### Deployed RF Antennas for GPS-denied Optimization and Environmental Navigation

Dawson Beatty, Christian Carmack, Jeremy Fie, Chris Greer, Ross Kloetzel, Jack Maydan, Kyle Nieukirk, Virginia Nystrom, Amanda Siirola, Ryan Stewart, Luke Tafur, Ivan Yurkin



# Project Overview

Design

Solution

Project

Overview



Requirements

Risk Mitigation

Verification & Validation

DRAGOI

Project Plan



## **Project Motivation**

- Imagine a rover with an objective to explore a remote location, such as Martian deserts or urban canyons
- Methods of Navigation:
  - <del>GPS</del>
  - <del>Landmarks</del>
- The DRAGON team pursues a solution using deployed RF beacons as an in-situ GPS network to correct inertial error





## Problem Statement

- The DRAGON team will provide a fully autonomous method to <u>navigate an</u> <u>unmanned rover in GPS-denied environments with 1m accuracy</u>
- This will be done by developing:
  - Pods which contain RF-Localization beacons.
  - Deployment mechanism to deploy pods to software-determined locations
  - Software to determine absolute position and navigate to waypoints
- As the pods will remain in the environment permanently, and can access areas the rover cannot, they will also have the *demonstrational ability* to collect and transmit environmental data.





## **Functional Requirements**

| ID    | Description                                                                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| M1    | Rover shall autonomously navigate along software generated path within 1m accuracy using RF-<br>Localization Beacon correction to inertial navigation |
| M2    | The rover shall estimate its absolute position                                                                                                        |
| M3    | The deployment mech shall have capability to deploy pods to software defined locations                                                                |
| M4    | The rover and ground inputs shall prevent damage to all hardware systems                                                                              |
| M5    | The pods shall function as RF navigation beacons and as environmental data monitors, to the rover                                                     |
| M6    | The pods shall be able to function as a long-term deployable environmental data monitor                                                               |
| $M_7$ | The team shall verify absolute navigation ability                                                                                                     |
| M8    | The team shall use the customer-provided hardware                                                                                                     |

# Major Changes Since PDR

- Deployment Mechanism only needs to <u>deploy pods beyond 10m</u> and has no accuracy requirement
  - Rover is stationary while deploying pod
  - Software can determine accurate pod position post-launch
- Assume <u>flat terrain</u> on business field
  - Obstacles will be flat keep-out zones
  - No multipathing expected in testing environment

# Design Solution

Project Overview Design Solution Design Requirements Risk Mitigation

Verification & Validation

DRA

Project Plan

GOU

FBD









#### 1. Pre-deployment





- 2. Reloading
- 2 NEMA 17 stepper motors
- Timing belt/conveyor system
- Alternating sides





- 3. Azimuth Control
- NEMA 23 stepper motor
- Bevel Gears
- Swivel plate

Angle:  $\pm 140^{\circ}$ 





4. Spring Compression

- 24V Brushed DC Motor
- Rack/pinion system





5. Deployment

Distance: 12 m





6. Repeat



FBD





Pod structure contains the ranging electronics which are deployed from 90mm diameter 30mm height





Pod structure contains batteries in tail for power, electronics are potted for resilience.

Batteries (AAA) stored in tail

Electronics (purple board) stored in blue tray, potted on all sides using polyurethane





# **Blue Pill Integration**

- Purpose:
  - Provide ranging data and store environmental data.
- Design:
  - Used a Blue Pill with an STM32 processor to integrate ranging chip, SD card reader, and environmental sensor.
- Specs:
  - Accurate to ~22 cm, 30 measurements/second



21

DWM1000 Integration with Blue Pill

# Custom PCB Design Board Layout

#### • Purpose:

- Integrates DWM1000, SD card reader, environmental sensor, and accelerometer into one board to reduce size, increase reliability, and add mounting holes.
- Design:
  - Used reference schematics to help form a board design.
- Specs:
  - 6 [cm] x 6 [cm]



Dragon Egg Shield for Blue Pill [6cm x 6cm]





## Navigation Subsystem: Design Solution

- Subsystem Purpose:
  - Design and implement software to allow rover to navigate mission path while meeting functional requirements and sending proper commands to other subsystems
- Subsystem Goals:
  - Generate safest closed loop path for rover through waypoints while avoiding obstacles
  - Communicate with pod mesh network
  - Use pod ranging data to algorithmically correct odometry error (gSLAM) and correct path deviance using onboard control



# Navigation Subsystem - Pathfinding

- Purpose:
  - Command rover to waypoints while avoiding obstacles using A\* path algorithm
- Design:
  - A\* determines shortest path between waypoints and around obstacles
  - Path points passed separately as commands for the rover to track
- Specs:
  - 1 m buffer to grazing keep-out zones
  - Variable tolerance for commands



25

MIP Map with Sample A\* Path (Red is path points, blue is waypoints, black obstacles)

# State Estimation Software Design

- Purpose:
  - Estimate rover and pod positions, high accuracy
- Design:
  - Graph-based SLAM (Simultaneous Localization And Mapping)
  - Builds up graph/matrix with rover and pod positions as vertices



# Mesh Network Design

- Purpose:
  - Calculated distances between rover and pods as well as distances from different pods
  - Used in gSLAM calculations
- Design:
  - Use a DWM1000 RF module with unique identifiers
- Specs:
  - Tx Power: -42 dBm
  - Frequency: 3.5 GHz



# Deployment Target Software Design

#### • Purpose:

- Tell rover at what position and angle 10 pods should be deployed to minimize error in rover position (< 1 m)
- Design:
  - Places pods to keep rover within a triangle of 3 pods
- Specs:
  - 10 pods keep total uncertainty in rover position < .92 m within a 100m x 100m map

1. Place 3 anchor pods in a triangle around rover



# Design Requirements

Project Overview Design Solution Design Requirements Risk Mitigation

Verification & Validation

DRAGO

Project Plan

## **Critical Project Elements**

FBS





#### **D3.8**

#### DM shall have the following range: No less than 10m

• The rack and pinion device needs to deploy to the required distance while withstanding the forces caused by spring compression







#### 1. Spring and Motor Forces and Torques

| Component                 | Value     |
|---------------------------|-----------|
| Max Spring Force          | 300 lbs   |
| At the rack and bald gear | 225 in-lb |
| Compound gear             | 225 in-lb |
| Gear ratio                | 5:1       |
| Motor spur gear           | 45 in-lb  |
| Maximum motor torque      | 59 in-lb  |

COTS steel gears will be used for reliability and precision



## Spring Compression



# **2. Design space for rack** Assumed:

- All tangential force applied to single tooth
- Beam support are 2" apart
- Mass must be less than 0.772 lbs



# Spring Decompression Analysis

#### 3. Verification of selected components

Plate and Rack mass = 320 [g]Pod mass = 500 [g] $k \cong 17,800 [N/m]$ Max Compression = 0.076 [m]







Vo =  $11.21 \pm 1 \text{ [m/s]}$ A =  $0.0065 \text{ [m^2]}$ Cd = 1Zo = 0.5 [m]



Losses due to:

- Incomplete Spring Compression
- Cannon Friction

Ideal Distance = 12.2 [m] Min Distance = 10.5 [m]

**D3.8** 

DM shall have the following range: No less than 10m

## **Critical Project Elements**

FPS




D3.5.1

## Reloading Mechanism: Gearing and Motor

#### DM shall be capable of reloading and deploying a new pod every 2 minutes

• Pods need to be loaded in a timely manner such that the mission can be completed in specified time

| Design Point         | Value      | Requirement |
|----------------------|------------|-------------|
| Reload Time          | < 5 sec    | 2 min       |
| Max Motor RPM        | 600        | 0.5         |
| Motor Holding Torque | 6.12 kg-cm | 3.81 kg-cm  |





