

Smead Aerospace UNIVERSITY OF COLOFADO BOULDER

Deep-Space Orbital Telecommunications

Sam Taylor, Tristan Liu, Caelan Maitland, Forrest Jordan, Hunter Rohlman, N. Sebastian Damm, Doug Brough, Conner Lewis, Buck Guthrie, Jennifer Gurtler

Mission Statement

Project DOTCOM is a research-heavy **system modeling** assignment. In this, we explore the functionality and viability of a communications network architecture between the Earth and Moon. The purpose of this project is to **develop software models** to design and optimize a **Lunar communications network**, packaged through **Model-Based System Engineering.**

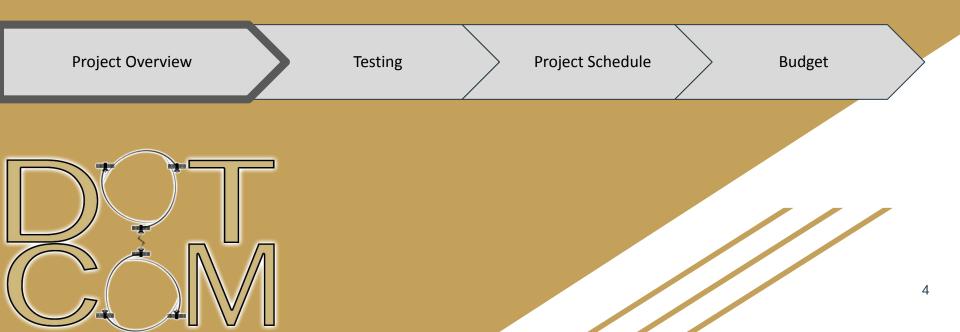
Table of Contents

1 Project Overview

1.1 Performance Targets1.2 Critical Project Elements1.3 CONOPS1.4 Baseline Design1.5 FBD

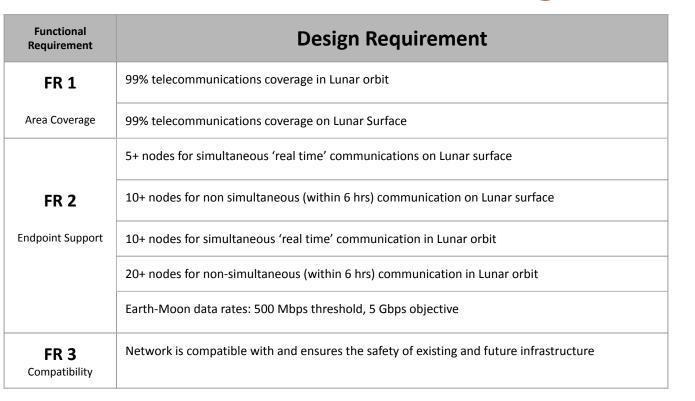
2 Testing

2.1 System Architecture Models
2.2 Network Capacity Model
2.3 Link Budget Models
2.4 ION-DTN Model
2.5 SysML Systems Engineering Model
2.6 Testing Summary


3 Project Schedule

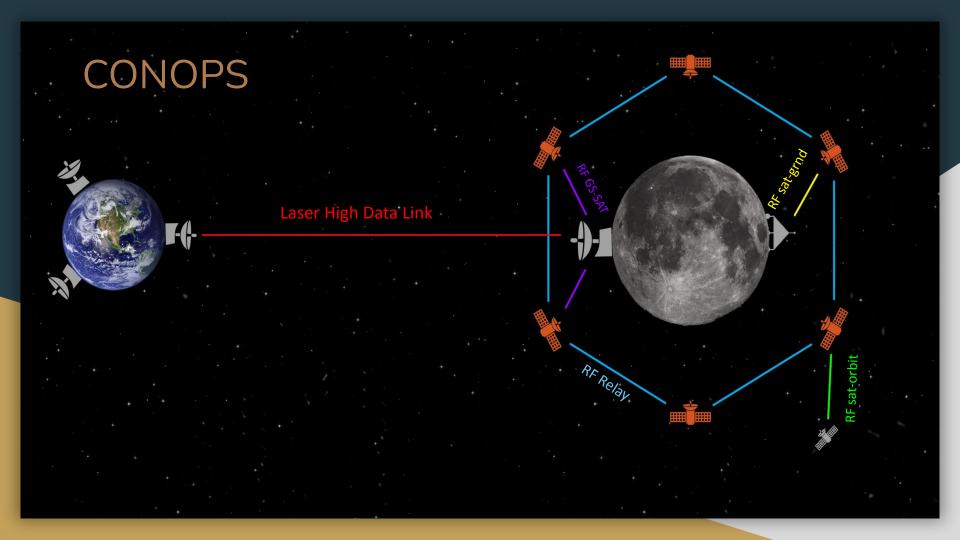
3.1 Schedule Overview3.2 System Architecture Schedule3.3 MBSE Schedule3.4 Hardware Schedule

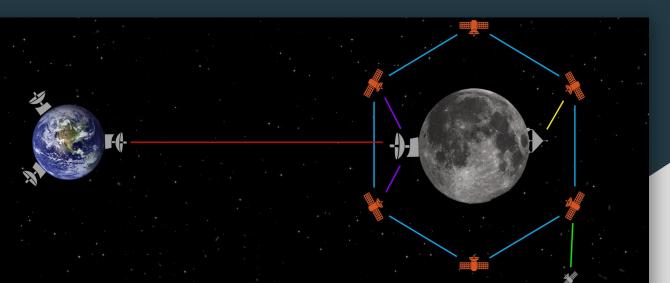
4 Budget1.1 Procurement Updates1.2 Budget Summary



Project Overview

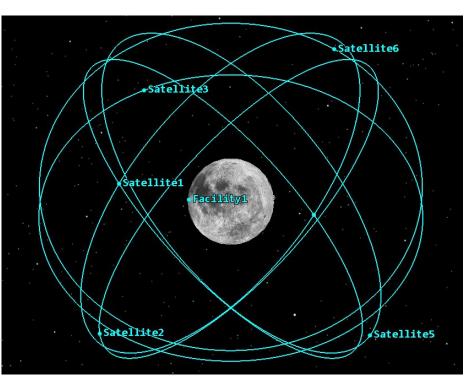
Network Performance Targets * GENERAL ATOM




Critical Project Elements

Designation	СРЕ	Critical Characteristics
CPE-1	Network Protocol	Structured data transmission methodology that allows for high speed reliable communications from node to node.
CPE-2	System Link Budgets	The project will meet certain data-relay rates for communication between all communication nodes.
CPE-3	Relay Stations	Allows for direct access to communications between Earth and The Moon.
CPE-4	Satellite Constellation	Construction of ideal constellation architecture around each planetary body to satisfy coverage requirements.

