

Laboratory for Atmospheric and Space Physics University of Colorado Boulder

)

<u>Boulder Unmanned Sensor for Transport Events and Repositioner</u> Critical Design Review

Presenters: Alex St. Clair, Christine Reilly, Gabe Castillo, Jeff Jenkins, Reidar Larsen, Ryan Aronson **Team:** Charlie LaBonde, Ted Zuzula, Leina Hutchinson, Rachel Tyler, Robert Hakulin **Customer:** Dr. Xu Wang, Dr. Zoltan Sternovsky **Advisor:** Dr. Torin Clark

Project Purpose and Objectives

Project Purpose	Design Solution	Design Requirements	Project Risks	$\mathbf{>}$	Verification and Validation	Project Planning	

Project Motivation

- Dr. Wang's research at LASP suggests that charged particles could be lifted by Coulomb force
 - Dust transport events: micron-sized dust particles are charged by various sources in space and ejected from the surface of low-mass bodies
- Current instrument is too large for a space application in low-gravity
- Data could be collected with a smaller instrument in a CubeSat form factor, for a potential mission to an asteroid

Project Statement

- Dust BUSTER will <u>miniaturize</u>, <u>manufacture</u>, and <u>test</u> a **Technology Readiness Level (TRL) 4** dust instrument to characterize dust transport events similar to those that occur on asteroids
- To aid the instrument, the team will also <u>design</u> and <u>test</u> an <u>Autonomous Repositioning System</u> (ARS) to tilt a 6U CubeSat to a specified angle for dust collection

Overall Mission ConOps

Drust BUSITER LASE

Functional Requirements

Drust DUISTER

FR 1	The CubeSat model shall contain the <u>A</u> utonomous <u>R</u> epositioning <u>Sy</u> stem (ARS) and 2U instrument within 6U volume and mass limits.
FR 2	The instrument shall detect dust particles that enter the instrument.
FR 3	The <u>A</u> utonomous <u>Repositioning System</u> (ARS) mechanisms shall open the instrument door that is pointing away from the sun.
FR 4	The <u>A</u> utonomous <u>Repositioning System</u> (ARS) mechanisms shall tilt the instrument boresight up to a maximum of 45° off the surface.
FR 5	The electronics subsystem shall collect signals and issue commands to and from the instrument and <u>A</u> utonomous <u>R</u> epositioning <u>Systems</u> (ARS).
FR 6	The software shall be capable of data processing, detecting dust events, and running <u>A</u> utonomous <u>R</u> epositioning <u>System</u> (ARS) algorithms.

Design Solution

Project Purpose	$\mathbf{>}$	Design Solution	Design Requirements	\geq	Project Risks	\geq	Verification and Validation	Project Planning	

CAUSE BUSITES

╈

Drivet BUSITER

LAS

<u>A</u>utonomous <u>R</u>epositioning <u>S</u>ystem FBD

CubeSat Model

Purpose

- Structurally house all project subsystems
- Design
 - 6061 aluminum box bolted together
 - Subsystems bolted to the interior

- Dimensions: 36.6 x 23.9 x 11.6 cm
- Mass: 10.20 kg total out of 12 kg requirement

CubeSat Model

Purpose

- Structurally house all project subsystems
- Design
 - 6061 aluminum box bolted together
 - Subsystems bolted to the interior

- Dimensions: 36.6 x 23.9 x 11.6 cm
- Mass: 10.20 kg total out of 12 kg requirement

ARS Sensors and Software

Purpose

- Determine sun vector
- Determine tilt angle

Design

- Photodiodes with housings
- Accelerometer
- Software finds sun vector, implements controls

- 13 photodiodes
- Accelerometer mounted on microcontroller shield

Tilting Mechanism

Purpose

- Achieve up to 45 degree tilt
- Design
 - Stepper motor with lead screw
 - Aluminum scissor lift

- Mass: 0.6195 kg per side
- Motor torque: 0.26 Nm

Tilting Mechanism

Purpose

- Achieve up to 45 degree tilt
- Design
 - Stepper motor with lead screw
 - Aluminum scissor lift

Current Specs

- Mass: 0.6195 kg per side
- Motor torque: 0.26 Nm

VALUE DAL SECT

Door Mechanism

Purpose

 To protect one side of the instrument from solar wind and expose the other for dust collection

Design

- Stepper motor
- Nylon gear and gear rack
- Aluminum door

- Door: 9 x 7.5 x 0.32 cm
- Mass: 0.504 kg

Door Mechanism

Purpose

 To protect one side of the instrument from solar wind and expose the other for dust collection

Design

- Stepper motor
- Nylon gear and gear rack
- Aluminum door

- Door: 9 x 7.5 x 0.32 cm
- Mass: 0.504 kg

ARS Electronics

- Purpose
 - Collect sensor signals
 - Command motors
- Design
 - Teensy microcontroller and signal conditioning
 - Custom built PCB to integrate all components
- Current Specs
 - 2A limit stepper motor drivers
 - 1Hz sampling of photodiodes

Over BUSITER

ARS Electronics

Dust Instrument

Dust Instrument

Purpose

Measure charge, mass, and velocity of dust particles

Design

2U instrument shell containing:

- Two Dust Trajectory Sensors
 (DTS) with wire electrode arrays
- Two Deflection Field Electrode
 (DFE) plates on each side of the
 Deflection Field Region (DFR)
- Two Charge Sensitive Amplifier
 (CSA) boards

Dust Instrument (Cont.)

Design (Cont.)

2U instrument shell containing:

- A magnetic array at the entrance of each DTS to block high energy electrons
- An aluminum mesh at the entrance and exit of each DTS to fully enclose (Faraday Cage)
- DELRIN mounting blocks to electrically isolate DTS and DFE plates from instrument shell

Instrument Software

Dutput

Purpose

- Determine when dust particle passes through instrument
- Extract charge, mass, and velocity values
- Design
 - First derivative, non-saturating trigger shape (Double Triangle)
- Current Specs
 - Run real time convolution comparison
 - Post processing algorithm to extract desired outputs

Instrument Electronics

Purpose

- Amplify dust signal
- Digitally sample dust signal
- Design
 - Array of charge sensitive amplifiers (CSAs)
 - Microcontroller with integrated ADCs

Current Specs

1 kHz CSA sampling

Owned Industry of

Instrument Electronics

Final Overview

Critical Project Elements

OVINE DALIEUTE

Critical Project Elements

Drust BILISITEE

Critical Project Element	Justification
Surviving Impact	Modeling impact is difficult; limited knowledge
Sun determination	Tight tolerances on parts, complex algorithms
Tilting mechanism	Size and mass restrictions inhibit design options
Real-time event detection	Real-time software design is difficult

Design Requirements and their Satisfaction

Doet BUSTER

Surviving Impact

Owned DAUGHTER

Surviving Impact

Specific Requirement:

2.5 - The instrument wire electrodes shall be robust enough to survive crash landing on an asteroid, with Eros as a representative target, withstanding an impulse equal to that generated by the maximum landing velocity of 10 m/s on sand.

"**Survival**" means the wire will not break into pieces and remain attached to the DTS walls

Why?

Customer is concerned about wire electrodes surviving the maximum impact velocity for landing on Eros.

Designs Driven:

• Wire electrode array

Dust Trajectory Sensor 40 **KO** 80 **{0**} 40 **RO** Ro Electrodes

Surviving Impact - Design

Stainless steel 304 wire electrodes PEEK plastic threaded bolts

 Electrically isolates wire electrodes

Solder Stopper

- Thicker ball of solder on wire
- Secure wire electrodes axially

NAME OF TAXABLE PARTY.

Surviving Impact – SW Drop Test

Solidworks Drop Test Sim

- 10 m/s impact velocity
 Assumptions
 - Entire DTS is bonded
 - Landing on rigid surface
- Perfectly inelastic collision

Purpose

 Determine stress on wire electrode components Impact Velocity Vector

Asteroid Surface (Rigid)

Surviving Impact - Design

Stainless steel 304 wire electrodes

 Ultimate Tensile Strength: 505 MPa

Solder Stoppers

- Length (~ 2.2 mm) designed to shear at 520 MPa normal stress
- Wire will fracture before solder joint shears off

Surviving Impact - Design

Stainless steel 304 wire electrodes

• Ultimate Strength: 505 MPa

Max Wire Electrode Stress: 272.7 MPa

All components do not exceed their maximum failure stress

Requirement 2.5 satisfied

Sun Determination

Over DAUGTE

Sun Determination Requirement

Specific Requirement:

3.2.4 - The ARS shall maintain full sky view in a 180° half dome over the +Z hemisphere.

