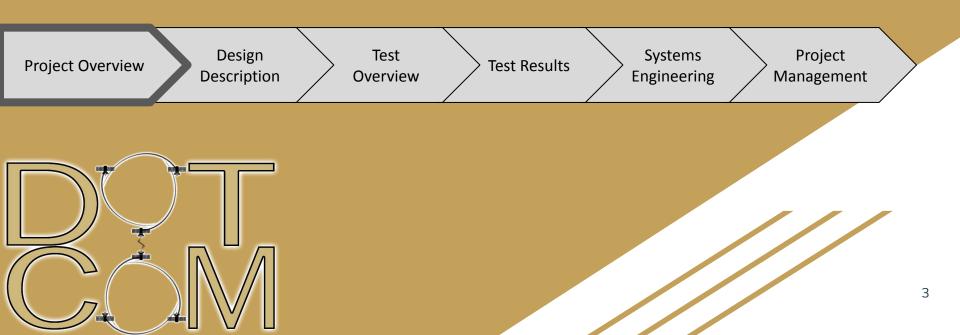


Smead Aerospace UNIVERSITY OF COLOFADO BOULDER

Deep-Space Orbital Telecommunications

Sam Taylor, Tristan Liu, Caelan Maitland, Forrest Jordan, Hunter Rohlman, N. Sebastian Damm, Doug Brough, Conner Lewis, Buck Guthrie, Jennifer Gurtler

Agenda

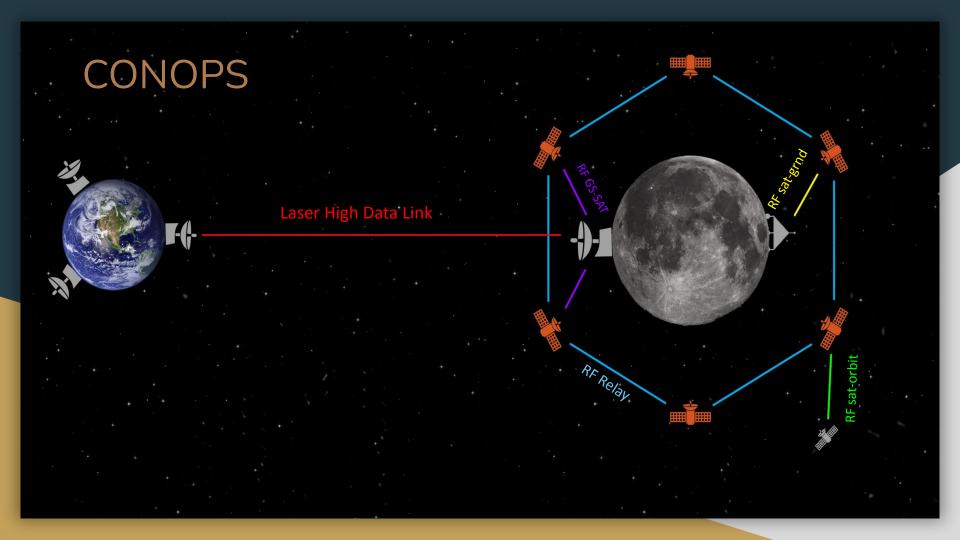

- **2 Design Description**
- **<u>3 Test Overview</u>**
- **4 Test Results**
- **5 Systems Engineering**
- **<u>6 Project Management</u>**

Deep-space Orbital TeleCOMmunications

Project Overview

Project Overview

		and in case of the local division of the			LA DEPARTMENT		No. of Concession, Name
HNOLOGY INITIATIVE							
Sats							
LANDER INITIATIVE							
NAMES AND ADDRESS OF TAXABLE PARTY.	iders/Payloads						- Star
R INITIATIVE TOWARD	HUMAN-RATE	DLANDER					
	200	Mobility & Sa	and the second second	iMD–Human Des	cent Module Land	ler (5-6000kg)	
			the second second				
ORM—GATEWAY							
oitation Elements/Syste	ims)						
Elements (PPE, Comm	ercial Logistics)/	Crew Support	of Lunar Missio	15			
	Apollo Sample, Virtual In eSats EO–Science & Technolo LANDER INITIATIVE ipping Point –Small Commercial Lar R INITIATIVE TOWARD sized Landers (~500kg– SMD/HEO–Payload FORM—GATEWAY bitation Elements/Syste	Apollo Sample, Virtual Institute eSats IEO–Science & Technology Payloads LANDER INITIATIVE ipping Point I–Small Commercial Landers/Payloads R INITIATIVE TOWARD HUMAN-RATE sized Landers (~500kg–1000kg) 	Apollo Sample, Virtual Institute eSats IEO–Science & Technology Payloads LANDER INITIATIVE ipping Point I–Small Commercial Landers/Payloads R INITIATIVE TOWARD HUMAN-RATED LANDER sized Landers (~500kg–1000kg) SMD/HEO–Payloads & Technology/Mobility & Sa FORM—GATEWAY bitation Elements/Systems)	Apollo Sample, Virtual Institute eSats EO–Science & Technology Payloads LANDER INITIATIVE ipping Point I–Small Commercial Landers/Payloads R INITIATIVE TOWARD HUMAN-RATED LANDER sized Landers (~500kg–1000kg) LEO/S SMD/HEO–Payloads & Technology/Mobility & Sample Return FORM—GATEWAY bitation Elements/Systems)	Apollo Sample, Virtual Institute eSats EO–Science & Technology Payloads LANDER INITIATIVE ipping Point –Small Commercial Landers/Payloads R INITIATIVE TOWARD HUMAN-RATED LANDER sized Landers (~500kg–1000kg) – SMD/HEO–Payloads & Technology/Mobility & Sample Return FORM—GATEWAY	Apollo Sample, Virtual Institute eSats EO-Science & Technology Payloads LANDER INITIATIVE ipping Point I-Small Commercial Landers/Payloads R INITIATIVE TOWARD HUMAN-RATED LANDER sized Landers (~500kg-1000kg) IED/SMD-Human Descent Module Land SMD/HEO-Payloads & Technology/Mobility & Sample Return FORM—GATEWAY bitation Elements/Systems)	Apollo Sample, Virtual Institute eSats EO–Science & Technology Payloads LANDER INITIATIVE ipping Point I–Small Commercial Landers/Payloads R INITIATIVE TOWARD HUMAN-RATED LANDER sized Landers (~500kg–1000kg) ESMD/HEO–Payloads & Technology/Mobility & Sample Return FORM—GATEWAY bitation Elements/Systems)



