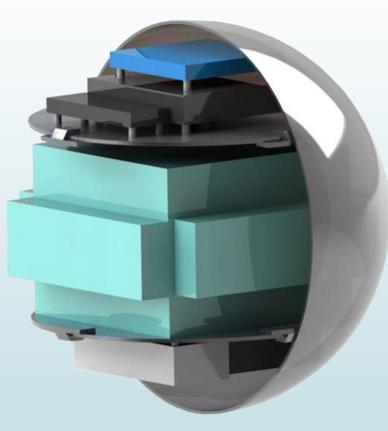

Communications

Summary

Communications:

- Communications systems have some **heritage**
- Antenna mismatch risk mitigated by alternative designs and customer data

Payload	Feasible
Communications	Feasible
Power	
Avionics	
Structure	
Logistics	


Summary

Communications

Power:

- Power budget shows positive power remaining with design margin
 - Power risk
 mitigated by
 spherical shell
 expansion
 contingency plan

Payload	Feasible
Communications	Feasible
Power	Feasible
Avionics	
Structure	
Logistics	

Power

Communications

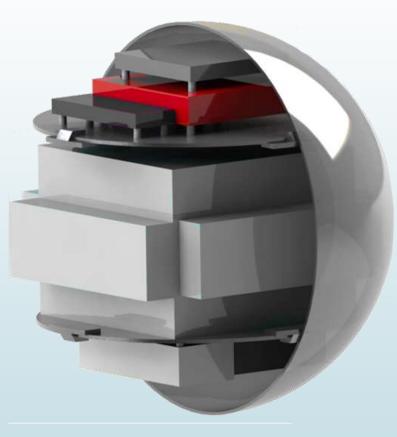
Avionics

Structure

Logistics

Summary

Backup Slides

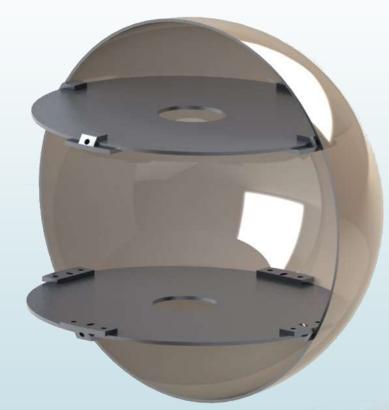


Backup Slides

Summary of Feasibility

Avionics:

- Learning Curriculum with Development Board provides team with necessary skillset
- Avionics delivery risk mitigated by
 Development
 Board contingency
 plan



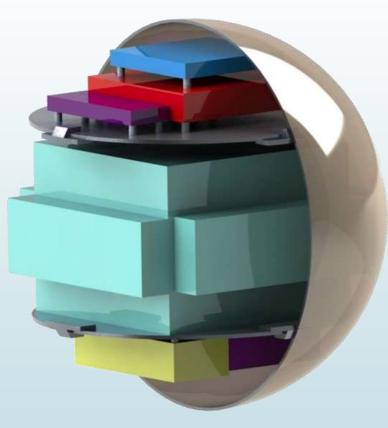
Payload	Feasible
Communications	Feasible
Power	Feasible
Avionics	Feasible
Structure	
Logistics	

Structure:

- Volume and mass with design margin meet requirements
- Use of modified
 heritage
 components

Payload	Feasible
Communications	Feasible
Power	Feasible
Avionics	Feasible
Structure	Feasible
Logistics	

Communications


Logistics

Backup Slides

Logistics:

- Current budget indicates that there will be extra funds in case of emergency
- Avionics delivery and cutoff dates have been coordinated with Ball Aerospace

Payload	Feasible
Communications	Feasible
Power	Feasible
Avionics	Feasible
Structure	Feasible
Logistics	Feasible

Power

Structure

Summary

Backup Slides

Power

Summary

RS232-RS422/485 Digital Converted Ball

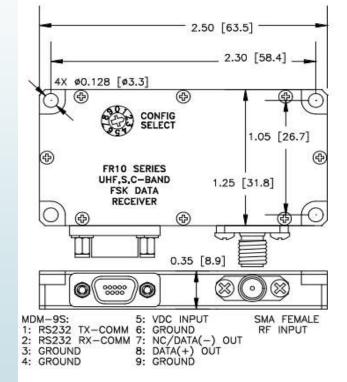
- 460.8 kbps max.
- ► 0.15 kg
- Requires 10-30 VDC
- Modbus ASCII/RTU

http://www.bb-elec.com/Products/Datasheets/SCPx11 3713ds.pdf

CCSDS Source Packet Design

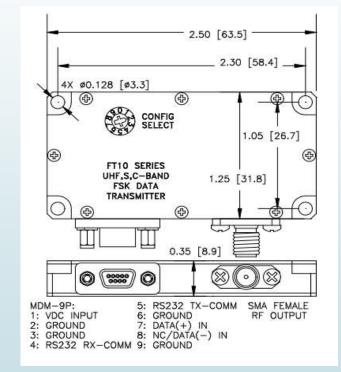
- 6 bytes max of overhead in each packet
- 60 bytes of data per packet equates to 10% overhead

VERSION NO.	PACKET IDENTIFICATION		PACKET SEQUENCE CONTROL		PACKET DATA LENGTH	PACKET SECONDARY HEADER (*)	SOURCE DATA (*)	
	TYPE INDI- CATOR	PCKT. SEC. HDR. FLAG	APPLICATION PROCESS IDENTIFIER	GROUPING FLAGS	SOURCE SEQUENCE COUNT	LLIIGIII	May Contain:	
000	0	1 If Sec.Hdr. present, else 0		01 - first Pckt. 00 - cont. Pckt. 10 - last Pckt. of Group 11 - no Grouping		No. of octets of Packet Data Field minus 1	- S/C Time - Packet Format Info - Ancillary Data	


Receiver: FR-10

Specifications:

- **Frequency Range**: 433.0 434.8 MHz
- Modulation: Binary Frequency Shift Keying (BFSK)
- Output Impedance: 50 Ohms
- Data Format: RS 422
- ► Volume: 1.1 Cubic Inches (1.25"x2.50"x0.35")
- Weight: < 1.00 oz


Transmitter: FT-10

Specifications:

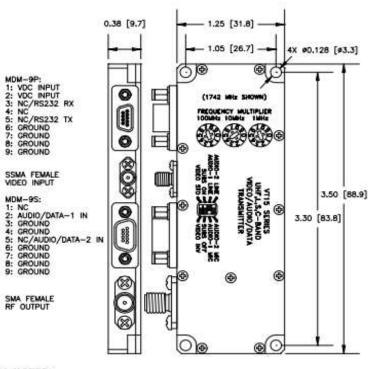
- Frequency Range: 433.0 434.8 MHz
- Modulation: Binary Frequency Shift Keying (BFSK)
- Output Impedance: 50 Ohms
- Data Format: RS 422
- ► Volume: 1.1 Cubic Inches (1.25"x2.50"x0.35")
- ► Weight: < 1.00 oz