3.2.2 - The ARS shall determine Sun position within ±5° up to 45° above the surface and within ±1 degree from 45° to 90° above the surface, in the XZ plane.

Why?

Must actuate CubeSat to 45°, or as close as possible without allowing solar wind to enter instrument

Designs Driven:

- Sun determination algorithm
- Photodiode placement

Sun Finding Algorithm

Full Sky Coverage

3 measurements required to find sun

- Full sky must be covered by 3 photodiodes at minimum
- Map shows number of sensors that see each position in the sky

Full Sky Coverage – Effect of Mounting Errors

Determine the allowable error in photodiode mounting

- Full sky must be covered by 3 photodiodes at minimum
 Varied photodiode mounting randomly with uniform distribution
- 1000 iterations per degree of error

4 degrees of margin in mounting accuracy

Nominal Design Case

- Varied thermal and sampling noise uniformly
- Move sun vector over full sky
- Maximum error in sun vector is 0.26°

Worst Errors $0.26^{\circ} < 1^{\circ}$

Requirement 3.2.2 satisfied

 More than 0.9° error margin for > 95% of iterations

Tilting Mechanism

Overst DALISITY

Tilting Mechanism

Specific Requirements:

4.1.2 - The actuators shall tilt the CubeSat up to a maximum 45 degrees one time from the plane of the ground *4.1.2.1* - The actuators shall be able to tilt the CubeSat to 1 degree increments with an accuracy of ± 0.5°

Why?

45° is customer specified as optimal angle for science data collection. Need 1° resolution to achieve max tilt without putting instrument in the sun.

Design Driven:

- Fit within 3U of remaining CubeSat volume
- Actuator type

Tilt Mechanism in Action

CubeSat

- Model accounts for:
 - Height added by the foot
 - Leg internal to CubeSat
- Max tilt angle is 49.12°
 - Based on maximum distance that legs can deploy

Tilting Mechanism Error

Determine possible tilt for each step

- Tilt angle calculated for each leg length that could be achieved per motor step
 - Error is difference between ideal 1 degree increments and closest achievable tilt
- Error is allowable at all tilts

Real-Time Event Detection

Overst BAUSITI

Instrument - Event Detection

Specific Requirement

6.3.2 - The software shall detect dust events in real-time using a stable filter design.

Why?

Only want to output data when a dust event happens

Designs Driven:

- Dust event data compared to filter of known shape using simple convolution algorithm
- Dust event triggered when a desired output threshold is met
- Use LASP Flight Software framework to aid in real-time software design

Real-Time Event Detection

- Output of filter: Y[n] = 2Y[n-1] Y[n-2] + X[n] 2X[n-W/4] + 2X[n-3W/4] X[n-W]
 - Y is the output of the filter (initialized as zeros)
 - X is the dust data point
- Filter shape is a non-saturating, double triangle which resembles the shape of dust events
- Threshold is based on a scalar multiple of the maximum noise and is calibrated continuously

Real-Time Flow Diagram

Instrument – Real-Time Software 5.2 μs t = 0 $t = 1 \, \text{ms}$ 12 µs Move data/ Processor Program overhead and margin (995 μ s) ADC DMA Transfer Window (988 µs) Sampling + Conversion 1 kHz Timer Interrupt Move data/run trigger (5.2 μs): Move data: 0.6 μs O Run filter: 4.0 µs \bullet Dust event trigger meets real-time deadline Thresholds: 0.4 µs Sampling + conversion (12 µs):

- Sampling: 2.4 μs
- Conversion: 9.6 μs

Requirement 6.3.2 satisfied

Project Risks

Π

Driet BUSTER

LASP

Risk Descriptions

Risk	Description	Likelihood	Severity	Total
INT-4	Can only test full dust instrument in vacuum	5	5	25
INST-2	Don't have past test data	5	4	20
ELEC-1	Need to remake PCB	4	4	16
MECH-1	Mechanism mounting errors	4	4	16
ARS-1	Photodiode noise	4	4	16
ARS-6	Inconsistencies in photodiode apertures	4	4	16
ELEC-4	Noise from connections and EMI	3	5	15
STRUCT- 2	Wire electrode does not survive impact	4	3	12

Highest Risks

		Severity					
		1	2	3	4	5	
	5				INST-2	INT-5	
po	4			STRUCT-2	ELEC-1, MECH-1 ARS-1, ARS-6		
<pre></pre>	M					ELEC-4	
	2						
	1						

Mitigation Strategies

Drust DUSITER

LASE

	Risk	Effect	Mitigation Strategy
	INT-4	Won't know if instrument works until vacuum testing	Modular test plan for all components building up to integration
	INST-2	Must test software without real data	Modular code design; create simulated data
	ELEC-1	PCB remake uses schedule margin	Schedule in remake; get designs reviewed
	MECH-1	Mis-mounted moving parts slip or lock	Check acceptable tolerances while machining
	ARS-1	Can't detect sun due to noise	Add filters to photodiode circuits
	ARS-6	Errors in sun position due to manufacturing	Calibration for mounting and machining error, calculate acceptable error
	ELEC-4 Can't detect dust signals above noise		Minimize noise and EMI in instrument circuit
55	STRUCT-2	Fail impact requirement	Solidworks drop test; characterize failure

Mitigation Impact on Risks

			Severity				
		1	2	3	4	5	
	5			INST-2, INT-5			
	4		ARS-6				
ihood	З		ELEC-1	STRUCT-2			
Likel	2				MECH-1, ARS-1	ELEC-4	
	1						

Verification and Validation

Dust BUSTER

LASP

Verification Plan

Component Tests	
Jan 16th - Mar 5th	

- Verify Sensitivities
 - Photodiode
 - Accelerometer
- Verify Tolerances
 - 3D Printed
 Parts
 - Machined Parts
- Verify PCBs
 - □ CSA
 - □ DTS
- Verify Software

Subsystem Tests Mar 5th - Mar 19th

- CubeSat Model
- ARS
 - ARS Sensors
 - ARS Tilt
 Mechanism
 - ARS Door
 Mechanism
- Instrument
 - Impact Test
 - Circuit Test

Systems Tests Mar 19th - Anr 16tl

- Instrument
 - Electron Shield

Over DUSTER

- Trigger
 - Post-Processing Software
- ARS Test
 - Closed Loop
 System

ARS System Level Test

Equipment Needed	Procurement	
5V Power Supply	Borrowed	
Light Source	QB50	
Computer	Owned	
Pulley, Cord, Weight	Buy	

Dust DUSTER

LASE

ARS System Level Test

Compared to

Actual Sun Vector

Model Tilt Angle

Actual Tilt Angle

Tilt angle

Objective	• Determine light's location and tilt the CubeSat to the angle calculated by the	Data Needed	Required Resolution
ARS software with closed-loop control Compare software outputs to known light location	Photodiode Sun Vector	1 °	
	 Compare measured tilt angle (from accelerometer) to the calculated angle to verify that the motor has tilted the correct number of steps Software determines which door to open, and door opens on command 	Commanded Motor Tilt Angle	0.5°
		Accelerometer Tilt Angle	0.5°
		Ceiling Beam	
Location	Senior Projects Depot		Pulley
FR Verified	FR3: Open the instrument door that is pointing away from the sun. FR4: The shaded side is tilted FR5: CubeSat tilts 45° or optimal amount FR6: The software run ARS algorithms.	Fixed Light Source	Counterweig Legs Deployee

Instrument System Level Test

Over BUSTER

Instrument System Level Test

Objective	 Verify that instrument detects a dust event successfully Verify ADC sampling rate is 1 kHz Compare post-processing results (particle charge, mass, and velocity) to expected values 				
Location	IMPACT Dust Lab (walk-in availability)				
FR Verified	FR2: The instrument shall detect dust particles that enter the instrument. FR5: The electronics process dust signals in real time FR6: The software can detect events and calculate results				

Data Calculated	Compare to	Expected Range
Charge	Pickup tube calculation	8-160 fC
Mass	Average known particle mass	10-50 µg
Velocity	Average velocity given gravitational acceleration	1-2 m/s

IMPACT Lab Vacuum Chamber Dust BUSTER

Project Planning

┿

П

Driet BUSTER

LASP

Organizational Chart

Dust BUSTER

64

Cost Plan

-U-

Dust BUSTER

LASE

Work <u>Breakdown St</u>ructure

Doet BUSTER

LASE

Completed Future Work

Deliverables	Management	Safety/Test	Instrument	Structure	Mechanisms	Sensors
PDDCDDPDRCDRFFRMSRTRRAIAASPRSPPPFR	Gantt Chart Budget Org Chart WBS Cost Plan Test Plan Risk Matrix ICD documents	ResearchRequirementsFacilitiesProceduresEquipmentAssemblyTransportationStaffing	Material selectionCAD modelRT trigger designPost processing designInstrument PCBsInstrument shellMicrocontroller & embedded softwareLab testImpact testValidation	Subsystem layoutRefined layoutAvionics modelMass budgetSimulationsProcurementManufacturingAssemblyVerificationIntegrationValidation	Tilt locking designMaterial selectionCAD modelsProcurementManufacturingAssemblyIntegrationEnvironment testValidation	Full sky coverageAccuracyCircuit designAlgorithmSoftwarePCBCalibrationMountingIntegrationEnvironment TestValidation

Work Plan

Dust BUSTER

Testing Plan

Dust BUSTER

Thank you! Feedback?

