

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder** 

# Boulder Unmanned Sensor for Transport Events and Repositioner

Presenters: Charlie LaBonde, Set Zuzula, Centa Hutchinson, Reidar Larsen <u>Team:</u> Alex St. Clair, Christine Reilly, Gabe Castillo, Jeff Jenkins, Rachel Tyler, Robert Hakulin, Ryan Aronson <u>Customer:</u> Dr. Xu Wang, Dr. Zoltan Sternovsky Advisor: Dr. Torin Clark





of

Dust BUSTER

LASP

### **Project Motivation**

- Dr. Wang's research at LASP suggests that charged particles could be lifted by Coulomb force
  - Dust transport events: micron-sized dust particles are charged by various sources in space and ejected from the surface of lowmass bodies
- Current instrument is too large for a space application in low-gravity
- Data could be collected with a smaller instrument in a CubeSat form factor, for a potential mission to an asteroid



#### Project Statement

- Dust BUSTER will <u>miniaturize</u>, <u>manufacture</u>, and <u>test</u> a **Technology Readiness Level (TRL) 4** dust instrument to characterize dust transport events similar to those that occur on asteroids
- To aid the instrument, the team will also <u>design</u> and <u>test</u> an <u>Autonomous Repositioning System (ARS)</u> to tilt a 6U CubeSat to a specified angle for dust collection

#### **Overall Mission ConOps**





#### Levels of Success

Dust BUSTER

LASP

|              | Level 1                                                                                                                                                                              | Level 2                                                                                                       | Level 3                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Instrument   | <ul> <li>- 2U TRL 4 dust instrument</li> <li>- Operates in vacuum chamber</li> <li>- Interfaces mechanically with<br/>CubeSat</li> </ul>                                             | - Wire electrodes<br>remain intact upon<br>10 m/s impact                                                      | -                                                                                                                             |
| CubeSat/ ARS | <ul> <li>Construct 6U CubeSat model</li> <li>Tilt CubeSat model up to 45<br/>degrees on a flat surface</li> <li>Determine which side of the<br/>CubeSat has the least sun</li> </ul> | <ul> <li>Open loop<br/>autonomous tilt<br/>with 5° accuracy</li> <li>Operates on<br/>sandy surface</li> </ul> | <ul> <li>Closed loop tilt with<br/>1° accuracy</li> <li>Instrument cover<br/>opens once under<br/>operator command</li> </ul> |
| Software     | <ul> <li>Detect dust via external trigger</li> <li>Send dust data over serial</li> <li>Post processing algorithm extracts mass, velocity, charge</li> </ul>                          | - Self-triggering<br>dust detection<br>algorithm                                                              | - Determine<br>uncertainty in mass,<br>velocity, and charge                                                                   |

## FBD





# Diagram

Dust BUSTER



#### Design Recap





## Photodiodes

Dust BUSTER

LASE





#### Design Recap -Door Mechanism

Dust BUSTER



### Design Recap -TIlting Mechanism

Dust BUSTER

LASE





Dust BUSTER

LASP

Design Recap -Dust Instrument

#### 14

#### Critical Project Elements

Dúst BUSTI

LASP

| <b>Critical Project Element</b> | <b>Relation to Testing</b>                                                  |
|---------------------------------|-----------------------------------------------------------------------------|
| Sun determination               | Full sky accuracy, closed-loop autonomous tilt                              |
| Tilting mechanism               | Tilt actuation accuracy, closed-loop autonomous tilt                        |
| Surviving Impact                | Instrument Dust Trajectory Sensor (DTS) and wire electrode impact testing   |
| Real-time event detection       | Analog electronics, DTS, electron shield, trigger algorithm, dust detection |

## Scheduling



Dust BUSTER

LASP

#### ARS Test Schedule



Dust BUSTER

#### Instrument Test Schedule

Dust BUSTER

LASP

Completed



Left

## Instrument Test Readiness



Dust BUSTER

LASP

#### Instrument Testing Flow





# Amplifier

Verify our implementation of customer's design for a charge sensitive amplifier, Req 5.1, 5.11, 5.12

Purpose: Measure each CSA's amplification of a simulated dust event.

