

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

<u>Boulder Unmanned Sensor for Transport Events and Repositioner</u> Spring Final Review

<u>Presenters</u>: Charlie LaBonde, Christine Reilly, Jeff Jenkins, Gabe Castillo, Reidar Larsen, Robert Hakulin <u>Team</u>: Alex St. Clair, Ted Zuzula, Leina Hutchinson, Rachel Tyler, Ryan Aronson <u>Customer</u>: Dr. Xu Wang, Dr. Zoltan Sternovsky <u>Advisor</u>: Dr. Torin Clark

,

of

Dust BUSTER

Project Motivation

Dr. Wang's research at LASP suggests that charged particles could be lifted by Coulomb force

Dust transport events: micron-sized dust particles are charged by various sources in space and ejected from the surface of low-mass bodies

Current instrument is too large for a space application in low-gravity

Data could be collected with a smaller instrument in a CubeSat form factor, for a potential mission to an asteroid

Project Statement

Dust BUSTER will miniaturize, manufacture, and test a **Technology Readiness Level (TRL) 4** dust instrument to characterize dust transport events similar to those that occur on asteroids To aid the instrument, the team will also design and test an Autonomous Repositioning System (ARS) to tilt a 6U CubeSat to a specified angle for dust collection

Overall Mission ConOps

Dust BUSTER LASP

Levels of Success

Dust BUSTER

	Level 1	Level 2	Level 3
Instrument	 2U TRL 4 dust instrument Operates in vacuum chamber Interfaces mechanically with CubeSat 	- Wire electrodes remain intact upon 10 m/s impact	-
CubeSat/ ARS	 Construct 6U CubeSat model Tilt CubeSat model up to 45 degrees on a flat surface Determine which side of the CubeSat has the least sun 	- Open loop autonomous tilt with 5° accuracy - Operates on sandy surface	 Closed loop tilt with 1° accuracy Instrument cover opens once under operator command
Software	 Detect dust via external trigger Send dust data over serial Post processing algorithm extracts mass, velocity, charge 	- Self-triggering dust detection algorithm	- Determine uncertainty in mass, velocity, and charge

of

Design Recap

Autonomous Repositioning System FBD

Dust BUSTER

Design Recap – CubeSat Model

Nust BUS

LASI

- Material: T-6061 aluminum
- Mass: 8.41 kg (with all systems)
- Dimensions: 23.9 x 36.6 x 11. 6 cm

Design Recap – Photodiodes

Mass: 0.16 kg (total)

Dust BUST

LASI

lacksquare

Design Recap – Door Mechanism

Material: Aluminum, nylonMass: 0.84 kg (total)

Just BUST

LASI

Design Recap – Door Mechanism

Material: Aluminum, nylonMass: 0.84 kg (total)

Partially Open Configuration

ust BUST

LAS

Design Recap – Scissor Lift

- Material: Aluminum
- Mass: 1.32 kg (total)

Dust BUSTF

LASI

Design Recap – Dust Instrument

Just BUST

Design Recap – Embedded Systems

Microcontroller PCB:

Handles inputs from all 24 wire electrodes Runs real-time software Includes protection circuits

Real-time Software:

Samples all 24 wire electrodes real-time Runs triggering software Outputs data over serial STM32F429ZIT6 Microcontroller

Critical Project Elements

Dust BUST

Critical Project Element	Relation to Project Success	
Surviving Impact	Wire electrodes must survive impact to collect data	
Sun determination	Need Sun location to collect good dust data	
Tilting mechanism	Tilt required to let dust enter instrument	
Real-time event detection	Event detection required to output the correct data	

Test Overview

of

Dust BUSTER

Instrument Testing Flow

20

Dust BUSTER LASP

Impact Testing

Location	Idea Forge	
Equipment	 Lansmont 15D shock test machine Crossbow CXL10LP3 Accelerometer DTS unit DAQ and LabView VI 	
Data Out	 Acceleration data Integrate for impact velocity Inspect wire electrodes to determine if broken Iterate at higher impact velocities 	
Requirements Verified	• SR 2.5: Instrument wire electrodes shall remain intact after a 10 m/s impact on a rigid surface.	

Dust BUSTER

IMPACT Lab Testing

Location	IMPACT Lab (CU East Campus)	
Equipment (Customer Provided)	 Vacuum chamber (w/ pump) Vacuum wall cable interfaces Dust dropper Free electron emitter Power supplies (±2.5V, ±15V, ±5kV) Data acquisition system Translation table 	
Data Out	 Analog voltages One set each for charge (Q), velocity (v), and mass (m) 	
Requirements Verified	 FR 2: Detect dust particles that enter the instrument FR 5: Collect dust signals and issue commands to and from the instrument and ARS FR 6: Process data and detect dust events 	

Feed Through Ports Pump Translation Table Motor

Dust Dropper

Dust BUSTER

Full Instrument Test Modifications

Software difficulties required modification to test set-up to be able to verify requirements 7-channel DAQ will be used to collect data Charge will be independently verified separate from mass and velocity in two different tests due to limited number of DAQ inputs

Data Type	Setup
Charge (Q)	One electrode plane
Mass (<i>m</i>)	Subset of channels from all four planes
Velocity (v)	Two electrode planes in one DTS

Dust BUST

ARS Testing Flow

of

Dust BUSTER

LASP

ARS Tilt Testing

Location	Senior Projects Depot	
Equipment	 Fully assembled CubeSat Power supply (5V and 3V) Pulley/counterweight system PC 	
Data Out	Commanded and achieved tilt angle	
Requirements Verified	 FR 1: Contain the ARS and 2U instrument within 6U volume and mass limits FR 3: Open instrument cover pointing away from the sun to avoid solar wind FR 4: Tilt the CubeSat up to a max of 45° off the surface, optimal for dust collection FR 6: Process data and run ARS algorithms 	