Durat DURITER

LASE

Slide Directory

Driet BUSTER

<u>Title</u>	Design Requirements	Verification and Validation	Backup Slides	Backup Slides	Backup Slides	2
Project Motivation Project Statement Overall Mission ConOps Functional Requirements Design Solution CAD Model ARS FBD CubeSat Model Before CubeSat Model After ARS Sensors and Software Tilting Mech After Door Mech Before Door Mech After ARS Electronics Inst FBD Inst CAD Model Dust Instrument Dust Instrument Cont Instrument Software Instrument Electronics Detailed CAD Model CPE Diagram CPE Table	Surviving Impact Surviving Impact Design SW Drop Test Surviving Impact Design Sun Determination Req Sun Determination Algorithm Full Sky Coverage Mounting Errors Nominal Design Case Tilting Mech Tilting Mech in action Tilting Mech Error Inst Event Detection RT Event Detection RT Flow Diagram RT Software Project Risks Mitigation Strategies Mitigated Impact on Risks	Verification Plan ARS Systems Level ARS Systems Level Instrument Systems Instrument Systems Project Planning Org Chart Cost Plan Work Breakdown Work Plan Testing Plan Thank You! Slide Directory FR Validation Cleaning Levels of Success Changes Since PDR	Risk Evaluation Likelihood Severity Structures Instrument ARS Mechanisms Electronics Software Integration Testing Mitigation Structures Mass Budget 2U Inst Design Schematic CAD Model 2U Inst Design Cont Side View Verifying Wire Electrode Impact Test Collision Calculations Analysis Instrument Verification Q, v, m extraction Electron Deflection	ARS Sensors Component Level Tests Sun Knowledge Accuracy Sun Sensor Design Control Loop Software Sun Vector Mounting Software Microcontroller Teensy Shield Noise Development Resolution Unfiltered Signal Signal Processing Off Nominal Design Case Mounting Calibration Tilt Sensor Mounting Algorithm Noise PCB Cover Sensitivity Sun Determination Test Test Conops Accelerometer Test	Software Flow Diagram Post Processing Trigger Method Noise Filtering GIF Event Detection GIF Software Test LASP Framework Mechanisms Algorithm Locking Mass and Size Deflection Testing Electronics System ADC Sampling Schematics CSA Circuit Buffering Thermal Budget Backup Slides TRL Definitions	

CSA Verification Inst Test Post Assembly

Backup Slides

Dust BUSTER

LASE

Functional Requirement Validation

	Desired Outcome	Test
FR 1	Instrument secured in CubeSat, 2U and 6U measurements not exceeded	Fit-check and inspection
FR 2	Instrument detects dust particles	IMPACT vacuum chamber test
FR 3	Shaded door is opened	Sun determination test
FR 4	Shaded side is tilted to 45°	Tilting test
FR 5	Electronics command ARS tilt and doors, collect signals from instrument	Tilting test, IMPACT vacuum chamber test
FR 6	Event detection and ARS closed loop control	IMPACT vacuum chamber test, ARS system test

Cleaning

- All instrument machined components must be cleaned and put through an acetone and ethanol ultrasonic bath
- PCB is cleaned with ethanol
- Design cannot have trapped volumes or outgassing materials

NAME OF TAXABLE PARTY.

Ultrasonic bath at BioServe

Interior of bath

Levels of Success

Dust BUSTER

LAS

	Level 1	Level 2	Level 3
Instrument	 2U TRL 4 dust instrument Operates in vacuum chamber Interfaces mechanically with CubeSat 	- Wire electrodes remain intact upon 10 m/s impact	-
CubeSat/ ARS	 Construct 6U CubeSat model Tilt CubeSat model up to 45 degrees on a flat surface Determine which side of the CubeSat has the least sun 	- Open loop autonomous tilt with 5° accuracy - Operates on sandy surface	 Closed loop tilt with 1° accuracy Instrument cover opens once under operator command
Software	 Detect dust via external trigger Send dust data over serial Post processing algorithm extracts mass, velocity, charge 	- Self-triggering dust detection algorithm	- Determine uncertainty in mass, velocity, and charge

Changes since PDR

Dust BUSTER

LASE

Change	Reasoning
Added cleaning requirements	Customer requested component cleaning in preparation for vacuum testing
Changed impact testing scope	Focusing on wire electrode breaking, not tension (wire splits into 2+ separate pieces)
Changed tilting mechanism	Switched to stepper motor with lead screw from servo motor
Added 13th photodiode	Increase full sky coverage and accuracy

Risk Evaluation

DAIST BUSITED

1. 1. 1.

Risk Evaluation Criteria – Likelihood

Rating	Qualitative	Quantitative
1	Rare	0-5%
2	Unlikely	5-35%
3	Possible	35-70%
4	Likely	70-95%
5	Certain	95-100%

Risk Evaluation Criteria – Severity

Owned BALIFICITY

Rating	Qualitative	Schedule/Cost	Technical
1	Insignificant	No reduction in margin	All requirements still met
2	Minor	Small margin reduction	Failed 1 subsystem requirement
3	Moderate	Significant reduction	Failed 2 subsystem requirements or 1 functional requirement
4	Major	All margin consumed	Failed 3 subsystem requirements or 2 functional requirements
5	Catastrophic	Schedule/cost overrun	Failed 4 subsystem requirements or 3 functional requirements

Structures Risk Matrix (Backup)

		Severity							
		1	2	3	4	5			
	5								
	4			STRUCT-2					
lihoo	3	STRUCT-5	STRUCT-6						
Like	2		STRUCT-7		STRUCT-1				
	1		STRUCT-4	STRUCT-3					

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

Structures Risk Descriptions

Owned DALISITY

Risk	Description	Likelihood	Severity	Total
STRUCT-1	Misalignment in CubeSat build	2	4	8
STRUCT-2	Wire electrodes break or detach	4	3	12
STRUCT-3	Additions to instrument cause it to not fit	1	3	3
STRUCT-4	DTS or field plates not isolated	1	2	2
STRUCT-5	Electrode length decreases FOV	3	1	3
STRUCT-6	Magnet array mounting errors	3	2	6
STRUCT-7	Other part of impact test apparatus fails	2	2	4

Instrument Risk Matrix (Backup)

Overet BAUERTT

		Severity							
		1	2	3	4	5			
	5				INST-2				
	4								
lihood	M			INST-1					
Like	2		INST-3						
	1			INST-4					

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

Instrument Risk Descriptions

Over DAUGTER

Risk	Description	Likelihood	Severity	Total
INST-1	Magnetic shielding doesn't keep electrons out	3	3	9
INST-2	Difficulty acquiring past data for test	5	4	20
INST-3	Plastics outgass in vacuum	2	2	4
INST-4	Plastics provide insufficient insulation	1	3	3

ARS Risk Matrix (Backup)

Overst DALISITE

		Severity						
		1	2	3	4	5		
	5	ARS-2						
D D	4				ARS-1,6			
lihoo	З	ARS-5						
Like	2				ARS-4			
	1			ARS-7		ARS-3		

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

ARS Risk Descriptions

Driet BUSITER

148

Risk	Description	Likelihood	Severity	Total
ARS-1	Photodiode noise	4	4	16
ARS-2	Photodiode mounting inaccurate	5	1	5
ARS-3	Power/data allocations	1	5	5
ARS-4	Photodiodes too unique to correlate	2	4	8
ARS-5	Poor diode performance in low light	3	1	3
ARS-6	Inconsistency in apertures	4	4	16
ARS-7	Reflected light impacts measurements	1	3	3

