

Manufacturing Status Review

Drone-**R**over Integrated **F**ire **T**racker

Team: Amber Bishop, Daniel Collins, Brandon Cott, Syamimah Anwar Deen, Samantha Growley, Pierce Lieberman, Kelsey Owens, Nur Abd Rashid, Anthony Stanco, Matthew Stoffle, Nicholas Wiemelt

Customer: Barbara Streiffert, Jet Propulsion Laboratory

Advisor: Dr. Jelliffe Jackson

Agenda

- Project Overview
- Mother Rover Design
- ➢ Schedule
- ➢ Budget
- Manufacturing & Status Update
 - Mother Rover Housing
 - Translational System Structure
 - Leveling System
 - Software
 - Electronics
- Conclusion

Mission Statement

Drone-Rover Integrated Fire-Tracker (DRIFT)

will develop a mother rover to secure, carry, and level an Unmanned Aerial Vehicle (UAV) for the purposes of gathering pertinent environmental data regarding locations at risk of or exposed to a wildfire.

Project Overview

Project Overview: Fire Tracker System

- As a result of climate change, wildfire seasons are becoming hotter and longer
 - This allows for a wildfire to easily ignite and rapidly spread
 - United States Forest Service is consistently increasing its budget for wildfire mitigation, rising from 16 to 50% of the Forest Service Budget since 1995¹
- A deployable **mother rover** and **autonomous drone** provide a low cost means of long-range reconnaissance for early detection of wildfires
- These systems can assist firefighters in investigating areas sometimes impassible by ground-based methods alone

¹The Rising Cost of Wildfire Operations: Effects on the Forest Service's Non-Fire Work." United States Department of Agriculture: Forest Service, 4 Aug. 2015.

Project Heritage

DRIFT will utilize both the **INFERNO** and **CHIMERA** hardware and software shown below:

Project Name	INFERNO INtegrated Flight Enabled Rover for Natural disaster Observation	Project Name	CHIMERA CHIId drone deployment MEchanism and Retrieval Apparatus
Timeline	2015-2016	Timeline	2016-2017
Overview	Semi-autonomous Child Drone capable of transporting and deploying a temperature sensor package to a location of interest	Overview	The landing, securing, and deployment system for the autonomous drone inherited from INFERNO (Landing Platform)
Capabilities	 Mission Duration: 13.5 min Fully Autonomous Takeoff at inclinations 3.5 degrees 10 m/s Translational Flight Video/Imaging: 720p at 30fps Sensor Package: > 90% transmission of SPS data 	Capabilities	 Capable of securing CD up to 200m from GS Drone recharging system can charge the CDS LiPo battery upon command Autonomous landing functionality utilizing image recognition upon command from ground station

Design Solution

Design Solution: An Overview

Total Weight : 393.45 lbs

Front View

Design Modifications from CDR

Leveling

- Previous system required additional degree of freedom on scissor jacks
- Accomplished through a universal joint beneath jacks
- Includes custom jack base to allow for Ujoint mounting

Wheel Locking Mechanism

- Removed from Mother Rover System
- Test of worm-gear motors proved back driving will not occur
- Gives room in budget saves \$157.41

Critical Project Elements

Translational System

• **Fixed Chassis design** enables the mother rover to traverse rough terrain including fine dirt, small gravel, and lawn grass.

Leveling System

Utilizes internal leveling jack design to level the landing platform to the required
 3.5⁰ necessary for the child drone to deploy and autonomously land safely.

o Electronics and Communication

- Necessary for communication between Ground Station and Mother Rover
 - Commands leveling system
 - Provides live video feed for operator
 - Commands Mother Rover for Translational motion

o \$5000 Budget

- Currently only \$163.31 margin
- Applied for an additional \$675.00 through Engineering Excellence Fund (EEF)

Levels of Success

eve

_evel 2

evel 3

- MR can traverse over a flat dirt path while supporting the size and the weight of the attached LP and CD
 - MR can be driven by operator to the desired location (and back) while operator walks alongside
 - MR can relay location at least at 5 Hz at a distance of 100 m back to GS
 - MR can be powered to achieve a round trip of 100 m

