

Smead Aerospace UNIVERSITY OF COLOFADO BOULDER

Deep-Space Orbital Telecommunications

Sam Taylor, Tristan Liu, Caelan Maitland, Forrest Jordan, Hunter Rohlman, N. Sebastian Damm, Doug Brough, Conner Lewis, Buck Guthrie, Jennifer Gurtler

Mission Statement

Project DOTCOM is a research-heavy **system modeling** assignment. In this, we explore the functionality and viability of a communications network architecture between the Earth and Moon. The purpose of this project is to **develop software models** to design and optimize a **Lunar communications network**, packaged through **Model-Based System Engineering.**

Table of Contents

1 Project Purpose and Objectives
1.1 CONOPS
1.2 Critical Project Elements
1.3 Performance Targets
1.4 Baseline Design
1.5 FBD

2 Project Schedule

3 Manufacturing

- 3.1 STK Architecture Model
- 3.2 Network Link Budget
- 3.3 Network Capacity Model
- 3.4 ION-DTN Demonstration
- 3.5 SysML Systems Engineering Model

4 Budget

Project Purpose & Objectives

System CONOPS

Legend

- Ground station to ground station link
- Ground station to constellation satellite link
- Constellation satellite to constellation satellite link
- Constellation satellite to ground vehicle link
- Constellation satellite to orbital vehicle link

Critical Project Elements

Designation	СРЕ	Critical Characteristics
CPE-1	Network Protocol	Structured data transmission methodology that allows for high speed reliable communications from node to node.
CPE-2	System Link Budget	The project will meet certain data-relay rates for communication between all communication nodes.
CPE-3	Relay Stations	Allows for direct access to communications between Earth and The Moon.
CPE-4	Satellite Constellations	Construction of ideal constellation architecture around each planetary body to satisfy coverage requirements.

Performance Targets

Functional Requirement	Design Requirement
FR 1	99% telecommunications coverage in Lunar orbit
Area Coverage	99% telecommunications coverage on Lunar Surface
	5+ nodes for simultaneous 'real time' communications on Lunar surface
FR 2	10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface
Endpoint Support	10+ nodes for simultaneous 'real time' communication in Lunar orbit
	20+ nodes for non-simultaneous (within 6 hrs) communication in Lunar orbit
	Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective
FR 3 Compatibility	Network is compatible with and ensures the safety of existing and future infrastructure

Baseline Network Design

Project Purpose & Objectives

Project Schedule

Deep Space Relay Stations

- 3 Earth Ground Stations 120° apart
- 1 Lunar Ground Station at center of "light" side

Satellite Constellation Architecture

- Walker-Delta configuration
 - ~53 deg inclination
 - 6/6/4 configuration
 - MEO equivalent altitude

Inter-Constellation Satellite Link Budget

Link Parameters	Value
Max Range (km)	11,024 km
Frequency (GHz)	26
Antenna Size (D)	1 m
Transmit Power (W)	30 W
Data Rate (Mbps)	500
Receive System Noise Temperature (K)	700 K
Required Eb/No (dB) [BPSK Modulation, BER = 10^-7]	11 dB
Required Design Margin	3 dB

Network Protocol

- Interplanetary Overlay Network (NASA JPL)
 - Implements Delay Tolerant Networking (DTN)

C (unacki m	FDP nowledged iode)		Rei	AMS essaging note AMS
UT	adapter		ł	oridging
	BPDT	V ros	uting	
Co	onvergence	laye	er ada	pters
Ļ	TP		TCF	P, BRS, P, DGR
encap par	sulation :kets	IF	° Inter	net routing
AOS	Prox-1	80	2.11	Ethernel
5	R/F optical			wire

Project Schedule

Schedule Overview

Task Name	Duration	Start	ETA	18 Jan	25 Jan	1 Feb	8 Feb	15 Feb	22 Feb	1 Mar	8 Mar	15 Mar	22 Mar
Complete Project Execution	70 days	01.18.21	03.28.21			*				\star	2	*	\star
System Architecture	56 days	01.18.21	03.14.21										
Relay Stations	42 days	01.18.21	02.28.21							h			
Link Budget	42 days	01.18.21	02.28.21										
Constellation Architecture	42 days	01.18.21	02.28.21							h			
Network Protocol	56 days	01.18.21	03.14.21									ו	
MBSE Modeling	70 days	01.18.21	03.28.21										
Structural Modeling	70 days	01.18.21	03.28.21									1	
Behavioral Modeling	70 days	01.18.21	03.28.21							*		*	
Hardware	70 days	01.18.21	03.28.21										
Manufacturing	35 days	01.18.21	02.21.21						h				
Network Demonstration	56 days	01.31.21	03.28.21						•	4			
Purchases	21 days	01.18.21	02.28.21			Į				J			15