Mechanisms Risk Matrix (Backup)

Ownest IDAL REATT

			Severity							
		1	2	3	4	5				
	5									
	4	MECH-7			MECH-1					
lihoo	3									
Like	2				MECH-2, 3					
	1				MECH-5, 6	MECH-4				

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

Mechanisms Risk Descriptions

Dust DUST

Risk	Description	Likelihood	Severity	Total
MECH-1	Mechanisms mounting errors	4	4	16
MECH-2	Door motor can't open door (torque lock)	2	4	8
MECH-3	Leg joints lock	2	4	8
MECH-4	Legs bend or break	1	5	5
MECH-5	Mechanisms take up too much room	1	4	4
MECH-6	False door button trigger	1	4	4
MECH-7	Motors drift when locked	4	1	4

Electronics Risk Matrix (Backup)

			Severity								
		1	2	3	4	5					
	5										
D	4				ELEC-1						
lihoo	З					ELEC-4					
Like	2				ELEC-2						
	1	ELEC-5				ELEC-3					

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

Electronics Risk Descriptions

Over DURITE

Risk	Description	Likelihood	Severity	Total
ELEC-1	Need to remake PCB	4	4	16
ELEC-2	Break a microcontroller during testing	2	4	8
ELEC-3	Unable to meet real-time requirements	1	5	5
ELEC-4	Noise from connections/EMI	3	5	15
ELEC-5	Customer- designed circuits don't work	1	1	1

Software Risk Matrix (Backup)

			Severity							
		1	2	3	4	5				
	5	SOFT-3, 4								
D D	4									
lihoo	З					SOFT-2				
Like	2				SOFT-5					
	1	SOFT-1								

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

Software Risk Descriptions

Dust DUSTER

148

Risk	Description	Likelihood	Severity	Total
SOFT-1	False triggers	1	1	1
SOFT-2	No triggers (same as ELEC-4)	3	5	15
SOFT-3	Inability to detect in quick succession	5	1	5
SOFT-4	Don't know SNR	5	1	5
SOFT-5	Converting to real time in Ada	2	4	8

Integration Testing Risk Matrix (Backup)

			Severity								
		1	2	3	4	5					
	5					INT-4					
	4										
lihood	З										
Like	2			INT-1, 2, 5							
	1				INT-3	INT-6					

Legend							
	Low (1-3)		Moderate (4-9)		High (10-15)		Extreme (16-25)

Integration Testing Risk Descriptions

Divisit DALISITE

145

Risk	Description	Likelihood	Severity	Total
INT-1	Instrument is not clean enough	2	3	6
INT-2	Schedule IMPACT lab for testing	2	3	6
INT-3	Can't find ARS testing location	1	4	4
INT-4	Can't test dust detection except in vacuum	5	5	25
INT-5	Schedule impact test in idea forge	2	3	6
INT-6	Use budget on unexpected purchases	1	5	5

Mitigation Impact on Risks

Dust BUSITES

LASE

Risk	Description	Likelihood	Severity	Total
INT-4	Can only test dust instrument in vacuum	5	3	15
INST-2	Don't have past test data	5	3	15
ELEC-1	Need to remake PCB	3	2	6
MECH-1	Mechanism mounting errors	2	4	8
ARS-1	Photodiode noise	2	4	8
ARS-6	Inconsistencies in photodiode apertures	4	2	8
ELEC-4	Noise from connections and EMI	2	5	10
STRUCT- 2	Wire electrode displacement exceeds limit	3	3	9

Structures

Dust BUSTER

LASE

Mass Budget

System	Mass (kg)
Dust Instrument	1.40
Door Mechanism	1.01
Scissor Lift Mechanism	1.24
Photodiodes	0.25
Microcontrollers	0.15
Avionics (Out of Scope)	1.50
CubeSat Structure	4.65
Total	10.20 kg

Owned BALISITEE

20 Instrument Design

Specific Requirement:

2.1 - The detector portion of the instrument shall fit within a 2U volume, not including the microcontroller.

Why?

The customer wants a 2U (10 x 20 x 11.35 cm) dust instrument

Designs Driven:

- Dust trajectory sensor (DTS)
- Charge sensitive amplifiers board (CSAs)
- Deflection Field Electrode (DFE)
- Magnetic shielding

Customer's DTS

60 cm

60 cm

2U Instrument Design

Over BUISTIER

Customer's Optimal Dust Measurement 2U Instrument Design

2U Instrument Design

Over BUSTER

Dust BUSTER's 2U Instrument Design

20 Instrument Design

What was designed:

- Wire electrode arrays
- Magnetic electron shield
- Mounting system
 Influences/Considerations:
 - Aperture of the instrument
 - Customer schematic

Dependencies:

- CSA board height and location
- Instrument shell wall thickness

20 Instrument Design

NAME OF TAXABLE PARTY.

Verifying Wire Electrode Design

- Our model shows that the wire electrode system should not break after a 10 m/s perfectly inelastic collision
- Testing model with Lansmont 15D Shock Test Machine
 Located in the Idea Forge with walk-in availability
- Testing for failure of wire electrodes
 - See which impact velocity causes the electrodes to break (become two separate pieces or detached)
 - Wire Electrode strength may not be determined if the DTS breaks in some other manner
- Testing with a constructed Dust Trajectory Sensor

Lansmont 15D Impact Testing

Over DATE THE

Impact Collision Calculations

Assumptions:

- Perfectly inelastic collision (v_f = 0 m/s)
- Point mass model for CubeSat
 Knowns:
- CubeSat mass (m_{cs}) = 12 kg (max)
- Impact velocity (v_i) = 10 m/s

$$J_{CS} = m_{CS}(v_f - v_i)_{CS} = 12(10 - 0) = 120Ns$$
$$J_{CS} = F_{impact}\Delta t \Rightarrow F_{impact} = J_{CS}\Delta t$$

Impact Collision Calculations

Overet BAUERTT

LASE

1.4

105

Wire Electrode Impact Analysis

 $L_0/2$

റ

Given:

- Yield Strength (τ): 199.9 N/mm²
- Wire Length (L_0): 7.0 mm

Modulus of Elasticity (E): 117.0 N/mm² Assumptions: Rigid Body Analysis Find: elongation (δ), deflection distance (d), deflection angle (α) , and impact force that would break the wire (F_{impact})

 $= F_T \sin(\alpha) = 0.4752N$

$$\delta = \overline{L_0 \times \frac{\tau}{E}} = 0.042mm \qquad \alpha = \sin^{-1}\left(\frac{d}{\frac{L_0 + \delta}{2}}\right) = 1.982^{\circ}$$

$$d = \sqrt{\left(\frac{L_0 + \delta}{2}\right)^2 + \left(\frac{L_0}{2}\right)^2} = 1.211mm \quad F_{impact} = F_T \sin(\alpha) = 0.4752$$

Surviving Impact - Model

Given:

- Yield Strength (τ): 215 N/mm²
- Wire Length (L₀): 6.0 mm
- Modulus of Elasticity (E): 200 N/mm²
 Assumptions: Rigid Body Analysis
 Find: elongation (δ), deflection distance (d)

$$\delta = L_0 \times \frac{\tau}{E} = 0.0645 mm$$

$$d = \sqrt{\left(\frac{L_0 + \delta}{2}\right)^2 + \left(\frac{L_0}{2}\right)^2} = 1.391 mm$$

ARS Sensors

Dust BUSTER

LASE

ARS Component Level Tests

- Sensor Tests
 - Testing and calibration:
 - Individual photodiode outputs.
 - Individual photodiodes and covers for manufacturing tolerances.
 - Photodiode housing mounting on CubeSat structure.
 - Accelerometer mounting
- Mechanisms Tests
 - Testing
 - Individual parts for errors in manufacturing
 - Test tilting matches model (independent of other systems)
- Software Tests
 - Module level testing of algorithms

Sun Knowledge – Accuracy

Need to know the current output of the photodiodes

- Solar irradiance spectrum is well known and provides power at every wavelength
- Photodiode relative spectral sensitivity gives relative power absorbed at every wavelength

950

1150

Sun Knowledge – Accuracy

Multiply solar irradiance spectrum and photodiode relative spectral sensitivity at each wavelength Result is photodiode power per area across the full spectrum

Integrate the photodiode absorption spectrum to get the total power the photodiode will receive. Ir = 457.5 W/m^2 P = IA = **3.4 mW**

114

Sun Knowledge – Accuracy

Expected Irradiance on photodiodes: Ee = 0.4575 mW/cm^2 From gain curve on datasheet I = 30 µA

Microcontrollers measure voltage, not current Voltage measured across a resistor to ground would be too small for Teensy microcontroller, so **voltage needs to be amplified**

Sun Knowledge – Accuracy

Implement a transimpedance amplifier to boost the signal and convert current to voltage.