D3.5.2

## **Reloading Mechanism: Funnel**



#### Pods shall slide completely into deployment tube in a nose-forward configuration.



### Drop height in video: ~0.75" Actual designed drop height: 0.79"



# Critical Project Elements



# Pod Structural Design: Aerodynamics

### • Purpose:

- Minimize aerodynamic drag
- Maximize aerodynamic <u>stability</u>
- Design:
  - Cp is behind the Cg, aerodynamic stability is achieved
  - Minimizing drag: area rule, sweeping fins, and minimizing area
  - Fins also provide spin stability



40

215mm

$$cp \mathbf{A} = \mathbf{d}_{n}\mathbf{a}_{n} + \mathbf{d}_{b}\mathbf{a}_{b} + \mathbf{d}_{f}\mathbf{a}_{f}$$

Simplified cP calculation, validated via CFD

- Specs:
  - From Nose: Cp = 11.1cm, Cg = 11.0cm, with ballast Cg = 10.5cm = stable
  - A cD of 0.25 was calculated via CFD

P5.4.6 P - Pods shall be stable to promote range and impact orientation

# Pod Structural Design: Impact Struct.

- Purpose:
  - Prevent launch & impact damage
- Design:
  - Potting bidirectional
  - Foam 'crumple zone' impact only
  - Elastic Suspension tested, unused
- Specs:
  - Potting minimize board bending, primary failure
  - Crumple zone increase acceleration distance
    - Add non-elastic damping to the system



**Left:** Electronics set in potting tray

41

Expect 3.5cm crumple dist.

**Below:** Foam nose crumple zone

# Pod Structural Design: Crumple Zone

### • Computer Sim: Drop Test 14m/s



Increases displacement by factor of 7

Decreases stress by factor of 26

# Pod Structural Design: Potting



- Electronics surviving in kinetic impactors
  - Tank rounds: 25,000 g's accel



 $\sigma = \frac{(mass) (G's)(Amplification Factor)}{Loaded Area}$ 



Laboratory for Atmospheric and Space Physics University of Colorado **Boulder** 

- Electronics to survive spacecraft rocket launch environment
- LASP: NASA STD 8739 1b will survive impact



| Potting Material | Strain Energy Transmitted (J) | Safety Factor |
|------------------|-------------------------------|---------------|
| Conathane EN 4/9 | .0436 or 4.36%                | 3.0           |

P5.4.3P - Pod's electronics shall<br/>survive 14 m/s impact

## Pod Structural Design: Antenna Pattern 44



<- 10m away, minimum expected Tx/Rx distance ->

R

## Pod Structural Design: Landing Orientation

- Purpose:
  - Minimize antenna deadband interference
- Design:
  - The geometry of the tail only allows settling in two positions, both positions are ideal for antenna Tx/Rx pattern
- Specs:
  - Deadband cone limited to:
    - 20 degrees from zenith (antenna limit)
    - 70 degrees tilt due to anhedral angle of tail

P5.4.4 P - Pods shall be designed to encourage ideal antenna orientation



## Critical Project Elements







#### **P 5.2** The pods shall communicate data to the rover and amongst themselves





## Mesh Network Test

| Sequence<br>Number | Actual<br>Distance [m] | Average Calculated<br>Distance [m] |
|--------------------|------------------------|------------------------------------|
| 0                  | 16.5                   | 17.2                               |
| 1                  | 12.0                   | 12.7                               |
| 2                  | 9.0                    | 9.4                                |
| 3                  | 8.0                    | 8.8                                |
| 02                 | 14.0                   | 14.7                               |
| 03                 | 20.5                   | 21.6                               |
| 12                 | 7.5                    | 8.4                                |





## Mesh Network Test

#### **P 5.2** The pods shall communicate data to the rover and amongst themselves

| Sequence<br>Number | Actual<br>Distance<br>[m] | Corrected<br>Distance [m] | Error [m] |
|--------------------|---------------------------|---------------------------|-----------|
| 0                  | 16.5                      | 16.5                      | 0.001     |
| 1                  | 12.0                      | 11.9                      | 0.115     |
| 2                  | 9.0                       | 8.5                       | 0.483     |
| 3                  | 8.0                       | 7.9                       | 0.061     |
| 02                 | 14.0                      | 14.0                      | 0.038     |
| 03                 | 20.5                      | 21.0                      | 0.467     |
| 12                 | 7.5                       | 7.5                       | 0.018     |



# Critical Project Elements





| S 1.2 | Rover shall use feedback control to autonomously navigate path |
|-------|----------------------------------------------------------------|
|       | waypoints                                                      |

### • Why?

- Software must command the rover to navigate to waypoints determined by the A\* algorithm or user input
- Designs Driven:
  - Automatic control must keep rover within 1 m of desired path at all times
  - Rover must be able to reach 10 user defined waypoints using automatic control
- Demonstration Method:
  - Use physics simulation from rover manufacturer to show command feasibility
  - Implement working simulation code on the rover (ports directly without edits)

## Navigation Feasibility - COHRINT Test Path

#### **COHRINT** Test Format

• Uses 0.2 m XY tolerance and 0.1 rad yaw tolerance

### Implementation

**S 1.2** 

- Rover follows general path and meets waypoint tolerances based on rover estimate
- Drift in magnetometer and IMU cause the largely inaccurate path following
- Vicon (MoCap) used for truth data only



10 Waypoint Figure 8 Path

Rover shall use feedback control to autonomously navigate path waypoints

# 

## **Critical Project Elements**





## Navigation Feasibility - State Estimation

The software shall combine RF-Localization and inertial/odometry position estimates in order to enhance position estimation accuracy

• Why?

**S2.1** 

- Inclusion of external measurements will reduce the error inherent in odometer/IMU position estimation
- Designs Driven:
  - Must be able to localize rover to within 1 meter at all points
- Demonstration Method:
  - Demonstrate the ability to include position from simulated pods to correct navigation in COHRINT space where truth is known
  - Show that graphSLAM is able to integrate actual odometer data and simulated range data to accurately estimate position



### State Estimation Software Design Diagram







## State Estimation Software Design Diagram

By solving the matrix <u>rover</u> <u>position</u> and <u>pod position</u> can be determined with high accuracy:

> Modeled (0.1m) BOM Modeled (0.88m) EOM

While error grows over time, the pods are non-moving and act as high accuracy references.





## COHRINT State Estimation, Odometry Only



- True Position
- Odometer Position
- Rover estimates position by integrating odometer data
- Quickly diverges from true path, off by several meters in some places



## **COHRINT State Estimation with Simulated Pods**



- True Position
- Odometer Position
- gSLAM Position
- Pods
- Add simulated pods to run graphSLAM
- Equations for graphSLAM
  - Rover motion: Real odometer data
  - Pod-to-rover and pod-topod measurements: simulated measurements with error



**S2.1** 

## **COHRINT State Estimation Error**



- Odometry Estimate Error
- **—** gSLAM Estimate Error
- --- Error Requirement
- Pod Range Error
- Large reduction in error with the use of simulated pods
- Demonstrates integration of real odometer data with simulated pod ranges

The software shall combine RF-Localization and inertial/odometry position estimates in order to enhance position estimation accuracy



## Pod Placement for Error Reduction

Software can determine pod location for placement for most effective ranging

• Why?

