

Smead Aerospace

Deep-Space Orbital Telecommunications

Sam Taylor, Tristan Liu, Caelan Maitland, Forrest Jordan, Hunter Rohlman, N. Sebastian Damm, Doug Brough, Conner Lewis, Buck Guthrie, Jennifer Gurtler

Table of Contents

1 Project Purpose and Objectives

1.1 Mission Statement
1.2 CONOPS
1.2.1 Hardware CONOPS
1.2.2 System CONOPS
1.3 Functional Requirements
1.3.1 FR 1
1.3.2 FR 2
1.3 FR 3
1.4 Project Goals

2 Design Solution

2.1 Hardware FBD2.2 System FBD2.3 Block Definition Diagram (MBSE)

3 Critical Project Elements 3.1 CPE 1-6

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction
4.2 System DR Satisfaction
4.2.1 Network Protocol Capacity Model
4.2.2 Link Budget
4.2.3 Relay Station
4.2.4 Satellite Constellation Architecture

5 Project Risks

5.1 Modeling Risks
5.1.1 Modeling Risk Matrix
5.2 Inaccessibility Risks
5.2.1 Inaccessibility Risk Matrix
5.3 Additional Risks
5.3.1 Addition Risk Matrix
5.4 Complete Risk Matrix

6 Verification and Validation

6.1 Hardware
6.1.1 System Interface
6.1.2 Key Measurements
6.2 MBSE
6.2.1 Requirements Tracing
6.2.2 Block Definition Diagram
6.2.3 State Machine Diagram

7 Project Planning

7.1 Organizational Chart
7.2 Work Breakdown Structure
7.3 Work Plan
7.4 Cost Plan
7.5 Test Plan

Project Purpose and Objectives

Mission Statement

Project DOTCOM aims to provide a scalable model of a representative network providing highspeed, reliable communications between Earth-Moon system. A Model-Based Systems Engineering simulation and a hardware network representation will be used to demonstrate the network concept and provide an illustration of its processes. The software and hardware deliverables will provide insight that will inform the construction of a network architecture for current and future deep-space missions.

1 Project Purpose and Objectives

Objectives

1.1 Mission Statement

- 1.2 CONOPS
- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

Hardware CONOPS

Level 1 Success

Legend

분론

Ground station to ground station link

1 Project Purpose and

Objectives

1.1 Mission Statement

- **1.2 CONOPS**
- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

Level 2 Success

Legend

누重

- Rasperry Pi node
- Ground station to constellation satellite link
- Constellation satellite to constellation satellite link

1 Project Purpose and

Objectives

1.1 Mission Statement

- 1.2 CONOPS
- 1.2.1 Hardware CONOPS
- 1.2.2 System CONOPS
- **1.3** Functional Requirements
- 1.4 Project Goals

Rasperry Pi node

- Ground station to constellation satellite link
- Constellation satellite to constellation satellite link
- Constellation satellite to ground vehicle link
- Constellation satellite to orbital vehicle link

1 Project Purpose and Objectives

1.1 Mission Statement
1.2 CONOPS
1.2.1 Hardware CONOPS
1.2.2 System CONOPS
1.3 Functional Requirements
1.4 Project Goals

System CONOPS

Legend

- Ground station to ground station link
- Ground station to constellation satellite link
- Constellation satellite to constellation satellite link
- Constellation satellite to ground vehicle link
 - Constellation satellite to orbital vehicle link

GENERAL ATOMICS

Functional Requirements

FR 1 - Communication architecture must be capable of transmitting and receiving data **simultaneously** and **non-simultaneously (store-and-forward)** between **Earth and the Moon.**

FR 2 - Satellite constellations around The Moon must be able to provide **communication and vehicle control capabilities** on their **surfaces** and in their **orbits**.