Transmitter: VT-15

Specifications:

- **Frequency Range**: 340.0 399.9 MHz
- Modulation: Analog FM
- Output Impedance: 50 Ohms

Power


- Data Format: RS 232
- ► Volume: 1.7 Cubic Inches (1.25"x3.50"x0.38")

Avionics

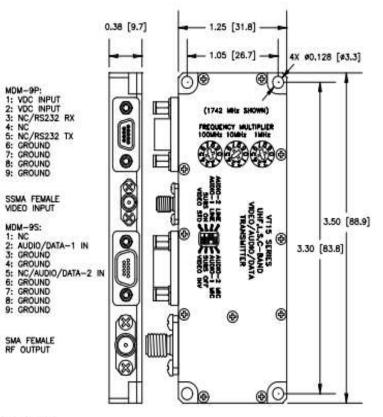
■ Weight: < 1.70 oz

<u>Communications</u>

Project Overview

Summary

Structure



Receiver: VR-75

Specifications:

- Frequency Range: 340.0 399.9 MHz
- Modulation: Analog FM
- Output Impedance: 50 Ohms
- Data Format: RS 232
- Volume: 7.4 Cubic Inches (2.50"x3.50"x0.85
- Weight: < 6.0 oz

** NOTES:

Project Overview

Communications > Power

Avionics

Structure

Logistics

Summary

Command Link

- ► FR-10
 - Frequency Range: 433.0 434.8 MHz
- Modulation: Binary Frequency Shift Keying (BFSK)
- Output Impedance: 50 Ohms

► FT-10

- Frequency Range: 433.0 434.8 MHz
- Modulation: Binary Frequency Shift Keying (BFSK)
- Output Impedance: 50 Ohms

Data Link

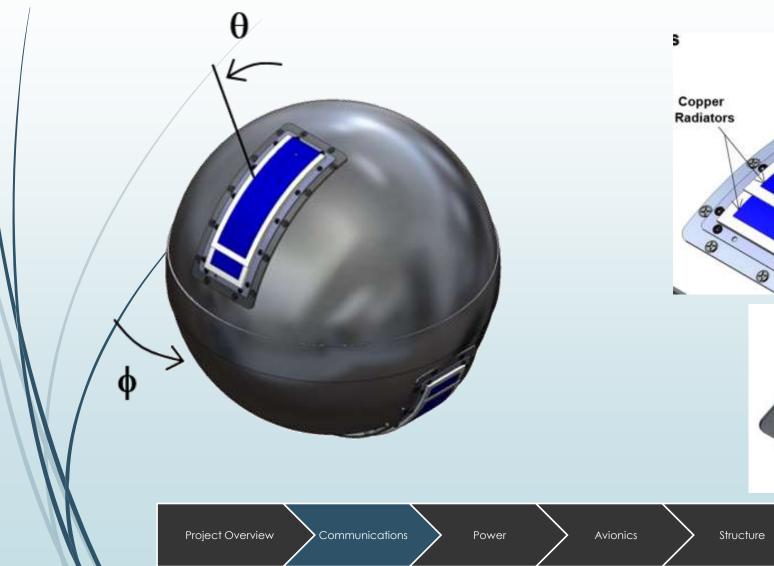
► <u>VR-75</u>

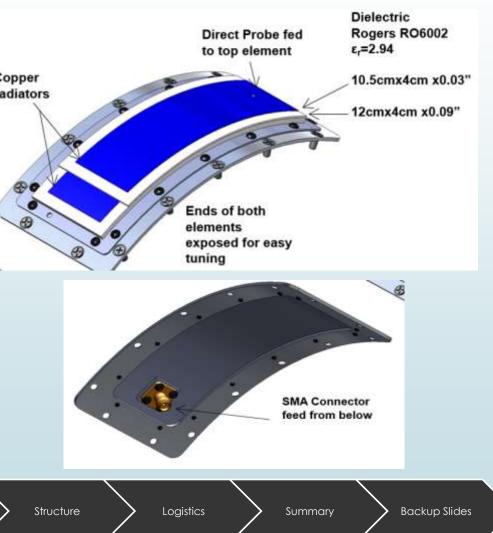
• Frequency Range: 340.0 - 399.9 MHz

Modulation: Analog FM

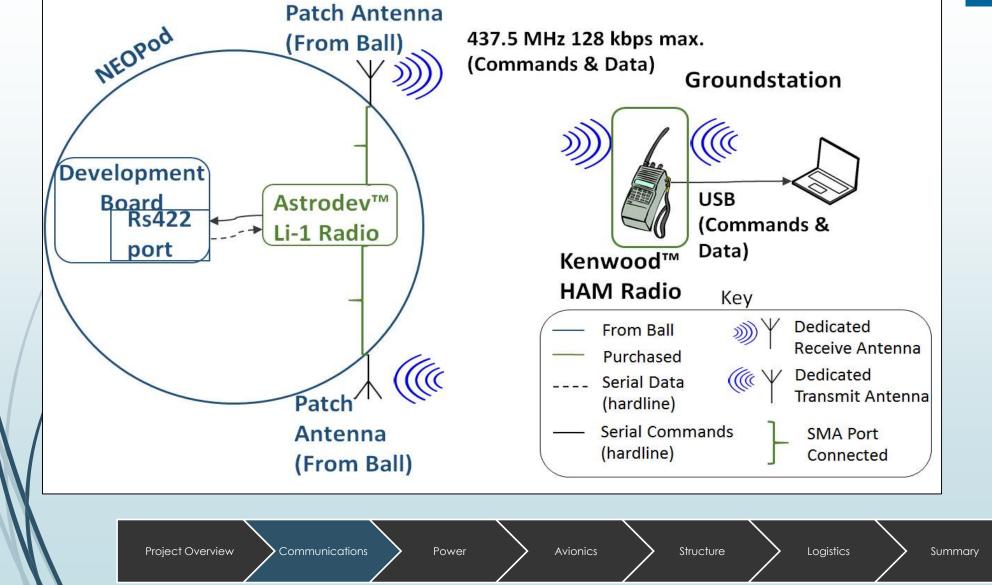
- Output Impedance: 50 Ohms

► <u>VT-15</u>




- Frequency Range: 340.0 399.9 MHz
- Modulation: Analog FM
- Output Impedance: 50 Ohms

Dual-Band UHF Patch Antennas



Two Way Radio Option

Backup Slides

Analog ADF7020 Transceiver

- Frequency: 135-600 Mhz
- Modulation: FSK 200 kbps Max.
- Debugging: Digital RSSI (received signal strength indicator)