Facility: Electronics Lab

- Power supply  $(\pm 5V \& \pm 15V)$
- Waveform generator
- Oscilloscope & probe
- ESD mat/straps
- Assembled CSA PCB

Measurement: voltage of the amplified signal (expected test gain = 100)



Dust BUST

#### Analog Electronics. Charge Sensitive Amplifier

Verify our implementation of customer's design for a charge sensitive amplifier, Req 5.1, 5.11, 5.12

#### **Purpose: Measure each CSA's amplification of a simulated dust event.**

Facility: Electronics Lab

- Power supply  $(\pm 5V \& \pm 15V)$
- Waveform generator
- Oscilloscope & probe
- ESD mat/straps
- Assembled CSA PCB

Measurement: voltage of the amplified signal (expected test gain = 100)



### Impact Testing

Verify that Wire Electrodes can withstand 10 m/s impact (Req 2.5.1)

**Purpose: Drop a DTS at successively larger impact velocities to characterize failure (when wire electrode becomes free to move)** Facility: Idea Forge

- Lansmont 15D Shock Test Machine
- One DTS unit
- Accelerometer

Procedure:

- Mount DTS to drop test table
- Raise table up to desired height and drop
- Visually inspect wire electrodes for broken or freely moving wires
- Drop again at new height



### Impact Testing

Verify that Wire Electrodes can withstand 10 m/s impact (Req 2.5.1)

Testing Set-up:

- Preliminary drops without DTS to determine drop height vs velocity relationship
- Wire electrodes installed as rigid bar (no slack) with no requirement for tension
- Analyzing for failure (wires free to move) at 3 locations after each test

Limitations:

- Only 1 DTS to test
- Material deformations are difficult to analyze



#### Intro to facilities and data

| Location                            | IMPACT Lab (CU East Campus)                                                                                                                                                                                                                                                                                                   |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment<br>(Customer<br>Provided) | <ul> <li>Vacuum chamber (w/ pump)</li> <li>Vacuum wall cable interfaces</li> <li>Dust dropper</li> <li>Free electron emitter</li> <li>Power supplies (±5V, +3.4V, ±15V, ±5kV)</li> <li>Data acquisition <ul> <li>8-channel voltage DAQ</li> <li>Lab computer &amp; software</li> </ul> </li> <li>Translation table</li> </ul> |  |  |
| Data Out                            | <ul> <li>Analog voltages         <ul> <li>DTS Stand-alone</li> <li>Electron Shield</li> </ul> </li> <li>Voltage data file to calculate charge, mass, and velocity         <ul> <li>MCU/Trigger Software</li> <li>Full Instrument Test</li> </ul> </li> </ul>                                                                  |  |  |



Dust BUSTER

LASP

#### DTS Stand-alone

Verify wire electrode and CSA correctly respond to dust event

Purpose: Confirm the wire electrode connections and CSA conversion from charge to voltage, and signal amplification

Facility: IMPACT no vacuum

Measure: Live analog voltage output from CSA board (8 wires at a time)

Success: Signal roughly matches expected shape and voltage magnitude (~2 V)

Sample Shape:





West BUST

#### MCU/Trigger software

Verify trigger threshold and MCU data processing

Purpose: Test the ability of the trigger to correctly identify dust events and MCU's ability to process and send data over serial

Facility: IMPACT no vacuum Output: CSA digital voltage over serial





Dust BUSTE

LASP

#### Electron Shield

Verify that electrons are repelled in TRL4 environment

Purpose: Verify magnetic shield blocks electrons up to 100 eV of energy which would cause noise on the wire electrodes

Facility: IMPACT vacuum (for free electrons)

Procedure:

- Replace dust dropper with electron emitter
- Apply set voltage to emit electrons up to 100 eV of energy
- Measure response from CSA over test duration (1 min)

Measure: Digital Voltage Success: Null Voltage (random noise)



#### Full Instrument Test

Verify that instrument detects dust particles that enter the instrument. Req 2, 5, 6

Purpose: Detect a dust event and extract the charge, mass, and velocity of the particle.