FR 3 - Communication network must ensure safety of and be collaborative with **existing and future communications infrastructure.**

- Continuous data connections between planetary bodies
- Store and forward connections not to exceed 6 hrs
- 99% telecommunications coverage in Lunar Orbit
- 99% telecommunications coverage on Lunar Surface

FR 2 Vehicle Support

- Provide simultaneous communication for **5 or more lunar surface locations**
- Provide store and forward communication for **10 or more lunar surface locations**
- Provide simultaneous communication for **10 or more lunar orbit locations**
- Provide store and forward communication for 20 or more lunar orbit locations

Network should have the capacity to support 15 surface vehicles and 30 orbital vehicles

FR 3 Compatibility

- Network utilize existing NASA communications architecture whenever possible
- Network should be compatible with the Lunar Gateway Project

IERAL ATOMICS

GENERAL ATOMICS

DOTCOM Project Goals

- 1. Design an **interplanetary communications network** that satisfies project design requirements
- 2. Model to **test and validate** design decisions
- 3. Use **hardware** to validate software model capabilities and design decisions

Smead Aerospace UNIVERSITY OF COLORADO BOULDER

Design Solution

Hardware FBD

MBSE Block Definition Diagram (BDD)

Critical Project Elements

3 Critical Project Elements 3.1 CPE 1-6

Critical Project Elements

- 1. Hardware Test Bed: Demonstrate various network characteristics.
- 2. Network Protocol: Structured data transmission methodology that allows for high speed reliable communications from node to node.
- **3.** Link Budget: The project will meet certain data-relay rates for communication between all communication nodes.
- 4. Relay Station: Allows for direct access to communications between Earth and The Moon.
- **5. Satellite Constellation Architecture:** Construction of ideal constellation architecture around each planetary body to satisfy coverage requirements.
- 6. System Prototype Validation: Ensure all system elements are valid.

Smead Aerospace

Requirement Satisfaction

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.4 Satellite Constellation Architecture

Hardware Satisfactions

Design Requirement	Satisfaction
DR 1.1 Relay <1 sec (excluding propagation delay)	Test
DR 1.5 Rely data between mission segments	Test
DR 1.7 Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective	MBSE Integration
DR 2.1-2.2 Provide command and control capabilities to surface and orbit vehicles	Test

Test: Testing the various configurations to generate latency values and verify the congestion model

Smead Aerospace UNIVERSITY OF COLORADO BOULDER

MBSE Integration: Taking latency values from the test and implementing them into the MBSE model verifies data rate

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellite Constellation Architecture

System Satisfactions

Functional Requirement	Design Requirement	Satisfaction
FR 1	99% telecommunications coverage in Lunar orbit	
	99% telecommunications coverage on Lunar Surface	
	5+ nodes for simultaneous 'real time' communications on Lunar surface	
	10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface	
FR 2	10+ nodes for simultaneous 'real time' communication in Lunar orbit	
	20+ nodes for non-simultaneous (within 6 hours) communication in Lunar orbit	
	Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective	
FR 3	Network is compatible with and ensures the safety of existing and future infrastructure	

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellite Constellation Architecture

System Satisfactions

Functional Requirement	Design Requirement	Satisfaction
FR 1	99% telecommunications coverage in Lunar orbit	
	99% telecommunications coverage on Lunar Surface	
	5+ nodes for simultaneous 'real time' communications on Lunar surface	Congestion Model
	10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface	Congestion Model
FR 2	10+ nodes for simultaneous 'real time' communication in Lunar orbit	Congestion Model
	20+ nodes for non-simultaneous (within 6 hours) communication in Lunar orbit	Congestion Model
	Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective	
FR 3	Network is compatible with and ensures the safety of existing and future infrastructure	

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellite Constellation Architecture

RF Link Budget

• Key Inputs that will vary or will be influenced by architecture

- Distance Between Nodes
- Aperture Diameter
- Transmit power
- Outputs:
 - o Link Margin

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellite Constellation Architecture

RF Considerations

- Compatibility with Lunar Gateway
- ITU recommendations for communications between lunar orbit and lunar surface: Ka-band
- RF Frequencies and modulation schemes chosen to enable this:
 - Orbiting satellite downlink to Lunar surface: <u>22.55-23.15 GHz</u> (OQPSK Modulation)
 - Lunar surface to orbiting satellite uplink: <u>25.5-27.0 GHz (OQPSK</u> <u>Modulation)</u>