Baseline Link Budgets



Variables	Satellite to Satellite	Ground Station to Satellite	Orbital Vehicle to Satellite	Ground Vehicle to Satellite	Ground Station to Ground Station
Range	11,024 km	5,509 km	ТВО	5,509 km	384,000 km
Frequency	Ka-band (26 GHz)	Ka-band(26 GHz)	Ka-band (26 GHz)	Ka-band(26 GHz)	193.4 THz (1550 nm)
Antenna Size	1 m	1 m	.5 m	.1 m	1.5 m
Receive System Noise Temperature	700 K (Source: ITU)	300 K (Source: Sat. Antenna Trade Study)	700 K	300 K	N/A

Baseline Constellation

Constellation Design Parameters	Values
Range to Ground	5509 km
Range to Adjacent Satellites	9173-11024 km
Configuration	Walker-Delta 6/6/4
Orbital Period	15.38 hrs
Coverage	Single

Project Purpose & Objectives

G

Smead Aerospace

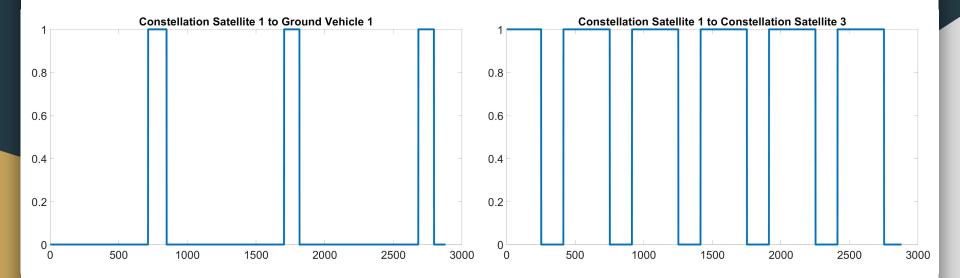
Testing

9

Deep Space Relay Stations

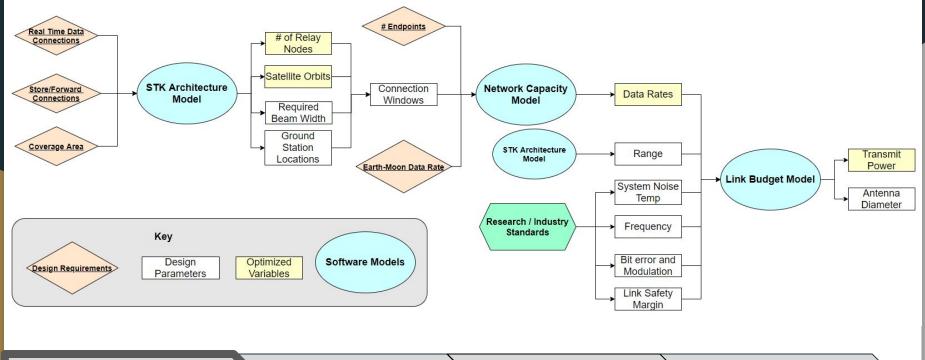
- 3 Earth Ground Stations 120° apart
- 1 Lunar Ground Station at center of "light" side

Additional Baseline Considerations


and the second second	FDP nowledged	in	AMS ressaging
	ode)	1000	mote AMS
UT	adapter		bridging
	BPOT	V routing	
Co	nvergence	layer ada	pters
Ĺ	TP		P, BRS, P, DGR
	sulation :kets	IP Inte	rnet routing
AOS	Prox-1	802.11	Etherne
	R/F, optical		wire

Network Protocol

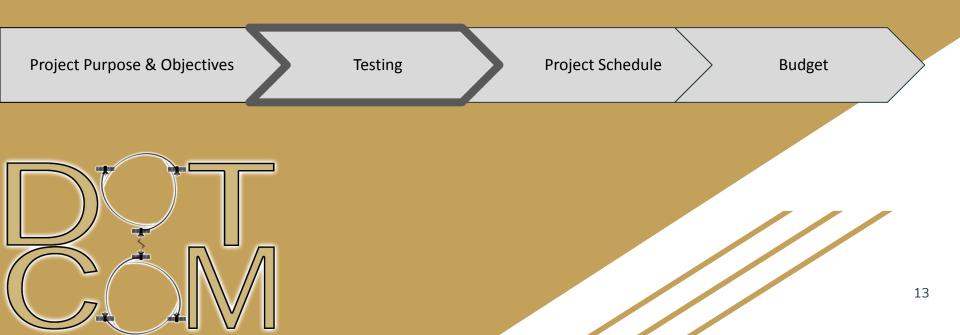
- Interplanetary Overlay Network (NASA JPL)
- Implements Delay Tolerant Networking (DTN)


Connection Window Examples * GENERAL ATOMICS

Optimization FBD

Project Purpose & Objectives

Testing

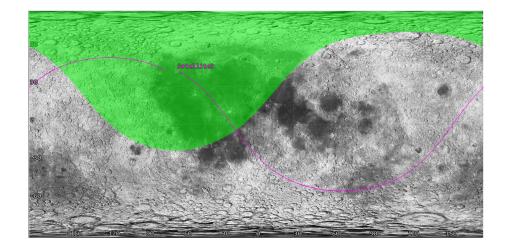

Project Schedule

Budget

12

Testing

Network Coverage Test

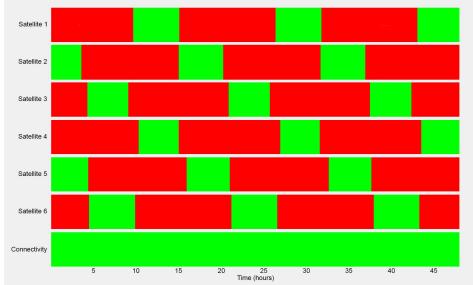


Desired Outcomes:

- Verify that a particular orbit geometry is able to provide >99% coverage of lunar surface and orbit
- Ensure FR1 is met

<u>Test Design:</u>

- Import satellite ephemeris from STK
- Numerically assess the ability of points in the lunar system to connect into the network at each time


Desired Outcomes:

Smead Aerospace

- Verify that a particular network configuration allows for uninterrupted data flow at all times for required number of nodes
- Ensure **FR 2** is met

Test Design:

- Import STK network configuration
- Calculate connection windows for each node
- Verify that connections between endpoints needing continuous connection are always available

Testing

Project Schedule

15

Data Rate Optimization Test

🔶 GENERAL ATOMIC

Desired Outcomes:

- 1. Optimize data rates
- 2. Ensure **FR 2** endpoint communication support is met

<u>Test Design:</u>

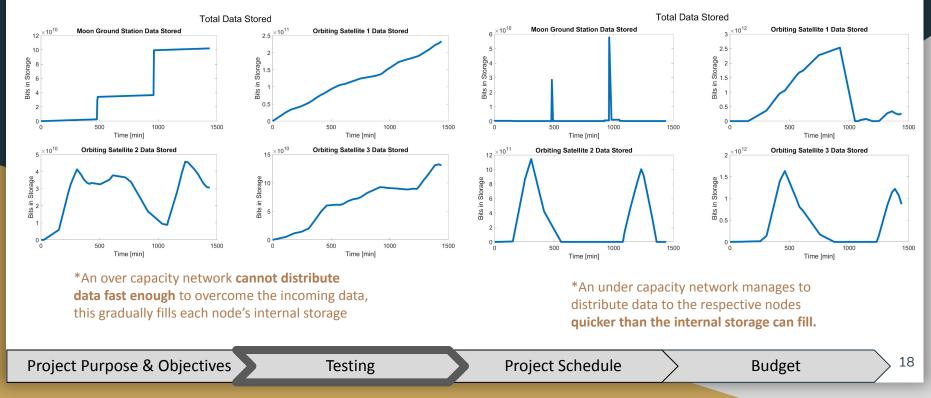
- Vary input/output data rates and **observe changes** to network capacity outputs
- 2. Performed using the Network Capacity Model written in MATLAB

Independent Variables:

Controls:

- Earth Ground Station data rate
- Moon Ground Station data rate
- Constellation Satellite data rate

- Connection Windows
- Number of surface vehicles/constellation satellites/ground stations.
- Data generation in network



Data Rate Test - Design and Expectations

Over Capacity Network

Under Capacity Network

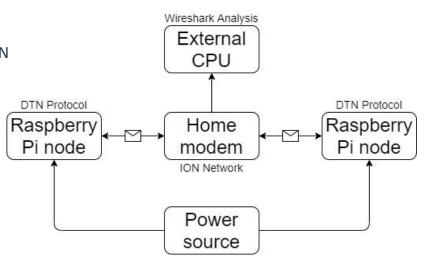
GENERAL ATOMICS

Capacity Model Hardware Validation Test

Desired Outcomes:

Validate capacity model calculation method through hardware comparison.