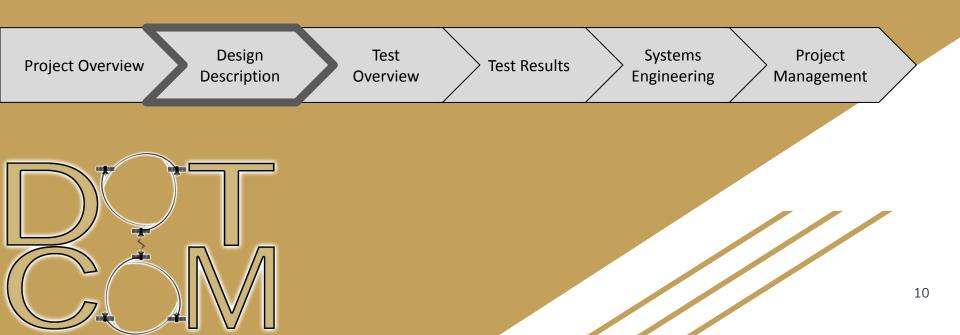
Mission Statement

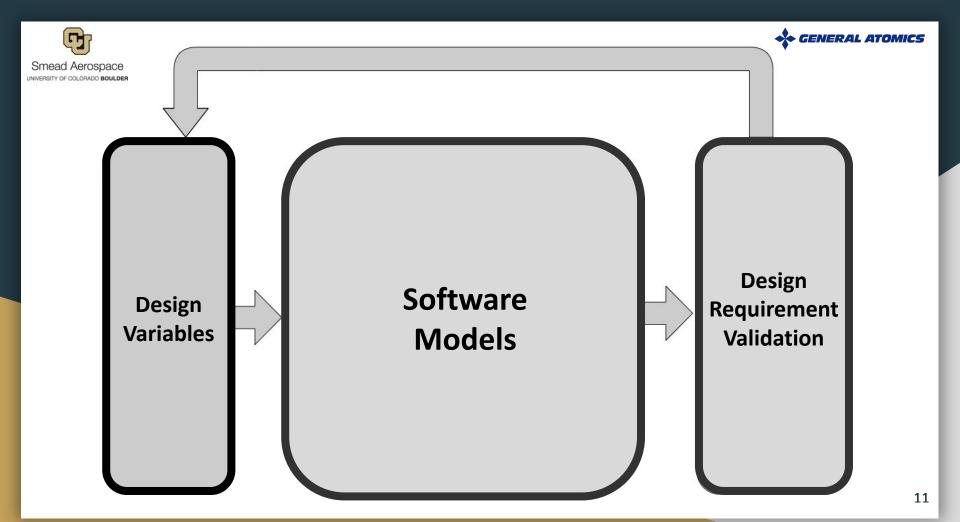
Project DOTCOM is a research-heavy **system modeling** assignment. In this, we explore the functionality and viability of a communications network architecture between the Earth and Moon. The purpose of this project is to **develop software models** to design and optimize a **Lunar communications network**, packaged through **model-based systems engineering.**

> 6

Network Performance Targets * GENERAL ATOMICS

Functional **Design Requirement** Requirement 99% telecommunications coverage in Lunar orbit **FR 1** Area Coverage 99% telecommunications coverage on Lunar Surface 5+ nodes for simultaneous 'real time' communications on Lunar surface 10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface FR 2 Endpoint Support 10+ nodes for simultaneous 'real time' communication in Lunar orbit 20+ nodes for non-simultaneous (within 6 hrs) communication in Lunar orbit Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective Network is compatible with and ensures the safety of existing and future infrastructure **FR 3** Compatibility

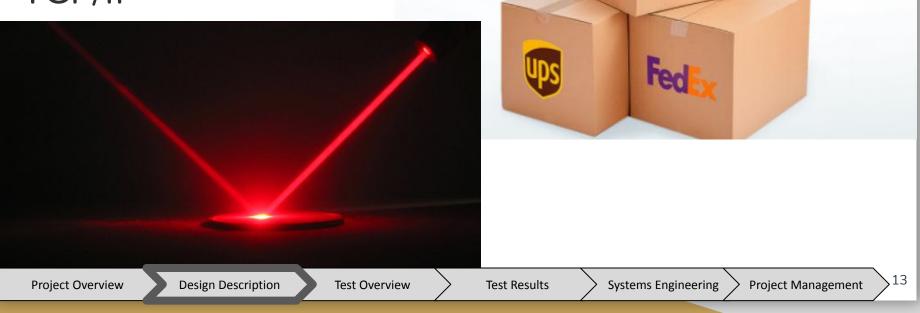

Project Overview


Level 1	Design Meets Performance Requirements 99% coverage of Lunar Surface	0	 Full level 1 success
	99% coverage in Lunar Orbit	0	
	Ability to command lunar surface vehicles	0	
	Ability to command lunar orbiting vehicles	0	
	Simultaneus coms support for 5 surface locations Simultaneous coms for 10 orbital vehicles	0	
	Store and forward support for 10 surface locations	0	
	Store and forward support for 20 orbital vehicles	0	
Level 2	Earth to Moon data rate exceeds 500 Mbps	0	
Level 2			 Majority level 2 success
	Aquire ION software	0	
	Load ION software on Raspberry Pi units	0	
	Send Messages between nodes using ION	0	
	Software/Hardware latency test	X	
	Network capacity validation test	Х	
Level 3			 Partial level 3 success
	Transmission power requirements	0	
	Link budgets	0	
	Thermal requirements	X	
	Pointing accuracy	X	
	Propulsion budgets	X	
Level 4			 No level 4 success
	Cost of each unit	X	
	Cost of deployment	X	
	Expected lifespan	X	
	Study of mission timeline	X	
	Resiliency study	X	