High-Level Overview of RF inter-satellite and satellite-to-Lunar Ground Link Budget flow chart

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellite Constellation Architecture

Additional Laser Link Considerations

Additional total losses in Received Power Term

- Atmospheric Losses
- Transmitter Pointing Loss
- System Losses
 - Transmitter Optical Efficiency
 - Receiver Optical Efficiency
 - Receiver Pointing Loss

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellite Constellation Architecture

System Satisfactions

Functional Requirement	Design Requirement	Satisfaction
FR 1	99% telecommunications coverage in Lunar orbit	
	99% telecommunications coverage on Lunar Surface	
	5+ nodes for simultaneous 'real time' communications on Lunar surface	Congestion Model
	10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface	Congestion Model
FR 2	10+ nodes for simultaneous 'real time' communication in Lunar orbit	Congestion Model
	20+ nodes for non-simultaneous (within 6 hours) communication in Lunar orbit	Congestion Model
	Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective	Link Budget
FR 3	Network is compatible with and ensures the safety of existing and future infrastructure	Link Budget

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Inik Budget 4.2.3 Relay Station

4.2.4 Satellite Constellation Architecture

Relay Station

- Likely using ground stations:
 - Better accessibility to **build**, maintain, and upgrade.
 - Leads to **significantly lower establishment costs** and **more use** throughout the lifecycle (due to lower costs and easier accessibility).
- Seek to seamlessly integrate network protocols into network architecture while attempting to minimize cost and maximize efficiency of the system over its lifespan.
- On Earth, existing ground station infrastructure owned by the US and allies will be explored in order to decrease initial costs.

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Rolay Station 4.2.4 Satellite Constellation Architecture

Ground Station Considerations

The geometric placement of ground relay stations will vary between Earth and The Moon due to the differing atmospheric conditions and established infrastructure.

- Inputs:
 - o Atmospheric Bend
 - Atmospheric Absorption
 - Locations of established ground stations on Earth
- Outputs:
 - Required spacing and number of ground stations on each body
 - Location of each ground station

Smead Aerospace

UNIVERSITY OF COLORADO BOULDER

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget

4.2.3 Relay Station

4.2.4 Satellite Constellation Architecture

System Satisfactions

Functional Requirement	Design Requirement	Satisfaction
FR 1	99% telecommunications coverage in Lunar orbit	Relay Station
	99% telecommunications coverage on Lunar Surface	Relay Station
	5+ nodes for simultaneous 'real time' communications on Lunar surface	Congestion Model
	10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface	Congestion Model
FR 2	10+ nodes for simultaneous 'real time' communication in Lunar orbit	Congestion Model
	20+ nodes for non-simultaneous (within 6 hours) communication in Lunar orbit	Network Protocol
	Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective	Link Budget
FR 3	Network is compatible with and ensures the safety of existing and future infrastructure	Link Budget, Relay Station

4 Requirements Satisfaction 4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satelliatic Constellation Architecture

Constellation Satellite Architecture

- A medium altitude (5,509 km) constellation around the moon, utilizing six satellites, will be used as a baseline design to fulfill the requirements of >99% coverage of the surface and orbital space of the moon.
- Beyond the baseline, additional designs, varying the altitude, number of satellites, and orbital geometries, will also be tested to investigate their effect on the **performance** and **cost of the system.**
- **Redundancy** will be included as a factor, with tests being performed on doubly, triply, and quadruply redundant systems.

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2 1 Network Protocol Capacity Model 4.2 2 Link Budget 4.2 8 Relay Station 4.2 4 Satellite Constellation Architecture

Satellite Constellation Considerations

The geometry of the satellite constellation directly affects the **distance between nodes** and the **time windows** through which nodes can communicate.