Test Design:


Build a r-pi network of nodes and observe its **data storage behavior**. Match behavior to **hypothesized behavior** generated from capacity model.

Capacity Model Hardware Test Setup

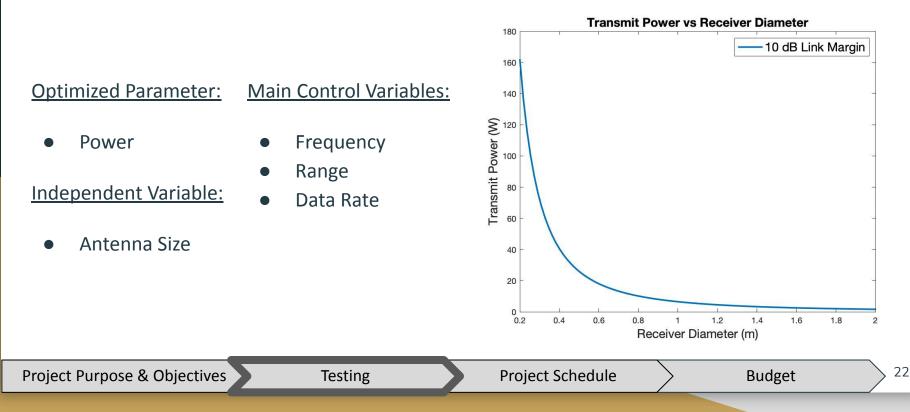
- Raspberry Pi nodes configured and running ION-DTN
- Procedures
 - Send data throughout the system
- Collected Data (Wireshark)
 - Timestamps of data sent and received
 - Data stored in each node
- Data Analyzation (MATLAB)
 - \circ \quad Data stored in each node over time
 - Hardware and Software Latency Values

GENERAL ATOMICS

Power Optimization Test

Desired Outcomes:

- 1. Optimize power required in each link budget
- 2. Ensure data links fall within acceptable safety factors


Test Design:

- 1. Vary key design parameters and observe the **impact to** transmission power required
- 2. Performed using the **Link Budget** MatLab software model

Power Optimization Test -Variables and Controls

Link Budget Validation Tests

- AMSAT IARU Link Budget Calculator
 - Check against our link budget model
- Study on Intersatellite Link Antenna
 - Trade off of satellite antennas with associated link budgets

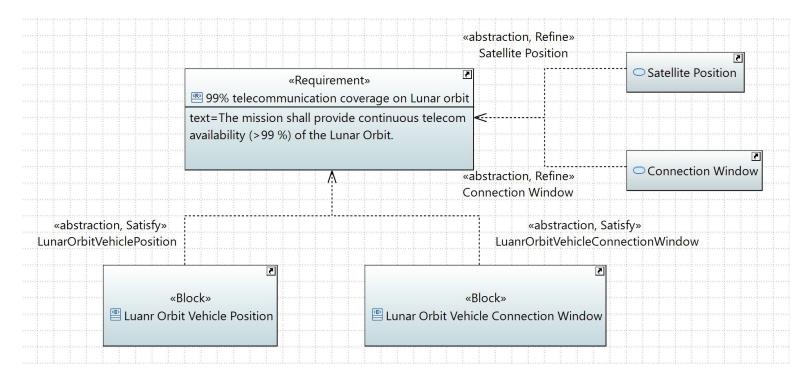
MBSE Validation Test

Desired Outcome:

- The output data from system architecture, network capacity and link budget satisfy the project requirement

Test Design:

- **SysML** simulates the output data by tracing requirement to the subsystems to check if they are satisfy the project requirements
- The output data is the text file data that formats in TLE's (Two-line element set)



RSITY OF CO	ORADO BOULDER		
		A	В
		name : String [01]	/satisfiedBy : NamedElement [*]
0	/ownedElement		
1	transmit/receive capability simultaneously & non- simultaneously between Earth, Moon, Mars.	FR-1: Comms must have transmit/receive capability simultaneously & non-simultaneously between Earth, Moon, Mars.	х
2	/ownedElement		
3	R-001: Real time data relay between environments	R-001: Real time data relay between environments	AntennalO, AntennalO, AntennalO
2	R-005: Data relay between mission segments.	R-005: Data relay between mission segments.	LunarSat, EarthSat, EarthGroundStation, LunarGroundStation
5	R-008: Simultaneous comms to 5 locations on Lunar surface.	R-008: Simultaneous comms to 5 locations on Lunar surface.	inboundSignalProcessing, outboundSignalProcessing
e	R-009: Non-simultaneous comms to 10+ locations on Lunar surface.	R-009: Non-simultaneous comms to 10+ locations on Lunar surface.	inbound Signal Processing, outbound Signal Processing, central Storage

Project Purpose & Objectives

Testing

Test Status

1) Architecture Tests

- a) **Done:** Established >99% coverage geometry for all time steps
- b) In progress: Verify continuous connection windows for all required nodes

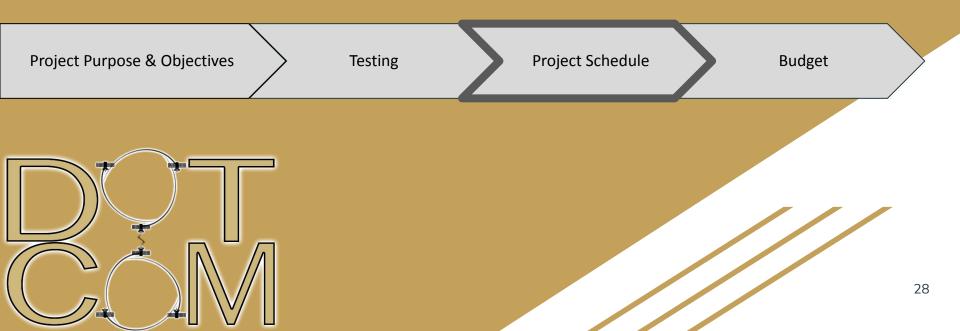
2) Network Capacity

- a) Done: Created data rate design for an under and over capacity system
- b) In progress: Optimize design to find critical data rates while staying under capacity

3) Link Budget

- a) **Done:** Optimized for baseline case
- b) In progress: Optimization for different links

4) Hardware


- a) **Done:** Concept proven \rightarrow 2 Raspberry Pis running ION-DTN
- b) In progress: Establish connection between two nodes, analyze network traffic via Wireshark, determine test node scalability

5) MBSE

- a) **Done:** Created the block definition diagram, internal block diagram, and use case diagram
- b) **In progress:** other structural diagrams and behavioral diagrams that apply to the requirement tracing, implement output data from each subteam to the SysML to do requirement tracking