Detailed Schedule

	Task Name	Duration	Plant	ETA	18 Jan	25 Jan	1 Feb	8 Feb	15 Fe	b 22	? Feb	1 Mar 8 N	Aar 15 M	ar 22 M	/lar	
	lask name	Duration	Start	EIA	MTWTFSS	MTWTFS	S M T W T F S	5 S M T W T F S	SMTWT	FSSMTW	TFSSMT	W T F S S M T W 1	T F S S M T W T	FSSMTWT	FSS	
1	Complete Project Execution	70 days	01.18.21	03.28.21												
2	System Architecture	56 days	01.18.21	03.14.21												
3	Relay Stations	42 days	01.18.21	02.28.21												
4	Earth's Atmospheric Conditions	14 days	01.18.21	01.31.21			2									
5	Relay Station Determination	7 days	01.31.21	02.07.21				7								
6	Existing Relay Station Locations	7 days	02.07.21	02.14.21					2							
7	Relay Station Placement	7 days	02.14.21	02.21.21						2						
8	Model Verification	7 days	02.21.21	02.28.21							T					
9	Link Budget	42 days	01.18.21	02.28.21												
10	RF Link Budget	21 days	01.18.21	02.07.21				2								
11	Laser Link Budget	21 days	02.07.21	02.28.21												
12	Constellation Architecture	42 days	01.18.21	02.28.21												
13	Constellation Geometry Output	14 days	01.18.21	01.31.21			2									
14	Network Connection Windows	14 days	01.31.21	02.14.21												
15	Surface Coverage Verification	7 days	02.14.21	02.21.21												
16	Orbital Coverage Verification	7 days	02.21.21	02.28.21												
17	Network Protocol	56 days	01.18.21	03.14.21												
18	Network Capacity Single Flow Model	0 days														
19	Network Capacity Multiple Path Model	7 days	01.18.21	01.31.21												
20	Network Capacity Variable Connections Model	7 days	01.31.21	02.07.21			•									
21	Network Canacity Latency Assumptions Lindate	14 days	02 07 21	02 21 21												
22	Network Capacity Discreet Data Packages Experimentation	14 days	02.07.21	02 21 21						<u>'¥</u>					Wa	ok 14.
23	Network Capacity Model Hardware Verification	7 days	02 21 21	02 28 21											Wet	JK 14.
24	Architecture Optimization via Network Canacity Model	14 days	02 28 21	03 14 21											Senio	r Design
25	DTN Devkit Network Architecture Emulation	14 days	02 28 21	03 14 21											Sym	posium
26	MBSE Modeling	70 dave	01 18 21	03.08.01											-,	
20	Structural Modeling	70 days	01.19.21	02 28 21												
28	Data Type Enumeration	14 days	01 18 21	01.31.21			-									
20	Black Definition Medeling	14 days	01.21.21	02.14.21							I					
20	Internal Block Modeling	14 days	02 14 21	02.14.21							1				Wee	ek 15:
30	Descriptions Madellan	14 days	02.14.21	02.23.21							7					-
31	Dependency Modeling	14 days	02.28.21	03.14.21									1		Sprir	ig Final
32	Parametric Modeling	14 days	03.14.21	03.28.21												NIEW
33	Benavioral Modeling	70 days	01.18.21	03.28.21	I										Coll	lege of
34	Ose case modeling	14 days	01.18.21	01.31.21			7								Engi	neering
35	State machine Modeling	14 days	01.31.21	02.14.21					2						E	xpo
36	Requirements tracing	14 days	02.14.21	02.28.21									¥			• C/D/W
3/	Sequence wodeling	14 days	02.28.21	03.14.21									N .			
38	Activity Modeling	14 days	03.14.21	03.28.21						_						
39	nardware	50 days	01.31.21	03.28.21											Wee	ak 16:
40	Manufacturing	14 days	02.17.21	02.21.21				_								
41	CAD Model	7 days	02.07.21	02.14.21				1							Sprin	ng Final
42	3D Print Casting	7 days	02.14.21	02.21.21											Re	view
43	Network Demonstration	56 days	01.31.21	03.28.21			-						_		Deste	at Final
44	Single Node ION Implementation	21 days	01.31.21	02.28.21						à					Proje	crrinal
45	Dual/Multi-Node Network	14 days	02.28.21	03.14.21						\checkmark		7			R	spon
46	Prescribed Latencies and Bundle File Sizes Implemented	14 days	03.14.21	03.28.21											Final C	heck Our
47	Purchase	14 days	01.18.21	01.31.21			A								F	orm
48	Hardware	14 days	01.18.21	01.31.21												
						Ma	atus Review			fallback is necessary, order remaining	Test Read Revie	iness w	AIAA Paper	Last Machining Day		16
										hardware						