S 3.1.1

- Software must understand the environment and determine where to place pods for most effective localization and ranging data while avoiding obstacles
- Designs Driven:
  - Deployment Target Software must **reduce uncertainty in rover position to under 1m**
- Demonstration Method:
  - Simulate pod placement method along sample paths
  - Use Monte Carlo simulation on sources of error to show that pods can be placed such that uncertainty in rover position remains under 1m at all points along paths

# Error in Rover Position Along Path



# **Risk Mitigation**

Project Overview Design Solution Design Requirements Risk Mitigation

Verification & Validation

DRAGOI

Project Plan



5

7

PCB rev delays in schedule

## **Risk Descriptions**

| ID | Description                               |          |                 |           | Consequence  |             |      |     |    |  |  |  |
|----|-------------------------------------------|----------|-----------------|-----------|--------------|-------------|------|-----|----|--|--|--|
| 2  | Mass too high                             |          |                 |           | 1            | 2           | 3    | 4   | 5  |  |  |  |
| 3  | Antenna interference                      |          |                 | 5         |              |             |      | 5   | 7  |  |  |  |
| 6  | Recoil forces                             |          |                 | 4         |              |             |      | 1,9 | 4  |  |  |  |
| 8  | Potting material interference             |          | Likelihood      | 3         |              |             | 6    | 3,8 |    |  |  |  |
| 9  | Software development integration          |          |                 | 2         |              |             |      |     | 10 |  |  |  |
| 10 | Networking/Comm development               |          |                 | 1         |              |             |      |     | 2  |  |  |  |
| 4  | Reloading jam or electrical complications |          |                 |           |              |             |      |     |    |  |  |  |
|    |                                           |          |                 | <u>Mi</u> | tigation:    |             |      |     |    |  |  |  |
| 1  | Electronics damage from                   | - Compou | unding multiple | e met     | hods for imr | pact damper | ning |     |    |  |  |  |

| deployment                           | - | Drop tests have been performed to demonstrate survivability with some of the selected electronics.                                                               |
|--------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deployment unable to reach max range | - | Significant range margin included in design which should surmount unanticipated parasitic forces.<br>Modelling efforts do have high fidelity and scaled testing. |

- PCB boards have been designed and first rev printed pre-cdr
  - Testing commencing and expect to send 2nd rev before Dec 20 2018



|            |   |   | P | re-Mitigat | tion |    | Post-Mitigation |   |             |   |      |   |   |  |  |  |
|------------|---|---|---|------------|------|----|-----------------|---|-------------|---|------|---|---|--|--|--|
|            |   |   | C | Consequenc | e    |    |                 |   | Consequence |   |      |   |   |  |  |  |
|            |   | 1 | 2 | 3          | 4    | 5  |                 |   | 1           | 2 | 3    | 4 | 5 |  |  |  |
| Likelihood | 5 |   |   |            | 5    | 7  |                 | 5 |             |   | 5    |   |   |  |  |  |
|            | 4 |   |   |            | 1,9  | 4  |                 | 4 |             |   |      |   |   |  |  |  |
|            | 3 |   |   | 6          | 3,8  |    | Likelihood      | 3 |             |   |      | 1 |   |  |  |  |
|            | 2 |   |   |            |      | 10 | •               | 2 |             |   | 3,7  | 9 | 4 |  |  |  |
|            | 1 |   |   |            |      | 2  |                 | 1 |             | 6 | 2,10 | 8 |   |  |  |  |

# Verification

Project Overview Design Solution Design Requirements Risk Mitigation

Verification & Validation

DRAGO

Project Plan

# Testing and Requirement Flow



## Testing and Requirement Flow

|                  | Piecewise<br>Testing |        |         | Piecewise Su<br>Testing |          |         |          |          |          | Subsystem<br>Testing |                  |            |           |          |        | Full System<br>Testing |        |        |        |  |  |
|------------------|----------------------|--------|---------|-------------------------|----------|---------|----------|----------|----------|----------------------|------------------|------------|-----------|----------|--------|------------------------|--------|--------|--------|--|--|
| Test Type        | Test ID              | Re     | quireme | ents                    |          |         |          |          |          |                      | Test Type        | Test ID    | Require   | ements   |        |                        |        |        |        |  |  |
| Mission<br>Tests | FST1                 | M1     |         |                         |          |         |          |          |          |                      |                  | NT0        | S1.3      |          |        |                        |        |        |        |  |  |
|                  | FST2                 | M4     |         |                         |          |         |          |          |          |                      |                  | NT1        | S1.2      | S1.2.1   | S1.2.2 | G4.2                   | G4.2.1 | G4.2.2 |        |  |  |
|                  | FST3                 | М5     | P5.2    | P5.2.1                  | P5.2.2   | P5.2.3  |          |          |          |                      |                  | NT2        | S1.3.3    |          |        |                        |        |        |        |  |  |
|                  | FST4                 |        |         |                         |          |         |          |          |          |                      |                  | NT3        | S1.3.3.1  |          |        |                        |        |        |        |  |  |
|                  |                      |        |         |                         |          | P5.4.3. |          |          |          |                      |                  | NT4        | S2.1.2    |          |        |                        |        |        |        |  |  |
|                  | PT2                  | P5.4   | P5.4.2  | P5.4.3                  | P5.4.3.1 | 2       | P5.4.3.3 | P5.4.4   | P5.4.4.1 | P5.4.6               | Navigation       | NT5        | S2.1.1    |          |        |                        |        |        |        |  |  |
| Pod Team         | PT4                  | M6     |         |                         |          |         |          |          |          |                      | Team Tests       | NT6        | S2.1.3    |          |        |                        |        |        |        |  |  |
| lests            | PT5                  | P5.3.2 | P5.3.3  | P6.2                    | P6.3     | P6.4    | P6.4.1   | P6.3.1.1 | P6.3.1.2 |                      |                  | NT7        | S3.1      | S3.1.1   | S3.1.2 | S3.1.3                 | S3.1.4 |        |        |  |  |
|                  | PT6                  | P6.4.2 | \$9.2.3 |                         |          |         |          |          |          |                      |                  | NT8        | \$3.1.3.1 |          |        |                        |        |        |        |  |  |
|                  | DT1                  | M3     |         |                         |          |         |          |          |          |                      |                  | NT9        | S9.2.1    | \$9.2.2  |        |                        |        |        |        |  |  |
|                  | DT2`                 | D3 8   | D4 4    | P5 1                    | D8 3 1   |         |          |          |          |                      |                  | NT10       | S1.3.2    | S1.3.2.1 | G9.4   | G9.4.1                 | G9.4.2 |        |        |  |  |
| Destaura         | DT2                  | D3.6   | D4.4    | 1 3.1                   | D0.3.1   |         |          |          |          |                      |                  | NT11       | M2        | S2.1     |        |                        |        |        |        |  |  |
| Team Tests       | DIS                  | D3.5   | D3.5.1  |                         |          |         |          |          |          |                      | Inspection       | Inspection | D4.1.2    | D4.3     | D4.5   | P5.1.1                 | P5.1.2 | P5.3   | P5.3.1 |  |  |
|                  | D14                  | D3.4   |         |                         |          |         |          |          |          |                      | Ground           | GT1        | G1.1      | G1.1.1   | P3.8.1 | P3.81.1                | P6.1.5 |        |        |  |  |
|                  | DI5                  | D3.6   |         |                         |          |         |          |          |          |                      | Support<br>Tosts | GT2        | S1.3.1    | M7       | S7.1   | \$9.2.6                |        |        |        |  |  |
|                  | DT6                  | D3.7   | D4.1    | D4.1.1                  |          |         |          |          |          |                      | 16212            | GT3        | G7.3      | G7.3.1   |        |                        |        |        |        |  |  |



## Verification Plan



### Full System Testing:

- Team is ready to demonstrate full system functionality
- Verify a majority of our mission requirements at high levels

### We plan <u>four</u> Full System Tests:

<u>Full Mission Demonstration Test</u> <u>RF State Estimate Test</u> FST3 and FST4