- Inputs:
 - Number of satellites
 - o Orbital parameters
- Outputs:
 - Network connection windows
 - o Coverage map

Smead Aerospace

IERAL ATOMICS

4 Requirements Satisfaction

4.1 Hardware DR Satisfaction 4.2 System DR Satisfaction 4.2.1 Network Protocol Capacity Model 4.2.2 Link Budget 4.2.3 Relay Station 4.2.4 Satellitic Constellation Architecture

System Satisfactions

Functional Requirement	Design Requirement	Satisfaction
FR 1	99% telecommunications coverage in Lunar orbit	Relay Station, Satellite Constellation
	99% telecommunications coverage on Lunar Surface	Relay Station, Satellite Constellation
FR 2	5+ nodes for simultaneous 'real time' communications on Lunar surface	Network Protocol
	10+ nodes for non simultaneous (within 6 hrs) communication on Lunar surface	Network Protocol
	10+ nodes for simultaneous 'real time' communication in Lunar orbit	Network Protocol
	20+ nodes for non-simultaneous (within 6 hours) communication in Lunar orbit	Network Protocol
	Earth-Moon data rates: 500 Mbps threshold, 5 Gbps objective	Link Budget
FR 3	Network is compatible with and ensures the safety of existing and future infrastructure	Link Budget, Relay Station, Satellite Constellation

36

Project Risks

5 Project Risks 5.1 Modeling Risks 5.2 Inaccessibility Risks 5.3 Additional Risks 5.4 Complete Risk Matrix

Risk	Description	Effect
NCP: Network Capacity Model	Inaccurate Network Capacity Model	Network capacity model will not provide sufficient evidence to support network architecture design
IA: Inaccurate Assumptions	Inaccurate Assumptions utilized	Models will contain systematic errors that will reduce accuracy
CTI: Cross Team Integration	Cross-team MBSE integration	One comprehensive model of the system will be unavailable

UNIVERSITY OF COLORADO BOULDER

GENERAL ATOMICS

Risk Matrix

	Severity												
		Negligible	Minor	Moderate	Major	Catastrophic							
q	Almost Certain												
elihoo	Likely												
Lik	Possible		IA		NCP								
	Unlikely												
	Rare					СТІ							

5 Project Risks 5.1 Modeling Risks 5.2 Inaccessibility Risks 5.3 Additional Risks 5.4 Complete Risk Matrix

Inaccessibility Risks

Risk	Description	Effect
OA: Outside Architecture	Outside architecture information unavailable (eg. Lunar Gateway)	System architecture will not utilize existing infrastructure
FI: Facility Inaccessibility	COVID imposes inaccessibility to facilities required for hardware construction and testing	Large increase in difficulty to construct and test hardware component

40

GENERAL ATOMICS

Risk Matrix

			Seve	erity		
		Negligible	Minor	Moderate	Major	Catastrophic
q	Almost Certain					
elihoo	Likely					
Lik	Possible			FI		
	Unlikely			ΟΑ		
	Rare					

5 Project Risks 5.1 Modeling Risks 5.2 Inaccessibility Risks 5.3 Additional Risks 5.4 Complete Risk Matrix

Additional Risks

Risk	Description	Effect
RPI: Raspberry Pi ION integration	Not being able to integrate ION into Raspberry Pi's	Raspberry Pi hardware simulation will not resemble overall network implementation
PC: Project Complexity	DOTCOM requires complex hardware, software, and architecture design and integration for final deliverable	Limited to a year of research and design for a highly complex task could lead to reduced deliverable depth

GENERAL ATOMICS

Risk Matrix

			Seve	erity		
		Negligible	Minor	Moderate	Major	Catastrophic
q	Almost Certain			PC		
elihoo	Likely			RPI		
Lik	Possible					
	Unlikely					
	Rare					

Complete Risk Matrix

			Seve	erity		
		Negligible	Minor	Moderate	Major	Catastrophic
q	Almost Certain			PC		
elihoo	Likely			RPI		
Lik	Possible		IA	FI	NCP	
	Unlikely			OA		
	Rare					СТІ

Verification & Validation

Hardware System Interface: PYION

• Transmit

- Endpoint Creations
- Input Destination
- Data File Input
- Reception
 - o TTL Properties
 - Timeout Selection

Smead Aerospace

o Data Exchange Measurements

import pyion

Create a proxy to node 1 and attach to ION
proxy = pyion.get_bp_proxy(1)
proxy.bp_attach()