Vo = Id*Rf Maximum current of 30 μA Rf of 200 kΩ Vo max = 4.8 V

Output voltage is **within microcontroller** range

Photodiode Covers – Exposed Area

OVINE DALIEUTE

$$A = 2 R^2 \cos^{-1} \left(\frac{d}{2 R}\right) - \frac{1}{2} d \sqrt{4 R^2 - d^2}$$

Sun Sensor Design

Why do we need the Sun position?

- Need to know which side of the CubeSat to actuate
 - Solar wind from the Sun can create erroneous data
- Solar keep-out and 45° actuation not always possible
 - Actuate to within 1 of highest possible angle

How? - Photodiodes

- Edges and side faces will have a sensor
 - Edges mounted 45° off sides, faces flat

Linear Independence Sky Map

ARS Software: Control Loop Design

- Why?
 - Stepper Motors aren't perfect, they can skip a step
- How?
 - Use a closed loop control system for the stepper motors
 - Due to discrete steps of stepper motor, only proportional control needed
 - No rise time or overshoot requirements

ARS Software

Why?

- Need to be able to determine optimal angle for Cubesat to tilt and send motor commands for actuation
 <u>How?</u> Sample 13 photodiodes for sun position and sample
- accelerometer for closed loop control
 - Read in analog values from photodiodes and convert to digital
 - Convert digital photodiode values to relative sun vector angles
 - Determine 3D sun vector
 - Determine correct angle to tilt and which side
 - Ensure tilting is correct with accelerometer feedback
 - Send correct voltage and step amounts to motors

- The Sun1 vector
- From 3 diodes
 3 vectors
 3 angles

DATES DALIESTIE

- The Sun1 vector
- From 3 diodes
 - 3 vectors
 - 3 angles
 - 3 Sun vector components

OVINE DALIEUTE

- The Sun1 vector
- From 3 diodes
 - 3 vectors
 - 3 angles

Owned Ind LEGITS

- 3 Sun vector components
- Define 1 plane

- The Sun1 vector
- From 3 diodes
 - 3 vectors
 - 3 angles

Photodiode Normal Vectors Planes in which orthogonal components must lie CubeSat Ownest Dial source

- 3 Sun vector components
- Define 2 planes

- The Sun
 1 vector
- From 3 diodes
 - 3 vectors
 - 3 angles

Photodiode Normal Vectors Planes in which orthogonal components must lie CubeSat Overst DALISSTE

- 3 Sun vector components
- Define 3 planes

- The Sun1 vector
- From 3 diodes
 - 3 vectors
 - 3 angles
 - ^a 3 Sun vector components
 - Define 3 planes
 - Intersection point

NAME OF TAXABLE

- The Sun1 vector
- From 3 diodes
 - 3 vectors
 - 3 angles
 - 3 planes
 - Intersection point

NAME OF ADDRESS

- The Sun1 vector
- From 3 diodes
 3 vectors

Over DURITE

- The Sun1 vector
- From 3 diodes
 3 vectors
 3 angles
 3 planes

West DAUGTED

Equations for Intersection

$$\hat{Z}_{11}(X - \hat{Z}_{11}\cos(\alpha_1)) + \hat{Z}_{12}(Y - \hat{Z}_{12}\cos(\alpha_1)) + \hat{Z}_{13}(Z - \hat{Z}_{13}\cos(\alpha_1)) = 0$$

$$\hat{Z}_{21}\left(X - \hat{Z}_{11}\cos(\alpha_2)\right) + \hat{Z}_{22}\left(Y - \hat{Z}_{22}\cos(\alpha_2)\right) + \hat{Z}_{23}\left(Z - \hat{Z}_{23}\cos(\alpha_2)\right) = 0$$

$$\hat{Z}_{31}(X - \hat{Z}_{31}\cos(\alpha_3)) + \hat{Z}_{32}(Y - \hat{Z}_{32}\cos(\alpha_3)) + \hat{Z}_{33}(Z - \hat{Z}_{33}\cos(\alpha_3)) = 0$$

 \hat{Z}_{xy} is the xth photodiode vector yth component α_x is the xth photodiode sun angle X,Y,Z are the body components of the sun vector

ARS Photodiode Mounting

- Photodiodes will not be placed with perfect angular position
- Need to maintain full sky coverage
 - Based on a Monte-Carlo analysis, we can maintain full sky coverage with 5 of mounting accuracy

ARS Software

┿

Dust DUSTER

LASP

132

ARS Microcontroller

Touch RX1 Touch Touch Touch

Component	Type/# of Component Pins	Pins on Teensy	
Motor Drivers (x4)	Digital/4 (x4)*	6-12 and 24-32	ouch MOSII RX1 0 Analog GND buch MISOI TX1 1 0 3.3V (250 mA max) PWM 2 23 A9 PWM
	PWM/1 (x4)	2-5	SCL2 CANOTX PWM 3 SDA2 CANORX PWM 4 MISO1 TX1 PWM 5 PWM 6 PWM 6 SDA2 CANORX PWM 4 MISO1 TX1 PWM 5 SCL0 A6 PWM CS0 MOSIL FOR A P
Buttons (x2)	Digital/1 (x2)	35-36	SELD HOSID RX3 PWM 7 BS 44 SDA0 SDA0 HISOD TX3 PWM 8 BS 44 SDA0 HISOD TX3 PWM 8 BS 44 SDA0
Accelerometer	SPI/2	33-34	MOSIO 11 14 A0 PWM 500 MISDO 12 13 AMM SCKO 3.3V GND
Photodiodes (x13)	Analog/1 (x13)	14-23	X Z4 AZ2 DAC1 A21 DAC0 A21 DAC0 SCM0 RX1 Z7 SCM0 SIS A19
Door Command	Digital/1	0	Mostio 28 37 A18 PWM SCL1 buch CAWOTX PWM 29 36 A17 PWM SCL1 buch CANOTX PWM 30 35 A16 PWM SCL1 couch CANOTX PWM 30 35 A16 PWM SCL1 couch CANOTX PWM 30 35 A16 PWM SCL1
Data Transmit	Serial/1	USB	SCKI TX4 AI3 32 MINIMUM 33 AI4 CANITX SCA

* Note: 2 pins on each motor driver can be permanently set and do not require connection to Teensy reducing total pins required to 8

RX5 TX5

ARS Photodiode Noise

- Photodiode, amplifiers, and transmission wires will create noise in signal.
- To reduce noise, low-pass filters were added to the design to remove random noise.

ARS Requirements Development

- Due to the 1D tilting design, only the projection of the sun vector onto the X-Z plane must be accurate to within 1 degree
- However, full sky coverage requirement forces us to know sun vector to within 1 degree
 - At +/- Y sides of CubeSat 1 degree of error in full vector is 1 degree of error in projection
- Result is that we must know sun vector to 1 accuracy.

ARS Photodiode Resolution

- Covers restrict field of view to increase resolution
- Resolution must be less than 1° to meet accuracy of 1°
- Assumptions:
 - Background brightness is ¼
 Earth maximum
 - Only ³/₄ of 10 bit ADC range used for angle measurement
 - Voltage at 0° (direct sun) is ADC maximum

Worst resolution 0.15° < 1°

Nominal Design Case - Unfiltered Signal

- Varied thermal and sampling noise uniformly
- 30,000 iterations
- Maximum error in sun vector is 0.35°

ARS Photodiode Signal Processing

- Transimpedance amplifier
 - Converts current to voltage and amplifies signal
- RC low pass filter: $R = 3.6k\Omega$, C = 0.82uF
 - Filters signals $F_c \ge 51.4$ Hz (filters lab environment noise at 60Hz)

Off-Nominal Design Case

- Photodiodes won't be mounted perfectly
- Knowing position improves accuracy
- ARS component level testing will allow us to find these errors

NAME OF TAXABLE PARTY.