Project Schedule

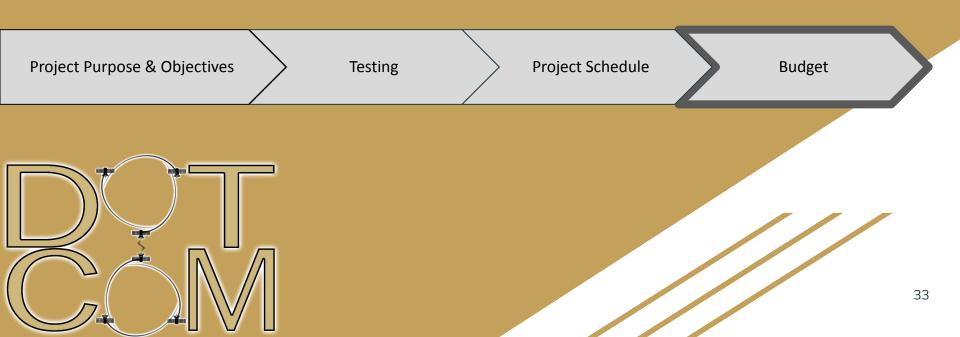
Schedule Overview

Task Name	Duration	Start	End	18 Jan	25 Jan	1 Feb	8 Feb	15 Feb	22 Feb	1 Mar	8 Mar	15 Mar	22 Mar
Complete Project Execution	70 days	01.18.21	03.28.21		-	*				*		*	*
System Architecture	56 days	01.18.21	03.14.21	(
Relay Stations	42 days	01.18.21	02.28.21						հ				
Link Budget	42 days	01.18.21	02.28.21									1	
Constellation Architecture	42 days	01.18.21	02.28.21						•	h			
Network Protocol	56 days	01.18.21	03.14.21									-	
MBSE Modeling	70 days	01.18.21	03.28.21										
Structural Modeling	70 days	01.18.21	03.28.21							•		*	
Behavioral Modeling	70 days	01.18.21	03.28.21							*		*	
Hardware	56 days	01.18.21	03.14.21									Ī	
Manufacturing	35 days	01.18.21	02.21.21						h				
Network Demonstration	56 days	02.01.21	03.14.21						*			J	
Purchases	21 days	01.18.21	02.28.21			Ĵ				Ĵ			29

System Architecture Schedule

Task Name	Duration	Start	End	18 Jan M T W T F S S	25 Jan M T W T F S S	1 Feb M T W T F S	8 Feb S M T W T F S S	15 Feb M T W T F S S	22 Feb M T W T F S S	1 Mar M T W T F S S	8 Mar 8 M T W T F S S	15 Mar M T W T F S S	22 Mar M T W T F S S
System Architecture	56 days	01.18.21	03.14.21										
Relay Stations	42 days	01.18.21	02.28.21										
Earth's Atmospheric Conditions	14 days	01.18.21	01.31.21	(]	2							
Relay Station Determination	7 days	01.31.21	02.07.21										
Existing Relay Station Locations	7 days	02.07.21	02.14.21					1					
Relay Station Placement	7 days	02.14.21	02.21.21					Ċ					
Link Budget	42 days	01.18.21	03.14.21										
RF Link Budget	21 days	01.18.21	02.14.21					L .					
Laser Link Budget	21 days	02.14.21	03.14.21									1	
Constellation Architecture	42 days	01.18.21	02.28.21										
Constellation Geometry Output	14 days	01.18.21	01.31.21]	2							
Network Connection Windows	14 days	01.31.21	02.14.21					1					
Surface/Orbital Coverage Verification	7 days	02.14.21	02.21.21										
Full System Coverage Verification	7 days	02.21.21	02.28.21					[h			
Network Protocol	56 days	01.18.21	03.14.21										
Single Flow Model	0 days												
Multiple Path Model	7 days	01.18.21	01.31.21]	1				Gunnalta		Gunnalta	
Variable Connections Model	7 days	01.31.21	02.07.21				Ţ			Forward to MBSE		Forward to MBSE	
Latency Assumptions Update	14 days	02.07.21	02.21.21						h				
Discreet Data Packages Experimentation	14 days	02.07.21	02.21.21] ;	Ļ				
Model Hardware Verification	7 days	02.21.21	02.28.21					[
Architecture Optimization	14 days	02.28.21	03.14.21										
DTN DevKit Emulation	14 days	02.28.21	03.14.21						· · · ·				30

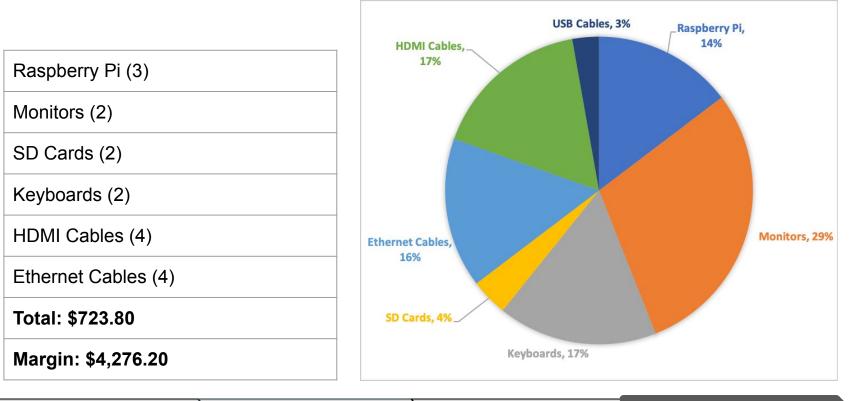
MBSE Schedule


Task Name	Duration	Start	End	18 Jan M T W T F S S M	25 Jan I T W T F S S	1 Feb M T W T F S S	8 Feb M T W T F S S	15 Feb M T W T F S S	22 Feb M T W T F S S	1 Mar M T W T F S S	8 Mar M T W T F S S I	15 Mar M T W T F S S I	22 Mar M T W T F S S
MBSE Modeling	70 days	01.18.21	03.28.21										
Structural Modeling	70 days	01.18.21	03.28.21	(
Data Type Enumeration	14 days	01.18.21	01.31.21			Ţ				Inbound from		Inbound from	
Block Definition Modeling	14 days	01.31.21	02.14.21							System		System	
Internal Block Modeling	14 days	02.14.21	02.28.21							Architecture		Architecture	
Dependency Modeling	14 days	02.28.21	03.14.21									,	
Parametric Modeling	14 days	03.14.21	03.28.21										
Behavioral Modeling	70 days	01.18.21	03.28.21										
Use Case Modeling	14 days	01.18.21	01.31.21			t							
State Machine Modeling	14 days	01.31.21	02.14.21					1				Inbound from	
Requirements Tracing	14 days	02.14.21	02.28.21									Hardware	
Sequence Modeling	14 days	02.28.21	03.14.21									,	
Activity Modeling	14 days	03.14.21	03.28.21								ĺ		

Hardware Schedule

Task Name	Duration	Start	End	18 Jan 25 Jan	1 Feb 8 Feb	15 Feb	22 Feb 1 Mar	8 Mar	15 Mar	22 Mar
				MTWTFSSMTWTFSSMTW	V T F S S M T W T F S S N	4 T W T F S S	M T W T F S S M T W T F S S		TWTFSSN	ITWTFSS
Hardware	56 days	01.18.21	03.14.21							
Manufacturing	35 days	01.18.21	02.21.21						Î I	
CAD Model	21 days	01.18.21	02.07.21		l l					
3D Print Casting	14 days	02.08.21	02.21.21							
Network Demonstration	56 days	01.18.21	03.14.21						Forward to MBSE	
Dual/Multi-Node Network	35 days	01.18.21	02.21.21		\$,	,			
Single Node ION Implementation	14 days	02.22.21	03.07.21	Î	Assess if hardware fallback is necessary,	[ի		
Prescribed Latencies and Bundle File Sizes Implemented	7 days	03.08.21	03.14.21		order remaining hardware	,		*	J	
Purchase	21 days	01.18.21	02.21.21							
Hardware	21 days	01.18.21	02.21.21		[

Budget


Hardware Procurement Update * GENERAL ATOMICS

Hardware Parts	Status	Hardware Parts	Status
2 Raspberry Pis	Received	1 Raspberry Pi	Ordered
2 Monitors	Received	2 SD Cards	Yet to be purchased
2 HDMI Cables	Received	2 HDMI Cables	Yet to be purchased
2 Keyboards	Received	2 Ethernet Cables	Yet to be purchased
2 Ethernet Cables	Received	Total:	\$184.88
Total:	\$538.92		1

Updated Budget

Project Purpose & Objectives

Project Schedule

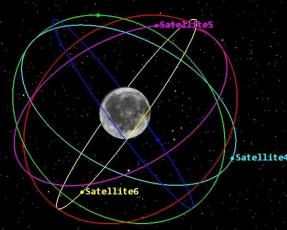
Smead Aerospace university of colorado coulder

Questions?