Open endpoint 'ipn:1.1' and send data to 'ipn:2.1'
with proxy.bp_open('ipn:1.1') as eid:
 eid.bp_send('ipn:2.1', b'hello')

Hardware Key Measurements (Asynchronous)

t1 - t0 = Light Time Latency t2 - t1 = N2 Storage Latency t3 - t2 = N2 Forward Latency t3 - t1 = N2 Hardware Latency t5 - t0 = Total Signal Latency (t5-t0)-t4-t1 = Total Hardware Latency

Smead Aerospace

Hardware Key Measurements (Synchronous)

t2

t5

t1 - t0 = Light Time Latency t2 - t1 = N2 Storage Latency t3 - t2 = N2 Forward Latency

t3 - t1 = N2 Hardware Latency t5 - t0 = Total Signal Latency (t5-t0)-t4-t1 = Total Hardware Latency

t1 - t0 = Light Time Latency t2 - t1 = N2 Storage Latency t3 - t2 = N2 Forward Latency Smead Aerospace

UNIVERSITY OF COLORADO BOULDER

t3 - t1 = N2 Hardware Latency t5 - t0 = Total Signal Latency (t5-t0)-t4-t1 = Total Hardware Latency

MBSE Verification

Unlike most senior design projects, main customer deliverables are the models themselves. Base-level MBSE modeling of network devices has been completed, including:

- Requirement tracing and verification steps
- Block Definition and Internal Block Diagrams
- Defined data types for network node input/output
- SysML state machines for modeling network node behavioral aspects

Further steps include expanding this modeling to further network aspects and increasing model fidelity.

		A	В
		name : String [01]	/satisfiedBy : NamedElement [*]
0	/ownedElement		
1	transmit/receive capability simultaneously & non- simultaneously between Earth, Moon, Mars.	FR-1: Comms must have transmit/receive capability simultaneously & non-simultaneously between Earth, Moon, Mars.	x
2	/ownedElement		
3	R-001: Real time data relay between environments	R-001: Real time data relay between environments	AntennalO, AntennalO, AntennalO
4	R-005: Data relay between mission segments.	R-005: Data relay between mission segments.	LunarSat, EarthSat, EarthGroundStation, LunarGroundStation
5	R-008: Simultaneous comms to 5 locations on Lunar surface.	R-008: Simultaneous comms to 5 locations on Lunar surface.	inboundSignalProcessing, outboundSignalProcessing
6	R-009: Non-simultaneous comms to 10+ locations on Lunar surface.	R-009: Non-simultaneous comms to 10+ locations on Lunar surface.	inbound Signal Processing, outbound Signal Processing, central Storage

Requirements Tracing

Blocks and their internal parts/processes can be used to *satisfy* design requirements.

In this example, EarthSat has data flow connections to EarthGroundStation, LunarSat and LunarGroundStation which fulfill requirement R-005.

Papyrus Contact Graph Mapping

Block Definition Diagram (MBSE)

Block Definition Close-up

Connections to other blocks are modeled via *associations*, and each block within the BDD exists with internal parts & subsystems.

- Relations between subsystems are shown via Internal Block Diagrams (IBDs)
- Each subsystem's behavior is modeled through *state machines*

«Block»
EarthSat
attributes
🖾 🔸 antenna: Antenna [1]
+ inboundSignalProcessing: InboundSignalProcessing [1]
+ outboundSignalProcessing: OutboundSignalProcessing [1]
+ centralStorage: CentralStorage [1]
+ CPU: CPU [1]
«FullPort» + AntennalO: DataTransmission [1]
operations

UNIVERSITY OF COLORADO BOULDER

Internal Block Diagram (IBD) - EarthSat

SysML Internal Block Diagram for a communications satellite in Earth orbit, with store and forward technology.

Internal Block Diagram Close-Up

IBD shows item (data) flows and interfaces between parts. Each part can be modeled outside of MBSE and then integrated

Fidelity of model increases over time as the system is drilled down to lower level structure.

State Machine Diagram - EarthSat

SysML state machine diagram for a communications satellite in Earth orbit.

State Machine Diagram Close-up

State machine diagrams describe the behavior happening within a block.