Off-Nominal Design Case

- Distribution of Errors in Off-Nominal simulation
- Difficulty making a 'good' distribution

NAME AND ADDRESS

Off-Nominal Design Case

- We are having issues correctly modeling the error from photodiode covers
- Minute (0.0005 mm) changes in manufacturing tolerances cause outrageous errors
 - Sun angle

error

- Photodiode Voltage
- Two Options:
 - Off ramp to which side is sunnier
 - Calibrate out photodiode cover

142

ARS Photodiode Mounting

- Photodiodes will not be placed with perfect angular position
- Need to maintain sun vector determination accuracy
 - Full CubeSat will be calibrated against photodiode mounting errors
 - QB50 turntable can report position to 0.5 degrees
 - Interfaces with a control computer to report position
 - Can find mounting to within 0.5

Tilt Sensor Design

Why?

- Closed loop actuation requires <u>independently</u> measured tilt angle.
- How? ADXL345 Digital Accelerometer
 - Three axis tilt
 - Negates any mounting error
 - Digital output reduces electrical noise
 - If baseline is tilted 45 degrees
 - Accurate to 0.32 degrees

Tilt Sensor Mounting Error

Why?

- Improper mounting of the accelerometer can provide erroneous data.
- How? Calibration and Algorithm choice
 - Single vs double vs triple axis algorithms
 - Mounting error can be significant using two axis algorithm
 - Mounting error can be accounted for using three axis algorithm
 - Can input additional noise if Z axis is noisy

Tilt Sensor Algorithms

Why?

• Reduce error from mounting and signal noise How? - Algorithm choice

Single vs double vs triple axis algorithms

$$\label{eq:arcsin} \begin{split} \alpha &= \arcsin\!\left(\frac{\mathsf{A}_{\mathsf{x1}}}{\mathsf{g}}\right) \\ \beta &= \arcsin\!\left(\frac{\mathsf{A}_{\mathsf{y1}}}{\mathsf{g}}\right) \end{split}$$

 $\text{Pitch} = \alpha = \arctan$

 $Roll = \beta = arctan$

$$\alpha = \arcsin(\frac{A}{g})$$

Tilt Sensor Noise Analysis

Why?

Internal noise must be low enough to resolve 1 degree changes

How? - Standard deviation and range of two and three axis algorithm

Algorithm	Two Axis Algorithm		Three Axis Algorithm		
Angle	Pitch	Roll	Pitch	Roll	
Standard Deviation (degrees)	0.11	0.11	0.28	0.28	
Range (degrees)	0.67	0.447	1.74	1.14	

ARS Photodiode Board

Chief BALISTING

Doet BUSTER

LAS

1

ARS Photodiode Sensitivity

Over DUSTER

LASE

Æ

ARS Sun Determination Test

Objective	Compare ARS sun vector to actual vector			
Date	March 5th - March 18th			
Location	Outside, top of building			
FR Verified	FR3: The ARS and mechanisms shall open the instrument door that is pointing away from the sun. FR6: The software shall be capable of data processing, detecting dust events, and running ARS algorithms.			
Equipment Needed		Procurement		
ARS System		Built		
5V Power Supply		Borrowed		
Computer & STK		Owned		

Drust BUSTER

ARS System Level Tests

- Test photodiodes outdoors over a longer duration to ensure sun vector calculations are correct
- Errors in initial position can be accounted for over the test duration.
- Sun's movement will test multiple places in the sky for the Sun sensing system.
- Known sun vector can be found using STK software package.

ARS Test ConOps

CAUSE DALISTTER

LASE

ARS Accelerometer

- Component Test
 - Attach accelerometer to CNC mill
 - Move CNC by precise amount
 - Measure change in angle
 - Compare to accelerometer reading
- Systems Test
 - Acuate Cubesat to a commanded angle
 - Measure using protractor
 - Compare actual angle to measured angle

Instrument

Q, v, m calculation; DFR bias; and election deflection

Instrument Verification

Over BUSTER

• Definitions:

158

- □ p ~ plane number
- *n* ~ wire number in given plane
- i ~ wire w/ highest voltage
- *j* ~ wire w/ 2nd highest voltage
- $t_p \sim \text{time particle crosses plane } p$
- *d* ~ wire spacing
- $\Delta x \sim$ plane spacing
- $h_n \sim z$ -coordinate of wire n
- $q_n \sim$ charge induced on wire n
- $V_n \sim \text{voltage signal from wire } n$
- $\rho \sim CSA$ sensitivity

Methods for Q, v, & m extraction DTS Unit (sub-section)

- Charge Sensitive Amplifier (CSA) creates voltage from induced charge:
- 159 Sensitivity: $\rho = 18 \text{ mV/fC}$

KIND DOLLED TO

 Key assumption: when particle crosses a wire plane the induced charge is only on the wires in that plane

Steps:

1. Q calculation (@ $t = t_1$)

n ~ wire number (in plane)

COST DIA STOT

Steps (Cont.):

2. Distance from closest wire

$$d_i = \frac{d}{1 + V_i/V_j}$$

2. Absolute z-coordinate

$$\begin{array}{lll} \text{If } i > j & \not \rightarrow & z_p = h_i - d_i \\ \text{If } i < j & \not \rightarrow & z_p = h_i + d_i \end{array}$$

2. Repeat steps 2 & 3 for every plane $(p = 1 \rightarrow 4)$

NAME OF ADDRESS

Steps (Cont.):

5. Velocity calculation

$$v = \frac{\sqrt{(\Delta x)^2 + (z_1 - z_2)^2}}{t_2 - t_1}$$

Overet DALIGHTE

NAME OF A DESCRIPTION

Steps (Cont.):

6. Calculate turning angle δ

$$\tan(\delta) = \frac{\Delta x(z_1 - z_2 - z_3 - z_4)}{(\Delta x)^2 + (z_4 - z_3)(z_2 - z_1)}$$

Steps (Cont.):

7. Calculate mass (where l = 0.07 m is the length of the deflection region)

$$m = \frac{QEl}{v^2 \tan(\delta)}$$

Electron Deflection

Cylindrical magnets:

- D = 1.59 ± 0.10 mm
- t = 1.59 ± 0.10 mm
- Magnetic Remanence:
 - B_r = 1.48 T

- Need to prove gyroradius of 100 eV electron to be sufficiently as to not penetrate the instrument more than 1 cm (first wire plane)
- Gyroradius:

$$\checkmark r_q = \frac{mv}{qB}$$

Electron Deflection

Using 5 magnet bars: d = 17.5 mm

Mesh Grid Design

Why?

- Fully enclose DTS in a Faraday cage to reduce noise in wire electrodes
 How?
- 20 Ga Aluminum Sheet
- Perforated hexagonal pattern cut into sheet
- Plan to have custom laser cut professionally
- 67% open area

CSA Verification

Drust BUSITE

Objective	Objective Verify CSA circuit is function and its		Range	Resolution	Procurement
Date	February 5th - 9th	Function Generator (Step)			Borrowed
Location	IMPACT Dust Lab OR ITLL	Oscilloscope			Borrowed
		CSA Circuit Board	-	-	Built
Function Generator Test in CSA Out		Data Needed	Range Needed	Resolution Needed	Sampling Rate
		Input Voltage	0 - 50 mV	1 mV	1 kHz
		Output Voltage	0 - 3.3 V	20 mV	1 kHz
		Oscilloscop	e		
169					

Instrument Testing (Post-Assembly) Once assembled:

- 1. Connect to lab computer and output live voltage readings from wire electrodes (LabVIEW)
 - Check for reasonable voltage signals for no charge present
- 2. Drop charged dust into both ends of the instrument
 - One DTS active
 - Vary locations above the entrance plane
 - Check for reasonable increase in voltage due to charge particles present
- 3. Record output data from particle events manually
- 4. Run trigger software on data to ensure an event would be triggered

Instrument Testing (Post-Assembly)

- 5. Repeat steps 2 & 3 but with full instrument (both DTSs and DFR) active
- 6. Run post-processing analysis on manually recorded data
 - The average charge, mass, and velocity will be known from the pickup tube
 - Compare code output to knowns in order to validate post-processing code
- 7. Repeat until confident in trigger software and postprocessing code
- 8. Move on to final testing procedure (see ConOps)

Software Backup Slides

OWNER DALIEST

Instrument - Post Processing Software

Specific Requirement

6.1 - The post-processing software shall extract mass, charge and velocity information from the dust data.

Why?