Project Overview

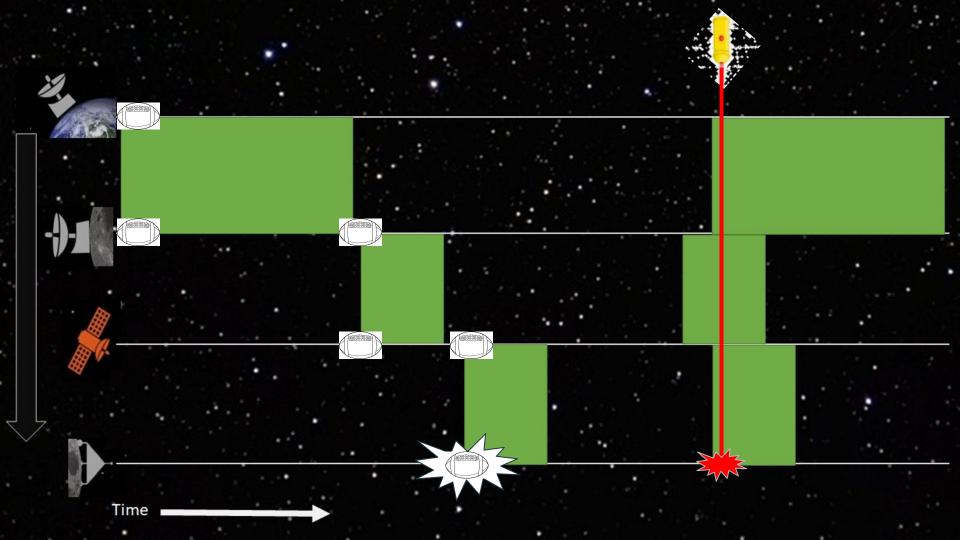
Design Description

Critical Project Elements



Designation	СРЕ	Critical Characteristics
CPE-1	Network Protocol	Structured data transmission methodology that allows for high speed reliable communications from node to node.
CPE-2	System Link Budgets	The project will meet certain data-relay rates for communication between all communication nodes.
CPE-3	Relay Stations	Allows for direct access to communications between Earth and The Moon.
CPE-4	Satellite Constellation	Construction of ideal constellation architecture around each planetary body to satisfy coverage requirements.

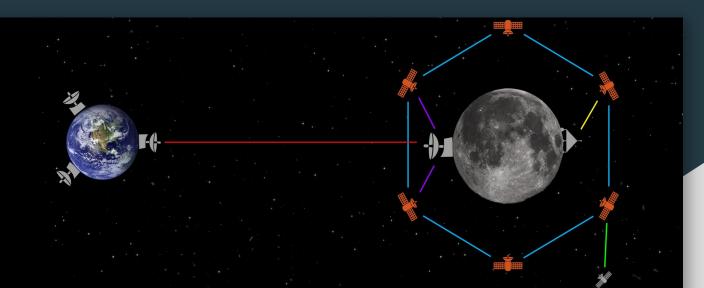
Project Overview


Network Protocol

TCP/IP

DTN

UNITED STATES POSTAL SERVICE

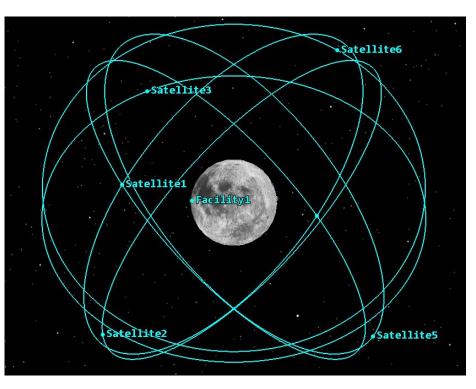


Deep Space Relay Stations

- 3 Earth Ground Stations 120° apart
- 1 Lunar Ground Station at center of "light" side

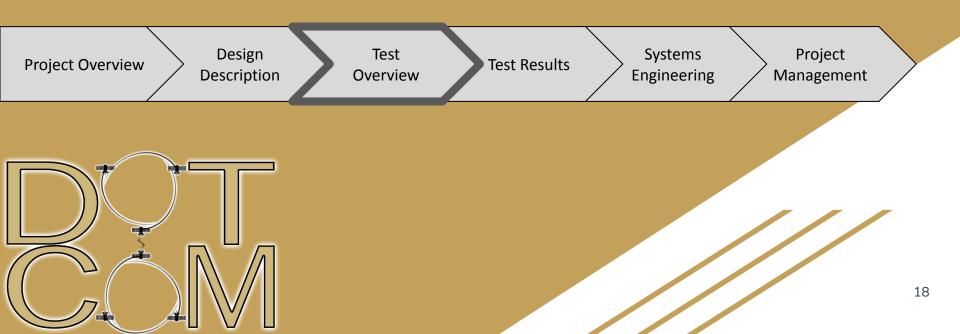
Ground Station Parameters

System Link Budgets



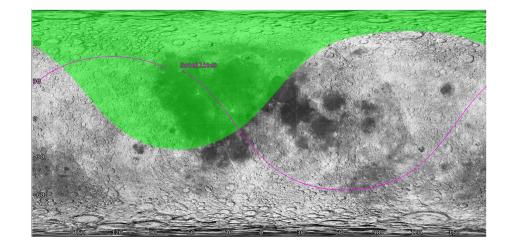
Variables	Satellite to Satellite	Ground Station to Satellite	Orbital Vehicle to Satellite	Ground Vehicle to Satellite	Ground Station to Ground Station
Range	11,024 km	5,509 km	11,000 km	5,509 km	384,000 km
Frequency	Ka-band (26 GHz)	Ka-band (26 GHz)	Ka-band (26 GHz)	Ka-band (26 GHz)	193.4 THz (1550 nm)
Antenna Size	1 m	1 m	.5 m	.1 m	1.5 m
Receive System Noise Temperature	700 K (Source: ITU)	300 K (Source: Sat. Antenna Trade Study)	700 K	300 K	N/A