- Begin at initial state
- Behavior follows pathing depending on status of internal variables

Inside the state machine, *entry* is the action that happens when progressing into the state. *Do* represents the action performed while inside the state.

State machine for the "ConnectionTrue" behavior within the higher-level EarthSatStateMachine.

Project Planning

Organizational Chart

Work Plan

	Tack Name	Duration	Chard .	ETA	18 Jan	25 Jan	1 Feb	8 Feb	15 Feb	22 Feb	1 Mar	8 Ma	ar 15 M	ar 22	Mar
	lask Name	Duration	Start	EIA	MTWTFS	SMTWTFS	SMTWTFS	SMTWTF	5 S M T W T F S S	MTWTFSS	3 M T W T F S	SMTWT	FSSMTWT	FSSMTW	TFSS
1 C	omplete Project Execution	70 days	01.18.21	03.28.21											
2 S	ystem Architecture	56 days	01.18.21	03.14.21											
3 R	elay Stations	42 days	01.18.21	02.28.21											
4 E	arth's Atmospheric Conditions	14 days	01.18.21	01.31.21			7								
5 R	elay Station Determination	7 days	01.31.21	02.07.21				h							
6 E	xisting Relay Station Locations	7 days	02.07.21	02.14.21					h						
7 R	elay Station Placement	7 days	02.14.21	02.21.21						7					
8 M	odel Verification	7 days	02.21.21	02.28.21							m				
9 Li	nk Budget	42 days	01.18.21	02.28.21											
10 R	F Link Budget	21 days	01.18.21	02.07.21				2							
11 L	aser Link Budget	21 days	02.07.21	02.28.21											
12 C	onstellation Architecture	42 days	01.18.21	02.28.21											
13 C	onstellation Geometry Output	14 days	01.18.21	01.31.21			2								
14 N	etwork Connection Windows	14 days	01.31.21	02.14.21											
15 S	urface Coverage Verification	7 days	02.14.21	02.21.21						h					
16 O	rbital Coverage Verification	7 days	02.21.21	02.28.21											
17 N	etwork Protocol	56 days	01.18.21	03.14.21											
18 N	etwork Capacity Single Flow Model	7 days	01.18.21	01.24.21											
19 N	etwork Capacity Multiple Path Model	7 days	01.24.21	01.31.21											
20 N	etwork Capacity Variable Connections Model	7 days	01.31.21	02.07.21											
21 N	etwork Capacity Latency Assumptions Update	14 days	02.07.21	02 21 21				•		1					
22 N	etwork Capacity Discreet Data Packages Experimentatio	14 days	02.07.21	02.21.21											
23 N	etwork Capacity Model Hardware Verification	7 days	02.21.21	02.28.21						•					
24 A	chitecture Ontimization via Network Canacity Model	14 days	02 28 21	03 14 21							-				
25 D	TN DevKit Network Architecture Emulation	14 days	02.28.21	03.14.21									1		
26 M	RSE Modeling	70 days	01 18 21	03 28 21									J		
27 9	nuctural Modeling	70 days	01 18 21	03 28 21											
28 0	ata Tune Enumeration	14 days	01 18 21	01 31 21											
20 R	ack Definition Modeling	14 days	01 31 21	02 14 21			-								
20 In	ternal Block Modeling	14 days	02 14 21	02 28 21					,						
31 D	anandansy Modeling	14 days	02 28 21	03 14 21									4		
31 0	ependency modeling	14 days	02.20.21	03.14.21							4		7		
32 F	arametric wodeling	70 days	01.19.21	03.28.21											
33 D	enavioral modeling	14 days	01.10.21	01.21.21	·							-			
34 S	ate machine Modeling	14 days	01.18.21	02.14.24											
33 H	equinemente n'acting	14 days	01.31.21	02.14.21					,		4				
36 U	se case modeling	14 days	02.14.21	02.28.21							r.		+		
37 S	equence modeling	14 days	02.28.21	03.14.21									ň		
36 A	cuvity modeling	14 days	03.14.21	03.28.21											
39 H	aroware	56 days	01.31.21	03.28.21											
40 B	enavioral Modeling	14 days	02.17.21	02.21.21					_	1					
41 C	AD Model	7 days	02.07.21	02.14.21					· ·						
42 3	2 Print Casting	7 days	02.14.21	02.21.21											
43 N	etwork Demonstration	56 days	01.31.21	03.28.21						*					
44 S	ingle Node ION Implementation	21 days	01.31.21	02.28.21							h				
45 M	ulti-Node Network	14 days	02.28.21	03.14.21			1						1		
46 P	rescribed Latencies and Bundle File Sizes Implemented	14 days	03.14.21	03.28.21											
47 P	urchase	14 days	01.18.21	01.31.21											
48 H	ardware	14 days	01.18.21	01.31.21			,								