# Testing Plan: RF State Estimate Test

### **Testing Location:** Open flat grass field (business field or kittredge)

### **Materials and Special Reqts:**

- Jackal rover and ranging boards
- Obtain permission for field operations
- GPS system pre-calibrated (COTS)
- Weather cooperation

#### **Testing Procedure:**

- 1. Begin GPS recording on rover (1e-2m accuracy)
- 2. 'Hand Place' pods at desired locations
- 3. Upload mission sequence
- 4. Collect first pod readings -
- 5. Build pose estimate with rover
- 6. Tele-op rover to second known position
- 7. 'Hand Place' additional pods
- 8. Build second pose estimate with rover



.tar file upload, rover data ingest and process < 30 seconds

2e-2 m accuracy, 30Hz sample rate, several readings

Pose estimate, 0.3Hz generation rate, 3e-1 m accuracy Success:

- Rover can range to pods
- Calculate pose
- Add new pods to network



### **Objective:** Full mission completion and demonstration

71

Testing Location: Open flat grass field (business field or kittredge)

### **Necessary Materials:**

- Jackal rover modified with DM and 10 pods
- GPS system pre-calibrated
- MIP



# Testing Plan: Full Mission Demo Test

#### $72_{-}$

Success: GPS

EOM

readings and rover internal estimates

match within 1m at

#### **Testing Procedure:**

- 1. Mark waypoints and rover obstacles
- 2. Place team members surrounding area for range safety
- 3. Begin GPS recording on rover, pre-verified
- 4. Perform all safety checks, check: remote kill, takeover
- 5. Load pods and zero cannon azimuth
- 6. Upload mission sequence
- 7. Perform initial deployment, collect pod readings
- 8. Rover builds pose estimate, proceeds with mission
- 9. Collect post data mission and verify mission success

#### **Special Requirements:**

- Obtain permission for field operations
- Mark out hazard zone for range safety
- Weather cooperation

1e-2 m accuracy, 10Hz sample rate, record to ground station computer

5e-1 m accuracy, 30Hz sample rate per pod, closed loop control on rover

Waypoint A Waypoint A Waypoint B
# Project Plan

Project Overview Design Solution Design Requirements Risk Mitigation

Verification & Validation

DRAGOM

Project Plan

#### **Organizational Chart**



# Work Breakdown Structure

| Deliverables | Management  | Rover                                | Deployment               |                | Pod Electronics         |                | Safety/Test           |
|--------------|-------------|--------------------------------------|--------------------------|----------------|-------------------------|----------------|-----------------------|
| PDD          | Org Chart   | Research                             | Research                 |                | Research                |                | Research              |
| CDD          | WBS         | Software Flow                        | CAD Model                |                | RF Testing              |                | Requirements          |
| PDR          | Gantt Chart | Path Generation                      | Part Sele                | Part Selection |                         | r Prototyping  | Facilities Permission |
| CDR          | Budget      | State Estimation                     | Mass Bu                  | dget           | Ром                     | ver Budget     | Procedures            |
| FFR          | Cost Plan   | Deployment Algorithm                 | Prototyp                 | oing           | Sc                      | hematics       | Equipment             |
| MSR          | Test Plan   | Executive Node                       | Manufact                 | uring          | Bill o                  | of Materials   |                       |
| TFR          | Risk Matrix | Rover Controls                       | Power & Co               | ontrols        |                         | PCB            |                       |
| AIAA         |             | Navigation Test                      | Pod Shell                |                | Senso                   | r Calibration  |                       |
| SPR          |             | GPS Integration Electronics Mounting |                          | Iounting       | Mesh Ne                 | twork Software |                       |
| SPP          |             | Verification/Validation              | Deployment Test          |                | Mode Toggle Software    |                |                       |
| PFR          | User Manual |                                      | Verification/Validation  |                | Verification/Validation |                |                       |
|              |             |                                      | <b>Rover Integration</b> |                | Shell Integration       |                |                       |
|              |             | Complete In                          | n Progress Future        |                | Work                    |                |                       |



#### Gannt Chart





- Rover Testing (Now-Mar):
  - Requires use of VICON Space and Rover
    - 3 team members have 24-hour access and can reserve testing space and rover
    - Team members have been trained on camera calibration
- Ranging Testing (Now-Mar):
  - Requires 2-5 antennas and boards
    - Have 3 of our own (2 additional can be requested 24 hours in advance from COHRINT)
- Deployment Testing (Feb-Mar):
  - Requires use of business field & safety cones to mark keepout zones
    - Safety materials from ITLL and Matt/Bobby will help supervise.
- Final Demonstration (April):
  - Requires use of business field & safety cones to mark keepout zones
    - Safety materials from ITLL and Matt/Bobby will help supervise.





#### Deployed RF Antennas for GPS-denied Optimization and Environmental Navigation

Thank you for your time --Come check out our progress in the spring!



# Appendix



# A: Rover Navigation



#### Navigation Subsystem - A\* Optimality

- Algorithm has been used since 1950s and the optimality has been proven before
- This assumes an admissible heuristic (never overestimates cost)
- A\* designed as start to end, needs to be extended to include more than one end point

#### Lemma 3

Let  $(n_1, n_2, \dots, n_l)$  be the sequence of nodes closed by  $A^*$ . Then, if the consistency assumption is satisfied,  $p \leq q$  implies  $\hat{f}(n_p) \leq \hat{f}(n_q)$ .

*Proof:* Let n be the next node closed by  $A^*$  after closing m. Suppose first that the optimum path to n does not go through m. Then n was available at the time m was selected, and the lemma is trivially true. Then suppose that the optimum path to n does, in fact, go through m. Then g(n) = g(m) + h(m, n). Since, by Lemma 2, we have  $\hat{g}(n) = g(n)$  and  $\hat{g}(m) = g(m)$ ,

$$\begin{aligned} \hat{f}(n) &= \hat{g}(n) + \hat{h}(n) \\ &= g(n) + \hat{h}(n) \\ &= g(m) + h(m, n) + \hat{h}(n) \\ &\geq g(m) + \hat{h}(m) \\ &= \hat{g}(m) + \hat{h}(m) \end{aligned}$$

where the inequality follows by application of (5). Thus we have

$$\widehat{f}(n) \ge \widehat{f}(m).$$

Since this fact is true for any pair of nodes  $n_k$  and  $n_{k+1}$  in the sequence, the proof is complete.

## Navigation Subsystem - Heuristic

- Heuristic functions are "means to an end" approaches to problems that revolve around practicality
- For search algorithms, this means estimating the lowest cost from point A -> B
- Includes **Euclidean distance**, Manhattan distance (absolute difference between X and Y coordinates), etc.
- Must be admissible (underestimate of actual distance)



## Navigation Subsystem - A\* N-Search

- Vanilla A\* will search 8 nearest neighbors for least cost path
- Valid solution but provides grid-dependent paths that are not continuous
- Increasing number of searched neighbors "extends" A\*'s range and allows for shorter, continuous paths to be developed that do not "hug" the grid (at cost of computation time)



20 x 20 Grids with 8, 128, and 4096 neighbors

## Navigation Subsystem - Rover Porting

- A\* and other path planning nodes exist within ROS library global\_planner
- Vanilla 8 neighbor search but still useful for porting from MATLAB to ROS compatible language
- Ported to Python code and tested using Python IDE