- MR can overcome slopes ≤ 10 degrees at speed up to 0.5 m/s
- MR can traverse a path that has obstacles less than or equal to 5 inch tall while the CD and LP remain securely fixed to MR
- MR can level the platform to $0^{\circ} \pm 3.5^{\circ}$ for the CD to take off and land on a 10 slope
- MR can be driven by an operator at GS via live video feed to desired location
- MR can relay live video feed and location at least at 5 Hz for a distance of 150 m to the GS
- MR can be powered to achieve a round trip of 300 m
- MR can overcome **slopes** \leq **20 degrees** at speeds up to 0.5 m/s
- MR can maneuver around obstacle over 5 inches tall while the CD and LP remains securely fixed to the MR
- MR can level the platform to $0^{\circ} \pm 3.5^{\circ}$ to take off and land on a 20 degrees slope
- MR can relay live video feed and location at least at 5Hz for a distance of 250 m to the GS
- MR can be powered to achieve a round trip mission of 500 m

Schedule Breakdown

Electrical/Software Schedule

January 2018		February 2018	3		March 2018				
14 21 28	4	11	18 25	4	11 18				
Wire IMU via SPI and Test Function Test Electrical Circuit for Lev Control Leveling Jacks with Wire GPS Receiver and Test Wire Motor Drivers and Test Control Motor D Test Functionality Control	ality on Arduino Uno reling Jacks IMU via SPI with Arduino Functionality on Arduino Electrical Functionality oriver DIRECTION and SP of Motor Driver with Trar DIRECTION and SPEED of Connect XBee to Arduino Wire Video Transs Control Levelin Test GPS	Uno Mega PEED via DIO on Ar Inslational Motors of One Motor with I O Mega and Begin mitters and Camer g Jacks with IMU v Receiver in Specifi Test Battery and N Control DIF Test C	D L L duino Mega Motor Driver Electrically Communication Between 1 ras and Test Functionality ria I2C with Arduino Mega ed Environments Monitor Battery Depletion RECTION and SPEED of On COMPASS with Arduino Me Integrate COMPA	ark Blue: % (ght Blue: In ght Turquois hem hem e Motor with Motor Drive ga via SPI and I2C SS, MOTOR DRIVER, and	Complete Progress se: Non-Test	D75			
		February 2018			March 20	18		A	pril 2
		11		Integratel COMPASS, GP Integrate COMPASS, GP Command Sensors Indiv Purchase Translation Co	S, MOTIOR DRIVER, and MC S, MOTOR DRIVER, and MC idually to Send Back to Gro val Batteries ontrol DIRECTION and SPEE onstruct Current Torque Cur Construct Power Regulation Control Plot GF	TIDRS to Test Translational Code TORS to test Translational Code with Camer and Station XBee To of Both Motors with Motor Drivers via Ardu twe of Motors on Circuits I, Test, and Time Battery Depletion Test Power Regulation Circuits Itegrate COMP, GPS, MOTOR D, MOTORS, A Permanent Attachment	1 25 ino Mega ICCEL, to Test Code W s of Electronics and Te Full Mission Simulat	8 // Cameras est External Power Sou	15

April 20

Manufacturing Schedule

17

Testing Schedule

- Includes Unit Testing
 - For Electronics/Software Components has been in progress since January 16.
 - Approximately 65% Completed
- Some Tests are Weather Dependent
 - Includes: Slope and Leveling, Obstacle, and Distance
 - Provided 1 Week Margin
 - Goal: Testing Completed by April 24th

Financial Status Update

Financial Status: Subsystems Budget

What Changed?