Overall goal of instrument is to determine these quantities for dust particles

- Velocity from time between two DTS wire planes
- Charge from total accumulated charge on each 6 wires in 1 plane
- Mass from deflection angle through the DFR

Instrument - Post Processing Software

Donat INLIGHT

- Velocity from time between two DTS wire planes
- Charge from total accumulated voltage on each 6 wires in 1 plane
- Mass from deflection angle through the DFR

Post-Processing Flow Chart

Trigger Method - Cross Correlation

- Cross correlation (sliding dot product)
 measures overlap between two signals
- Trigger software takes cross correlation to compare filter and data stream
- Dust event triggered when cross correlation value exceeds threshold
 - Threshold will be determined from calibration with multiple data sets
- Output of filter: $Y_0 = 2Y_{-1} Y_{-2} + 2X_{-W/4} + 2X_{-3W/4} X_{-W}$

Instrument - Event Detection

1788

CAUSE DALISTTER LASP

Filter Design

- Width of filter in number of samples not time
 - Must be divisible by 4 to ensure convolution algorithm is applied correctly
- $W = 4Sf/V \approx 52$
 - S is distance between wire planes, f is sampling frequency, and v is velocity of dust particle
- Single vs. Coincidence thresholds
 - Single threshold checks if signal on one wire exceeds 6*maximum expected noise
 - Coincidence compares adjacent wires to see if one exceed 5*noise a exceeds 3*noise

Trigger Rate

- False Trigger rate dependent on signal to noise ratio
 - QNR of 6.25 results in 1 false trigger per year

Over BUSTER
Instrument – Noise Filtering

Noise ignored with stable filter

Requirement 6.3.1 satisfied

Over DURITE

LAS

Instrument - Event Detection

1882 Event detected with stable filter

Requirement 6.3.2 partially satisfied

Owned DALISSITT

Trigger Software (Pre-Instrument)

Objective	Verify real time capabilities and trigger algorithms on microcontroller	
Date	March 5th - March 18th	
Location	ITLL	
FR Verified	FR6: The software shall be capable of data processing, detecting dust events, and running ARS algorithms.	

Equipment Needed	Procurement
STM32F4 Microcontroller	Built
Power Supply	Borrowed
Computer	Owned

Data Needed	Sampling Rate
Previous Dust Data	Every millisecond

- Run trigger algorithms on microcontroller and ensure microcontroller outputs data
- Ensure microcontroller can sample, convert, and run algorithms within 1 ms

LASP Adamant FSW Framework

"Adamant is a component-based, model-driven framework designed for constructing reliable and reusable embedded, real-time software systems." - Architecture Description Document

- Ada-based
- Integrated unit testing

Mechanisms Backup Slides

Scissor Lift Tilting Algorithm

b = a * tan(theta)

d = c * cos(theta)g = f * sin(theta)c = e + gh = b - d

Scissor Lift Tilting Increment

- Can't solve for the tilt angle from leg length
 - Iteratively solve for leg length based on tilt angle
 - Compare leg length to closest possible from model to the right.
 - At all times, leg length error is
 < 10 μm
 - Error in angle is
 <38.4 mas

Then Need To Determine Horizontal Actuation VIDE DAL SECT

Missed Steps Analysis

- Tilting Angle is not a linear function.
- Missed steps needed for accelerometer to detect is variable.
 - In all cases,
 missed steps
 needed > 5

Locking Mechanism Trade Study

Over DUSTE

	Weight	Solenoid	Worm Gear	Lead Screw
Size	0.3	3	1	5
Holding Force	0.3	4	5	2
Mass	0.1	4	1	5
Cost	0.1	4	1	5
Integration	0.2	2	5	4
Total		3.3	3	3.9

Locking Requirement Satisfaction

Specific Requirements:

4.123: The actuators shall lock when they reach the desired angle to maintain the tilt within 1 degree. **Why?**

Need the legs mechanism to lock after tilting so that we can stop supplying power to the motor.

Satisfaction:

190

Based on solidworks analysis, maximum torque on motor is 0.1626. Detent torque of motor is 1.5 Nm.

1.5 Nm > 0.1626 Nm Will be able to lock without power

Requirement 4.123 satisfied

Mechanisms Mass and Size Requirements

Specific Requirements:

The ARS shall take up less than 3U of the CubeSat model's interior.

Why?

Need to leave mass and and volume for other systems that are outside of the scope of the project.

Mecha	nisms Ma	iss and Size l	Requirements
 Satisfaction: Mass: Solidworks model Volume: Assumed Rectangular Components 			1606 cm^3 < 3000 cm^3 Fulfills 3U volume requirement
Component	Mass	Volume	
Scissor Lift System	1.239 kg	1253.9 cm^3	1.743 kg < 6 kg Fulfills 3U mass
Sliding Door System	0.504 kg	353.1 cm^3	
Total	1.743 kg	1606 cm^3	Requirement 4.123 satisfied

П 仃 П \square П

I R

of

Locking Analysis – Doors

 $\mu = 1.5$ for Al on Al m = 0.05832 kg g = 9.81 m/s²

 $F_{frict} = N\mu$ N = mg

Ownest IDAL REATT

 $F_{frict} = (0.05832)(9.81)(1.5)$ $F_{frict} = 0.803N$

Motor can provide 10.2 N of force, so can overcome friction that might cause locking

Locking and Deflection Analysis - Tilt

Must tilt the adjusted mass of the Cubesat.

- Concern with deflection and stress caused by loading
- Fully Deployed (largest forces)

Solidworks static analysis

- Torque put back on the motor is 0.045 Nm
- Torque from weight is 0.1176 Nm
- Motor can supply 0.26 Nm

Locking and Deflection Analysis - Tilt

- Solidworks static analysis: Fully extended (largest forces)
 - Minimal deflection
 - Total counter-torque: 0.16 Nm
 - Motor can supply 0.26 Nm

Counter-torque < 0.26 Nm No locking up

Requirement 4.1.2 satisfied

Door Verification and Validation

Door: Inspection/Demonstration

- Apply voltage to drivers and verify motor turns
- Integrate door and motors. Apply voltage to drivers and verify the door moves
- Press button, verify that it cuts power to the motor
- Integrate door and motor with button. Move the door with the motor and ensure it has enough force to push the button. Verify power is cut to the motor.

Tilting Mechanism Testing

Dust BUSTER

Tilting Mechanism Test

Objective	Compare measured tilt angle to commanded angle as well as	Data Needed	Resolution
measured angle is within $\pm 0.5^{\circ}$ using the accelerometer.		Measured Tilt Angle	0.5°
Location	Senior Projects Depot	Modeled Tilt Angle	8 mas
FR Verified	FR5: CubeSat tilts 45° or optimal amount ±0.5°	Commanded Tilt Angle	Exact

Equipment Needed	Procurement
Tilting Mechanism	Built
Power Supply	Borrowed
Computer	Owned
Pulley, Cord, Weight	Buy or Borrow

Dust BUSTER

LASP

Electronics Backup Slides

OVINEE ING DRIVEN

Instrument Digital System

Specific Requirements:

5.2.1 - The hardware shall convert analog signals from each of 24 instrument amplifiers to digital at 1 kHz.

Why?

Customer specified 10 samples per waveform are needed for a 2 m/s particle which creates a 10 ms signal

Designs Driven:

• Custom instrument embedded system including microcontroller with internal ADCs and custom analog pin protection

Instrument - ADC Sampling

Dust BUSTER

а

ges januarius felities		Michine Schiller	
. Shi terrane and . Inc. 1981.	and a second state of the	and president parts	
ChAi out and an annual at	present and	a present of the	
CONT and a contract (and	(presenting () and ((interview) (and	
CS31.001. peacod jut	and a second	and present out	
ChAi and an annual and	presented and an	prosperation and	
CMI coll pressure () and	promotion () and (and the second second second	
CALLER presented (of	protection () and (and press and party	
CUAL and	processing () and (and present out	
COAL (HOL	promotion () and (and the second second	
CAL MILE PROVIDE 1010	anner (1911)	and a second second second	
ChAC and IL	and the second s	and the second s	
Chil.otlin	promotion (), and (2	prosperation (and a feature of the second se	-
COSt and a generalized	pursuing [, (a)]	presented out ADD, BA	
COAL root presection of the	province), self	present est	
ISAT OF THE REAL PROPERTY AND	provide () and (the Designed (
COC card gammad, and	promotion (), south	promotion () and	
CALLER passend Mr.	present and an	 provide difference 	
Cover party of generating him	provide a la construcción de la	president and	Suppo
COM and presented for	provident Calif.	and a second sec	_
COAL and a parameter at	personal part	president and	-
Corry party and party of the	provide a la constante de la constante	president wat	
COLUMN PROPERTY AND	provide a series and s	Compared and sold	
Constant and and and	Itin Summer	provide a contract of the second seco	
1.100 milder (Mild	promition (public	Inter Sectore 1	

.