Constellation Parameters


Constellation Design Parameters	Values
Range to Ground	5509 km
Range to Adjacent Satellites	9173-11024 km
Configuration	Walker-Delta 6/6/4
Orbital Period	15.38 hrs
Coverage	Single

Smead Aerospace

Test Overview

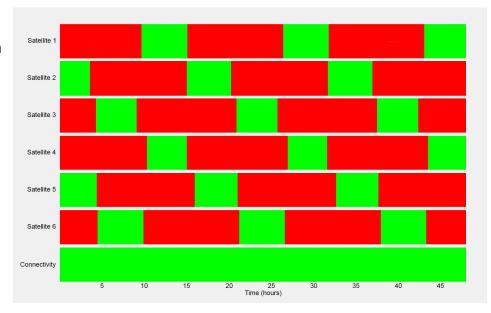

Network Coverage

Desired Outcomes:

- Verify that a particular orbit geometry is able to provide >99% coverage of lunar surface and orbit
- Ensure FR1 is met

Test Design:

- Import satellite ephemeris from STK
- Numerically assess the ability of points in the lunar system to connect into the network at each time


Continuous Connection

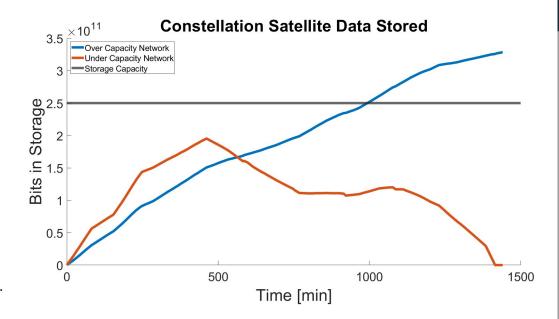
Desired Outcomes:

- Verify that a particular network configuration allows for uninterrupted data flow at all times for required number of nodes
- Ensure FR 2 is met

Test Design:

- Import STK network configuration
- Calculate connection windows for each node
- Verify that connections between endpoints needing continuous connection are **always available**

>20


Data Rate Optimization

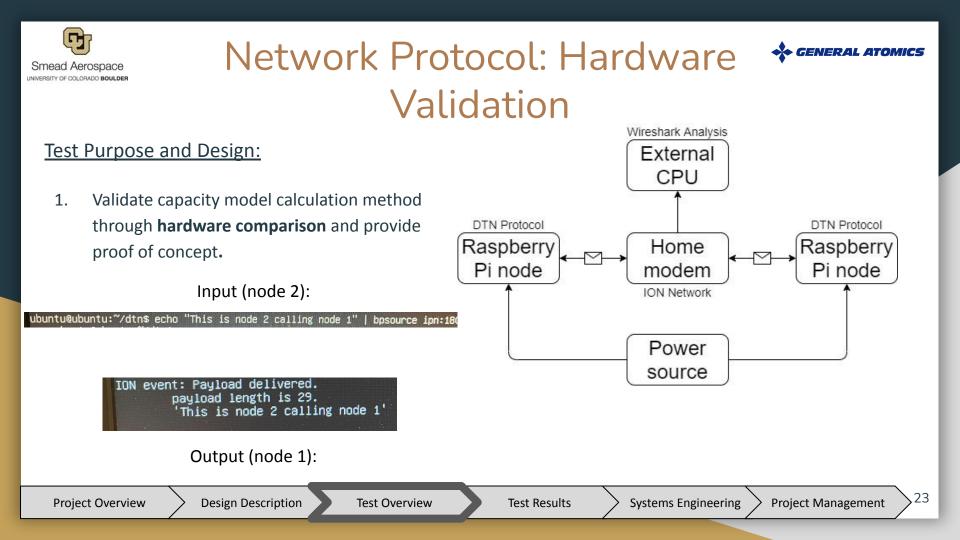
Desired Outcomes

• Satisfy **functional requirement 2** - endpoint support.

<u>Test Design:</u>

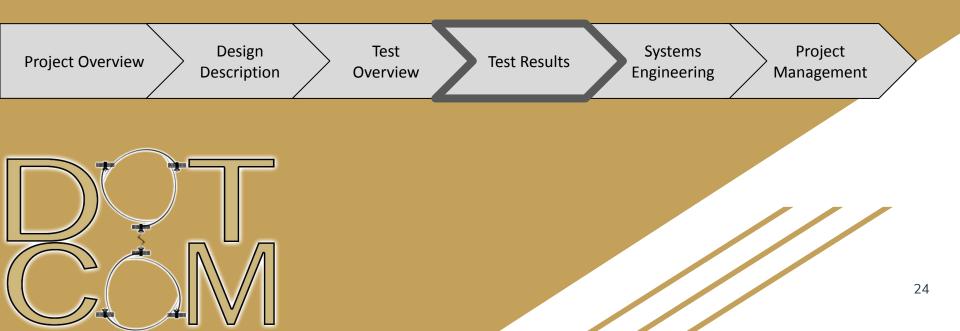
- Model of network configuration in MATLAB.
- Designed to determine the minimum required data rate on the constellation satellites for minimizing power required.