Dust BUSTER

LASP

Power Supplies

ARS Sun Testing

Location	Dark Room	
Equipment	 Fully assembled CubeSat Power supply (5V) Flashlight PC 	CubeSat SV DC
Data Out	Sun vector	Light Source Z Photodiodes Power Serial Connection Connection
Requiremen ts Verified	 FR 3: Open instrument cover pointing away from the sun to avoid solar wind FR 4: Tilt the CubeSat up to a max of 45° off the surface, optimal for dust collection FR 6: Process data and run ARS algorithms 	Sun vector

Dust BUSTI

Instrument Test Results

Dust BUSTE

DTS Drop Test

Focusing on wire electrodes

Solidworks model predicts that the wire electrodes will survive a 10 m/s impact

Maximum achievable drop height was 127 cm, corresponding to a measured 4.7 m/s with Lansmont machine Unable to test a 10 m/s impact

DTS Drop Test Results

Maximum tested velocity: 4.7 m/s All 12 wire electrodes remained intact and measurement planes were unaffected M3 bolt threading weakened allowing structure to wiggle (shown below) Consider bolt hole redesign **Requirement 2.5 not fully verified**

CSA Verification

Charge Sensitive Amplifier PCB: No revisions needed CSAs have customer-accepted noise level and can amplify dust signals as expected 1 test board partially populated 3 final boards fully populated/verified

CSA Verification Result Dust BUST LASP Compare output to expected behavior Ideal Op-Result (V) of ideal circuit amp Model (V) CSA #6 Output 1 s, 20 mV input (60 Hz noise removed) 1.61 Average 1.61 CSA output 0.14 Test input Positive 0.12 Pulse 2.00 2.04 Magnitude S S amound provident and the second Voltage (voltage Negative 0.06 Pulse 2.00 2.02 0.04 Magnitude Wele-algebill Manager and the second 0.02 0.2 0.8 1.2 1.4 Time (s) a charge sensitive amplifier for each electrode.

Dust Trajectory Sensor (DTS) Unit Test

Fully Constructed DTS Unit

Dust BUSTER

LASI

DTS Charge Test Results

Due to hardware limitations only 6 channels can be read Expected Range (from customer): **1-150 fC** Experimental Range: **5-40 fC**

DTS can successfully detect dust event, measure charge, and calculate z-coordinate of plane crossing

ust BUSTER

LASE

DTS Velocity Test Result

7 total successful velocity events Measure time difference between plane crossing Expected Range (from customer): **1 - 2 m/s**

Experimental Range: 0.80 - 1.25 m/s

DTS can accurately measure velocity of the dust particle around range requested by the customer Test Setup:

-0.3

0.25

0.3

0.35

0.4

Time [s]

0.45

0.5

0.55

0.6

Dust BUST

LAS

Embedded System Status

LAS

Microcontroller PCB: Complete

No revisions needed Can flash code and debug execution Protection circuits work as designed 2 test boards partially populated 1 final board fully populated/verified

Real-time Software: In Progress

Redesigning architecture for simulated ADC data to test rest of software

Software/Hardware Integration: Incomplete

Embedded System Design Rationale

5.2.1 The hardware shall convert analog signals from each of 24 instrument amplifiers to digital at 1 kHz.

6.3 The instrument software shall continuously analyze data in order to detect all dust events.

Custom design chosen so that microcontroller peripherals could handle fast sampling of 24 integrated ADC channels without needing software control Required adding microcontroller ADC pin protection LASP Adamant flight software framework chosen to <u>alleviate real-</u>time software architecture difficulty
Software System Diagram

Dust BUSTER

Instrument Remaining Work

Software/Hardware Integration

Drivers need to be written to configure MCU timer, ADCs, and DMA for 1 kHz sampling and data manipulation Required MCU configuration is well-known Interface from MCU peripherals to software needs to be implemented

Simulated dust event data will be used to attempt to trigger the algorithm and print results to text file

Will show ability of software to detect dust, output data, and respond to input user commands

Will verify that system can operate within 1 kHz frequency

Instrument Conclusions

Requirement	Level 1 Success	Level 2 Success	Level 3 Success
Hardware	Detects dust Operates in vacuum	10 m/s impact	-
Software	External trigger Send data over serial Post processing algorithm	Self triggering algorithm	Uncertainty in Q, v, m

Requirements for stand-alone embedded system were over-ambitious and tightly-coupled

Team lacked sufficient time and expertise to handle all aspects of the design Should have looked for a capable COTS hardware solution in order to focus on software design needs

Adamant framework limited the ability for other team members to help

ARS Test Results

Dust BUSTER

Mass and Volume Requirements

Doors

FR 1 The CubeSat model shall contain the ARS and 2U instrument within 6U volume and mass limits.

All components mounted inside the CubeSat shell and closed Final mass of 8.41 kg < 12 kg max Dimensions: 23.9 x 36.6 x 11.6 cm

Instrument

Lift inside

Photodiodes/ ARS electronics

Tilt Test Setup

Used a rope and pulley system Rope connects CubeSat to counterweight through pulley system Attaches to center of mass of CubeSat Power is provided using external power supply Measure angles using accelerometer and protractor Command teensy to step motors by a predetermined amount from model

Open loop by manual commanding Closed loop using accelerometer feedback

Tilting Model

Tilting model calculates tilt angle based off of geometry in CubeSat

Takes into account "foot" and internal portion of the leg Initial tests showed some deviations from our model. especially at early tilt angles Were a result of manufacturing tolerance stack up and test <u>setup</u> problems

LAS'

Tilting Model

Tilting model calculates tilt angle based off of geometry in CubeSat

Takes into account "foot" and internal portion of the leg Initial tests showed some deviations from our model, especially at early tilt angles Were a result of manufacturing tolerance stack up and test setup problems

LAS

Tilting Test Problems

Friction in pulley made it difficult to consistently represent microgravity environment

As tilt angle increased, mass that the scale was reading increased from 0.11 kg to 0.91 kg Had to further reduce weight of CubeSat as it was tilting

Tilting Test Problems

Tolerance stack up led to issues in leg deployment

Leg platform jammed against leg opening

Opening was shifted 0.07" towards CubeSat edge

Legs were short 0.05" Only gave ourselves 0.1" margin

Also lead to increased friction in scissor lift

Lead to missed steps during tilting, especially at low tilt angles Ultimately cannot verify that we can tilt the mass that we designed for

LASI

Requirement 4.122 Incomplete: The actuators shall be able to tilt a mass equal to 100g, with a 20g resolution, under earth's gravity field.