Manufacturing

Manufacturing Tasks

To be **manufactured**:

- 1) STK Architecture Model
- 2) Network Link Budgets
- 3) Network Capacity Model
- 4) MBSE System Model
 - To be **purchased**:
- 5) Hardware Demonstration

Project Purpose & Objectives

Project Schedule

Manufacturing

STK Architecture Model

Purpose: Determine the ground station configuration and satellite constellation architecture necessary to enable 99% Lunar coverage and "real time" communication between the Earth and the moon.

Model Logistics:

- Connection window simulation using Orbital STK
- *Inputs*: ground station locations (based on findings from atmospheric attenuation), satellite orbit geometry, satellite downlink beamwidth
- **Outputs**: Connection window illustration, 99% lunar coverage verification

Model Validation: Existing architecture verification (Deep Space Network), sensitivity analysis, and available literature/research.

Project Schedule

STK Constellation Orbital Model CENERAL ATOMICS

Smead Aerospace

*Pictured above (baseline design) - Walker J.G., Continuous Whole–Earth Coverage by Circular–Orbit Satellite Patterns, Royal Aircraft Establishment, September 23, 1977

Project Purpose & Objectives

Project Schedule

Budget

RF Link Model

Purpose: Process necessary inputs to create a successful link (positive link margin)

Model Logistics:

- Programed using <u>MatLab</u>
- *Inputs:* Range, Frequency, Antenna Size, Transmit Power, Data Rate, System Noise temperature, Required Energy per bit to noise ratio (Eb/No) for desired BER, Required Design Margin
- **Outputs:** Link Margin

Model Validation: Available literature and research, sensitivity analysis

Project Schedule

24

RF Link Model Progress

Project Purpose & Objectives

Project Schedule

Budget

25

Baseline Sensitivity Analysis Intersatellite Link

Laser Link Model

Purpose: Process necessary inputs to create a successful link (positive link margin)

Model Logistics:

- Programed using MatLab
- *Inputs:* Range, Frequency, Antenna Size, Transmit Power, Data Rate, System Losses (Atmospheric, transmit, receiver)
- **Outputs:** Link Margin

Model Validation: Available literature and research, sensitivity analysis

Project Schedule

27

Network Capacity Model

Seneral

Purpose: Verify that the network can support the required number of endpoints

Model Logistics:

- Iterative data rates computation method performed using MatLab
- Inputs: node connections, link data rates, endpoint data requirements, bit error rates, data propagation delay

Hardware Demonstration

💠 GENERAL ATOMICS

Purpose: Demonstrate functionality of DTN protocol for Earth-based applications using ION-DTN software

Model Logistics:

• **ION-DTN** software downloaded from SourceForge.net and loaded onto two Ubuntu 18.04 server machines

Model Validation: ION-DTN was developed by Dr. Scott Burleigh of NASA's Jet Propulsion Laboratory

Project Schedule

Hardware Demonstration * GENERAL AT Timeline

Current development:

- Ubuntu server & ION-DTN installed
- Proof-of-concept validated

Future Development:

- Enabling communications between two Pi machines
 - Must debug given Assembly test file
- Use **Wireshark** to calculate internal hardware latencies
 - **RISK:** time intensive, steep learning curve

Project Schedule

SysML Modeling/MBSE

Purpose: Integration of separate project elements and model outputs (network capacity, link budget, etc.) into one project space, and trace requirements to the subsystems that satisfy them.

Model Logistics:

- Created in the <u>SysML</u> modeling language
- *Inputs*: Completed modeling of project subsystems
- **Outputs**: Cohesive DOTCOM project deliverable, including mapping of subsystem connections and modeling behavior of network nodes.

Model Validation: Validation of project inputs will come from their own verification and testing steps, as outputs from these models are loaded into the SysML simulation.