Power Optimization Test



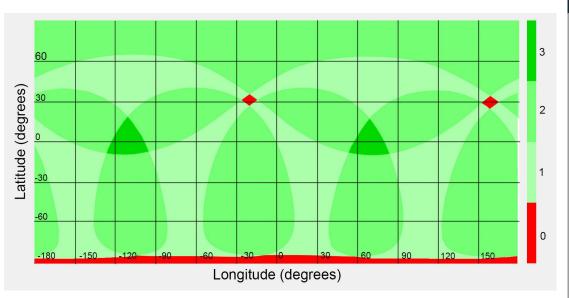
Desired Outcomes:

- 1. Optimize power required in each link budget
- 2. Ensure data links fall within acceptable safety factors


Test Design:

- 1. Vary key design parameters and observe the **impact to** transmission power required
- 2. Performed using the Link Budget MatLab software model

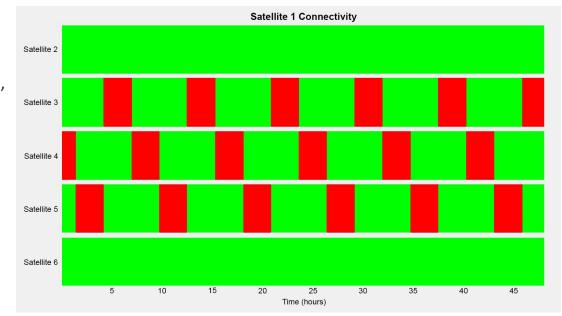
Test Results



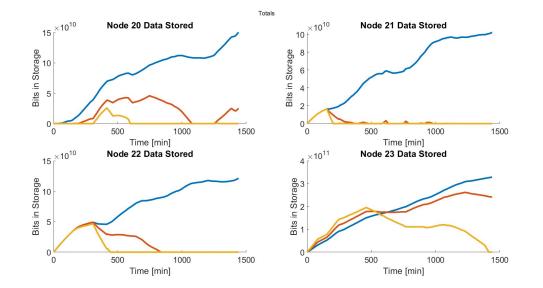
Network Coverage - Baseline

- Met and exceeded coverage requirements. Area coverage varied between 100% and 99.4%.
- Areas without coverage made up 0.0376% of all points considered

Network Coverage - Multiple Coverage

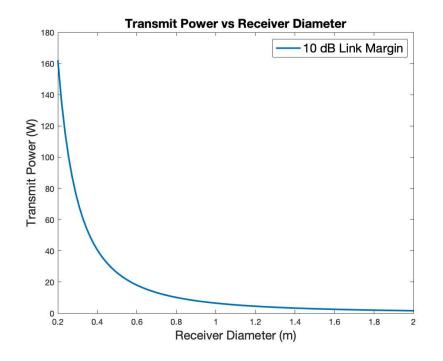

					Сс	overage	(%)				
Configuration	0x	1x	2x	3x	4x	5x	6x	7x	8x	9x	10x
6/6/4	0.038	38.7	57.9	3.41	0	0	0	0	0	0	0
12/12/10	0	0	60		•				3	0	0
12/6/4	0	0	30							0	0
15/15/2	0	(degree	0						2	0	0
18/6/4	0	nde 0	-30						1	0	0
15/15/6	0		-60							2.16	0.137
24/6/4	0	0	-180 -150	-120 -90	-60 -30	o 30 e (degrees)	60 90	120 150	0	9.39	2.37
Project Overview	Desig	gn Descriptio	on > T	est Overview		Test Result	s	Systems Engi	neering >	Project Ma	anagement

Continuous Connection


- Adjacent satellites are always able to connect
- Configurations with persistent, 100% coverage (all except baseline) have universal continuous connection eligibility

- Number of nodes modeled: 45
 met FR2 node support requirements.
- Minimum data rate in constellation satellites: 35.4 Mbps.
- Minimum data rate then utilized in link budgets.
- Can easily utilize different network configurations for future needs.

Power Optimization Test



Test Purpose and Design:

- 1. Minimize power required in the system
- 2. Vary key design parameters and observe the **impact to** transmission power required

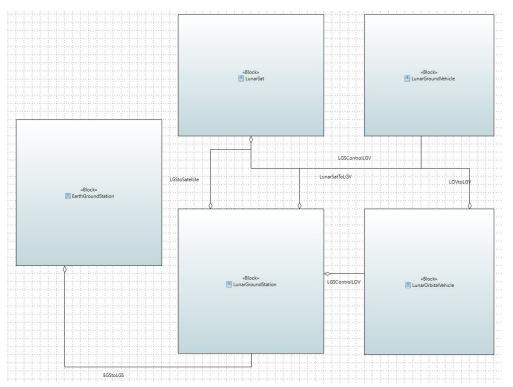
<u>Test Results:</u>

 Minimized the power (42 W Transmission Power) throughout the system while also meeting data rate requirements needed to meet FR 2

Project Overview

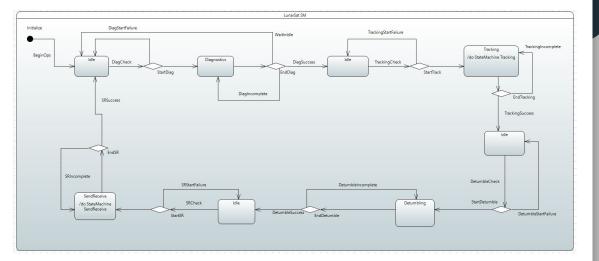
Design Description

Test Overview


>30

Network Structure Modeling

- First pillar of SysML modeling
- Two main forms:
 - Data connections between nodes
 - $\circ \qquad \text{Internal structure and design of nodes}$
- Node properties informed via network design (architecture, link budgeting, etc.) and built from SysML palette of connections/structural tools
- Closely mirrors CONOPS as a baseline framework