Closed-Loop Tilting Results

Meets third level of success (1° increments w/ 1° accuracy) Closed loop control improved tilting precision and helped deal with missed steps issue Only have data for one lift due to a motor failure

actuators shall be able to tilt the accuracy of +/- 0.5 degrees

Tilting Test Conclusions

LASI

Requirement	Level 1 Success	Level 2 Success	Level 3 Success
Tilting Accuracy	Tilt CubeSat model up to 45 degrees on a flat surface	Open loop autonomous tilt with 5° accuracy	Closed loop tilt with 1° accuracy

System can meet tilting requirements

Can't verify it can meet mass tilting requirement Should have taken more care in manufacturing Or potentially left time to re-manufacture parts Attempt to find a better way to represent a microgravity environment

Rope/pulley with lower friction

Different testing method

Potentially change where torque is being applied in the scissor lift

Sun Sensing Characterization Test Setup

True sun vector measured in X,Y,Z CubeSat Body Axes Compared to computed sun vector

Dust BUSTI

Incidence Angle (deg)

Photodiode roll-off was greater than expected based on data sheet, using up margin for ambient light

Modeled vs actual slope Data sheet values used in models

3D printed covers required modifications to reach 60° FOV Cover calibration data (with error bars)

50

Diode in MCU pin protection circuit clipped voltages lower than desired Vector calibration data (with error bars) Low resolution at low incidence angles

1.2

0.5

20

10

30

50

Error in Sun Vector (degrees)

60

Errors

Occurence of

600

400

200

0.2

0.4

0.6

Error in Calculated Sun Vector, degrees

0.8

70

80

ust BUST

LAS

90

JUST BUS

LASI

Max Error for Level

90

Full Sky Coverage Model

Designed for at least 3 photodiodes on each part of the sky with significant margin All locations had at least

3 sensors

just BUS

Full Sky Coverage Requirement Verification

Component test calibration results <u>Kn</u>own alignment of

photodiodes and

fields-of-view

Geometry used to derive true sky coverage map

Full Sky Coverage Requirement Verified by Analysis

Component test calibration results

> Known alignment of photodiodes and

Fields-Of-View

Test locations based on unique combinations of sensors in modeled coverage map

Full Sky Coverage Requirement Verified by Analysis and Test

Sun Sensing Conclusions

Requirement	Level 1 Success	Level 2 Success	Level 3 Success
Sun Vector Accuracy	90°	5°	1 [©]
Full Sky Coverage	Verified	-	-

Small errors in voltage to angle conversion propagated to large errors in sun vector

Calibrations were extremely valuable to get system working, but took more effort than expected

Filters effectively reduced noise

Requirements needed more detail for testing environment and how much accuracy customer actually needed

of

Dust BUSTER

Systems Engineering Process Dust BUSTER LASP Concept of System Delivery PDD validation operations System validation plan System System-level **SFR** CDD System verification plan verification requirements Definition and decomposition Sub-system Sub-system Sub-system requirements verification plan verification **PDR** (High-level Integration and test design) TRR Component Component verification Component detailed CDR procedure verification design Traceability Implementation hardware and software MSR Time

Requirements Flow Down

Functional Objectives

Requirements

CubeSat form factor

Capture lofted dust

Avoid solar wind by determining sun <

Collect q, v, m data when a dust is present

1. 2U instrument, overall 6U volume and mass limits
2. Detect dust particles that enter the instrument
3. Open instrument cover pointing away from the sun
4. Tilt the CubeSat up to a max of 45° off the surface, optimal for dust collection
5. Collect dust signals and issue commands to and from the instrument and ARS
6. Process data, detect dust events, and run ARS algorithms

Lessons Learned: Utilize more resources to understand the work necessitated by requirements and project scope from the beginning

LAS

Requirements Flow Down

Functional Objectives

Requirements

- CubeSat form factor
- Capture lofted dust
- Avoid solar wind by determining sun < location
- Collect q, v, m data when a dust is present
- 1. 2U instrument, overall 6U volume and mass limits
 2. Detect dust particles that enter the instrument
 3. Open instrument cover pointing away from the sun
 4. Tilt the CubeSat up to a max of 45° off the surface, optimal for dust collection
 5. Collect dust signals and issue commands to and
 - 5. Collect dust signals and issue commands to and from the instrument and ARS
 6. Process data, detect dust events, and run ARS algorithms

Lessons Learned: Utilize more resources to understand the work necessitated by requirements and project scope from the beginning

Key Trades

Should have given greater weight to:

The difficulty of developing a new system from scratch (instrument and sun sensing) Looked further into other COTS systems Stringency of manufacturing tolerances for a design (scissor lift and sun sensing) Team expertise and experience (all) Amount of resources the team can dedicate to the sub-system in time allotted (all)

Lessons Learned: Trade studies should heavily consider all factors in the implementation of a design, not just the design itself

LAS

Interfaces

EMI and ESD precautions, electrical isolation

Software and hardware interaction

Mounting to test apparatus

Precision mounting in CubeSat body for mechanisms and photodiodes Clearance and ports for connectors and wire routing

Electrical components and voltage/current levels

Clearance and lubrication for door and scissor lift

Combining tilting, sun sensing, and accelerometer software

Lessons Learned: Interface management saved time during integration, difficulties with datasheets, software, and mounting in real life vs CAD

LASI

Risks in Retrospect

Dust BUSTER

		Severity				
		1	2	3	4	5
	5			INST-2, INT-5		
po	4		ARS-6			
<pre></pre>	З		ELEC-1	STRUCT-2		
	2				MECH-1, ARS-1	ELEC-4
	1					