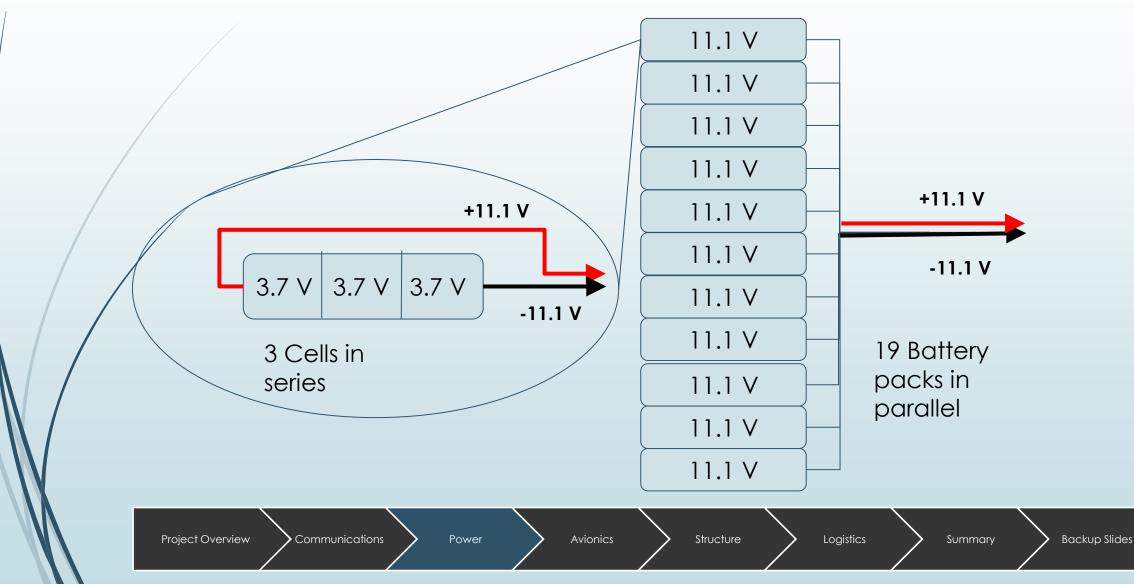
Transceiver - Lithium Radio

- Frequency: 130-450 MHz
- Transmit Power: 250mW 4 W
- Baud Rate: 9600
- Req'd Power at 4W: 250 mW

Kenwood Radio

- Frequency: 144-440 MHz
- Baud Rate: 9600
- Debugging: Adjacent Channel Scanner
- Transmit Power: 5 Watts max. (4 selectable powers)
- USB Capable
- Matlab compatible for commands

Mission Timeline


	Time (Hrs)											Power
Instrument	<-0	<-1	<-2	<-3			<-96	<-97	<-98	<-99	<-100	(Wh)
Avionics Board												632
Receiver					Π							111
Transmitter					Π							16
Sensors												17
											Total	776

- Avionics board will be powered for 100 hours
 - Power saving modes may be utilized
- Receiver will be powered for 100 hours
- Transmitter will be powered for ~8 minutes once every two hours
- Sensors will be powered for 96 hours to collect required amount of data

Power Source Configuration

Power Budget

POWER BUDGET

Project

Payload Avionics Comms

(Component	Quantity	Time [hr]	Current draw [mAh]	Voltage [V]	Power draw [Wh]	Margin [Wh]
	Lithium polymer 5200mAh	19	100	98800	11.1	1096.68	0
	Sparkfun DC/DC Converter	2	100	5324.849869	11.1	59.10583355	17.73175006
	Geiger Counter	1	96	2880	5	14.4	4.32
	9 DOF Sensor Stick	1	96	648	3.3	2.1384	0.64152
1	Avionics Board	1	100	173326.8967	3.3	571.978759	171.5936277
	FR10 Receiver	1	100	10000	11.1	111	33.3
	RS-232 to RS-422/485 Converter	1	6.09	548.6486486	11.1	6.09	1.827
	VT15 Transmitter	1	6.09	1015.203	11.1	11.2687533	3.38062599

Totals	[Wh]
Power Available	1096.68
Power Needed	775.9817
Power Margin	232.7945
Additional Power Margin	87.90373

	$\langle \rangle$,	\	\backslash \rangle	\backslash			
ct Overview		Power	Avionics	Structure		Summary	Backup Slides	
					/ /			

Back-up: FPGA Power Budget

Parameter	Value	Units	Description	Parameter	Value	Units	Description
Total Power	1.586932964		1	FOLK		MH2	Global clock signal frequency
	0.56446			F GLN	48	IM HZ	Foronal clock silicial undrieuch
Static Power	1.020887616	1.00		liser	0.00007	mW/MHz	
ACCOUNT OF A DAMAGE	102098/010	<u>E</u> WY		PACS	0.0000/		tosale esta el linges Tán el tra de
No. No.			Law 1	alpha1			toggle rate of VersaTile outputs
PDCD		mw	sleep	PAC6	0.00029	mW/MHz	
904		mw	active	Concernant Inc.			(i) The second secon
99.62	0.00375		idle	N C-Cell	0	Contract of the	# of VersaTiles used as combinatorial modules
ed ci		mw	flash/freeze	PAC7	0.00029	mW/MHz	
PDCA	2.55		PLL@15V	-			
PD (3		mw :		PACB	0.0007	mW/MHz	
PDCB	5.71		input pin power consumption	-			1
PD.C7	42.21	mw	output pin power consumption	PA/C9		mW/MHz	
-			11	N inputs	22	<u> </u>	# of I/O input buffers used
PDC[1,2,3,0(4)	30	mW	power mode (see page 27 in DS)	alpha2	0.1	%	VO buffer toggle rate
N Banks		# C	# of I/O banks powered in the design	N Outputs	4	-	# of I/O output buffers
PDG		mW		betal	the second se	%	VO buffer enable rate
				PAC10		mW/MHz	
Ninputs	22		# of I/O input buffers used in the design out of 341	1. Printer	040704	(interference	1
PDCB	5.71	mW		PAC11	0.025	mW/MHz	
				N Blocks	112	- 22	# of RAM block used out of 112?
NOutputs	4	M	# of I/O output buffers used in the design out of 341	F Read-Clock	48	MHz	memory read clock frequency up to 250 MHz
PDC7	42.21	mW		beta2	0.125	%	RAM enable rate for read operations
				PAC12	0.03	mW/MHz	
i clos	551.42064			F Write-Clock	48	MHz	memory write clock frequency up to 250 MHz
	361.636608			beta3	0.125	%	RAM enable rate for write operations
Lod.	0						
	124.93824			PERCA	2,55		
	1.293072			PAC10	0.0026	mW/MHz	
	1/964256						output clock frequency (probably between 256 - 28
P Memory	36.96			F.CUKIDUT -	48	MHz	MHz
Contraction of the local distance of the loc	A Direct						
PAC1	0.01303	mW/MHz					
N Spine	252		# of global spines used in design out of 252 (see UG 57)				
PAC2	0.00669	mW/MHz					
N Row	83		# of VersaTile rows				
PAC3	0.00146	mW/MHz					
N S-Cell	74368		# of VersaTões used as sequential modules out of 74368				
PAC4	and the second se	mW/MHz	1.500				
- Hor	0.00015	from the second					