Leveling System

• Additional degree of freedom

\circ Electronics

 Custom PCB for leveling system

\circ Translational

- Removal of Wheel Locking Mechanism
- Unaccounted for components

\circ Shipping

 Developed more accurate estimates

CDR Budget

Summary					
Subsystem	Cost				
Administrative	\$150.00				
Communications	\$225.94				
Electronics	\$438.00				
Leveling	\$256.48				
Shipping	\$241.95				
Testing	\$100.00				
Translational	\$3,104.46				
Budget	\$5,000.00				
Total Cost	\$4,516.83				
Margin	\$483.17				

MSR Budget

Summary				
Subsystem	Cost			
Administrative	\$150.00			
Communications	\$193.59			
Electronics	\$525.36			
Leveling	\$439.08			
Shipping	\$370.43			
Testing	\$100.00			
Translational	\$3,058.23			
Budget	\$5,000.00			
Total Cost	\$4,836.69			
Margin	\$163.31			

Financial Status: EEF Application

Applied for additional\$675.00

- EEF Presentation 2/5/2018
- Notified by 3/15/2018
- \circ Funding for:
 - \circ indoor testing
 - additional electronics components

Summary				
Subsystem	Cost			
Administrative	\$250.00			
Communications	\$230.80			
Electronics	\$862.80			
Leveling	\$497.94			
Shipping	\$375.42			
Testing	\$322.23			
Translational	\$3,135.81			
Budget	\$5,000.00			
Amount Over				
Budget	\$675.00			
Total Cost	\$5,675.00			

Financial Status: Major Component Procurement

Arrived (2/2/2018)

- o 2 Bison Gear Motors
- 2 American Control Motor Drivers
- Rover Raw Materials
- o 2 Leveling Jacks
- Arduino Mega
 Microcontroller
- Wheels, Tires, Bearings
- o 2 Cameras

To Be Purchased

- \odot 2 12V 55Ah Batteries
- Leveling Raw Materials
- Leveling System PCB
- Aluminum Plating
- o 2 XBee Pro S3Bs
- Electronics Component Connections

EEF (March 15)

- o 2 12V 100Ah Batteries
- Full Wheel Locking Mechanism
- Indoor Testing Components
- Additional allocation to printing posters/reports

Major components to be purchased by March 7

EEF components to be purchased by March 22

Budget

Manufacturing

Status

Project

Overview

Schedule

Conclusion

Hardware Total Hours to Completion: **117 hours**

Mother Rover Housing and Translational System Structure

Functional Requirement	Description
FR1.0	The MR shall <i>integrate with the attached landing platform</i> such that it is permanently fixed and <i>securely carries</i> the CD without tipping while traversing the defined rough terrain.
FR2.0	The MR shall receive commands from the GS at a rate of 5 Hz.
FR3.0	The MR shall transmit data to the GS at a rate of 30 HZ.
FR4.0	The MR shall <i>traverse 250 meters</i> away from the GS to a specified GPS location over <i>rough terrain</i> defined by varying slopes and obstacles which require the MR to <i>navigate over and around them</i> . The MR shall <i>return to the GS</i> after the mission is complete.
FR5.0	The MR shall position itself for the CD to take-off and land safely such that it is able to be secured by the MR's securement mechanism.

Mother Rover Housing

Rover Chassis

○ Due date: 1/30

○ Materials: 80/20 Aluminum T-Slotted Bars

Steps to complete:

- 1. Cut to size using horizontal band saw
- 2. Assemble frame using square brackets, bolts, and cut T-slotted bars

Status: Both steps 100% complete Hours: 6/6

Mother Rover Housing

Rover Chassis Base Platforms

○ Due date: 2/16

Materials: Two 36"x36"x0.25" 6061 Aluminum Plates

Steps to complete:

- 1. Develop CNC tool path and machine using CNC mill
- 2. Bolt both top and bottom plates to chassis

Status: To be purchased by 2/9 Hours: 0/20

Translational System Structure

Drive Shafts

○ Due Date: 2/16

Materials: 1045 Carbon steel keyed rotary shaft

Steps to complete:

- 1. Cut shafts using horizontal band saw into 12" sections
- 2. Fit to mounted bearings with set screws
- 3. Integrate wheel sprockets and custom wheel hub