Updated Risks

Risk	Description	Status	Total
INT-4	Limited instrument testing pre-vacuum	Tested DTS w/out vacuum first	4
INST-2	Don't have past test data	Still true, but now have our own	5
ELEC-1	Need to remake PCB	No remakes for instrument	4
MECH-1	Mechanism mounting errors	Misalignment in scissor lift	12
ARS-1	Photodiode noise	Mitigated with filters	2
ARS-6	Inconsistencies in photodiode apertures	Calibrated and adjusted	8
ELEC-4	Noise from connections and EMI	Mitigated with circuit design	5
STRUCT-2	Wire electrode does not survive impact	Survived up to 4.7 m/s	3

Dust BUSTER LASP

System Integration and Testing Risks

Additional or Updated Risks:

Learning curve for instrument software and Ada (updated) LASP engineer helped mitigate software risk but had limited experience in hardware/software integration Hardware inconsistent with datasheets (new) Did not catch differences in photodiodes and door motors until integrated/tested Test setup impacts results (new) Limited ability to simulate microgravity

Lessons Learned: Anticipated risks were effectively mitigated; challenges arose from unforseen or underestimated risks

LAS

of

Dust BUSTER

Management Approach

Dust BUSTI

1st Semester		2nd Semester
Rigid and structured schedule		Dynamic and flexible schedule
Every team member worked on documentation		Split technical and documentation work (MSR, TRR, AIAA)
2 hour full team meetings		Brief status updates
Individual focused work		Group focused work (warm body approach)
Project Resources	Slack (Communication), Team Gantt (Scheduling), Google Drive (Documentation)	

PM Lessons Learned

Dust BUSTE

Successes	Challenges
Gantt Charts (1st semester)	Gantt Charts (2nd semester)
Increased customer communication	Didn't understand complexity of certain components
Individual leadership	Misallocation of resources
Brief meetings	Overextended team

CDR Cost Plan vs. Final Budget

Time is \$\$\$

Dust BUSTER

Acknowledgements

LAS'

PAB - Specific technical advice Dr. Clark - Advising with a broken arm Dr. Wang & Dr. Sternovsky - Design, review, and testing Kevin Dinkel – LASP framework Joseph Samaniego-Evans - Instrument testing Adrian Stang - Machining <u>Stu Tozer, BioServe - Cleaning</u> Dan Godrick – Accelerometer Andrew Dahir - QB50 turn table and cleaning
Thank you! Feedback?

Dust BUSTER

LASP

Slide Directory

Dust BUSTER

<u>Title</u>	Inst Test results	Systems Engineering	Backup Slides
Project Motivation Project Statement Overall Mission ConOps Levels of Success Design Solution CAD Model ARS FBD Inst FBD CubeSat Model Photodiodes Door closed Door closed Door open Scissor Lift Dust Instrument Instrument Electronics CPE Table Test Overview Inst Test flow Impact testing Lab test Modified test ARS test flow ARS tilt test ARS Sun test	DTS drop testDrop test resultsCSA verificationCSA ResultsDTS Unit testDTS Charge test resultsDTS velocity Test resultsEmbedded system statusEmbedded system design rationalSoftware system diagramInst remaining workInst conclusionARS Test ResultsMass and volumeTilt test setupTilt modeTilt problemsClosed loop resultsTilt test setupAngle to voltageAngle to voltageSun sensing characterizationSun sensing characterizationFull sky verificationFull sky verification	Systems engineering process Requirements Requirements Key trades Interfaces Risks Updated Risks Integration and test risks Project Management Integration and test risks Project Management Integration and test risks Approach Lessons learned Cost plan Time Acknowledgements Thank you	Analog electronics Impact testing DTS stand alone MCU/Trigger Electron shield Full inst test Qvm Electron deflection Sun sensing Tilting backup Impact test model **DROP TEST FOOTAGE** Embedded system Tilt and sun sensing Sun vector
	Sun sensing conclusions		

Backup Slides

Dust BUSTE

LASP

Analog Electronics: Charge Sensitive Amplifier

Verify our implementation of customer's design for a charge sensitive amplifier, Req 5.1, 5.11, 5.12

Purpose: Measure each CSA's amplification of a simulated dust event.

Facility: Electronics Lab Power supply (±5V & ±15V) Waveform generator Oscilloscope & probe ESD mat/straps Assembled CSA PCB

Measurement: voltage of the amplified signal (gain = 100)

Dust BUST

LASI

Analog Electronics: Charge Sensitive Amplifier

Verify our implementation of customer's design for a charge sensitive amplifier, Req 5.1, 5.11, 5.12

Purpose: Measure each CSA's amplification of a simulated dust event.

Facility: Electronics Lab Power supply (±5V & ±15V) Waveform generator Oscilloscope & probe ESD mat/straps Assembled CSA PCB

Measurement: voltage of the amplified signal (gain = 100)

Impact Testing

Verify that Wire Electrodes can withstand 10 m/s impact (Req 2.5.1)

Purpose: Drop a DTS at successively larger impact velocities to characterize failure (when wire electrode becomes free to move) Facility: Idea Forge Lansmont 15D Shock Test Machine One DTS unit Accelerometer

Procedure:

Mount DTS to drop test table Raise table up to desired height and drop Visually inspect wire electrodes for broken or freely moving wires Drop again at new height

Impact Testing

Verify that Wire Electrodes can withstand 10 m/s impact (Req 2.5.1)

Testing Set-up:

Preliminary drops without DTS to determine drop height vs velocity relationship Wire electrodes installed as rigid bar (no slack) with no requirement for tension Analyzing for failure (wires free to move) at 3 locations after each test

Limitations:

Only 1 DTS to test Material deformations are difficult to analyze

LAS

DTS Stand-alone

Verify wire electrode and CSA correctly respond to dust event

Purpose: Confirm the wire electrode connections and CSA conversion from charge to voltage, and signal amplification

Facility: IMPACT no vacuum

Measure: Live analog voltage output from CSA board (8 wires at a time)

Success: Signal roughly matches expected shape Feed and voltage magnitude (~2 V) Through Port

Sample Shape:

Dust BUST

LAS

MCU/Trigger software

Verify trigger threshold and MCU data processing

Purpose: Test the ability of the trigger to correctly identify dust events and MCU's ability to process and send data over serial

Facility: IMPACT no vacuum Output: CSA digital voltage over serial

ust BUST

LASE

Electron Shield

Verify that electrons are repelled in TRL4 environment

Purpose: Verify magnetic shield blocks electrons up to 100 eV of energy which would cause noise on the wire electrodes

Facility: IMPACT vacuum (for free electrons)

Procedure:

Replace dust dropper with electron emitter Apply set voltage to emit electrons up to 100 eV of energy Measure response from CSA over test duration (1 min) Measure: Digital Voltage Success: Null Voltage (random noise)

LAS

Full Instrument Test

Verify that instrument detects dust particles that enter the instrument. Req 2, 5, 6

Purpose: Detect a dust event and extract the charge, mass, and velocity of the particle.