Project Overview

Backup Slides

Avionics Board Power Budget

A	G H		J	к	LL M	N	0	P	Q	В	S	т п	V	- W	×	Ŷ	7	AA I	AE AC	AD	AE	AF	AG	AH	AL
				N.	L 141	Active			9					Softwar			~			Active			<u></u>		
	Current	[A] (One l	Part, Vors	t-Case]		Cu	rrent [J	A] (All P	arts)	F	ower [V]		Cu	rrent [A	l] (All Pa	rts)	Р	ower [V]		Cu	rrent [A] (All Pa	rts)	Po	ower [V]
	+5A	-5A	+3.3D	+1.5D	Qty	+5A	-5A	+3.3D	+1.5D	Power [V]	Percentage	Qty	+5A	-5A	+3.3D	+1.5D	Power [V]	Percentage	Qty	+5A	-5A	+3.3D	+1.5D	Power [V]	Percentage
LL4148 Diode			0.152		1 1	0.000	0.00	0.15	2 0.00	_		1	0.000	0.000	0.152	0.000) 5%	1	0.000	0.000	0.152	0.00		5:
IRHLUB770Z4 Transistor			0.182		1	0.000						1	0.000			0.000			1	0.000					6:
48SD1616			0.303		1	0.000						1	0.000			0.000			1	0.000			0.00		10:
UT54LVDS032LV (5962H9865202VYC)			0.379		1	0.000						1	0.000			0.000	1.250		1	0.000		0.379	0.00	1.250	13:
ISL706ARH (5962R1121304QXC)			0.001		1	0.000						1	0.000			0.000	0.002		1	0.000			0.00	0.002	0
UT54LVDS031LVUCA			0.379			0.000						1	0.000		0.379	0.000	1.250		1	0.000		0.379	0.00	1.250	
26CLV31RH (5962F9666302QXC) QT625LBM Oscillator			0.000			0.000							0.000		0.000	0.000	0.000			0.000		0.000	0.00	0.000	0
Q1625LBM Uscillator HS-26CLV32RH (5962F9568902QXC)			0.030		1	0.000						1	0.000		0.030	0.000	0.043			0.000		0.030	0.00	0.100	
3DFN32G08VS8157MS			0.013			0.000						0	0.000				0.043			0.000			0.00	0.043	
3DFN32G00750137M5 3DFN32G08VS8157MS (Power-down)			0.050			0.000						0	0.000				0.000		0	0.000				0.000	0
3DFN32G08VS8157MS (Power-down 95%)			0.0794			0.000						1 1	0.000						0	0.000				0.000	
			0.0104		Ť	0.000			0.00	0.00	· · · ·	- ·	0.000		0.010		0.202			0.000		0.000		0.000	<u> </u>
RT3PE3000L-CG484B FPGA			0.171	0.681		0.000		0.17	0.68	1 1.58	5 16%	0	0.000	0.000	0.000		0.000) 0%	1 1	0.000		0.171	0.68	1 1.585	16
RHFL4913KPA1 Linear Regulator						1		0.68		1.22		1 1			0.000		0.000		1	-		0.681		1.225	13
RHFACT245K1			0.000		1 1	0.000	0.00	0.00	0 0.00	0.00	0 0%	0	0.000	0.000	0.000	0.000	0.000) 0%	1	0.000	0.000	0.000	0.00	0.000	0
Totals						1	+			9.66	1	-	1		-		5.007							7.555	
											-														
1						idle wł	o Soft	vare					Scrate	hpad											
						Cu	rrent [J	A] (All P	arts)	F	'ower [V]		Cu	rrent [A	l] (All Pa	rts)	Р	over [V]							
					Qty	+5A	-5A	+3.3D	+1.5D	Power	Percentage	Qty	+5A	-5A	+3.3D	+1.5D	Power	Percentage	Use						
					1	0.000	0.00	0 0.15;	2 0.00			1	0.000	0.000	0.152										ł
Candidana		T			1	0.000							0.000			0.000									
Conditions:		Typica	al		1	0.000						$\pm i$	0.000		0.303	0.000	1.000								
					1	0.000	0.00					1	0.000	0.000		0.000	1.250								1
Summary					1	0.000	0.00	0.00	1 0.00	0.00	2 0%	1	0.000	0.000	0.001	0.000	0.002	2 0%							1
Active w/Software		E	525 W		1	0.000		0.37	9 0.00			1	0.000		0.379	0.000	1.250								1
					1	0.000						1	0.000		0.000	0.000	0.000		Cloc	:k					1
Idle w/Software		1.0	812 W		1	0.000	0.00					1	0.000	0.000		0.000	0.100								
Active w/o Software		4	549 W		1	0.000						1	0.000			0.000	0.043								
					0	0.000						1	0.000									uess@48	3 MHz)		
Idle w/o Software		1.	738 W		0	0.000						0	0.000				0.000			AM (Pow					
					0	0.000	0.00	0.00	0.00	0.00	0 0%	0	0.000		0.000	0.000	0.000) 0%	SDF	AM (Acli	/e 5% of	the time, p	ower-do	vn 95%]	-
1					-	0.000	0.00	0.00	0.00	0.00	0 0%	1	0.000		0.171	0.681	1.585	5 16%	EDO	iA (Active					-
					1	0.000	0.00	0.00		0.00			0.000	0.000	0.681	0.681	1.225		- PG	in (Accive))				ł
					0	0.000	0.00						0.000	0.000		0.020	0.000			orts (Nolo	and)				1
					0	0.000	0.00	0.00	0.00	-		+	0.000	0.000	0.000	0.000			IOF	ons (NOIC	Jauj				1
						1	1	1	1	4.74			1	1	1		9.661								

Lithium Iron Disulfide AA Batteries

	AA Battery	8 Battery Case	Total per battery
Voltage (V)	1.5	12	1.5
Capacity (Ah)	3	3	3
Mass (g)	14.5	190	23.75
Volume (cm ³)	8	175	21.875
Total Energy (Wh)	4.5	36	4.5
Specific Energy (Wh/kg)	310.345	189.474	189.474
Energy Density (Wh/cm ³)	0.563	0.206	0.206
Cost (\$)	1.70	6.00	2.45

 While the batteries themselves are more efficient, the casing must accounted for

Backup Slides

System Efficiency: Possible Improvements

- Avionics board elements will not run at maximum capacity for entire mission
- Switching avionics board to idle mode
- Reducing number of pins used on board
- Reducing time receiver is powered
- Selecting landing site with most transmission time

Lithium-Ion Polymer

Multistar High Capacity Lipo Pack

Communications

- Capacity: 5.2 Ah
- Voltage: 11.1 V (3 cells of 3.7 V in series)
- Constant Discharge: 10 C
- Volume: 153 cm³
- Mass: 331 g
- Cost: \$32

DC-DC Voltage Converter Selection

Step-up/down switching regulator

- Adjustable
- 90% efficiency at specified input voltage and output current
- Efficiency decreases as current load decreases
- Significant ripple/noise addition
- Introduces need for additional signal processing

Linear Voltage Regulator

- Fixed output voltage (5 V and 3.3 V available)
- Output voltage tolerance within ±1%
- ~85% efficiency with large voltage difference
- Efficiency increases as voltage difference decreases