Status: Wheels purchased. Hours: 0/10

Translational System Structure

Wheel Hub

- Due date: 2/16
- Materials: 6061 Aluminum cylinder provided by Aerospace Machine Shop

Steps to complete:

Hours: 0/20

- 1. Cut out four sections of cylinder
- 2. Use CNC to cut custom flange
- 3. Align with wheels, fit with drive shaft and shaft collars, and bolt to wheels

Project Overview Schedule Budget Manufacturing Status Conclusion

Functional Requirement	Description
FR5.0	The MR shall position itself for the CD to take-off and land safely such that it is able to be secured by the MR's securement mechanism
Design Requirement	Definition
DR5.1	The MR shall level itself within 3.5 degrees after coming to a complete stop.
DR5.2	The MR shall hold a completely stopped position a slope of 20 degrees by using a wheel locking mechanism.

Alterations to CHIMERA Landing Platform Structure

- Due Date: 2/16
- Materials: 6061 Aluminum square tubing, assorted brackets and screws

Steps to complete:

- 1. Cutting of bars to size
- 2. Drilling holes for screws and jack mounting
- 3. Integration into LP

Status: Steps 1 and 2 are 100% complete Hours: 11/16

Underside of landing platform with square tubing added (red) and replacing T-slotted framing (gold)

Aluminum tubing cut and drilled before integration to LP

Scissor Jack Alterations and Base

Due Date: 2/16

• Materials: 6061 Aluminum stock, scissor jacks

Steps to complete:

- 1. Mill custom jack base
- 2. Remove swivel pad from top of jack
- 3. Drill existing jack base and attach with screws

Status: Step 1 is 50% complete

Risk: Drilling and machining around delicate prototype electronics on jacksHours: 7/25

Universal Joint and shaft integration

Due Date: 2/12
Materials: U-joints, 0.5" diameter steel shaft, spring pins

Steps to complete:

- 1. Drill holes through shafts and U-joints
- 2. Pin shafts and joints together
- 3. Pin shafts into square tubing and jack bases

Status: Awaiting arrival of parts Hours: 0/20

Image: U-joint integrated with rover housing and custom jack base.

Electrical Total Hours to Completion: **132 hours**

Electrical and Software Requirements

Functional Requirement	Description
FR1.0	The MR shall integrate with the attached landing platform such that it is permanently fixed and securely carries the CD without tipping while traversing the defined rough terrain.
FR2.0	The MR shall <i>receive commands from the GS at a rate of 5 Hz</i> .
FR3.0	The MR shall transmit data to the GS at a rate of 30 HZ.
FR4.0	The MR shall <i>traverse</i> 250 meters away from the GS <i>to a specified GPS location</i> over rough terrain defined by varying slopes and obstacles which require the MR to <i>navigate</i> over and around them. The MR shall <i>return to the GS</i> after the mission is complete.
FR5.0	The MR shall <i>position itself</i> for the CD to take-off and land safely such that it is able to be secured by the MR's securement mechanism.

Electronics Status Update: Leveling System PCB

Full PCB Design

Due Date: 2/10

Materials:

1. SamTec connectors: MPT, MPS, IPD1, IPL1

Steps to complete:

- 1. Receive IPL1 Footprint
- 2. Fill in traces for PCB design
- 3. Send in PCB to verify and get a quote

Status: 50% Complete, awaiting arrival of footprint to add traces to the board

Electronics Status Update: Power Layout / Regulation

Due Date – 03/16

Steps to Complete:

- 1. Purchase batteries, voltage regulators, fuses, and wire
- 2. Measure current draw from each component to ensure it will be supplied enough power
- 3. Construct power circuit and measure available voltage and current
- If we don't receive EEF funding or funding sufficient to purchase 12V 100Ah batteries, we will purchase the 12V 55Ah batteries.
- In the mean time, we are using a power supply that is sufficient for unit testing, but not power testing₈

Software Total Hours to Completion: **170 hours**

Software Final Integration Flowchart

Conclusion

Ochanges from CDR

 \circ Leveling System Modifications

No Wheel Locking Mechanism

\circ Schedule

Rover Housing Frame Complete

O Unit Testing for Electrical/Software 65% Complete

\circ Budget

Increased projected budget from CDR

 \odot Applied for EEF funding

Completed presentation 2/5

Questions?