Facility: IMPACT vacuum

Measure: Output digital voltage in a data file to postprocessing software, calculate charge, mass and velocity distribution (~90 dust events total)

Data Type	Expected Range	
Charge (Q)	1 - 160 fC	
Mass (<i>m</i>)	~100µg	
Velocity (v)	1 - 2 m/s	

Definitions:

p ~ plane number *n* ~ wire number in given plane *i* ~ wire w/ highest voltage *j* ~ wire w/ 2nd highest voltage t_{ρ} ~ time particle crosses plane ρ *d* ~ wire spacing $\Delta x \sim$ plane spacing $h_n \sim z$ -coordinate of wire n $q_n \sim$ charge induced on wire *n* $V_n \sim \text{voltage signal from wire } n$ $\rho \sim CSA$ sensitivity

DTS Unit (sub-section)

Charge Sensitive Amplifier (CSA) creates voltage from induced charge: Sensitivity: $\rho = 18 \text{ mV/fC}$

ust BUST

LASE

85

Key assumption: when particle crosses a wire plane the induced charge is only on the wires in that plane

Steps:

1. Q calculation (@ $t = t_1$)

n ~ wire number (in plane)

ust BUS

Steps (Cont.):

2. Distance from closest wire d

$$d_i = \frac{\alpha}{1 + V_i/V_j}$$

2. Absolute z-coordinate

$$\begin{array}{lll} \text{If } i > j & \not \rightarrow & z_p = h_i - d_i \\ \text{If } i < j & \not \rightarrow & z_p = h_i + d_i \end{array}$$

2. Repeat steps 2 & 3 for every plane $(p = 1 \rightarrow 4)$

ust BUST

Steps (Cont.):

5. Velocity calculation

$$v = \frac{\sqrt{(\Delta x)^2 + (z_1 - z_2)^2}}{t_2 - t_1}$$

Dust BUST

Dust BUST

LASE

Steps (Cont.):

6. Calculate turning angle δ

$$\tan(\delta) = \frac{\Delta x(z_1 - z_2 - z_3 - z_4)}{(\Delta x)^2 + (z_4 - z_3)(z_2 - z_1)}$$

LASI

Steps (Cont.):

7. Calculate mass (where I = 0.07 m is the length of the deflection region)

$$m = \frac{QEl}{v^2 \tan(\delta)}$$

Electron Deflection

Cylindrical magnets:

D = $1.59 \pm 0.10 \text{ mm}$ t = $1.59 \pm 0.10 \text{ mm}$ Magnetic Remanence: B_r = 1.48 T

LAS

Need to prove gyroradius of 100 eV electron to be sufficiently as to not penetrate the instrument more than 1 cm (first wire plane) Gyroradius: mv

Electron Deflection

Using 5 magnet bars: d = 17.5 mm

Dust BUST

LASE

Characterization of Sun-sensing Verify the system can find the sun to within 1° over the full sky. Requirements 3.21 and 3.22 Purpose: Characterize the accuracy of the photodiodes, covers, and algorithm across the sky. **Bike Light** with Facility: Bobby's Lab with overhead lights off Clamp Calculated Sun Vecto Measurements: Measuring Tap Measured light source position 5ft distance to source, know position to 0.5" for 0.5° CubeSat calculated sun vector Ground Based on photodiode measurements Full sky characterization: CubeSat 32 locations that use all photodiode combinations

Door

Sun Sensing Problems/Issues

Did not realize we could have too much resolution There is a minimum resolution Did not add margin to minimum

Must BUS

LASE

LAS

3

Reflected Light Caused Additional Errors

Designed ambient light margin reduced due to unexpected roll-off

> Sun sensing was not tolerant to reflected light

Testing locations were chosen away from walls to compensate

> No requirement for testing environment

Integrated Tilting and Sun-sensing Verify integration of tilting mechanism, door, and sun sensing for 1° accuracy and closed-loop tilting - Requirements 3 and 4

Purpose: Measure the tilt angle of the Cubesat as it responds to light locations

Facility: Senior Project Depot

Measurements:

Tilting angle of the cubesat using accelerometer - compare to calculated ideal tilt based on actual light source position

ust BUST

LASE

Integrated Tilting and Sun-sensing Verify integration of tilting mechanism, door, and sun sensing for 1° accuracy and closed-loop tilting - Requirements 3 and 4

Purpose: Measure the tilt angle of the Cubesat as it responds to light locations

Facility: Senior Project Depot

Measurements:

Tilting angle of the cubesat using accelerometer - compare to calculated ideal tilt based on actual light source position

ust BUST

LASE

Photodiode Cover Calibration

Verify the photodiodes can measure the sun angle to within 0.5° over the 60° field of view. Requirements 3.21 and 3.22

Purpose: Provide a calibration for the
photodiode output to sun angleProcedure:
Set up

Facility: Bobby's Lab

Cubesat QB50 Turntable Light Source (bike light) 5V Power Supply

Measurements: Output voltage to oscilloscope

Set up turntable and photodiode Turn 1° increments, measure voltage

Light Source Photodiode Cover OB50 Turntable OB50 Turntable Electronics

Photodiode Vector Calibration

Verify the pointing of each individual photodiode. Requirements 3.21 and 3.22 ■

Purpose: Provide a calibration for the pointing of each photodiode on the CubeSat

Facility: Bobby's Lab

Cubesat QB50 Turntable 1 increments, 0.25" to within 0.005" Light Source (bike light) 5V Power Supply