Project Overview

Communications

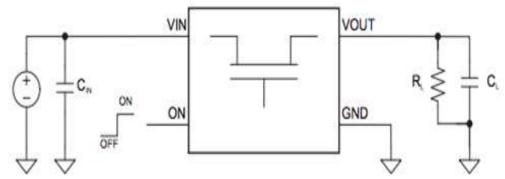
Control Switch

board

Load Switch

Maximum current of 5 A Commanded by avionics

Power


- ► MOSFET Power controller

Avionics

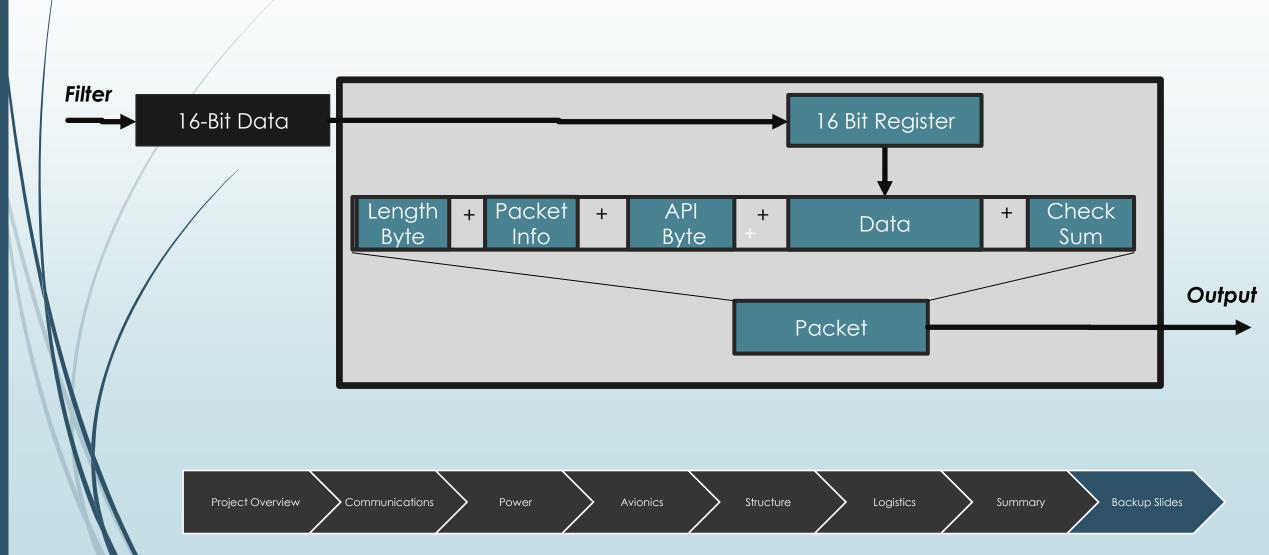
Structure

■5 needed for board design

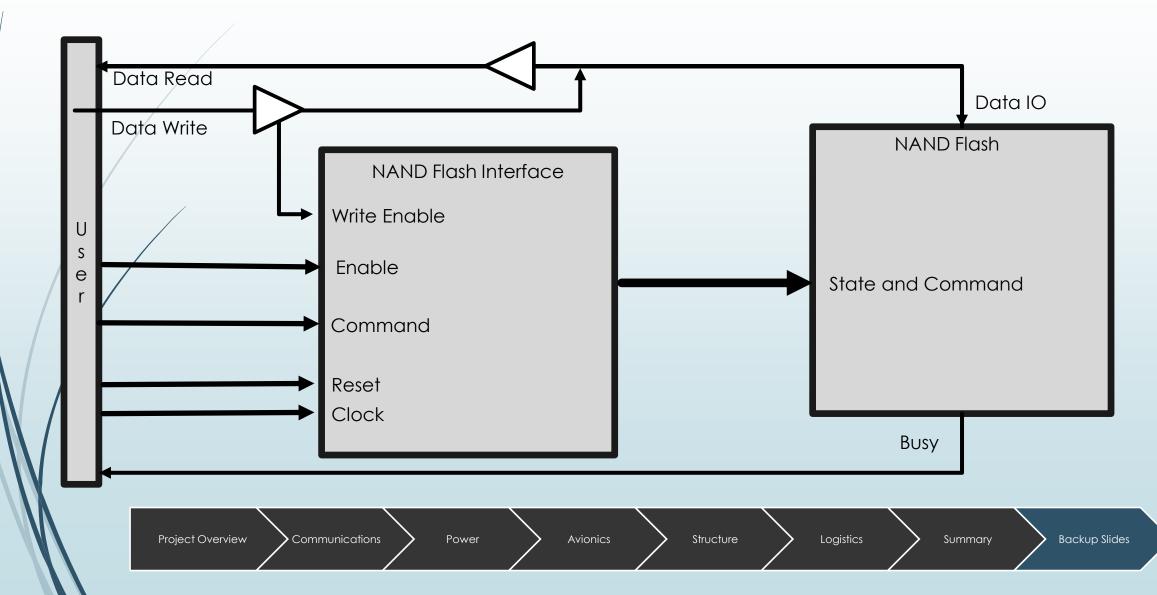
Summary

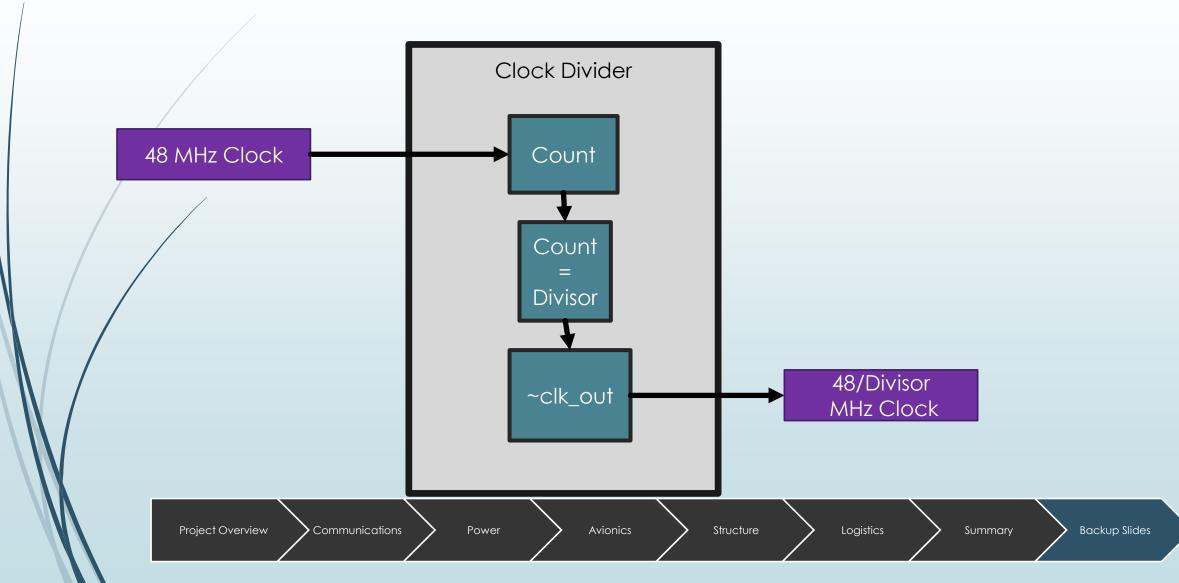
Backup Slides

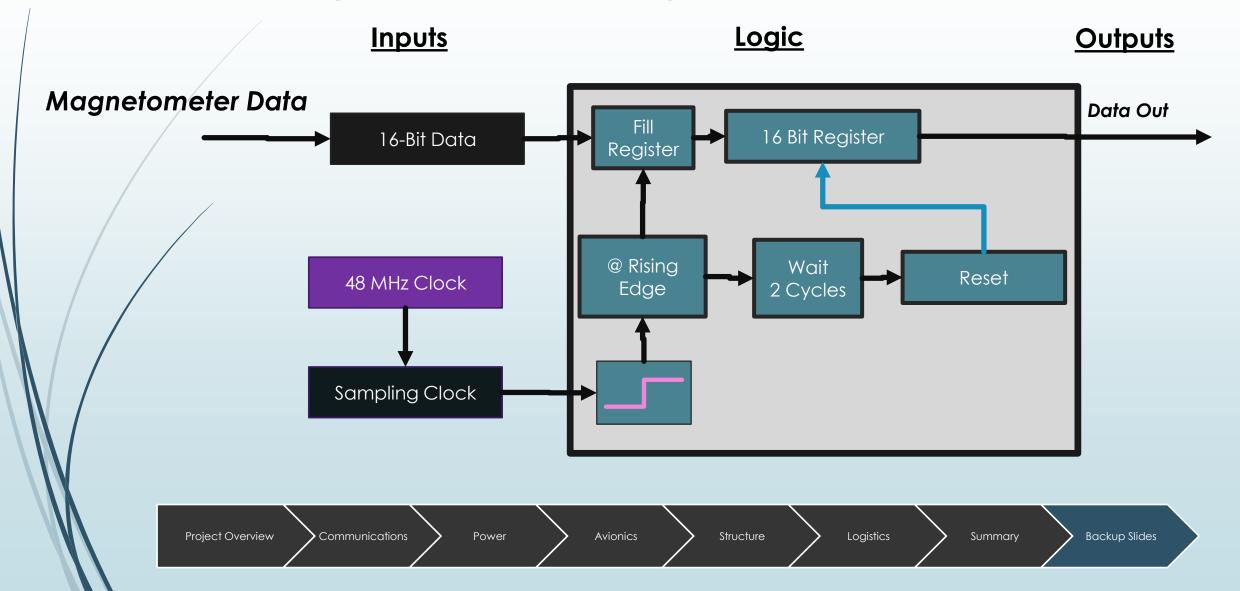
General load switch circuit diagram

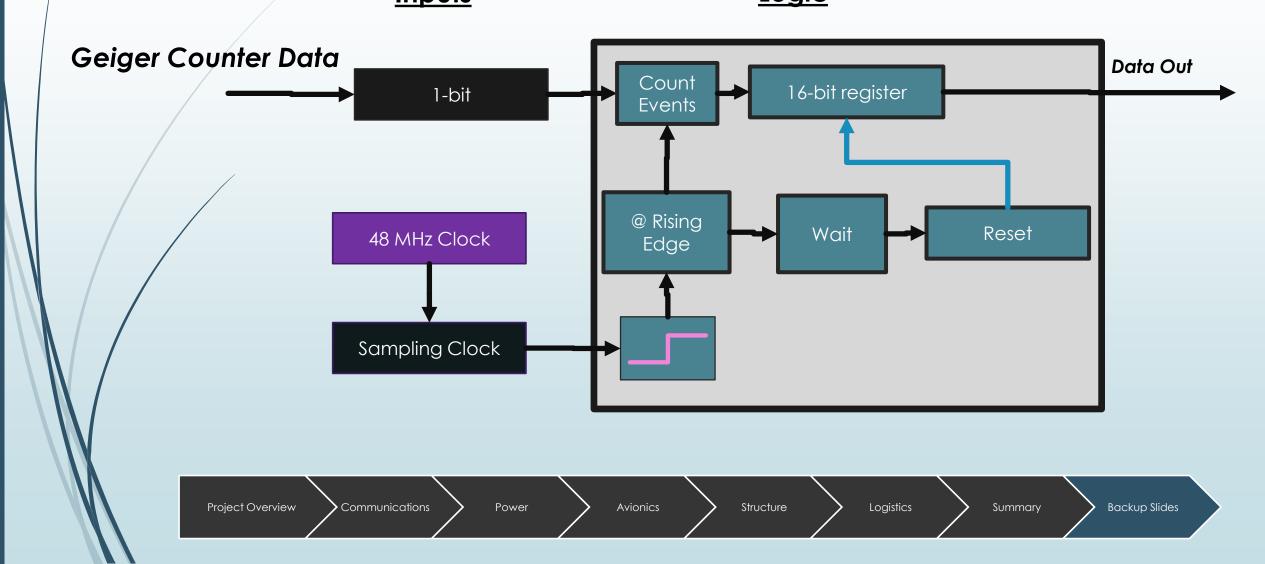

Logistics

Packetization

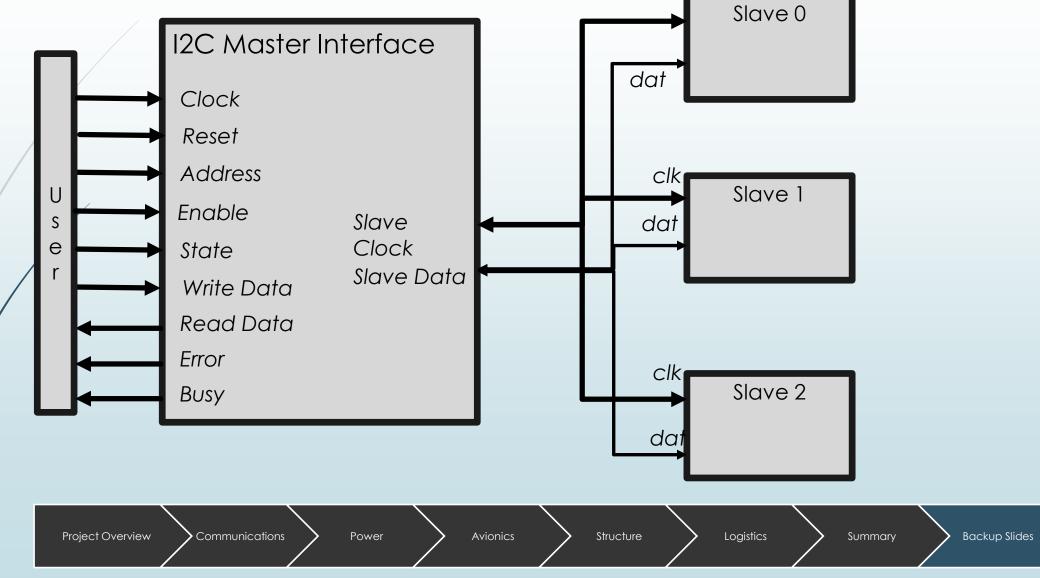



Flash Interface

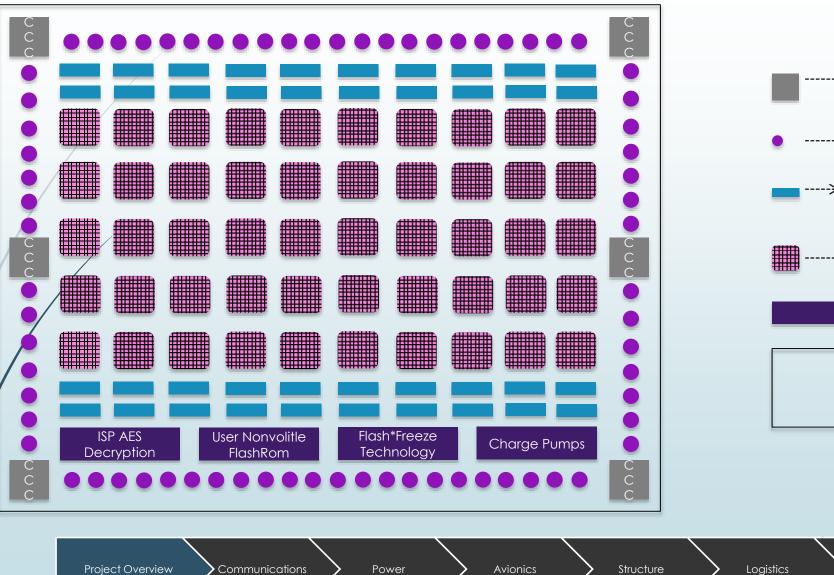

Basic Clock Division

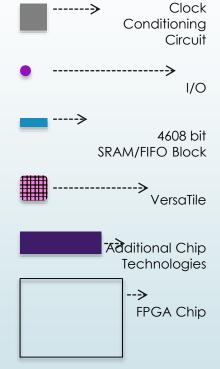


Magnetometer Ingest Filter

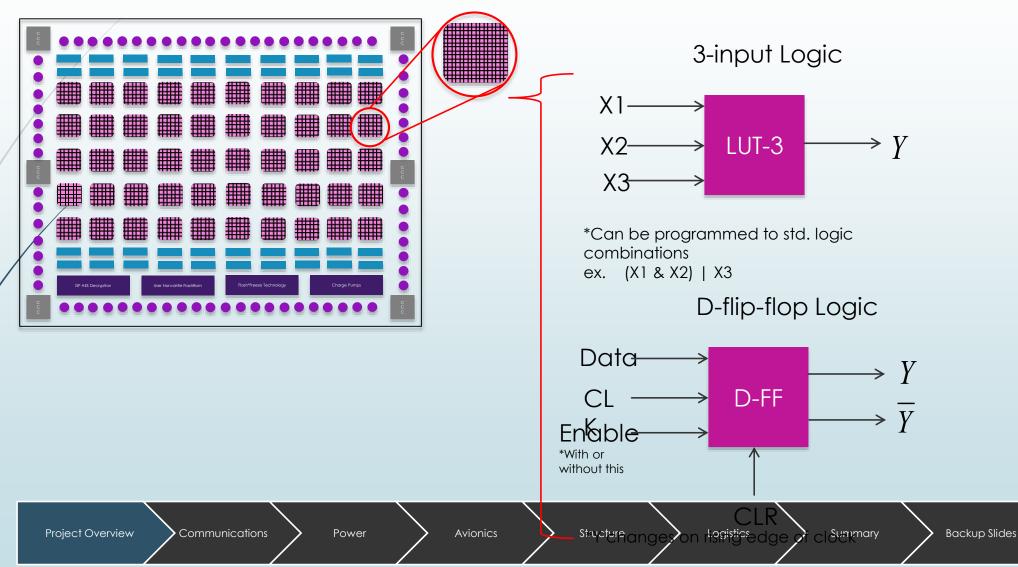


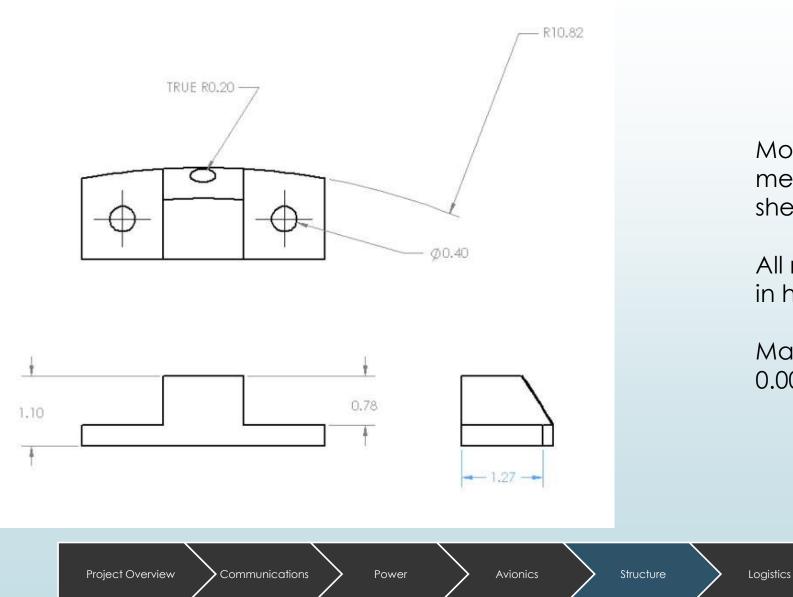
Geiger Counter Ingest Filter




I²C Interface

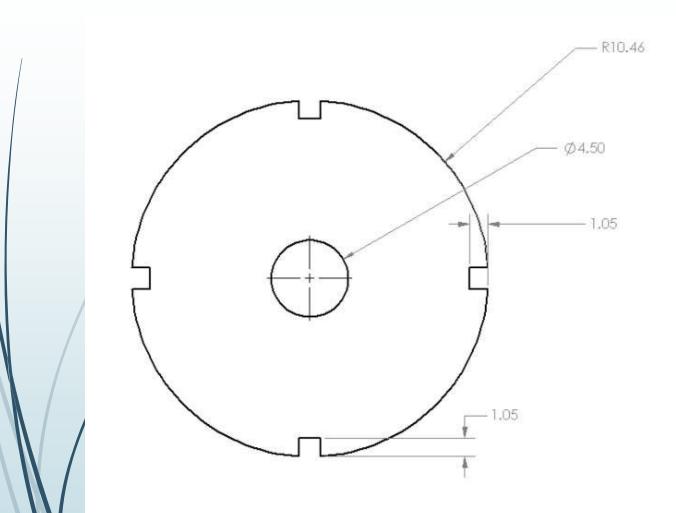
Backup? FPGA Layout




Summary

VersaTile Logic

Clip Specifications

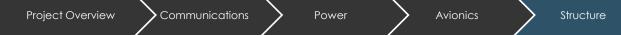


Modification of TIRESIAS method of securing flat shelves to spherical housing

All machining can be done in house, shown by TIRESIAS

Machining Tolerance +/-0.005 inches - sufficient

Plate Specifications



Will be machined out of 6061 – T6 Aluminum

0.36 cm thickness – TIRESIAS heritage

Machining tolerance +/- 0.005 inches - sufficient

Center hole for ease of wiring

Mass Budget

 Communications 	Raw Mass	Mass With 10% Margin
 VT15 Transmitter 	48 g	53 g
► FR10 Receiver	28 g	31 g
Science		
 Magnetometer 	10 g	11 g
 Geiger Counter 	50 g	55 g
 Structure 		
6061 Aluminum Alloy	1640 g	1804 g
 Avionics Board 	200 g	220 g
 Power Power Board Batteries 	150 g 6289 g	165 g 6918 g