Backup Slides

Hardware

Rover Housing – Top Sheet

Translational System – Wheel Drive Shaft

Translational System – Bearings

Leveling System – Scissor Jack

Electrical

Xbee, GPS Receiver, IMU Schematic

Arduino & Hazard Cameras Schematic

+5V

Leveling System Schematic

GPS

Motor Driver

Software

Leveling Flowchart

Weight Budget

Subsystem	Part Name	Description	Manufacturer	Weight (lbs)	Quantity	Total Weight (lbs)
Translational	TracGard N766 TURF Bias Tire 18X9.50-8 B/4 Ply	Tires for translation, 18 x 9.50 - 8	From Walmart	7.00	4	28.00
Translational	DWT .125 Aluminum Blue Label Wheel	Wheels for translation, 8x8	motosport	3.65	4	14.60
Translational	LIN-ACT1-02	Wheel lock linear actuator, free shipping, c	Windynation	2.00	2	4.00
Translational	1370N16	Rubber pad for wheel lock	mcmaster-carr		1	0.00
Translational	GQ63-0045-RSB2S-WDE3B and GQ63-0045-LSB	gearmotors	Bison Gear & Engineering	39.12	2	78.24
Translational	DC60-12/24-4Q	Motor drivers	Minarik Drives	0.69	2	1.39
Translational	6280K895	motor sprockets	mcmaster-carr	0.54	4	2.16
Translational	6280K866	wheel sprockets	mcmaster-carr	3.28	4	13.12
Translational	UCP204-16, 1" 2-Bolt Pillow Block	mount bearings	Intech bearing inc	1.86	8	14.88
Translational	6261K175	chains	mcmaster-carr		4	0.00
Translational	1497K103	keyed shaft	mcmaster-carr	10.20	1	10.20
Translational	<u>47065T101</u>	10' of T-slotted bars	mcmaster-carr	4.92	4	19.68
Translational	<u>47065T101</u>	5' of T-slotted bars	mcmaster-carr	2.46	1	2.46
Translational	<u>47065T239</u>	Brackets for connecting the T-slotted bars	mcmaster-carr	0.14	36	5.04
Translational	Aluminum 6061 plate	36x36 0.25", could go away with scraps	midwest	31.77	2	63.54
Translational	Aluminum 6061 plate, brake housing	24x12, 025",	midwest	7.06	1	7.06
Translational	91274A244	Bolts for reducer, pack of 25	mcmaster-carr		1	0.00
Translational	92316A552	Bolts for motor, pack of 25	mcmaster-carr		1	0.00
Translational	5537T163	Bolts for motor, pack of 4	mcmaster-carr		1	0.00
Translational	95505A602	Nuts for Reducer, pack of 100	mcmaster-carr	1.02	1	1.02
Translational	910030A028	Nuts for motor	mcmaster-carr		4	0.00
Translational	A36 Steel plate	Plates for building the motor stand	midwest	20.40	1	20.40
Translational	SHIPPING FROM MCMASTER	MCMASTER	mcmaster-carr		0	0.00