Smead Aerospace

APPENDIX

Wavelengths and Frequencies

Add these to CONOPS instead of having this slide?

- Earth Ground-Lunar Ground: Optical 1550 1064 nm
- Lunar Surface-Constellation: Ka-band
- Constellation-Constellation: Ka-band
- Constellation-Ground Vehicle: Ka-band
- Constellation-Orbiting Vehicle: Ka-band

Laser Communication Risks

- Ground lasers regulated by the US to avoid accidental irradiation with aircraft
 - S Air Force Laser Clearing House (LCH) regulates ground-based laser transmission by having Predictive Avoidance (PA) timing winderos during which transmitted lasers could possibly damage s/c
 - Use a spatial window defines by center of moon +/- a zone of about 0.5 degrees
- US Federal Aviation Agency (FAA) regulates potential lasers interactions with aircraft
 - If ground station not placed in no-fly zone, then airplane sensors can be used to control laser shuttering to avoid aircraft

Source: Khatri, F. I., Robinson, B. S., Semprucci, M. D., and Boroson, D. M., "Lunar Laser Communication Demonstration operations architecture," *Acta Astronautica* Available:

https://www.sciencedirect.com/science/article/pii/S0094576515000387#bib11.

Link Budget Assumptions

• RF Communications

- Main Loss is free space loss due to communications being inter-satellite and satellite-lunar ground
- o BPSK Modulation
- Aperture efficiencies constant
- Laser
 - PPM/DPSK Modulation
 - Strehl ratio due to atmospheric turbulence: 0.27 dB
The Future of High Data Rate Coms

- China recently launched a 6G satellite
- NASA Space Communications and Navigation (SCaN) investing in 10 cm optical module for use in LLCD and LCRD
 - Upgrade is in the modem (DPSK at 1.244 Gbps for LCRD and PPM at 622 Mbps for LLCD)
- NASA Laser Optical Communications Near-Earth Satellite System (LOCNESS) Project (2025)
 - Optical terminals that will provide up to 10Gbps from Earth up to LEO, MEO, GEO and out to Earth-Sun Lagrange (1.25 Mkm), & 100Gbps cross links and space-to-ground links

Current Laser Ground Stations

Lunar Laser Communications Demonstration (LLCD)

- LLGT (White Sands, NM)
 - 0 15 cm transmit aperture
 - o 20 W transmitter
 - 40 cm receive aperture
- LLOT (Table Mountain Wrightwood, CA)
 - 0 1 m transmit and receive aperture
 - o 20 W transmitter

Source: Khatri, F. I., Robinson, B. S., Semprucci, M. D., and Boroson, D. M., "Lunar Laser Communication Demonstration operations architecture," *Acta Astronautica* Available:

https://www.sciencedirect.com/science/article/pii/S0094576515000387#bib11.