## Navigation Subsystem - Computer

- Using MATLAB, maximum memory used at one time was never greater than 1.06 MB, well within available memory on rover
- MATLAB is much more costly in terms of RAM due to UI, low level ROS compatible languages will not be nearly as expensive
- Plenty of heritage and help offered from COHRINT team in porting and implementing autonomously on Jackal

| COMPUTER | Standard                                       |                                  | Performance                                          |                                  |  |
|----------|------------------------------------------------|----------------------------------|------------------------------------------------------|----------------------------------|--|
|          | Celeron J1800<br>Dual core, 2.4GHz<br>2 GB RAM | WIFI Adapter<br>32 GB Hard Drive | Intel Core i5 4570T<br>Dual core, 2.9GHz<br>4 GB RAM | WIFI Adapter<br>128GB Hard Drive |  |

Jackal Datasheet Specs

#### Navigation Subsystem - Nav Stack



#### Navigation Subsystem - Gazebo



#### Navigation Feasibility - Simulated Test Path

#### **Test Path Format**

- Simple Figure-8 pattern with 10 total waypoints
- Rover physics simulator models basic rover behavior/ports directly to Jackal

#### **Design Parameters**

- XY distance/yaw tolerance
- Any number of waypoints
- Controller and map update frequencies



10 Waypoint Figure 8 Path

#### Navigation Feasibility - COHRINT Test







## **B:** Pod Electronics



#### Mesh Network Design

#### • Purpose:

- Calculated distances between rover and pods as well as distances from different pods
- Design:
  - Use a DWM1000 RF module with a STM32 Processor
- Specs:
  - Able calculate 30 distance measurements per input with minimal timeouts

| Data[0]               | Data[1]                                                              | Data[2]   |     | Data[14] | Data[15] | Data[16]  | Data[17]  | Data[17]              |
|-----------------------|----------------------------------------------------------------------|-----------|-----|----------|----------|-----------|-----------|-----------------------|
| Signal<br>Instruction | Reserved For Timestamp Transmit and Distance<br>Calculation Transmit |           |     |          |          | Return Id | Target Id | Mesh Id               |
|                       |                                                                      |           |     |          |          |           |           |                       |
| Mesh Id               |                                                                      | Target Id | OR  | Mesh Id  |          | Rover Id  |           | Calculate<br>Distance |
| Mesh Id               | $\neq$                                                               | Target Id | AND | Mesh Id  | $\neq$   | Rover Id  |           | Mesh<br>Network       |



#### Mesh Network Test



















## Mesh Network Background

#### • DSDV

- Table Routing Routine
- No Multicasting
- Network hops are known sequences
- Low complexity with known number of nodes.
- With 10 nodes(pods) less than 100 combinations are needed for rover to pod to pod communications



#### Reference Schematic - DWM1000

#### 5.2 Application Circuit Diagram

A simple application circuit integrating the DWM1000 module need only power the device and connect the device to a host controller, see Figure 10.



Figure 10: Example DWM1000 Application Circuit

https://www.decawave.com/sites/default/files/r esources/dwm1000-datasheet-v1.3.pdf

## Reference Schematic - Accelerometer





GND

https://cdnlearn.adafruit.com/assets/assets/000/036/127/ original/adafruit\_products\_schem.png?1475251

#### **Reference Schematic - Altimeter**



https://cdnlearn.adafruit.com/assets/assets/000/036/127/ original/adafruit\_products\_schem.png?1475251 909

106

Figure 2. Pin Connections

#### Reference Schematic - SD Card Reader 107



#### Custom PCB Design Schematic


## What is a Blue Pill?

- Purpose:
  - Breaks out the STMF103C8 Microcontroller into pinouts that can be used without having to account for support components.
- Design:
  - Give direct access to the chip pins without worry of improper support components.
- Specs:
  - Are ~\$3/each, which is cheaper than just buying the processor





### Deployment Module Design: Software

FR





### Power Budget For Pods

| D5.3.2 | Battery shall have sufficient capacity to meet a 5% duty cycle between low and high power mode for 2 hour duration test |  |
|--------|-------------------------------------------------------------------------------------------------------------------------|--|
|--------|-------------------------------------------------------------------------------------------------------------------------|--|

| Component          | Current [mA] | Duration [minutes] | Usage [mAh] |
|--------------------|--------------|--------------------|-------------|
| Blue Pill (STMF32) | 50           | 120                | 100         |
| DWM1000            | 140          | 120                | 280         |
| Sensor Breakout    | 0.04         | 120                | 0.08        |
| Accelerometer      | 0.145        | 120                | 0.19        |
| SD Card Reader     | 100          | 120                | 200         |

Total Usage: 580.27 [mAh]

AAA Battery Capacity: 1100[mAh]

## B2: Pod Structure



## Pod Structural Design: Manufacturing <sup>113</sup>

**All joints bonded** with epoxy, sufficient strength due to majority of stress being compressive

**Exceptions:** A - Removable hardware for battery swap

> B - Friction rotation slot-lock for electronics access, can pin if needed

Green: Laser Cut Polycarb/Acrylic Red: 3D Printed, likely outsource Blue: COTS, modified Yellow: COTS, add-on

P5.3.1 P - Battery hot swap & rechargeableP5.4.7 P - Pods can be serial manufactured

## Pod Structural Design: Mass and size

- Purpose:
  - Lower mass minimizes impact force, improves range
- Design:
  - High strength plastics (polycarbonate)
  - Little to no metal (obstructs antenna)
  - Lightweight foam, and material removal wherever possible
  - Using high strength adhesives (epoxy) rather than hardware
- Specs:
  - Mass model: 500 grams with 30g ballast margin
  - Length = 24cm, Diameter 8.5cm

Mass properties of pod\_new\_new\_new Configuration: Default Coordinate system: -- default --



Volume = 449.38 cubic centimeters

Surface area = 1563.93 square centimeters

Center of mass: ( centimeters ) X = 2.76 Y = 12.64 Z = 7.08

Principal axes of inertia and principal moments of inertia: ( grams \* square centimete Taken at the center of mass.

Ix = (0.01, 1.00, 0.00) Px = 3979.06 Iy = (-0.95, 0.01, -0.31) Py = 20353.18 Iz = (-0.31, 0.01, 0.95) Pz = 21879.14

| Moments of inertia: ( gr | ams * square centimeters )   |                          |
|--------------------------|------------------------------|--------------------------|
| Taken at the center of m | hass and aligned with the ou | utput coordinate system. |
| Lxx = 20496.22           | Lxy = 210.79                 | Lxz = 448.09             |
| Lyx = 210.79             | Lyy = 3981.79                | Lyz = -33.87             |
| Lzx = 448.09             | Lzy = -33.87                 | Lzz = 21733.37           |

Solidworks Mass Prop. Table and Major Pod Dimensions

P5.1.1P - Pods under 600 gramsP5.1.2P - Pods <9cm diameter</td>



## Pod Locking Mechanism

#### Shear Analysis

$$\tau_y = 6000 \text{ psi} (\text{Polycarbonate})$$

$$A = 1/64$$
"  $n = 4$   $F = 300$  lbs

$$\tau = \frac{F}{nA} = \frac{300}{4(1/64)} = 4800 \,\mathrm{psi}$$







## Pod Locking Mechanism

#### **Bending Moment**

 $\sigma_y$  = 13,500 psi (Polycarbonate)

$$F = 300$$
 $b=h=\frac{1}{8}$ "

  $I = \frac{1}{12}bh^2$ 
 $\sigma = \frac{Mc}{I} = \frac{F(\frac{L}{2})(\frac{b}{2})}{\frac{1}{12}bh^2} = 57600L$ 
 $M = F\frac{L}{2}$ 
 $\sigma = \frac{Mc}{I} = \frac{F(\frac{L}{2})(\frac{b}{2})}{\frac{1}{12}bh^2} = 57600L$ 



 $\sigma \leq \sigma_v \longrightarrow L \leq 0.2343$  [in]



Pod structure contains the ranging electronics which are deployed from 90mm diameter, 30mm height



215mm

## Pod Tail-Boom Structural Analysis

Under worst case impact:

tail boom was able to deflect top of fuselage by up to 2mm. Additional height was included to permit this flexure.