Measurements: Output voltage to microcontroller, resulting sun angles

Sun Sensing Characterization Locations

Accelerometer Testing

Verify that accelerometer can resolve less than 0.5 degree tilt angle

Characterization of noise levels of digital output Machine Shop ADXL345 Triple Axis Accelerometer CNC Accelerometer mount Procedure (this can also be a diagram) Calibrate accelerometer Take data at level (0 deg tilt) (10 s) Move CNC known amount Take data at tilt (10s) Compare measure to computed Repeat

Vacuum Chamber Preparations

LAS

Cleaning Alcohol/flux remover cleaning for PCBs Acetone and ethanol cleaning in ultrasonic bath for machined components Cleaned instrument stored in ESD bag for transport **Proper Material Selection** Low outgassing materials: aluminum, PEEK, Delrin Vented Bolts

Tilting Backup Slides

Dust BUST

LASP

Scissor Lift Tilting Increment

Can't solve for the tilt angle from leg length

- Iteratively solve for leg length based on tilt angle Compare leg length to closest possible from model to the
- right. At all times, leg length error is < 10 µm
 - Error in angle is <38.4 mas

Then Need To Determine Horizontal Actuation LASE

Open Loop Tilt Testing

Verify the tilting mechanism can tilt the instrument up to 45° in 1° increments (+/- 0.5° accuracy) - Requirements 4.12,4.121

Purpose: Measure the tilt angle of the Cubesat relative to level ground in 1° increments

Facility: Senior Project Depot Measurements: Tilting angle of the CubeSat using accelerometer

Just BUST

LASI

Tilt Testing Changes

Added a second pulley to reduce risk of bucket hitting cubesat

Added a support to prevent rope from resting on body

Other Evidence of Friction

Cubesat became suspended while tilting back down over large increments

LAS
Open-Loop Tilting Results

Sending commands to the Teensy to step the motors by a predetermined amount based on our model Meets 2nd level of success (Open loop tilting accuracy of +/- 5°)

LASI

"Locked" Tilting Results

After tilting, another requirement was to ensure that the motor could hold the weight of the cubesat Turned off power and left cubesat tilted for 5 minutes and overnight Tilt angle did not change in either case

Requirement 4.123 Verified: The actuators shall lock when they reach the desired angle to maintain the tilt within 1 degree.

Door Testing

Purpose: Ensure the Door Opens Correctly Facility: Senior Project Depot Measurements:

Does the door protect this instrument

Procedure:

Attach door to power supply and Teensy Activate door mechanism at level and tilting platform

Door Testing Results

Manufacturing issues led to Doors not being able to fit inside of Cubesat Unable to test if the door operated as intended Would require more time to implement some fixes LASI

Requirement 3.11, 3.12 Incomplete

Photodiodes Boards

Verify functionality of PCB and overall design

Voltage relative to intensity of light Ambient light ____mV

Electronics lab

Power supply (5V) Oscilloscope/multimeter Procedure

Connect PCB to power supply and measuring device Turn on and check readout in ambient light In a dark room, position light source 5ft away and check readout at different angles LASI

Teensy Shield Test (backup)

Verify functionality of PCB and filter design

Fit check, verify all components are powered correctly and outputting information Electronics lab Power supply (5V) Oscilloscope Multimeter

Procedure Fit check all COTS boards (do not solder on yet) Connect to power supply <u>and</u> check proper power LASI

distribution

Connect photodiode and check output after filter Solder on COTS boards one at a time and check functionality of each

Impact Testing Models

LAS'

Rigid Bar Statics Model Wire's fail at 4 N impact force Unable to correlate impact velocity to impact force without impact time Solidworks Model **Proper Material Selection** 10 m/s impact results show stresses not exceeding failure stress

Impact Testing Model

Assumptions

Entire DTS is bonded Landing on rigid surface Perfectly inelastic collision

Stainless steel 304 wire electrodes

Ultimate Tensile Strength: 505 MPa

Solder Stoppers

Length (~ 2.2 mm) designed to shear at 520 MPa normal stress Wire will fracture before solder joint shears off

116

Lansmont Drop Test Procedure

Step 1: Input desired drop height.

117

2: Raise testbed to desired drop height.

3: Once in position, run LabView VI to record voltage and drop the testbed.

4: After completing drop, stop the VI (VI will save the drop data).

5. Repeat procedure for new drop height

Post-process voltage data to calculate acceleration. Integrate acceleration to determine impact velocity.

Drop Height (cm)	10	20	30	40	50	60	70	80	90	100	110	120	127	
Impact Velocity (m/s)	0.8	1.6	2.1	2.5	2.9	3.2	3.5	3.7	4.0	4.3	4.5	4.7	4.9	

Drop Test Footage

CSA Verification: Model

Ideal op-amp model assumed

$$V_{out} = \frac{Q_{dust}G_2}{C_{fb}}, \ Q_{dust} \approx Q_{test\ cap}$$
$$Q_{test\ cap} = C_{test}V_{test}$$

Dust BUSTE

LASP

Embedded System Status cont.

Hardware/software integration incomplete Infeasible given time and resources—two team members responsible for:

Custom instrument embedded system (low-noise analog electronics and digital system) Real-time embedded software designed and implemented using LASP Ada-based flight software framework, Adamant

Functional requirements not met:

5. The electronics subsystem shall collect signals and issue commands to and from the instrument [...]6. The software shall be capable of [...] detecting dust events [...]