Total Mass: Margin:		9.257 kg 0.743 kg
Project Overview Communic	ations Power ,	Avionics Structure

Backup Slides

Int. 2 Satisfied – Total mass is under 10 kg

Summary

Logistics

Materials Cost Estimate

- From onlinemetals.com
- Plate to machine shelves \$108
 - 6061-T6 Aluminum sheet
 - 22cm x 2cm x 12 inches
- Rectangular Blocks for Clips \$69
 - 6061-T6 Aluminum Block
 - 6cm x 6cm x 16cm (x2 blocks)

Total Price Estimate: \$177

Science Trade

Metric	Weight	Magnetometer	Seismometer	Imager Visual	Imager IR	Imager Micro
Science Value	15%	5	5	3	1	5
Cost	15%	4	3	3	3	1
Availability	16%	5	3	4	3	1
Complexity	20%	4	3	3	1	1
Size	22%	4	2	3	4	1
Mass	12%	4	2	4	4	1
Total	100%	4.31	2.96	3.28	2.64	1.44

Communications

Summary

Science Trade Cont.

Metric	Weight	Imager Zoom	Spectrometer	Radiation	Temperature	Pressure
Science Value	15%	3	5	5	1	1
Cost	15%	3	1	4	5	5
Availability	16%	4	1	4	5	5
Complexity	20%	2	1	4	3	3
Size	22%	3	2	2	5	5
Mass	12%	3	2	4	5	5
Total	100%	2.96	1.94	3.71	4.00	4.00

Science Traceability

Requirement ID	Magnetometer	Seismometer	Imager Visual	Imager IR	Imager Micro
SCI 0: Neopod shall collect scientific data relevant to Europa	✓ Ice shell characterization	Surface geology characterization	Surface geology characterization	X Stationary probe leads to static and not unique results	Surface geology characterization
SCI 2.1: Neopod Power Subsystem shall sustain the scientific instruments for a 96 hour period.	Low Power	Low Power	Low Power	Low Power	Low Power
SCI 2.2: Neopod sensors shall mechanically and electrically	✓ Only internal interface	✓ Only internal interface	X Must interface with external structure	X Must interface with external structure	X Must interface with external structure