APPENDIX

Power Optimization Variables

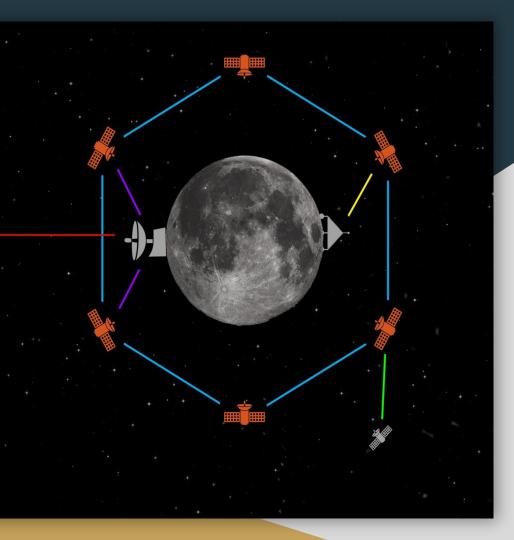
Link Parameters	Value
Max Range	11,024 km
Frequency	26 GHz
Antenna Size (Diameter)	Varied
Transmit Power	Output
Data Rate	50 Mbps
Receive System Noise Temperature	700 K *
Required Eb/No [BPSK Modulation, BER = 10^-7]	11 dB
Required Safety Design Margin	3 dB
Link Margin	10 dB

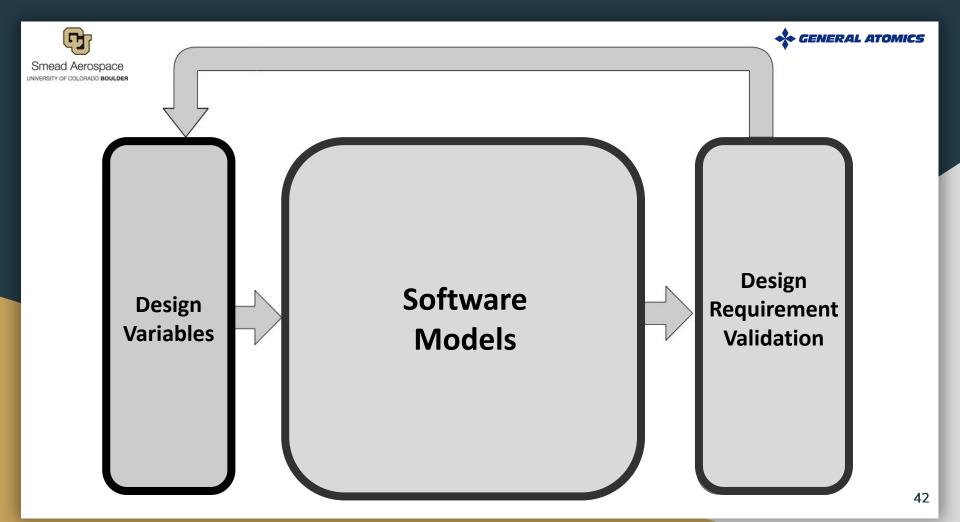

*Source: Robert C. Morre, "Satellite RF Communications and Onboard Processing", Encyclopedia of physical Science and Technology (Third Edition), 2003

Baseline Parameters for Intersatellite Link

Key Input Variables	Value	Outputs	Value
Range (km)*	11,024 km	EIRP	61.9 dB
Frequency (GHz)	26	Antenna Gain	46.1 dB
Antenna Size (D)	1 m	Free Space Los	s 200 dB
Transmit Power (W)	30 W	Received Power	-139.6 dB
Data Rate (Mbps)*	50 Mbps	Signal to Noise	19.5 dB
Receive System Noise Temperature (K)	700 K	Link Margin	5.5 dB
Required Eb/No (dB) [BPSK Modulation, BER = 10^-7]*	11 dB		·
Required Design Margin*	3 dB		39

Satellite Constellation Architecture

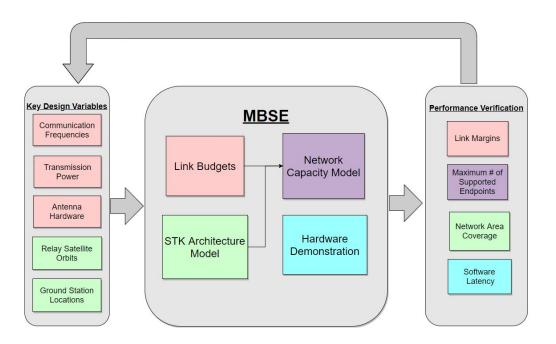

- Walker-Delta configuration
 - ~53 deg inclination
 - 6/6/4 configuration
 - MEO equivalent altitude



Moon Inertial Axes 29 Jan 2021 21:12:00.000 Time Step: 180.00 sec

Inter-Constellation Satellite Link Budget

Link Parameters	Value
Max Range	11,024 km
Frequency	26 GHz
Antenna Size (Diameter)	1 m
Transmit Power	30 W
Data Rate	500 Mbps
Receive System Noise Temperature	700 K
Required Eb/No [BPSK Modulation, BER = 10^-7]	11 dB
Required Safety Design Margin	3 dB



Manufacturing Tasks

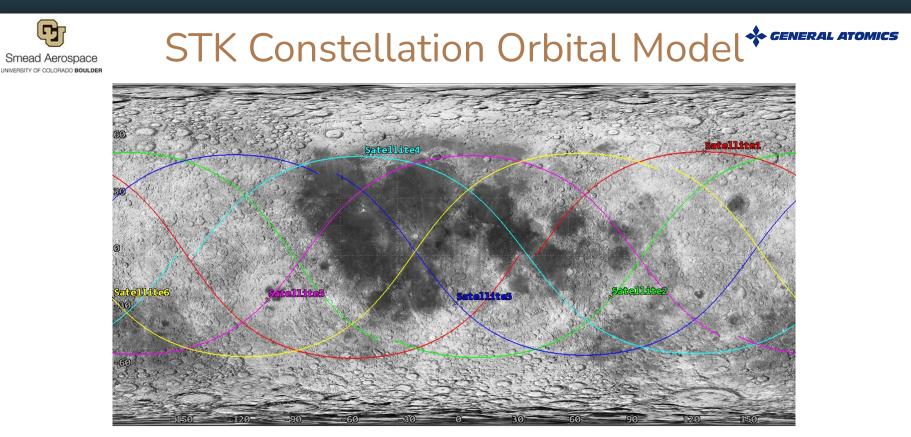
To be **manufactured**:

- 1) STK Architecture Model
- 2) Network Link Budgets
- 3) Network Capacity Model
- 4) MBSE System Model
 - To be **purchased**:
- 5) Hardware Demonstration

Project Purpose & Objectives

Project Schedule

STK Architecture Model

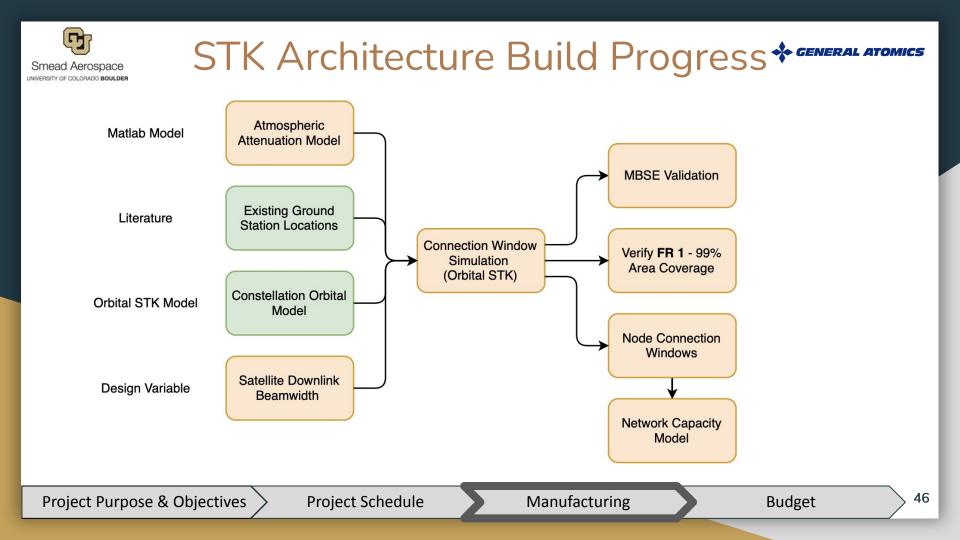

Purpose: Determine the ground station configuration and satellite constellation architecture necessary to enable 99% Lunar coverage and "real time" communication between the Earth and the moon.

Model Logistics:

- Connection window simulation using Orbital STK
- *Inputs*: ground station locations (based on findings from atmospheric attenuation), satellite orbit geometry, satellite downlink beamwidth
- **Outputs**: Connection window illustration, 99% lunar coverage verification

Model Validation: Existing architecture verification (Deep Space Network), sensitivity analysis, and available literature/research.

Project Schedule


*Pictured above (baseline design) - Walker J.G., Continuous Whole–Earth Coverage by Circular–Orbit Satellite Patterns, Royal Aircraft Establishment, September 23, 1977

Project Purpose & Objectives

Project Schedule

Budget

45

RF Link Model

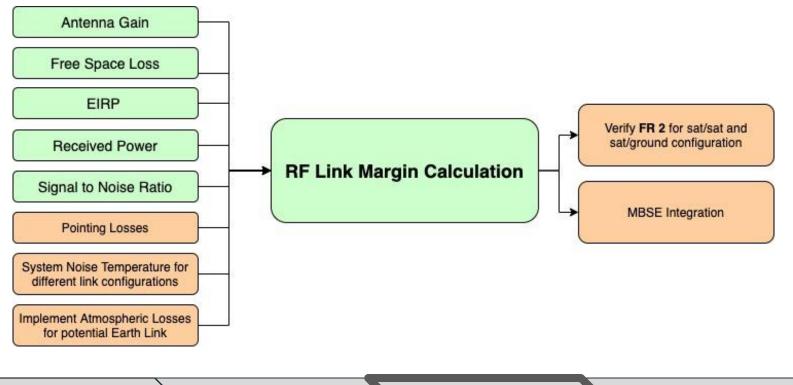
Purpose: Process necessary inputs to create a successful link (positive link margin)

Model Logistics:

- Programmed using <u>MatLab</u>
- Inputs: Range, Frequency, Antenna Size, Transmit Power, Data Rate, System Noise temperature, Required Energy per bit to noise ratio (Eb/No) for desired BER, Required Design Margin
- **Outputs:** Link Margin

Model Validation: Available literature and research, sensitivity analysis

Project Schedule



47

Project Purpose & Objectives

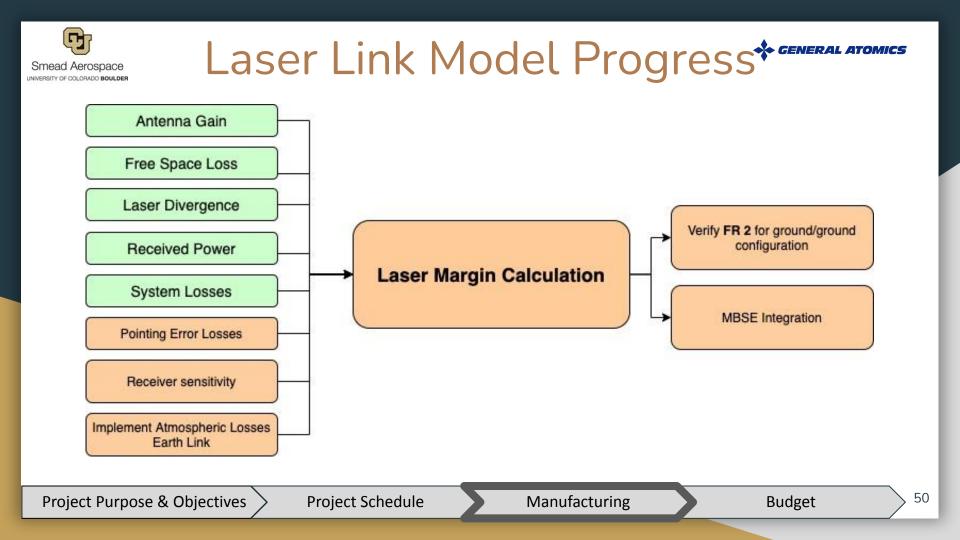
RF Link Model Progress

Seneral Atomics

Laser Link Model

Purpose: Process necessary inputs to create a successful link (positive link margin)

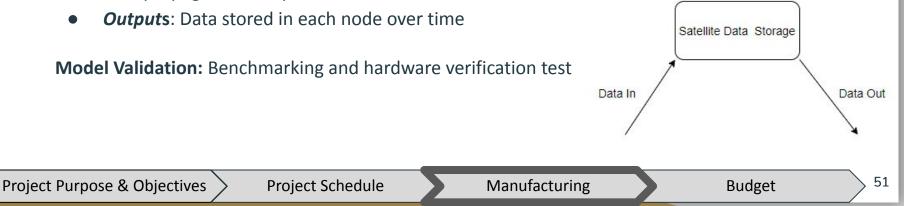
Model Logistics:

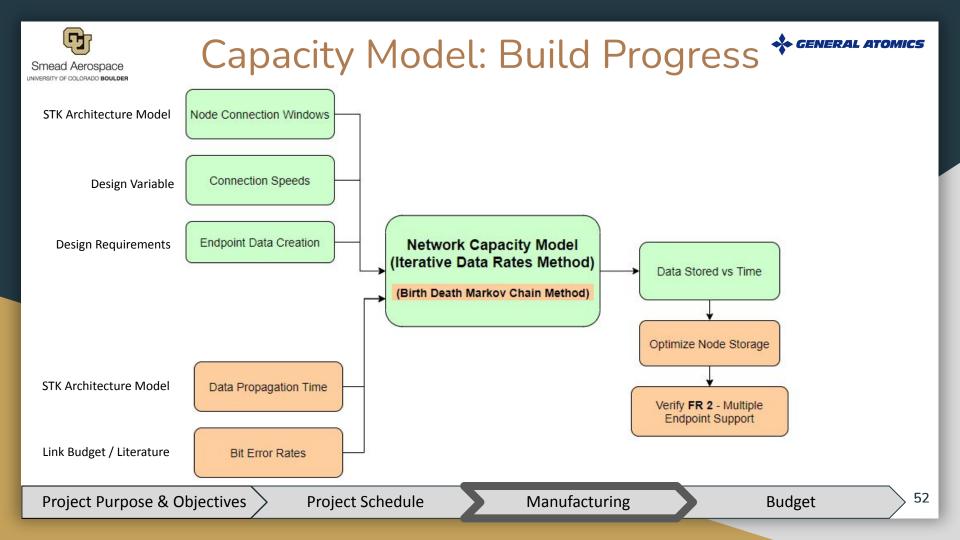

- Programmed using <u>MatLab</u>
- Inputs: Range, Frequency, Antenna Size, Transmit Power, Data Rate, System Losses (Atmospheric, transmit, receiver)
- **Outputs:** Link Margin

Model Validation: Available literature and research, sensitivity analysis

Project Schedule

49


Network Capacity Model


GENERAL

Purpose: Verify that the network can support the required number of endpoints

Model Logistics:

- Iterative data rates computation method performed using MatLab
- Inputs: node connections, link data rates, endpoint data requirements, bit error rates, data propagation delay

Hardware Demonstration

💠 GENERAL ATOMICS

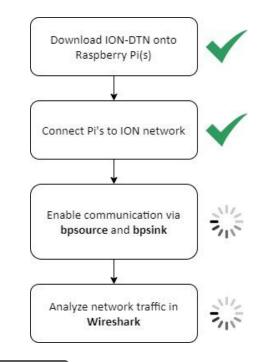
Purpose: Demonstrate functionality of DTN protocol for Earth-based applications using ION-DTN software

Model Logistics:

• **ION-DTN** software downloaded from SourceForge.net and loaded onto two Ubuntu 18.04 server machines

Model Validation: ION-DTN was developed by Dr. Scott Burleigh of NASA's Jet Propulsion Laboratory

Project Schedule


Hardware Demonstration * CENERAL A Timeline

Current development:

- Ubuntu server & ION-DTN installed
- Validating proof-of-concept

Future Development:

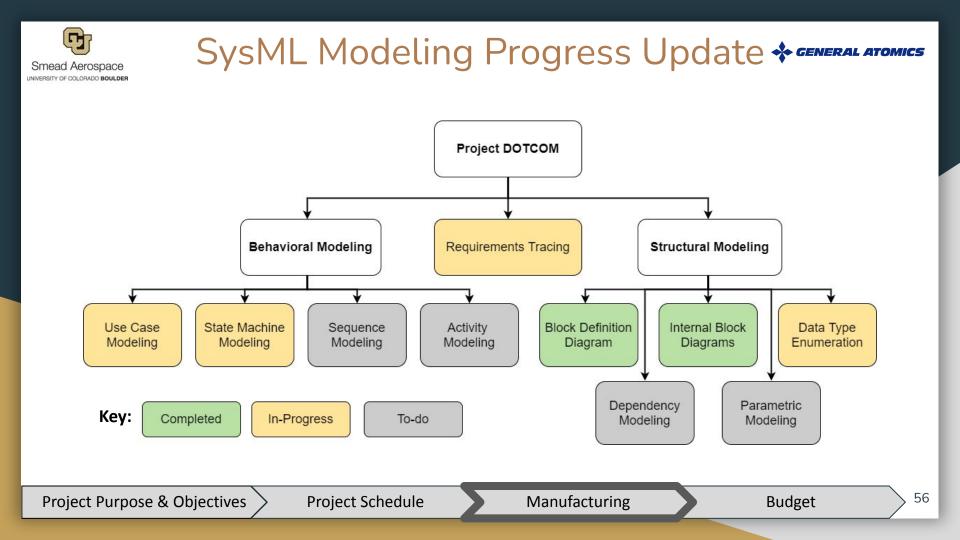
- Enabling communications between two Pi machines
 - Must debug given Assembly test file
- Use **Wireshark** to calculate internal hardware latencies
 - **RISK:** time intensive, steep learning curve

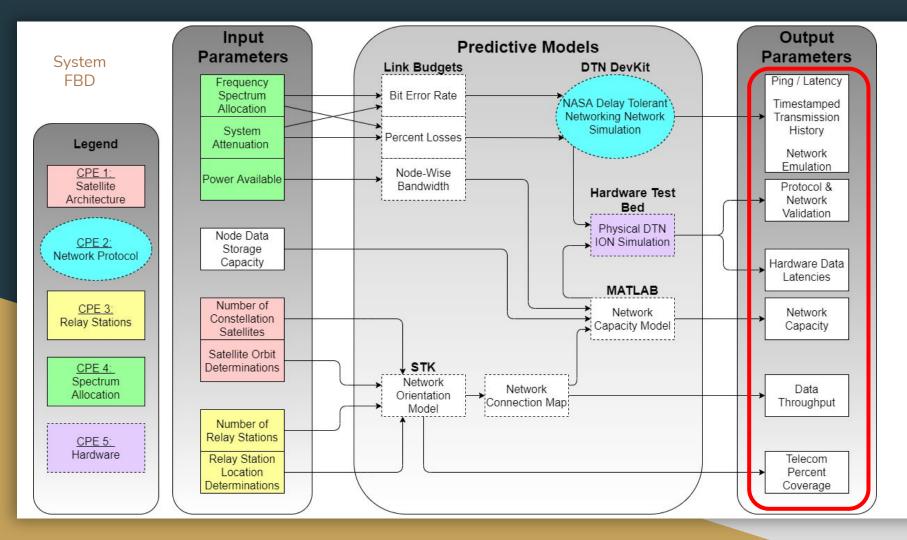
Project Purpose & Objectives

Project Schedule

SysML Modeling/MBSE

Purpose: Integration of separate project elements and model outputs (network capacity, link budget, etc.) into one project space, and trace requirements to the subsystems that satisfy them.


Model Logistics:


- Created in the <u>SysML</u> modeling language
- *Inputs*: Completed modeling of project subsystems
- **Outputs**: Cohesive DOTCOM project deliverable, including mapping of subsystem connections and modeling behavior of network nodes.

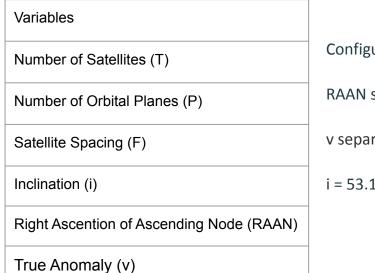
Model Validation: Validation of project inputs will come from their own verification and testing steps, as outputs from these models are loaded into the SysML simulation.