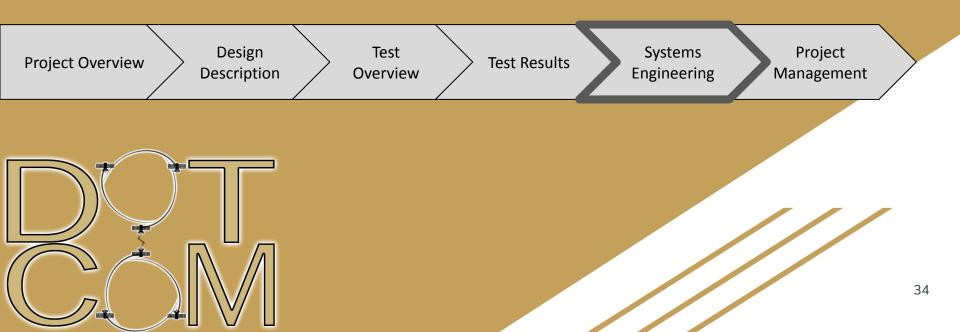


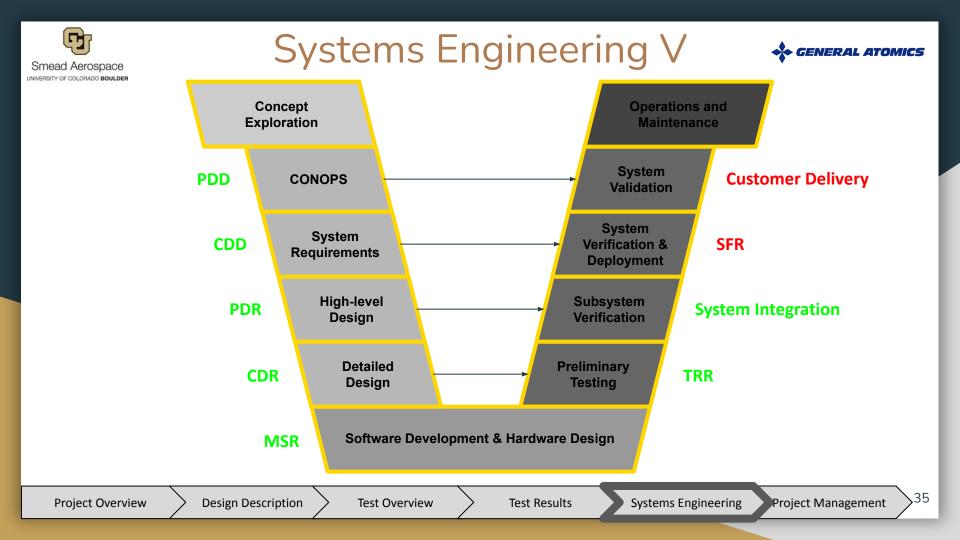
Network Behavior Modeling

- Second pillar of SysML modeling
- Again, two main forms:
 - Network reaction to new connections
 - Data packet behavior through network nodes
- Behavioral properties of nodes informed through study of existing structure
- Some behavior left "high-level" due to dependency on established network hardware design (e.g. satellite pointing control)

,32

Requirement Verification




- Verification through MBSE/SysML required as per GA directives
- Requirement matrices allow "checking off" of system requirements
- Compliance drawn from various test results & simulation vs. performance targets

	R-005: Data relay between	R-008: Simultaneous comm	R-009: Non-simultaneous co	R-010: Simultaneous comm
🗉 🖺 LunarOrbitalVehicle				
∃ dr LOVtoLGV				
■ ✓ LGStoSatellite				
□ 🖌 LunarSatToLGV				
Iunargroundvehicle : LunarGro				
Iunarsat : LunarSat [6]				
□√EGStoLGS				
Iunargroundstation : LunarGro				
earthgroundstation : EarthGro				
■ LGSControlLOV				
■ LGSControlLGV				
🗉 🖺 Earth Segment				
🗉 🖺 MoonSegment				
UnarSatDTNHistory				
BLunarGroundStationDTNHistory				

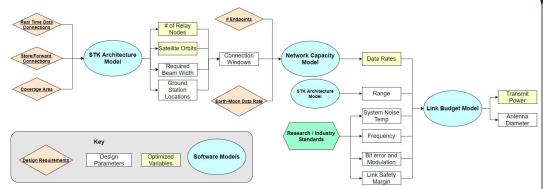
Systems Engineering

CDR Risk Assessment:

		Negligible	Minor	Moderate	Major	Cata- strophic
	Almost Certain					
Likelihood	Likely			RPI		
Likeli	Possible				NCP	
	Unlikely					
	Rare					СТІ

MBSE Cross-team 1. Integration (CTI)

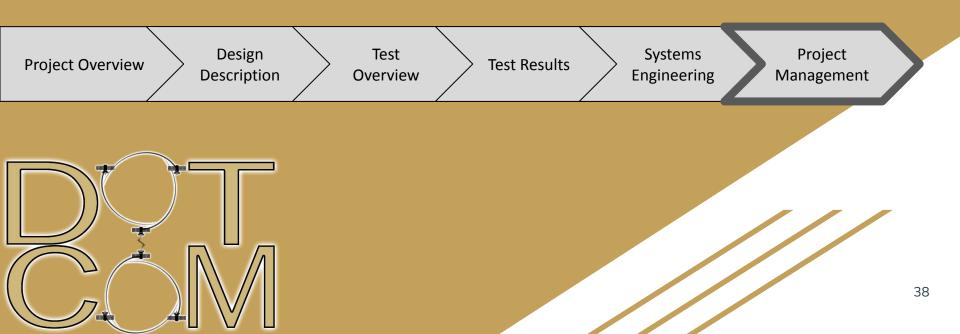
- Link Budget interface а. with MBSE
- 2. **Raspberry Pi DTN** Integration (**RPI**)
- 3. Network Capacity Model (NCP)


Project Overview

Test Overview

Systems Engineering - Key Lessons

- 1. Trade studies at the research level
- 2. Infrastructure management
- 3. Limiting design requirement scope