Software Framework

What is Completed

Implemented dust detection algorithm Error events for ADC missampling or incorrect timing User serial input commands to start and stop data collection, reset data buffers, and flip polarity of the instrument Serial output of dust event data once dust particle is found

What could not be finished

Hardware/Software integration which includes setting up the ADCs, DMA, MCU, and hardware interrupts

Why it wasn't finished

Lack of team knowledge and time for software/hardware integration Difficulty in using open-source Ada STM32F4 drivers within framework

Integrated Tilting and Sun-sensing Verify integration of tilting mechanism, door, and sun sensing for 1° accuracy and closed-loop tilting - Requirements 3 and 4

Purpose: Measure the tilt angle of the Cubesat as it responds to light locations

Facility: Senior Project Depot

Measurements:

Tilting angle of the cubesat using accelerometer - compare to calculated ideal tilt based on actual light source position

ust BUST

LASE

Photodiode Cover Calibration

Verify the photodiodes can measure the sun angle to within 0.5° over the 60° field of view. Requirements 3.21 and 3.22

Purpose: Provide a calibration for the
photodiode output to sun angleProcedure:
Set up

Facility: Bobby's Lab

Cubesat QB50 Turntable Light Source (bike light) 5V Power Supply

Measurements: Output voltage to oscilloscope

Set up turntable and photodiode Turn 1° increments, measure voltage

Light Source Photodiode Cover OB50 Turntable OB50 Turntable Electronics

Photodiode Vector Calibration

Verify the pointing of each individual photodiode. Requirements 3.21 and 3.22 ■

Purpose: Provide a calibration for the pointing of each photodiode on the CubeSat

Facility: Bobby's Lab

Cubesat QB50 Turntable 1 increments, 0.25" to within 0.005" Light Source (bike light) 5V Power Supply

Measurements: Output voltage to microcontroller, resulting sun angles

Sun Sensing Characterization Locations

Photodiodes Boards

Verify functionality of PCB and overall design

Voltage relative to intensity of light Ambient light 550mV Electronics lab Power supply (5V) Oscilloscope/multimeter

Procedure

Connect PCB to power supply and measuring device Turn on and check readout in ambient light In a dark room, position light source 5ft away and check readout at different angles LASI

Teensy Shield Test (backup)

Verify functionality of PCB and filter design

Fit check, verify all components are powered correctly and outputting information Electronics lab Power supply (5V) Oscilloscope Multimeter

Procedure Fit check all COTS boards (do not solder on yet) Connect to power supply and check proper power LASI

distribution

Connect photodiode and check output after filter Solder on COTS boards one at a time and check functionality of each

Sun Determination Requirement

Specific Requirement:

3.2.4 - The ARS shall maintain full sky view in a 180° half dome over the +Z hemisphere.

3.2.2 - The ARS shall determine Sun position within ±5° up to 45° above the surface and within ±1 degree from 45° to 90° above the surface, in the XZ plane.

Why?

Must actuate CubeSat to 45°, or as close as possible without allowing solar wind to enter instrument

Designs Driven:

Sun determination algorithm Photodiode placement

Sun Finding Algorithm

Full Sky Coverage

3 measurements required to find sun Full sky must be covered by 3 photodiodes at minimum Map shows number of sensors that see each position in the sky

> 3 Photodiode Minimum Requirement 3.2.4 satisfied

ust BUST

LASI

Nominal Design Case

ARS Component Level Tests

Sensor Tests

Testing and calibration:

Individual photodiode outputs.

Individual photodiodes and covers for manufacturing tolerances.

LAS

Photodiode housing mounting on CubeSat structure.

Accelerometer mounting

Mechanisms Tests

Testing

Individual parts for errors in manufacturing

Test tilting matches model (independent of other systems) Software Tests

Module level testing of algorithms

Need to know the current output of the photodiodes

Solar irradiance spectrum is well known and provides power at every wavelength Photodiode relative spectral sensitivity gives relative power absorbed at every wavelength

950

1150

Multiply solar irradiance spectrum and photodiode relative spectral sensitivity at each wavelength Result is photodiode power per area across the full spectrum LASE

Integrate the photodiode absorption spectrum to get the total power the photodiode will receive. Ir = 457.5 W/m^2 P = IA = **3.4 mW**

Expected Irradiance on photodiodes: Ee = 0.4575 mW/cm^2 From gain curve on datasheet I = 30 µA

Microcontrollers measure voltage, not current Voltage measured across a resistor to ground would be too small for Teensy microcontroller, so **voltage needs to be amplified**

Implement a transimpedance amplifier to boost the signal and convert current to voltage.

Vo = Id*Rf Maximum current of 30 μA Rf of 200 kΩ Vo max = 4.8 V

Output voltage is **within microcontroller** range

Nust BUST

LASI

Photodiode Covers – Exposed Area

Dust BUST

LASE

$$A = 2 R^2 \cos^{-1} \left(\frac{d}{2R}\right) - \frac{1}{2} d \sqrt{4R^2 - d^2}$$

Sun Sensor Design

Why do we need the Sun position? Need to know which side of the CubeSat to actuate Solar wind from the Sun can create erroneous data Solar keep-out and 45° actuation not always possible Actuate to within 1 of highest possible angle How? - Photodiodes Edges and side faces will have a sensor Edges mounted 45° off sides, faces flat

Linear Independence Sky Map

Dust BUST LASP

ARS Software: Control Loop Design

Why?

Stepper Motors aren't perfect, they can skip a step How?

Use a closed loop control system for the stepper motors Due to discrete steps of stepper motor, only proportional control needed No rise time or overshoot requirements

ARS Software

Why?

Need to be able to determine optimal angle for Cubesat to tilt and send motor commands for actuation <u>How?</u> Sample 13 photodiodes for sun position and sample accelerometer for closed loop control

Read in analog values from photodiodes and convert to digital Convert digital photodiode values to relative sun vector angles Determine 3D sun vector