Facility: IMPACT vacuum

Measure: Output digital voltage in a data file to postprocessing software, calculate charge, mass and velocity distribution in 6 positions (~90 events total)

| Data Type             | Expected Range |  |
|-----------------------|----------------|--|
| Charge (Q)            | 1 - 160 fC     |  |
| Mass ( <i>m</i> )     | 50-150 µg      |  |
| Velocity ( <i>v</i> ) | 1 - 2 m/s      |  |



### ARS Test Readiness



Dust BUSTER

LASP

#### ARS Testing Flow

Dust BUSTER



### Characterization of Sun-sensing

Verify the system can find the sun to within 1° over the full sky.

Requirements 3.21 and 3.22

Purpose: Characterize the accuracy of the photodiodes, covers, and algorithm across the sky.

Facility: Bobby's Lab with overhead lights off

Measurements:

- Measured light source position
  - 5ft distance to source, know position to 0.5" for 0.5°
- CubeSat calculated sun vector
  - Based on photodiode measurements

Full sky characterization:

• 32 locations that use all photodiode combinations



### Open Loop Tilt Testing

Dust BUST

LASE

Verify the tilting mechanism can tilt the instrument up to 45° in 1° increments (+/- 0.5° accuracy) - Requirements 4.12,4.121



### Tilt Testing

Verify the tilting mechanism can tilt the instrument up to 45° in 1° increments (+/- 0.5° accuracy) - Requirements 4.12,4.121

Angle measurements from test will be compared to our tilting model

- If within the allowable error, requirement is satisfied
- Accelerometer has an <sup>1</sup>/<sub>4</sub> degree resolution with <sup>1</sup>/<sub>4</sub> degree accuracy



LASE

### Tilt Testing

Verify the tilting mechanism can tilt the instrument up to 45° in 1° increments (+/- 0.5° accuracy) - Requirements 4.12,4.121

Angle measurements from test will be compared to our tilting model

- If within the allowable error, requirement is satisfied
- Accelerometer has an <sup>1</sup>/<sub>4</sub> degree resolution with <sup>1</sup>/<sub>4</sub> degree accuracy
- Expected Values from Accelerometer



#### Integrated Tilting and Sun-sensing Verify integration of tilting mechanism, door, and sun sensing for 1°

accuracy and closed-loop tilting - Requirements 3 and 4

#### Purpose: Measure the tilt angle of the Cubesat as it responds to light locations

Facility: Senior Project Depot

Measurements:

• Tilting angle of the cubesat using accelerometer - compare to calculated ideal tilt based on actual light source position



Dust BUST

LASE

Integrated Tilting and Sun-sensing Verify integration of tilting mechanism, door, and sun sensing for 1°

accuracy and closed-loop tilting - Requirements 3 and 4

Purpose: Measure the tilt angle of the Cubesat as it responds to light locations

Facility: Senior Project Depot

Measurements:

• Tilting angle of the cubesat using accelerometer - compare to calculated ideal tilt based on actual light source position



Dust BUST

LASE



#### Cost Plan

Dust BUSTER

LASP



## Thank you!

Dust BUSTER

LASP

Feedback?

### Slide Directory

| <u>Title</u><br><u>Project Overview</u>                                             | Design Recap                                                                                                   | Instrument Test                                                                                                                         | <u>ARS Test</u>                                                                                                            | Budget                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Statement<br>Motivation<br>CONOPS<br>Levels of Success<br>FBD ARS<br>FBD Instrument | Model & Photo<br>Photodiode Cover<br>Tilting Mechanism<br>Dust Cover<br>Instrument<br><u>CPE</u><br>Scheduling | Test flow<br>CSA<br>CSA<br>Drop test<br>Drop test<br>Facilities<br>DTS stand alone<br>MCU/trigger<br>Electron shield<br>Full instrument | Test Flow<br>Sun sensing<br>Open loop tilt<br>Tilt sensing<br>Tilt sensing<br>Tilt and Sun sensing<br>Tilt and sun sensing | Updated Cost Plan<br>Backup slides<br>Photodiode cover<br>Photodiode vector<br>Locations<br>Accelerometer<br>Vacuum chamber<br>Tilt testing<br>Door testing<br>Photodiode boards<br>Instrument test<br>Teensy<br>Impact testing<br>Impact testing |  |

Dust BUSTER

#### Photodiode Cover Calibration

Verify the photodiodes can measure the sun angle to within 0.5° over the 60° field of view. Requirements 3.21 and 3.22