Test Overview

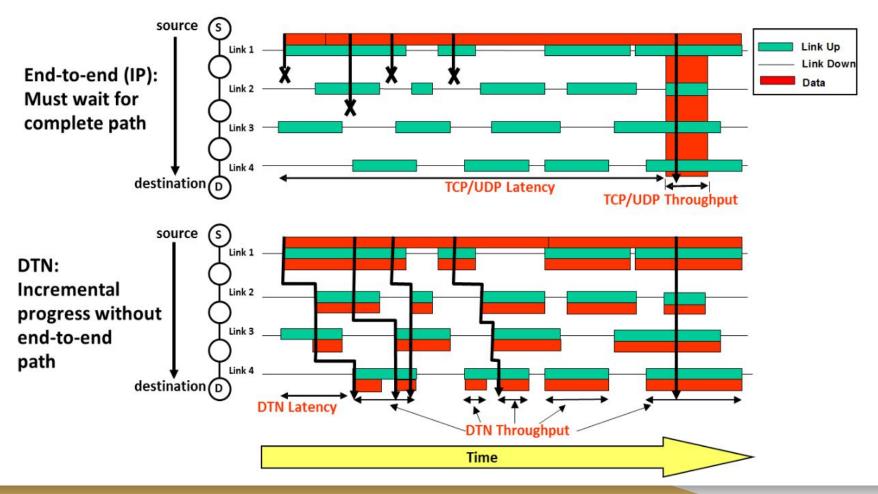
GENERAL ATOMICS

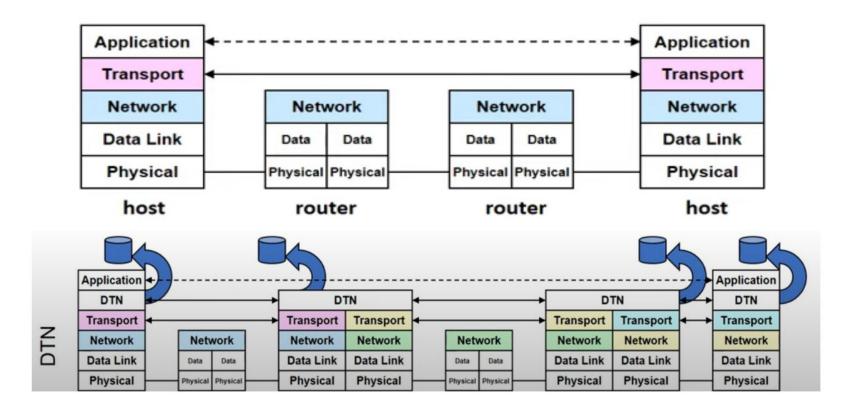
∖37

Project Management

- Approach: Agile, Sub-Team Driven
- Difficulties:
 - Initial task breakdowns and scheduling (Gantt Chart)
 - Completing spin-off projects
 - Balancing Customer and PAB requirements
- Successes:
 - Amount of scope covered
 - Initial organization
 - Growth between Team & PAB
- Lessons Learned:
 - No such thing as over-communication
 - Use resources as much as possible
 - Bigger project = longer planning

Initial Budget (CDR)	Final Budget		
Raspberry Pi (7)	Raspberry Pi (3)		
Monitors (7)	Monitors (2)	Industry Co	<u>st</u>
Keyboards (7)	SD Cards (3)	Aerospace Engineers	\$28,656
SD cards (7)	Keyboards (2)	Overhead	\$57,312
Ethernet Cables (14)	HDMI Cables (2)	Materials	\$646
HDMI Cables (7)	Ethernet Cables (2)	Total	\$86,614
Power Cables (7)	Total: \$645.83		1
Total: \$1,528.45			

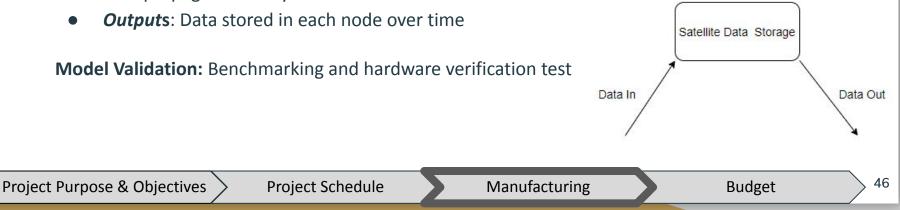

Smead Aerospace university of colorado coulder



Questions?

APPENDIX

User application, e.g., data manager				
CFDP (unacknowledged mode)		AMS messaging Remote AMS		
UT	UT adapter		bridging	
	BP DTN routing			
Co	Convergence layer adapters			
LTP			TCP, BRS, UDP, DGR	
encapsulation packets		J	IP Internet routing	
AOS	Prox-1	8	02.11	Ethernet
F	R/F, optical			wire


Network Capacity Model

GENERAL

Purpose: Verify that the network can support the required number of endpoints

Model Logistics:

- Iterative data rates computation method performed using MatLab
- Inputs: node connections, link data rates, endpoint data requirements, bit error rates, data propagation delay

Link Budget Validation Tests

In the second se

- Study on Intersatellite Link Antenna
- AMSAT IARU Link Budget Calculator
 - Trade off of satellite antennas with associated link budgets

Variable	Satellite Study Results	Link Budget Model Calculations
C/N _o	87.04 dbHz	85.04 dbHz
Link Margin	37.99 dBHz	35.99 dBHz

Project Management

Power Optimization Variables

Link Parameters	Value
Max Range	11,024 km
Frequency	26 GHz
Antenna Size (Diameter)	Varied
Transmit Power	Output
Data Rate	50 Mbps
Receive System Noise Temperature	700 K *
Required Eb/No [BPSK Modulation, BER = 10^-7]	11 dB
Required Safety Design Margin	3 dB
Link Margin	10 dB

*Source: Robert C. Morre, "Satellite RF Communications and Onboard Processing", Encyclopedia of physical Science and Technology (Third Edition), 2003