118

## Pod Structural Design: Mech/Aero

| Mass properties of pod_new_new_new_<br>Configuration: Default<br>Coordinate system: default | new |
|---------------------------------------------------------------------------------------------|-----|
| Mass = 468.41 grams                                                                         |     |
| Volume = 449.38 cubic centimeters                                                           |     |
| Surface area = 1563.93 square centimet                                                      | ers |
| Center of mass: ( centimeters )<br>X = 2.76<br>Y = 12.64<br>Z = 7.08                        |     |

- Purpose: Cannon compatibility
- **Design:** Low mass bonded plastics
- Specs:
  - Mass: 500 grams with 30g ballast
  - Length: 21.5cm
  - Diameter 8.5cm



- **Purpose:** Minimize drag, maximize stability
- **Design:** Area rule, swept surfaces, Cg < Cp
- Specs:
  - From Nose: Cp = 11.1cm, Cg = 11.0cm,
    - with ballast Cg = 10.5cm = stable
  - cD of 0.25 was calculated via CFD





## Pod Structural Design: Aerodynamics

#### • Purpose:

- Minimize aerodynamic drag
- Maximize aerodynamic <u>stability</u>
- Design:
  - Cp is behind the Cg, aerodynamic stability is achieved
  - Minimizing drag: area rule, sweeping fins, and minimizing area
  - Fins also provide spin stability



120

Simplified cP calculation, validated via CFD

- Specs:
  - From Nose: Cp = 11.1cm, Cg = 11.0cm, with ballast Cg = 10.5cm = stable
  - A cD of 0.25 was calculated via CFD

P5.4.6 P - Pods shall be stable to promote range and impact orientation

## Pod Structural Design: Power Connect.

- Purpose:
  - Secure batteries, connect them to board securely
- Design:
  - Spring tension on batteries to maintain connection
  - Hot-swappable from end of tail
  - Twisted pairs to prevent signal interference
- Specs:
  - 3 AAA in series (4 avail but unneeded)
  - 1100 mAh
  - 3.6V



121

### Wiring diagram

## Pod Structural Design: Crumple Zone

122

#### • Real: Drop Test 2m/s



Decreases acceleration by factor of 2

## C: Pod Deployment





### Deployment Module: Budgets

|                                      |              |           |               | Component                                | Weight (kg)  |
|--------------------------------------|--------------|-----------|---------------|------------------------------------------|--------------|
|                                      | Douron Droug | Duration  | En ongr [Mott | Pods                                     | 5            |
| Component                            | Fower Draw   | [minutes] | Energy [watt  | Motors                                   | 1.86         |
|                                      | [**]         | Linnutcoj | minutesj      | Gears (1018 Carbon steel)                | 2.36         |
| 24V Compression                      | 33.6         | 1.72      | 0.97          | Base Plates and Lazy Susan               | <b>F</b> 4   |
| Motor                                | 00.1         | ,/        |               | (Polycarbonate and Aluminum)             | 5.4          |
| Nema 23 Stepper                      | 5.7          | 5         | 12.83         | <b>Barrel and Funnel (Polycarbonate)</b> | 1.25         |
| Motor                                | 0 /          | 0         | Ŭ             | Launch Plate and Rack (6061              | 0.0 <b>-</b> |
| Nema 17 Stepper                      | 0.91km       | 40        | 3.33          | Aluminum)                                | 0.25         |
| Motors (x2) · 1                      | 9.2185       |           |               | Base Support (6061 Aluminum)             | 0.8          |
| Sensors (Photo<br>interrupter, etc.) | 0.5          | 20        | 0.17          | Reloading Material                       | 0.9          |
|                                      |              |           | _             | Spring                                   | 0.39         |
| Total: 20.63 watt hour               |              |           |               | Binding Materials                        | 1            |
|                                      |              |           | Total: 19.21  | kg                                       |              |

| D4.1.2 | Module and pods shall weigh less than 20kg together                               |  |
|--------|-----------------------------------------------------------------------------------|--|
| D8.3.1 | Deployment module shall be compatible with provided onboard power (270 watt hour) |  |



### Manufacturing

| Component                                           | Material                      | Process  | Allotted Time |
|-----------------------------------------------------|-------------------------------|----------|---------------|
| Cannon Barrel                                       | Plexiglass/Acrylic            | Band Saw | 2 days        |
| Plates (Mounting, base, support<br>structure, etc.) | Plexiglass/Acrylic , Aluminum | Band Saw | 1 week        |
| Rack                                                | Aluminum                      | CNC      | 1 day         |
| Reloading Support                                   | Aluminum                      |          | 2 days        |
| Spring Cannon Base Support                          | Aluminum                      | CNC      | 1 week        |
| Motor Mounts                                        | Acrylic?                      |          | 1 day         |
| Funnel                                              | Acrylic                       |          | 1 week        |
| Launch Plate                                        | Aluminum                      | CNC      | 1 day         |

### Deployment Module Design: Reloading Mechanism 126

- Purpose:
  - Feed pods into the cannon barrel
- Design:
  - Twin NEMA 17 stepper motor
  - Timing belt, conveyor system
- Specs:
  - Loading time: 5 seconds
  - Maximum Power Draw: 5W





### Reloading Mechanism: Funnel

DM shall be capable of reloading and deploying a new pod every 2 minutes

- Test: Do pods jam? If so, when?
- Results:

D3.5.1

- If pods are oriented properly, no jamming occurs and they slide tail first into tube
- Jams if:
  - Fin catches on ramp
  - Fin catches on top of barrel
- **Mitigation**: Arm holding pod releases pod above edge of ramp, also moved forward on ramp





### Deployment Module Design: Azimuth Control

- Purpose:
  - Rotate the cannon from -140° to 140° relative to rover
- Design:
  - Rotating base plate mounted to a swivel stand
  - NEMA 23 motor drives a bevel gear set
  - Photo interrupter used to reset step count
- Specs:
  - Pointing Accuracy: 12°
  - Maximum Power Draw: 5.7W



128



#### **Azimuth Control**

| M3 The deployment mech shall have capability to deploy pods to software defined locations |  |
|-------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------------------|--|

- Why?
  - Pods must be placed at locations that will not always be in line with the rover's direction of travel
- Designs Driven:
  - Allows for one stationary hub with the cannon and reloading mechanism rotating around the center gear
- Demonstration Method:
  - Lazy susan used to minimize torque requirement needed to rotate the base plate



### Reloading Mechanism: Center of Mass

D4.1.1 DM and mounting interface shall not modify Jackal's center of gravity to a point where it cannot sustain 30 degree slope in any orientation.