۰.

н

c

d hit Principal i franch

Old-Palantee Closed 8

printer All

A &D. Rossenson C. Street 11

destantion of the line

2 dis Avenue 1, hep-1

X

*

-

1.200

¥

and.

100

The Street

¥

-

T horn

Dust BUSTER

LASP

CSA Group 2 Protection

CSA Group 1 Protection

The state

*

and the

Clamping circuit to maintain 0 V < ADC_in < 3.3 V

 $R_{AIN,max}$ = 50 k Ω >> 2.5 k Ω = R_{AIN} : acceptable input impedance for ADC

Need $V_{Shottky} < V_T = 0.6$ V so that the MCU diodes don't burn out

Maximum voltage difference is -15 V to GND. At 15 V, I_{R2} = 10 mA \Rightarrow $V_{Shottky}$ = 0.4 V

208 $V_{\text{Shottky}} = 0.4 \text{ V} < 0.6 \text{ V} = \text{V}_{\text{T}}$ \therefore acceptable

 \therefore acceptable pin protection

WHAT DAUGHTER

LASP

Ŧ

Doet BUSTER

LASP

П

шш

Π

ofer

Dust BUSTER

LASP

CSA Circuit (Given)

- Given by the client as a low noise method to translate a charge induced on a wire electrode into an amplified voltage
- The first op-amp is a charge sensitive preamplifier with gain of 1/C1

• Second is an AC coupled voltage amplifier with a gain of 91

Sensitivity
$$=\frac{1}{C_1} \times 91 = 18 \text{mV/C}$$
 —

ADC resolution will be much greater than needed

ARS Power Budget

ITLL and other similar power supplies have a max current of 5A

Component	Quantity	Max Current Draw (mA)
Teensy	1	60.2
Motor/Motor Driver	1*	2000
Photodiode Circuit	13	5.72
		2065.92mA (~2.07A)

*Note: while there are four motor/motor drivers sets, only one will be utilized at any given time

Photodiode Noise Analysis

Default sampling rate of ADC $\Delta f = 1Hz$ Transimpedance amplifier resistance R = 330k Ω Room temperature T = 296K

$$\forall \exists n 4 \# \sqrt{4k\pi RT\Delta f}$$

Laboratory cutoff frequency $f_c = 60Hz$ For typical resistor value R = $3.3k\Omega$ $f_c = \frac{1}{2\pi RC} \longrightarrow C = 0.82uF$

Data buffering runtime

The ADC data will end up in a predetermined location in memory from the DMA controller

It then needs to be moved to the buffer

Number of instructions Cycles per instruction **Total Clock Cycles** Explanation Load all 24 channels 24 2 48 Check for buffer rollover 2 1 2 Branch in rollover case 1 4 4 Divide to get remainder 1 1 1 Add/subtract index 1 1 1 Store all 24 channels to buffer 24 2 48

Minimum:

Double the second

Event Filter Runtime

Y[n] = 2Y[n-1] - Y[n-2] + X[n] - 2X[n-W/4] + 2X[n-3W/4] - X[n-W]

Assume circular buffer data structures and 12 wires **µs**)

Minimum: 660 cycles (~4

Explanation	Number of instructions	Cycles per instruction	Total Clock Cycles
Load X/Y values	6 x 12	2	144
Multiply by scale factors	3 x 12	1	36
Add/subtract X/Y values	5 x 12	1	60
Check for buffer rollover	10 x 12	1	120
Branch in rollover case	5 x 12	4	240
Divide to get remainder	5 x 12	1	60
Add/subtract index	5 x 12	1	60

Event Trigger Threshold Runtime

Worst-case threshold check (no trigger) <u>112 cycles (~0.6 μs)</u> Minimum:

Oviet DUISTE

Explanation	Number of instructions	Cycles per instruction	Total Clock Cycles
Load all filter outputs	1 x 12	2	24
Compare high threshold	2 x 12	1	24
Load all filter outputs	1 x 12	2	24
Compare adjacent wires	4 x 10	1	40

Thermal

Assumptions:

- Chamber is very large relative to microcontroller (black body)
- Chamber walls at constant 293.15 K
- Microcontroller is a black body

$$\dot{q}_{in} = \dot{q}_{out}$$

 $\sigma A_{micro} T^4_{chamber} + P_{micro} = \sigma A_{micro} T^4_{micro}$

 $(5.67e - 8)(2)(.07)^2(293.15)^4 + 0.5 = (5.67e - 8)(2)(.07)^2 T_{micro}^4$

 $T_{micro} = 301.7K$

Budget Backup Slides

Owned DALISSTIC

Instrument Hardware Cost (Analog)

ITEM	<u>UNIT COST (\$)</u>	# REQUIRED	TOTAL COST (\$)
LTC6240 OpAmp	1.2	30	36
OP275 OpAmp	3	15	45
10 G Ω Resistors	9.5	90	855
5 pF Capacitor	0.1	60	6
15 pF Capacitor	0.5	30	15
2.2 µF Capacitor	0.2	30	6
1k Ω Resistor	0.1	30	3
10 k Ω Resistor	0.1	30	3
1 M Ω Resistor	0.1	30	3
PCB	66	1	66
Misc.			50
Total			1038

Instrument Electronics Cost (Digital)

Over DAUGTT

ITEM	<u>UNIT COST (\$)</u>	# REQUIRED	<u>TOTAL COST (\$)</u>
Development Board	40	1	40
Microcontroller	15	2	30
PCB	66	1	66
Peripherals			30
Support Programmer	100	1	100
Total			40-226

ARS Mechanisms Cost

Over BUSITER

<u>ITEM</u>	<u>UNIT COST (\$)</u>	<u># REQUIRED (\$)</u>	<u>TOTAL COST (\$)</u>
Servo Motors	50	2	100
Stepper Motors	20	2	40
12"x12"x1/8" 6061 Aluminum	20	3	60
3/16"x12" 6061 Al Rod	5	1	5
Gear Rack	50	1	50
Gears	50	4	200
Rack Rail	10	1	10
Misc Mounting Equipment			100
Testing Equipment			100
Total			665

22

ARS Sun Sensing Cost

Driet BUSITER

ITEM	<u>UNIT COST (\$)</u>	<u># REQUIRED</u>	<u>TOTAL COST (\$)</u>
Photodiodes	5	20	100
Microcontroller (Teensy 3.6)	50	1	50
PCB	66	1	66
Peripherals			50
Accelerometer	20	1	20
Misc (cables, etc)			50
Total			336

CubeSat Structure Cost

Over DURITE

ITEM	<u>UNIT COST (\$)</u>	<u># REQUIRED</u>	TOTAL COST (\$)
12"x24" 0.125" Thickness 6061 T6 Al Sheet	35	1	35
24"x24" 0.125" Thickness 6061 T6 Al Sheet	30	1	30
Misc			100
Total			165

Instrument Structure Cost

Duret BAJET

ITEM	UNIT COST (\$)	# REQUIRED	TOTAL COST (\$)
0.3125" Thick, 24"x24" 6061 Al	140	1	140
0.04" Thick, 12"x12" 6061 Al	6	1	6
0.02" Copper Wire 1/4lb spool	7	1	7
M4 Screws	17	8	136
0.04" Thick, 12"x12" 6061 Al	6	1	6
0.04" Thick, 12"x12" 6061 Al	6	1	6
3/8"x3/8"x12" Delrin Bar (Black)	3	1	3
Polished 6061 0.125" Thick, 12"x12" plate	45	1	45
Magnets			100
227 Total			449

Project Scope

TRL 4

- Integration of different components
- Validation in laboratory environment
- Do not have to design for intended environment

TRL 9

*Actual system "flight proven" through successful mission operations

Drust BUSITER

LASE

TRL 8

 Actual system completed and "flight qualified" through test and demonstration (ground or space)

TRL 7

*System prototype demonstration in a space environment

TRL 6

 System/subsystem model or prototype demonstration in a relevant environment (ground or space)

TRL 5

*Component and/or breadboard validation in relevant environment

TRL 4

Component and/or breadboard validation in laboratory environment

TRL 3

 Analytical and experimental critical function and/or characteristic proof-ofconcept

TRL 2

Technology concept and/or application formulated

TRL 1

Basic principles observed and reported