Project Schedule

36

Budget

Project Purpose & Objectives

Hardware Procurement Update * GENERAL ATOMICS

Manufacturing

39

Budget

Status	Hardware Parts	Status
Received	5 Raspberry Pi	Yet to be ordered
Received	5 Power Cords	Yet to be ordered
Received	5 SD Cards	Yet to be ordered
Received	5 HDMI Cables	Yet to be ordered
Received	5 USB Cables	Yet to be ordered
\$474.94	Total:	\$984.40
	StatusReceivedReceivedReceivedReceivedReceived\$474.94	StatusHardware PartsReceived5 Raspberry PiReceived5 Power CordsReceived5 SD CardsReceived5 HDMI CablesReceived5 USB Cables\$474.94Total:

Project Schedule

Updated Budget

Smead Aerospace

HIII

APPENDIX

Relay Station Models

• Atmospheric Attenuation Evaluation (Matlab)

- Input: Atmospheric humidity %, thickness of atmosphere, (elevation?)
- Output: Signal Absorption (atmospheric loss variable)
- Status: In progress
- Connection Window Evaluation (Orbital STK)
 - Input: Relay Station Positions
 - Output: Mapping of Earth relay stations' connectivity windows to the Moon relay station
 - Status: Not Started
- Model Verification (Orbital STK)
 - Repeat modeling techniques for well-documented system (Deep Space Network)
 - Compare modeled results to real-life behavior
 - Status: Not started

Constellation Architecture Testing and Verification

- Connection Window Evaluation (Matlab)
 - Input: Satellite position vs. time data
 - Output: Viability of each link at all times
 - Status: In progress
- Coverage Map (Matlab)
 - Input: Satellite position vs. time data
 - Output: Map of which points in the system have coverage at all times (target: >99%)
 - Status: In progress
- Model Verification
 - Repeat modeling techniques for well-documented system (GPS)
 - Compare modeled results to real-life behavior
 - Status: Not started

Constellation Configuration 6/6/4

Configuration has format T/P/F

RAAN separation = $360^{\circ}/P = 60^{\circ}$

v separation = F * RAAN separation = 240°

i = 53.1° = constant

Baseline Parameters for Intersatellite Link

Key Input Variables	Value	Outputs	Value
Range (km)*	11,024 km	EIRP	61.9 dB
Frequency (GHz)	26	Antenna Gain	46.1 dB
Antenna Size (D)	1 m	Free Space Loss	200 dB
Transmit Power (W)	30 W	Received Power	-139.6 dB
Data Rate (Mbps)*	500	Signal to Noise	19.5 dB
Receive System Noise Temperature (K)	700 K	Link Margin	5.5 dB
Required Eb/No (dB) [BPSK Modulation, BER = 10^-7]*	11 dB		
Required Design Margin*	3 dB		47

Baseline Sensitivity Analysis Intersatellite Link

Network Capacity Model

Overflowing water tank is analogous to a saturated / max capacity network

Data Rate in - Data Rate out = Used Memory Change Rate

Network endpoints analogous to faucets adding water to the system

Data Rates

Forward Link Requirements Data Type (Reliable Channel) Speech Digital Channel Digital Channel

Data Rates 10 kbps 200 bps 2 kbps

Data Rates

100 kbps

128 kbps

1.5 Mbps

Data Type (High Rate Channel) Command Loads CD-quality Audio Video (TV, Videoconference)

Return Link Requirements

Data Type (Reliable Channel) Speech Engineering Data Engineering Data Video Video

Data Type (High Rate Channel) High Definition TV Biomedics Hyperspectral Imaging Synthetic Aperture Radar Data Rates 10 kbps 2 kbps 20 kbps 100 kbps 1.5 Mbps

Data Rates 20 Mbps 35 Mbps 150 Mbps 100 Mbps Element Astronaut Astronaut Transport / Rover / Base

Element Transport / Rover / Base Astronaut Astronaut

Element Astronaut Astronaut Transport / Rover / Base Helmet Camera

Element Astronaut Astronaut Science Payload Science Payload

Rover

Communications

Key Measurement Methodology

Asynchronous

Synchronous

t1 - t0 = Light Time Latency t2 - t1 = N2 Storage Latency t3 - t2 = N2 Forward Latency t3 - t1 = N2 Hardware Latency t5 - t0 = Total Signal Latency (t5-t0)-t4-t1 = Total Hardware Latency

Completed testing

Completed:

- 1) Ubuntu installed
- 2) Software installed
- 3) Software configured

In progress:

1) Debug given test file

C (unackr m	FDP nowledged ode)	rr Rei	AMS tessaging mote AMS	
UT	adapter	bridging		
	BPOT	N routing		
Co	nvergence	layer ada	pters	
Ļ	TP	TCI UDI	P, BRS, P, DGR	
encap pac	sulation :kets	IP Inter	met routing	
AOS	Prox-1	802.11	Etherne	
9	R/F. optica	1	wire	

SysML Modeling Validation

SysML workspace validation will be completed in part via test-case verification of other network modeling, as outputs from these models are simply loaded into the SysML simulation. SysML-specific verification is thus mainly redundant checking of requirements satisfaction/diagram completeness.

Project Purpose & Objectives

Project Schedule

Manufacturing

Budget

Current Budget

Project Purpose & Objectives

Project Schedule