CG Location without Pods



#### **Constraints for the rack and launch plate:**

- Mass **[250g]**
- Spring inner diameter
- Beam deflection
- Tensile Stress

#### **Design Parameters**

- Pitch height
- Face width
- Length







### **Tensile Stress Calculations**

$$\sigma_t = \frac{W_t P_d}{FY}$$

- Wt is the tangential load [lbs]
- Pd is the diametral pitch [in<sup>-1</sup>]
- F is the face width [in]
- Y is the Lewis form factor (dimensionless)

#### Mass/Volume Constraint Calculations

$$w = \frac{m}{\rho lh}$$

- m is the maximum allowable mass
- $\rho$  is the density [lbs/in<sup>3</sup>]
- l and h are length and pitch height respectively [in]



### Spring Compression Device

### **Beam Deflection Calculations**

$$I = \frac{1}{12}wh^3$$

- I is moment of inertia [in<sup>4</sup>]
- w is face width
- h is diametic height

$$\sigma_b = \frac{F_R l^3}{3EI}$$



- σb is beam deflection (constrained to 0.01 [in])
- FR is radial load
- l is length [in]
- E is the Young's modulus [psi]

Rearrange to solve for deflection as a function of face width and height



### Deployment Module Design: Rack Support

- Purpose:
  - Guide rack during compression and decompression
- Design:
  - Two linear ball bearings
  - Support beam to prevent beam deflection
- Specs:
  - Maximum dynamic load: 353lbs
  - ID Tolerance: +/-.0004
  - Steady state speed: 83.3 in/sec





### Deployment Module: Safety

#### • Why:

- Prevent unwanted deployment, safely store the rover, indicate safe state to approach rover
- Designs Driven:
  - Multiple safety inhibits
  - Lights to indicate safety state
  - Defined states with corresponding safety procedures

| Inhibit Type          | Description                                                        |
|-----------------------|--------------------------------------------------------------------|
| Mechanical            | Pin to keep baseplate from rotating (also used for storage)        |
| Electrical            | Prevents motors from moving (remove before flight pin)             |
| Remote Kill<br>Switch | PS4 controller to send kill command to rover<br>(COHRINT provided) |

| Indicator Type | Description                                                |
|----------------|------------------------------------------------------------|
| Green Light    | Safe state to approach rover                               |
| Red Light      | Unsafe state to approach rover, corresponding to State 1-3 |





### Deployment Module: Safety States

| State | Description                                                         | Steps to abort                                                                                                                       | Notes                                                           |  |
|-------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| 1     | Pod in tube, electrical inhibit OUT, spring <b>compressing</b>      | <ol> <li>Send software stop</li> <li>Send software command to<br/>reverse motor direction</li> <li>Proceed from State 2.2</li> </ol> | Front of rover clear at all times.<br>Red light ON              |  |
| 2     | Pod in tube, electrical inhibit OUT, spring uncompressed            | <ol> <li>Send software stop</li> <li>Place electrical inhibit IN</li> <li>Remove pod from tube</li> </ol>                            | Front of rover clear until after step 2.<br>Red light ON        |  |
| 3     | No pod in tube, electrical inhibit <b>OUT</b> , spring uncompressed | 1) Place electrical inhibit IN                                                                                                       | Red light ON                                                    |  |
| 4     | No pod in tube, electrical inhibit IN, spring uncompressed          | None                                                                                                                                 | Safe state to transport rover and upload<br>MIP. Green light ON |  |

\*Azimuth control occurs between State 1 and 2. State 2 is considered fire-ready and full range safety measures are to be in place.



### Deployment Module Design: Electronics



137



### 5 m/s of Wind (11.2 mph) Opposing the Pod Trajectory

Cross



138

# Pod Trajectories

### Worst case: 12° azimuthal accuracy

• Discretized angles for launching



## D: Risk Backup





### **Risk Descriptions**

| ID | Description                               |                                                                                                                                                                                            |            |   |   | (              | Consequend | ce  |    |  |
|----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|---|----------------|------------|-----|----|--|
| 2  | Mass too high                             |                                                                                                                                                                                            |            |   | 1 | 2              | 3          | 4   | 5  |  |
| 3  | Antenna interference                      |                                                                                                                                                                                            |            | 5 |   |                |            | 5   | 7  |  |
| 6  | Recoil forces                             |                                                                                                                                                                                            |            | 4 |   |                |            | 1,9 | 4  |  |
| 8  | Potting material interference             |                                                                                                                                                                                            | Likelihood | 3 |   |                | 6          | 3,8 |    |  |
| 9  | Software development integration          |                                                                                                                                                                                            |            | 2 |   |                |            |     | 10 |  |
| 10 | Networking/Comm development               |                                                                                                                                                                                            |            | 1 |   |                |            |     | 2  |  |
|    |                                           |                                                                                                                                                                                            |            |   |   | <u>Mitigat</u> | tion:      |     |    |  |
| 1  | Electronics damage from deployment        | <ul> <li>Compounding multiple methods for impact dampening</li> <li>Drop tests have been performed to demonstrate survivability with some of the selected electronics.</li> </ul>          |            |   |   |                |            |     |    |  |
| 4  | Reloading jam or electrical complications | <ul> <li>Prototype built for demonstration.</li> <li>Considerations included in design to provide a remote kill switch</li> </ul>                                                          |            |   |   |                |            |     |    |  |
| 5  | Deployment unable to reach max range      | <ul> <li>Significant range margin included in design which should surmount unanticipated parasitic forces.</li> <li>Modelling efforts do have high fidelity and scaled testing.</li> </ul> |            |   |   |                |            |     |    |  |
| 7  | PCB rev delays in schedule                | <ul> <li>PCB boards have been designed and first rev printed pre-cdr</li> <li>Testing commencing and expect to send 2nd rev before Dec 20 2018</li> </ul>                                  |            |   |   |                |            |     |    |  |



| Pre-Mitigation |   |             |   |   |     |    | Post-Mitigation |             |   |   |      |   |   |
|----------------|---|-------------|---|---|-----|----|-----------------|-------------|---|---|------|---|---|
|                |   | Consequence |   |   |     |    |                 | Consequence |   |   |      |   |   |
|                |   | 1           | 2 | 3 | 4   | 5  |                 |             | 1 | 2 | 3    | 4 | 5 |
| Likelihood     | 5 |             |   |   | 5   | 7  | Likelihood      | 5           |   |   | 5    |   |   |
|                | 4 |             |   |   | 1,9 | 4  |                 | 4           |   |   |      |   |   |
|                | 3 |             |   | 6 | 3,8 |    |                 | 3           |   |   |      | 1 |   |
|                | 2 |             |   |   |     | 10 |                 | 2           |   |   | 3,7  | 9 | 4 |
|                | 1 |             |   |   |     | 2  |                 | 1           |   | 6 | 2,10 | 8 |   |



## **Risk Descriptions**

| Subsystem          | ID | Rank: (L,C) | Description                                | Details                                                                                                                                                                                                                                                 |
|--------------------|----|-------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pod Structure      | 1  | 4,4         | Electronics damage from<br>deployment      | Electronics damage due to launch/impact acceleration will prohibit functionality                                                                                                                                                                        |
| Pod Structure      | 2  | 1,5         | Mass too high                              | Mass budget exceedance will inhibit max deployment distance                                                                                                                                                                                             |
| Pod Structure      | 3  | 3,4         | Antenna interference                       | Antenna interference due to env. or pod structure could severely limit functionality and increase error                                                                                                                                                 |
| Deployment         | 4  | 4,5         | Reloading jam or electrical complications  | Reloading is a process which must succeed 10x in every mission, jamming or electronics complications can prevent every subsequent deployment                                                                                                            |
| Deployment         | 5  | 5,4         | Deployment unable to reach max range       | Parasitic forces on deployment are difficult to predict. Current models account for many of them such as drag, friction, dead weight, but likely not all. An underestimate or misconception of the parasitic forces during deployment will lower range. |
| Deployment         | 6  | 3,3         | Recoil forces                              | Recoil forces during launch may negatively impact the rover, by tipping or by unduly stressing the mounting fixtures of the cannon to the rover.                                                                                                        |
| Pod<br>Electronics | 7  | 5,5         | PCB rev delays in schedule                 | PCBs are known to take more revisions than expected, which can cause hardware damage, schedule slip, and stagnation of other subsystem progress.                                                                                                        |
| Pod<br>Electronics | 8  | 3,4         | Potting material interference              | Potting material applied to the electronics boards can impact performance due to overheating, sensor blockage, and by limiting access to board level components.                                                                                        |
| Navigation<br>SW   | 9  | 4,4         | Disparate software development integration | Multiple methods of error reduction are being developed, integration of multiple methods can result in software that is complex, cumbersome, and difficult to diagnose.                                                                                 |
| Pod SW             | 10 | 2,5         | Networking/Comm<br>development             | A complex mesh network and communication protocol must be developed to support localization                                                                                                                                                             |