INT 1: Neopod shall have a mass less than 10 kg.	✓ m _{mag} << .5 kg	X m _{mag} >.5 kg	√ m _{mag} < .5 kg	√ m _{mag} < .5 kg	X m _{mag} >.5 kg
INT 2: Neopod shall have a maximum diameter of 30cm	✓ Largest Dimension << 5 in	X Largest Dimension >> 5 in	✓ Largest Dimension << 5 in	X Largest Dimension >> 5 in	X Largest Dimension >> 5 in
Requirements Met	5	3	4	2	2
Trade Score	4.31	2.96	3.28	2.64	1.44

Avionics

Project Overview Communications

Power

Structure

Logistics

Summary

Backup Slides

Science Traceability Cont.

Requirement ID	Imager Zoom	Spectrometer	Radiation	Temperature	Pressure
SCI 0: Neopod shall collect scientific data relevant to Europa	Surface geology characterization	Surface composition characterization	Surface composition characterization	X Little desired scientific value	X Little desired scientific value
SCI 2.1: Neopod Power Subsystem shall sustain the scientific instruments for a 96 hour period.	Low Power	Low Power	Low Power	Low Power	Low Power
SCI 2.2: Neopod sensors shall mechanically and electrically	X Must interface with external structure	X Must interface with external structure	Only interfaces internally	X Must be isolated from electronics and interface externally	X Must interface with external structure
INT 1: Neopod shall have a mass less than 10 kg.	√ m _{mag} < .5 kg	X m _{mag} >.5 kg	√ m _{mag} << .5 kg	√ m _{mag} << .5 kg	✓ m _{mag} << .5 kg
NT 2: Neopod shall have amaximum diameter of 30cm	✓ Largest Dimension < 5 in	X Largest Dimension >> 5 in	✓ Largest Dimension < 5 in	Largest Dimension << 5 in	Largest Dimension << 5 in
Requirements Met	4	2	5	3	3