Leveling	EJ212 Automatic Jack	Scissor Jack, 5x17x9	Buffalo Tools	8.08	2	16.16
Leveling	98957A148	Threaded rod for extending ball joint, as ne	mcmaster-carr	0.44	1	0.44
Leveling	60645K251	Ball Joint	mcmaster-carr	0.22	2	0.44
Leveling	<u>92327A288</u>	Bolts for base	mcmaster-carr		8	0.00
Leveling	90977A190	Coupling Nut	mcmaster-carr	0.10	3	0.30
Leveling	<u>6443K49</u>	Universal Joint	mcmaster-carr	0.22	3	0.66
Leveling	<u>92383A214</u>	Spring pin for u-joint mounting	mcmaster-carr		1	0.00
Leveling	8890K1	1 ft of steel shaft for U-joint mounting	mcmaster-carr	0.50	1	0.50
Leveling	94758A645	Flange nut for 7/16-20	mcmaster-carr		3	0.00
Leveling	6546K21	1/8 thickness aluminum 6061 square tube	mcmaster-carr	4.80	1	4.80
Leveling	90473A031	3/8 16 nuts 100 count	mcmaster-carr		1	0.00
LEVELING	other parts used for connections to joints	dont have parts, dont have exact weight		5.00	1	5.00
Communications	5.8GHz Circular Polarized Antenna Set-T and R 90	Antennas for the video transmission feed	HobbyKing	0.15	2	0.30
Communications	ImmersionRC 5.8 GHz AUdio/Video TRansmitter	Transmitter for MR Video Feed	HobbyKing	0.11	2	0.22
Communications	SHIPPING FROM Hobby King	Hobby King	HobbyKing	0.01	0	0.00
Communications	XBP9B-XCST-002	XBee Pro S3B for MR Data Transmission	DigiKey International	0.01	2	0.02
Communications	RG58 Patch Cable SMA F to M (2 meter)	Cables to connect video antennas to	Amazon	0.07	2	0.14
Communications	2m RP-SMA extension cable	Cable to connect XBee to antenna on rove	?	0.03	1	0.03
Communications	ANT0906 900MHz antenna	900MHz 3.5dBi Omni GSM Antenna RP-S	Eightwood	0.06	2	0.11
Communications	Thick-Wall Unthreaded PVC Pipe for Water: 48855	PVC pipe for pole	mcmaster-carr		1	0.00
Communications	Tee Connector, 2 Pipe Size Socket-Connect Fema	PVC pipe for pole, thick wall unthreaded py	mcmaster-carr		1	0.00
Communications	XBee shield USB dongle	GS Xbee connection	SparkFun	0.03	1	0.03
Communications	U.LF to RP-SMA connnection	Connection for XBees given by Trudy	Amazon	0.00	1	0.00

					TOTAL WEIGHT W/ 100Ah Batteries	456.13
				69.93	2	139.86
					TOTAL WEIGHT	393 43
Shipping	Total of \$400, subtracting current estimate from \$4	Shipping	Drift		1	0.00
Testing	Testbed	Testing our Rover	DRIFT		1	0.00
Administrative	printing posters, paper, etc	printing	CU		1	0.00
Electronics	PB1107-ND relay	Relay	Digikev	0.00	6	0.00
Electronics	552087807	Battery Charger	Walmart	00.00	1	0.00
Electronics	MI 55-12 SI A - 12V 55 Ah	Battery to power translational system	Walmart	38 58	2	77 16
Electronics	Tenergy Universal Smart Charger for NiMH/NiCd F	Battery Charger	Tenergy	0.01	1	0.00
Electronics	Tenergy 6V 2000mAh NiMH RX Battery Packs	Battery to power Arduino and Sensors	Teneray	0.02	2	0.02
Electronics	GPS Paceiver GP 20117	GPS Paceiver	SparkEup	0.50	1	0.50
Electronics	SparkFun Motor Driver - Dual TB6612FNG	Linear Actuator Motor Driver	SparkFun	0.00	1	0.00
Electronics	AD5171 Digital Potentiometer	Digital Potentiometer	Mouser	0.00	2	0.00
Electronics	Arduino Mega 2560 R3 DEV-11061 ROHS	Microcontroller Arduino Mega	Arduino	0.11	1	0.11
Electronics	FatShark 700TVL CMOS FPV Camera V2 NTSC/F	Video Camera	HobbyKing	0.03	2	0.06
Electronics	SparkFun IMU Breakout - MPU-9250 SEN-13	Calculate the inclination and heading of t	h∈SparkFun	0.00	1	0.00