## Risk Mitigation: Highest Risks Only

144

| Subsystem              | ID | Description                                           | Effect                                                                           | Mitigation                                                                                                                                                                                                                                                                     |
|------------------------|----|-------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pod<br>Structure       | 1  | Electronics damage<br>during launch or<br>landing     | Ranging functionality failure, pod is<br>unusable for localization               | Compounding three methods for impact dampening is expected to be<br>beyond sufficient, moreover, drop tests have been performed to<br>demonstrate survivability with some of the selected electronics.                                                                         |
| Deployment             | 4  | Reloading: Jamming<br>or difficulties in<br>control   | Failure to deploy, potentially unsafe<br>stored energy, unexpected<br>deployment | Prototype built for demonstration. Considerations included in design<br>to provide a remote kill switch, and de-tension procedure for stored<br>energy. Tube is clear so observers can monitor and kill a jam.                                                                 |
| Deployment             | 5  | Unmodeled parasitic forces reduce range               | Limited range has a substantially<br>negative impact on localization<br>accuracy | Significant range margin included in design which should surmount<br>unanticipated parasitic forces. Modelling efforts do have high fidelity<br>and have already lead to several design changes.                                                                               |
| Pod<br>Electronics     | 7  | PCB rev delays in schedule                            | Delay in electronics testing or<br>development, impact other<br>subsystems       | PCB boards have been designed and first rev printed pre-cdr, testing commencing presently and expect to send 2nd rev before Dec 20 2018                                                                                                                                        |
| Navigation<br>Software | 9  | Combination of<br>multiple error<br>reduction methods | Complex, cumbersome, slow<br>execution software product                          | Multiple error reduction methods have already been developed<br>independently and are well understood. This provides additional<br>integration time, and proves individual methods function correctly,<br>thus the combination of all methods will be efficient and effective. |


# Risk Mitigation: Lower Risks

| Subsystem          | ID | Description                                     | Effect                                                                               | Mitigation                                                                                                                                                                                                                                                                                      |
|--------------------|----|-------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pod<br>Electronics | 2  | Mass too high                                   | Mass budget exceedance will<br>inhibit maximum range<br>possible                     | A high-fidelity solidworks model was constructed and studied using the correct expected mass properties. Shows 80g of margin.                                                                                                                                                                   |
| Pod<br>Electronics | 3  | Antenna<br>Obstruction or<br>Interference       | Unreliable high error<br>measurements with limited<br>ability to detect              | Tests were performed to characterize environmental effects, the open air test<br>range (think business field) will not impact signal.<br>Pod is constructed of benign plastics and bonding (limited metal hardware),<br>batteries will interfere with signal and antenna pattern is understood. |
| Deployment         | 4  | Reloading jam or<br>electrical<br>complications | Failure to deploy will interrupt<br>mission and require human<br>intervention        | A rough physical model of the feed system was built and tested with a high fidelity model of the pod, it showed promising functionality and highlighted areas of concern to be revised.                                                                                                         |
| Deployment         | 6  | Recoil forces                                   | Rover tips over or has other<br>unintended dynamic responses                         | Measurements of rover CG and expected forces to impart showed that significant margin exists against tipping. Design consideration towards using an outrigger system serves as a solution thus nullifying this risk.                                                                            |
| Pod<br>Electronics | 8  | Potting material interference                   | Potting it may impact signal,<br>trap heat, and limit<br>observational/debug access. | Research on heritage systems for material selection indicates several non-<br>conductive options. 3D printed 'pour mold' to be developed which will prevent<br>potting material seeping into undesired areas.                                                                                   |
| Pod SW             | 10 | Mesh<br>Network/Comms                           | Missing lower levels of success                                                      | The required hardware was procured in advance and a preliminary demonstration of the mesh network (on pod hardware only) was performed                                                                                                                                                          |

# E: Testing Additional





# Verification Plan



*Piecewise testing* has been in progress for some time now. This type of testing consists of testing individual parts to prove their <u>feasibility</u> or <u>functionality</u>.

### **Tests performed pre-CDR**

### Pod Electronics: Test IDs: PT2, PT8

- 1 rover to 1 pod ranging: Demonstrated capability for pod electronics to communicate and range accurately.
- 1 rover to multi-pod ranging: Demonstrated capability for 'rover' to select which pod to communicate with.
- Mesh network ranging: Demonstrated the capability of rover-pod ranging, and rover-pod-pod ranging.

## Deployment: Test IDs: DT2, DT5

- Test deployment range characterization: Demonstrates scale deployment model to reach correct (scaled) range.
- Pod drop testing of foam/potting: Demonstrates independent capability of suspension methods to protect elect.
- Pod reloading mechanism testing: Demonstrates pod into funnel without jamming, pod egress without jamming.

## Navigation Software: Test IDs: NT10, NT1

- Software simulation of error propagation over time, incorporated minimization techniques and validated
- Rover path upload and follow using A\* algorithm



# Verification Plan

Piecewise Testing

Subsystem Testing

Integration Testing

**Full System Testing** 

*Subsystem tests* consist of proving that all parts of a specific subsystem can combine and cooperate to function properly.

#### **Pod Electronics New Rev Tests: Test ID PT7**

- Receive and manufacture custom PCB with components, compare functionality to already functional non-custom hardware

#### Pod Power Draw Test: Test ID PT5

- With a near-flight-like electronics suite, characterize power draw over a simulated 2-hour mission duration

#### Deployment Safety Test: Test ID NT1,

- Demonstrate kill switch functionality, and decompression functionality.

#### **Deployment Controls Test: Test ID DT4**

- Demonstrate deployment mechanism can be installed to baseplate, and actuated via its microcontroller commands.

#### Deployment Range Test: Test ID DT2A

- Demonstrate using a mass-sim pod that the cannon can obtain the required range of +10m.
- This will also demonstrate pod structure's aerodynamic stability.

#### Pod Structure Test: Test ID PT2

- With 'Flight-like' pod manufactured, install latest-rev electronics into system, perform drop testing repeatedly and demonstrate board functionality pre/post each drop test.

#### Navigation Software Incorporation Test: Test ID NT7

- Using the pre-developed software simulation, test that error reduction methods functioning as intended and to the proper requirement levels even under worst case 3-sigma scenarios.
  - Push validation further by including monte-carlo test data and other non-optimal environmental factors.



# Verification Plan



*Integration Testing:* The objective of integration testing is to demonstrate that subsystems have been successfully integrated together, and that all subsystems are functioning with the rover and overarching needs for mission success. They are defined based on key interfaces:

### **Navigation Software to Deployment: Test ID DT4**

- Ensure that navigation software (on rover) can send data/commands to the deployment microcontroller (on cannon), demonstrate controlled deployment at specified attitude and that behavior is expected.

## **Deployment to Pod Structure: Test ID DT3, PT4**

- Test deployment mechanism ability to reload and launch pods repeatedly. Test that any unexpected stresses on the pod do not damage internal electronics. Test robustness to jamming by moving rover throughout environment and inducing vibrations/off-nominal loading.

## Navigation Software to Pod Electronics: Test ID FST3, FST4

- Test the interface which allows serial read/write commands between the rover and all pods on the network, demonstrate ability to collect ranging data from software-selected pods.

# F: Budget Backup



# Budget

#### \*Notes:

Budget based on estimated 12 pods + 4 pods for prototyping

• Jackal Rover provided by customer