Project Schedule

GENERAL A

Relay Station Models

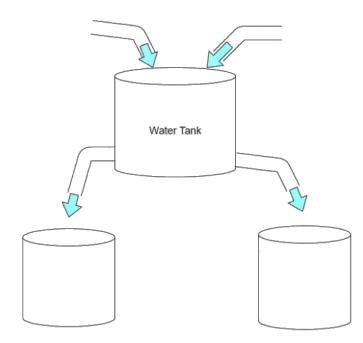
• Atmospheric Attenuation Evaluation (Matlab)

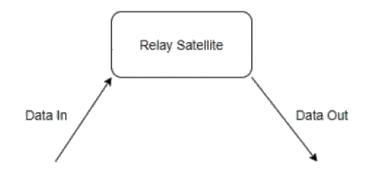

- Input: Atmospheric humidity, angle of signal through atmosphere, height of relay station
- Output: Attenuation (atmospheric loss variable)
- Status: In progress
- Model Verification (Orbital STK)
 - Repeat modeling techniques for well-documented system (Deep Space Network)
 - Compare modeled results to real-life behavior
 - Status: Not started

Constellation Architecture Testing and Verification

- Connection Window Evaluation (Matlab)
 - Input: Satellite position vs. time data
 - Output: Viability of each link at all times
 - Status: In progress
- Coverage Map (Matlab)
 - Input: Satellite position vs. time data
 - Output: Map of which points in the system have coverage at all times (target: >99%)
 - Status: In progress
- Model Verification
 - Repeat modeling techniques for well-documented system (GPS)
 - Compare modeled results to real-life behavior
 - Status: Not started

Constellation Configuration 6/6/4


Configuration has format T/P/F


RAAN separation = $360^{\circ}/P = 60^{\circ}$

v separation = F * RAAN separation = 240°

i = 53.1° = constant

Network Capacity Model

Overflowing water tank is analogous to a saturated / max capacity network

Data Rate in - Data Rate out = Used Memory Change Rate

Network endpoints analogous to faucets adding water to the system

Data Rates

Forward Link Requirements Data Type (Reliable Channel) Speech Digital Channel Digital Channel

Data Rates 10 kbps 200 bps 2 kbps

Data Rates

100 kbps

128 kbps

1.5 Mbps

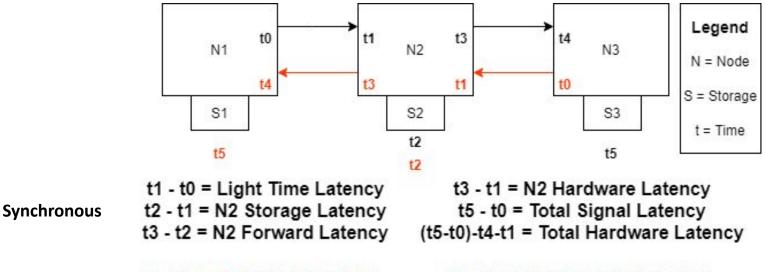
Data Type (High Rate Channel) Command Loads CD-quality Audio Video (TV, Videoconference)

Return Link Requirements

Data Type (Reliable Channel) Speech Engineering Data Engineering Data Video Video

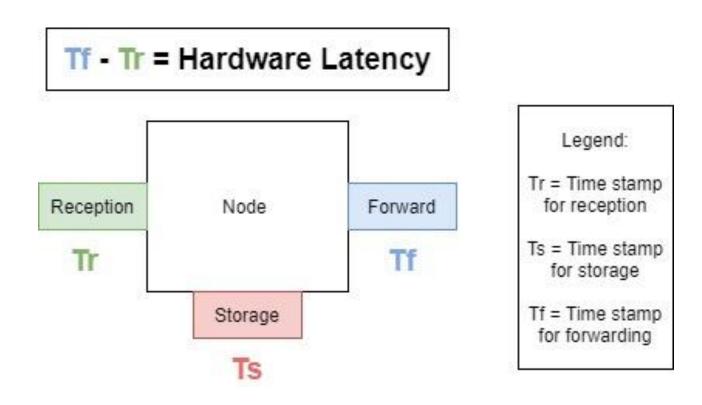
Data Type (High Rate Channel) High Definition TV Biomedics Hyperspectral Imaging Synthetic Aperture Radar Data Rates 10 kbps 2 kbps 20 kbps 100 kbps 1.5 Mbps

Data Rates 20 Mbps 35 Mbps 150 Mbps 100 Mbps Element Astronaut Astronaut Transport / Rover / Base


Element Transport / Rover / Base Astronaut Astronaut

Element Astronaut Astronaut Transport / Rover / Base Helmet Camera

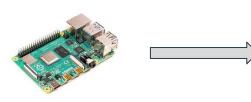
Element Astronaut Astronaut Science Payload Science Payload


Rover

Key Measurement Methodology

Asynchronous

t1 - t0 = Light Time Latency t2 - t1 = N2 Storage Latency t3 - t2 = N2 Forward Latency t3 - t1 = N2 Hardware Latency t5 - t0 = Total Signal Latency (t5-t0)-t4-t1 = Total Hardware Latency


Completed testing

Completed:

- 1) Ubuntu installed
- 2) Software installed
- 3) Software configured

In progress:

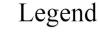
1) Debug given test file

CFDP (unacknowledged mode)			AMS messaging Remote AMS	
UT	adapter		bridging	
	BPOT	N rou	uting	
Co	nvergence	laye	r adap	pters
Ļ	TP	TCP, BRS, UDP, DGR		
encapsulation packets		IF	IP Internet routin	
AOS	Prox-1	80	2.11	Etherne
3	R/F, optica			wire

Objectives

1.1 Mission Statement

1.2 CONOPS


- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

Hardware CONOPS

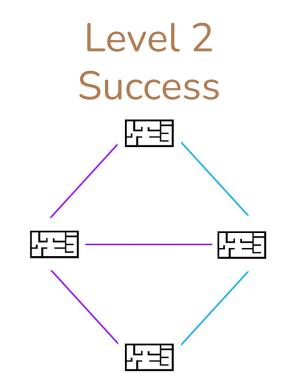
Level 1 Success

Rasperry Pi node

부론

- Ground station to ground station link

Objectives


1.1 Mission Statement

- **1.2 CONOPS**
- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

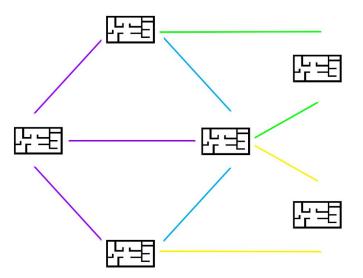
Legend

片毛

- Rasperry Pi node
- Ground station to constellation satellite link
- Constellation satellite to constellation satellite link

Objectives

1.1 Mission Statement

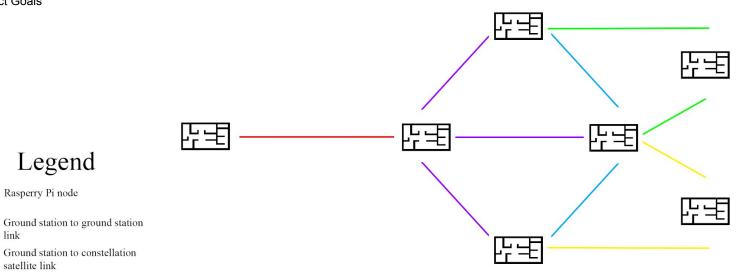

- **1.2 CONOPS**
- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

Legend

Rasperry Pi node

- Ground station to constellation satellite link
- Constellation satellite to constellation satellite link
- Constellation satellite to ground vehicle link
- Constellation satellite to orbital vehicle link

Level 3 Success


Objectives

1.1 Mission Statement

- **1.2 CONOPS**
- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

누토

Level 4 Success

satellite link Constellation satellite to constellation satellite link

link

Rasperry Pi node

Legend

- Constellation satellite to ground vehicle link
- Constellation satellite to orbital vehicle link