3 Evidence of Baseline Design Feasibility

3.1 Mid-Altitude Satellite Constellations
3.2 Ground-Based Relay Station
3.3 RF Communications
3.4 Laser Communications
3.5 DTN
3.6 MBSE
3.7 Hardware Design

RF Communications for Surface to Constellation Data Relay Feasibility

- Easier to achieve total planetary coverage (pointing accuracy for RF is less strict than laser)
 - Larger footprint with RF = better coverage
- Less atmospheric interference and more reliable, can use X band (<12GHz), not affected by atmosphere (could be an issue on Mars)

Smead Aerospace UNIVERSITY OF COLORADO BOULDER 3 Evidence of Baseline Design Feasibility

3.1 Mid-Altitude Satellite Constellations
3.2 Ground-Based Relay Station
3.3 RF Communications
3.4 Laser Communications
3.5 DTN
3.6 MBSE
3.7 Hardware Design

Laser Communication for Interplanetary Data Relay Feasibility

- Can achieve the required data rates between planetary bodies DR 1.6 & 1.7)
- Wavelengths are 10,000 times shorter, allowing for a narrower beam and significantly more bandwidth
- Optical band unlicensed and highly unregulated compared to electromagnetic spectrum (RF)

Image Reference: NASA LLCDFactSheet (https://www.nasa.gov/sites/default/files/llcdfa ctsheet.final_.web_.pdf, 2020)

Level	Likelihood	Severity	Combined Score	Risk Level
1	Rare	Negligible	(Likelihood X Geventy)	
			1-4	Low
2	Unlikely	Minor		
2	Possible	Madarata	5-9	Low Moderate
3	FUSSIBle	Moderate		
4	Likely	Major	10-14	High Moderate
5	Almost Certain	Catastrophic	15-25	High

Risk	Description	Effect
RPI: Raspberry Pi ION integration	Not being able to integrate ION into Raspberry Pi's	Raspberry Pi hardware simulation will not resemble overall network implementation
NCP: Network Capacity Model	Inaccurate Network Capacity Model	Network capacity model will not provide sufficient evidence to support network architecture design
OA: Outside Architecture	Outside architecture information unavailable (eg. Lunar Gateway)	System architecture will not utilize existing infrastructure
IA: Inaccurate Assumptions	Inaccurate Assumptions utilized	Models will contain systematic errors that will reduce accuracy
PC: Project Complexity	DOTCOM requires complex hardware, software, and architecture design and integration for final deliverable	Limited to a year of research and design for a highly complex task could yield reduced deliverable depth
FI: Facility Inaccessibility	COVID imposes inaccessibility to facilities required for hardware construction and testing	Large increase in difficulty to construct and test hardware component
CTI: Cross Team Integration	Cross-team MBSE integration	One comprehensive model of the system will be unavailable

Critical Project Elements

- 1. Hardware Test Bed: Demonstrate various network characteristics.
- Create nodes from Raspberry Pi's to resemble system architecture and implement ION as the network protocol to validate future and existing simulations.
- Design and 3D print housing for the Raspberry Pi's to function properly.
- 1. Network Protocol: Structured data transmission methodology that allows for high speed reliable communications from node to node.
- Implement Delay Tolerant Networking protocol.
- Provide environmental transmission optimization and compatibility with existing and future networks.
- 1. Link Budget: The project will meet certain data-relay rates for communication between all communication nodes.
- Use RF for short distance and laser for long distance data-transfer.
- 1. Relay Station: Allows for direct access to communications between Earth and The Moon.
- Establish ground based relay station for increased accessibility, decreased cost, and easier communications.
- **1. Satellite Constellation Architecture:** Construction of ideal constellation architecture around each planetary body to satisfy coverage requirements.
- Establish a medium-altitude constellation, providing complete coverage while minimizing the number of satellites required to do so.
- 1. System Prototype Validation: Ensure all system elements are valid.
- Demonstrate system capabilities through a conceptual network architecture using MBSE simulation.

Satellite Constellation Animation

Satellite Groundtrack Animation

Cost Breakdown

Key Project Components	<u>Cost</u>
Raspberry Pi (6)	\$245.00
Monitors (6)	\$851.97
Keyboards (6)	\$111.93
SD cards (6)	\$97.93
Ethernet Cables (12)	\$109.76
HDMI Cords (6)	\$55.86
Power Cables (6)	\$56.00
Total:	\$1,528.45

Note: already have material needed for 3D printed housing.

Hardware Test Plan

- Major Tests
 - Depicted in CONOPS (Levels 1-4)
 - Data Analytics
 - Network Congestion Model Verification
- No Need for Specialized Equipment or Facilities