Baseline Parameters for Intersatellite Link

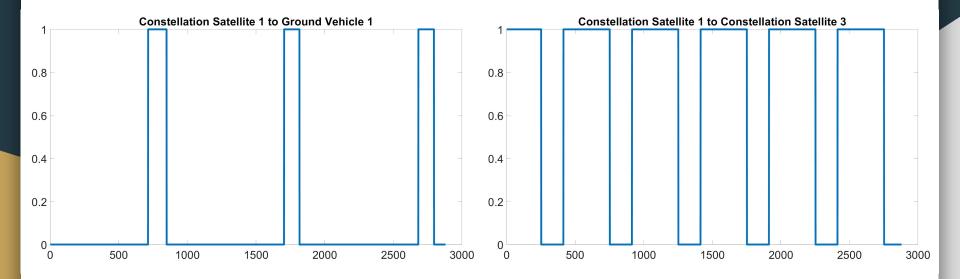
Key Input Variables	Value	Outputs	Value
Range (km)*	11,024 km	EIRP	61.9 dB
Frequency (GHz)	26	Antenna Gain	46.1 dB
Antenna Size (D)	1 m	Free Space Los	s 200 dB
Transmit Power (W)	30 W	Received Power	-139.6 dB
Data Rate (Mbps)*	50 Mbps	Signal to Noise	19.5 dB
Receive System Noise Temperature (K)	700 K	Link Margin	5.5 dB
Required Eb/No (dB) [BPSK Modulation, BER = 10^-7]*	11 dB		
Required Design Margin*	3 dB		49

Walker-Delta Constellation Configuration

Variables Number of Satellites (T) Number of Orbital Planes (P) Satellite Spacing (F) Inclination (i) Right Ascention of Ascending Node (RAAN)

True Anomaly (v)

Configuration has format T/P/F


RAAN separation = 360°/P

v separation = F * RAAN separation

 $i = 60^{\circ} = constant$

Connection Window Examples * GENERAL ATOMICS

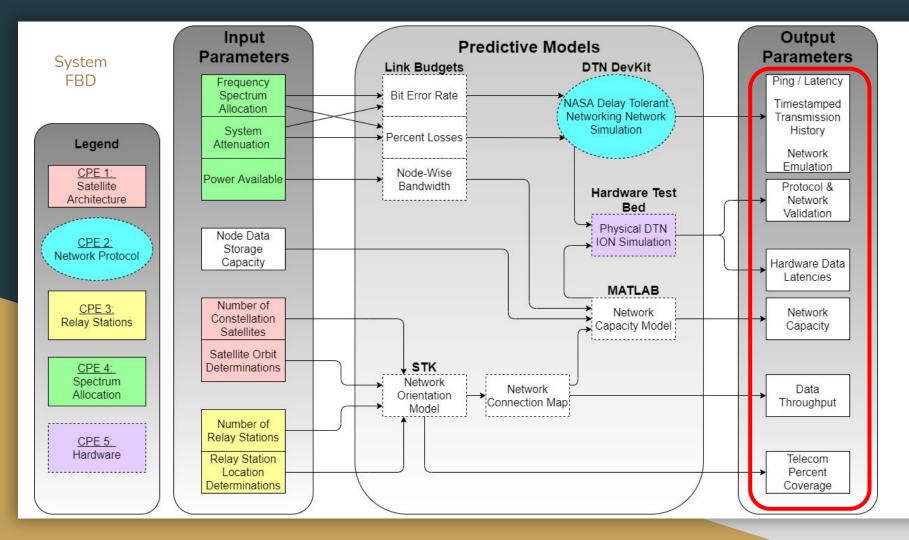
SysML Modeling/MBSE

Purpose: Integration of separate project elements and model outputs (network capacity, link budget, etc.) into one project space, and trace requirements to the subsystems that satisfy them.

Model Logistics:

- Created in the <u>SysML</u> modeling language
- *Inputs*: Completed modeling of project subsystems
- **Outputs**: Cohesive DOTCOM project deliverable, including mapping of subsystem connections and modeling behavior of network nodes.

Model Validation: Validation of project inputs will come from their own verification and testing steps, as outputs from these models are loaded into the SysML simulation.


Project Schedule

GENERAL A

RSITY OF COL	TY OF COLORADO BOULDER					
		A	В			
		name : String [01]	/satisfiedBy : NamedElement [*]			
C	/ownedElement					
1	transmit/receive capability simultaneously & non- simultaneously between Earth, Moon, Mars.	FR-1: Comms must have transmit/receive capability simultaneously & non-simultaneously between Earth, Moon, Mars.	х			
2	/ownedElement					
Э	R-001: Real time data relay between environments	R-001: Real time data relay between environments	AntennalO, AntennalO, AntennalO			
4	R-005: Data relay between mission segments.	R-005: Data relay between mission segments.	LunarSat, EarthSat, EarthGroundStation, LunarGroundStation			
5	R-008: Simultaneous comms to 5 locations on Lunar surface.	R-008: Simultaneous comms to 5 locations on Lunar surface.	inboundSignalProcessing, outboundSignalProcessing			
6	R-009: Non-simultaneous comms to 10+ locations on Lunar surface.	R-009: Non-simultaneous comms to 10+ locations on Lunar surface.	inbound Signal Processing, outbound Signal Processing, central Storage			

Data Rates

Forward Link Requirements Data Type (Reliable Channel) Speech Digital Channel Digital Channel

Data Rates 10 kbps 200 bps 2 kbps

Data Rates

100 kbps

128 kbps

1.5 Mbps

Data Type (High Rate Channel) Command Loads CD-quality Audio Video (TV, Videoconference)

Return Link Requirements

Data Type (Reliable Channel) Speech Engineering Data Engineering Data Video Video

Data Type (High Rate Channel) High Definition TV Biomedics Hyperspectral Imaging Synthetic Aperture Radar Data Rates 10 kbps 2 kbps 20 kbps 100 kbps 1.5 Mbps

Data Rates 20 Mbps 35 Mbps 150 Mbps 100 Mbps Element Astronaut Astronaut Transport / Rover / Base

Element Transport / Rover / Base Astronaut Astronaut

Element

Astronaut Astronaut Transport / Rover / Base Helmet Camera Rover

Element Astronaut Astronaut Science Payload Science Payload