Trade Score	2.96	1.94	3.71	4.00	4.00
Pro	oject Overview	Power Av	vionics Structure	Logistics Summ	mary Backup Slides

Summary of Feasibility

- Communications: Feasible
 - Communications systems have some heritage
 - Antenna mismatch risk mitigated by alternative designs and customer data
- Power: Feasible
 - Power budget shows positive power remaining with design margin
 - Power risk mitigated by spherical shell expansion contingency plan
- Avionics: Feasible
 - Learning Curriculum with Development Board provides team with necessary skillset
 - Avionics delivery risk mitigated by Development Board contingency plan
- Structure: Feasible
 - Volume and mass with design margin meet requirements
 - Use of modified heritage components
- Logistics: Feasible
 - Current budget indicates that there will be extra funds in case of emergency
 - Avionics delivery and cutoff dates have been coordinated with Ball Aerospace

References

- "NAND Flash Interface Design Example." Microsemi, Mar. 2015. Web.
- Larson, Scott. "I2C Master (VHDL)." N.p., 5 Feb. 2015. Web.
- Klingman, E., 'FPGA programming step by step', Embedded Available: <u>http://www.embedded.com/design/prototyping-and-</u> <u>development/4006429/2/FPGA-programming-step-by-step</u>.
- House, Andrew WH. "Programming Soft Processors in High Performance Reconfigurable Systems." Reconfigurable Computing (2008):87-89 Available: <u>http://www.eecg.toronto.edu/wosps08/papers/house.pdf</u>
- Don Arbinger and Jeremy Erdmann, T., 'Designing with an embedded softcore processor', Embedded Available: http://www.embedded.com/design/mcus-processors-andsocs/4006632/Designing-with-an-embedded-soft-core-processor.