Purpose: Provide a calibration for the<br/>photodiode output to sun angleProcedure:<br/>Set up

Facility: Bobby's Lab

- Cubesat
- QB50 Turntable
- Light Source (bike light)
- 5V Power Supply

Measurements: Output voltage to oscilloscope



• Turn 1° increments, measure voltage





#### Photodiode Cover Calibration

Verify the photodiodes can measure the sun angle to within 0.5° over the 60° field of view. Requirements 3.21 and 3.22

- Current comparison of model and true voltage as measured with the oscilloscope
  - Actual measurements will be done with microcontroller
- Random noise of ~0.1 V is higher than anticipated during design
- Mitigating with an active filter to remove noise
- All points will fall inside the allowable limits



#### Photodiode Vector Calibration

Verify the pointing of each individual photodiode. Requirements 3.21 and 3.22

Purpose: Provide a calibration for the pointing of each photodiode on the CubeSat

Facility: Bobby's Lab

- Cubesat
- QB50 Turntable
  - 1 increments, 0.25" to within 0.005"
- Light Source (bike light)
- 5V Power Supply

Measurements: Output voltage to microcontroller, resulting sun angles



## Locations





#### Accelerometer Testing

Dust BUST

LASE

Verify that accelerometer can resolve less than 0.5 degree tilt angle

- Characterization of noise levels of digital output
- Machine Shop
  - ADXL345 Triple Axis Accelerometer
  - CNC
  - Accelerometer mount
- Procedure (this can also be a diagram)
  - Calibrate accelerometer
  - Take data at level (0 deg tilt) (10 s)
  - Move CNC known amount
  - Take data at tilt (10s)
  - Compare measure to computed
  - Reneat

46

### Vacuum Chamber Preparations

- Cleaning
  - Alcohol/flux remover cleaning for PCBs
  - Acetone and ethanol cleaning in ultrasonic bath for machined components

- Cleaned instrument stored in ESD bag for transport
- Proper Material Selection
  - Low outgassing materials: aluminum, PEEK, Delrin
  - Vented Bolts



48

- Procedure
  - Suspend pulley from roof support

Int i coung

- Attach Rope to Pulley
- Attach one end of rope to cubesat fixtures
- Attach other end to counterweight
- Begin Tilting
- Measure Tilting
- Repeat last 2 steps



### Door Testing

#### **Purpose: Ensure the Door Opens Correctly** Facility: Senior Project Depot Measurements:

Does the door protect this instrument

#### Procedure:

- Attach door to power supply and Teensy
- Activate door mechanism at level and tilting platform



#### Photodiodes Boards

#### Verify functionality of PCB and overall design

- Voltage relative to intensity of light
- Electronics lab
  - Power supply (5V)
  - Oscilloscope/multimeter

- Procedure
  - Connect PCB to power supply and measuring device

LASE

- Turn on and check readout in ambient light
- In a dark room, position light source 5ft away and check readout at different angles

#### Instrument Test

LAS

Test will must be done 90 times:

- 6 different translation table positions
- 3 different sized dust particles
- 5 recorded events for each particle size in each position

= 90 total events

These numbers are customer specified.

#### Teensy Shield Test (backup)

#### Verify functionality of PCB and filter design

- Fit check, verify all components are powered correctly and outputting information
- Electronics lab
  - Power supply  $(5V)^{\dagger}$
  - Oscilloscope
  - Multimeter

- Procedure
  - Fit check all COTS boards (do not solder on yet)

LASE

- Connect to power supply and check proper power distribution
- Connect photodiode and check output after filter
- Solder on COTS boards one at a time and check functionality of each

### Impact Testing Models

- Rigid Bar Statics Model
  - Wire's fail at 4 N impact force
  - Unable to correlate impact velocity to impact force without impact time
- Solidworks Model
  - Proper Material Selection
  - 10 m/s impact results show stresses not exceeding failure stress

### Impact Testing Model

#### Assumptions

- Entire DTS is bonded
- Landing on rigid surface
- Perfectly inelastic collision
- **Stainless steel 304 wire electrodes**
- Ultimate Tensile Strength: 505 MPa

#### **Solder Stoppers**

- Length (~ 2.2 mm) designed to shear at 520 MPa normal stress
- Wire will fracture before solder joint shears off