Determine correct angle to tilt and which side

Ensure tilting is correct with accelerometer feedback

Send correct voltage and step amounts to motors

Determining the Sun Vector

The Sun 1 vector

From 3 diodes 3 vectors 3 angles

Dust BUST

LASP

Determining the Sun Vector

The Sun 1 vector From 3 diodes 3 vectors 3 angles 3 Sun vector co

3 Sun vector components Define 1 plane Dust BUST LASE
The Sun 1 vector From 3 diodes 3 vectors

3 angles

3 Sun vector components Define 2 planes Dust BUSTI LASP

The Sun 1 vector From 3 diodes

om 3 diodes 3 vectors 3 angles 3 Sun vector components Define 3 planes

Dust BUSTI

LASE

The Sun 1 vector

From 3 diodes 3 vectors 3 angles 3 planes Intersection point

Sun Vector

Dust BUST

LASE

The Sun 1 vector From 3 diodes 3 vectors 3 angles 3 planes

Dust BUSTI

LASP

Equations for Intersection

LASI

$$\hat{Z}_{11}\left(X - \hat{Z}_{11}\cos(\alpha_1)\right) + \hat{Z}_{12}\left(Y - \hat{Z}_{12}\cos(\alpha_1)\right) + \hat{Z}_{13}\left(Z - \hat{Z}_{13}\cos(\alpha_1)\right) = 0$$

$$\hat{Z}_{21}\left(X - \hat{Z}_{11}\cos(\alpha_2)\right) + \hat{Z}_{22}\left(Y - \hat{Z}_{22}\cos(\alpha_2)\right) + \hat{Z}_{23}\left(Z - \hat{Z}_{23}\cos(\alpha_2)\right) = 0$$

$$\hat{Z}_{31}(X - \hat{Z}_{31}\cos(\alpha_3)) + \hat{Z}_{32}(Y - \hat{Z}_{32}\cos(\alpha_3)) + \hat{Z}_{33}(Z - \hat{Z}_{33}\cos(\alpha_3)) = 0$$

 \hat{Z}_{xy} is the xth photodiode vector yth component α_x is the xth photodiode sun angle X,Y,Z are the body components of the sun vector

ARS Photodiode Mounting

Photodiodes will not be placed with perfect angular position

Need to maintain full sky coverage Based on a Monte-Carlo analysis, we can maintain full sky coverage with 5 of mounting accuracy

ARS Software

of

Dust BUSTER

ARS Microcontroller

Touch Touch RX1 Touch Touch Touch Touch Touch

Component	Type/# of Component Pins	Pins on Teensy	
Motor Drivers (v/)	Digital/4 (x4)*	6-12 and 24-32	ouch MOSI1 RX1 0 Analog GND ouch MISO1 TX1 1 Analog GND PWM 2 23 A9
Motor Drivers (X4)	PWM/1 (x4)	2-5	SCL2 SDA2 CANOTX CANORX PWM 3 22 A8 PWM MISO1 TX1 PWM 4 21 A7 PWM CS0 MOSIJ MISO1 TX1 PWM 5 E E 20 A6 PWM CS0 SCK1 PWM 6 E E E E SCL2 SCL2 SCL2
Buttons (x2)	Digital/1 (x2)	35-36	SDA0 MOSIO RX3 PWM 7 SDA0 MISOO TX3 PWM 8 CS0 RX2 PWM 9 CS0 RX2 PWM 9 CS0 TX3 PWM 10 CS0 TX3 FX3 FX3 FX3 FX3 FX3 FX3 FX3 FX3 FX3 F
Accelerometer	SPI/2	33-34	MOSIO 11 14 AO PWM SCK0 MISOO 12 13 (LED) SCK0 3.3V GND
Photodiodes (x13)	Analog/1 (x13)	14-23	File Z4 File AZ2 DAC1 SCL2 TX1 Z6 Image: SCL2 39 AZ0 MISDO SCL2 TX1 Z6 Image: SCL2 SCL2 TX1 SCL2 SCL
Door Command	Digital/1	0	MOSIO 28 37 A18 PWM SCL buch CANOTX PWM 29 36 36 A17 PWM buch CANOTX PWM 30 35 A16 PWM CS1 BX4 A12 31 34 A15 CANIBX Spain
Data Transmit	Serial/1	USB	SCK1 TX4 A13 32 STITUTIE 33 A14 CANITX SCO

* Note: 2 pins on each motor driver can be permanently set and do not require connection to Teensy reducing total pins required to 8

TX5

ARS Photodiode Noise

Photodiode, amplifiers, and transmission wires will create noise in signal. To reduce noise, low-pass filters were added to the LASE

design to remove random noise.

ARS Requirements Development Due to the 1D tilting design, only the projection of the sun vector onto the X-Z plane must be accurate to within 1 degree However, full sky coverage requirement forces us to know sun vector to within 1 degree At +/- Y sides of CubeSat 1 degree of error in full vector is 1 degree of error in projection Result is that we must know sun vector to 1 accuracy.

LAS

ARS Photodiode Resolution

Covers restrict field of view to increase resolution Resolution must be less than 1° to meet accuracy of 1° Assumptions:

> Background brightness is ½ Earth maximum Only ¾ of 10 bit ADC range used for angle measurement Voltage at 0° (direct sun) is ADC maximum

Worst resolution 0.15° < 1°

LAS

Nominal Design Case – Unfiltered Signal

Dust BUSTER LASP

Varied thermal and sampling noise uniformly 30,000 iterations Maximum error in sun vector is 0.35°

However, margin is a concern Manufacturing tolerances could push above 1°

ARS Photodiode Signal Processing

Transimpedance amplifier

160

Converts current to voltage and amplifies signal

RC low pass filter: $R = 3.6k\Omega$, C = 0.82uF

Filters signals $F_c \ge 51.4$ Hz (filters lab environment noise at 60Hz)

Just BUS

LASI

Off-Nominal Design Case

Photodiodes won't be mounted perfectly Knowing position improves accuracy ARS component level testing will allow us to find these errors

Just BUST

LASI

Off-Nominal Design Case

Distribution of Errors in Off-Nominal simulation Difficulty making a 'good' distribution

Just BUS

Off-Nominal Design Case

correctly modeling the error from photodiode covers Minute (0.0005 mm) changes in manufacturing tolerances cause outrageous errors Sun angle Photodiode Voltage Two Options: Off ramp to which side is sunnier Calibrate out photodiode cover error

Photodiode Calibration

QB50 Turntable to measure angle Oscilloscope to measure voltage Build a table of Voltage vs Angle

Dust BUSTI

LASI

ARS Sensors Status

Completed Test PCBs ordered and verifying Test cases printed Future Work Print all cases (Easy) Order all PCB copies and mount components (Easy, time consuming) Calibrate PCB and cover sets (Difficult, bulk of ARS work) Integrate with CubeSat (Medium) Cable routing (Unknown)