Final Oral Review

CUBE³

Customer: Professor Robert Marshall Advisor: Professor Sanghamitra Neogi

CU Boulder Engineers Creating Universal Boom Extensions for CUBEsats

Purpose &
ObjectivesDesign
DescriptionTest
OverviewTest
ResultsSystems
EngineeringProject
Management

Project Overview

The purpose of this project is to create an extendable CubeSat boom to separate a sensitive instrument from the cubesat bus?

Purpose & Objectives

Project Objectives

- Support a **500 g payload** at the end of the boom
- Extend a minimum distance of 60 cm
- Fit within **1.5 U** when undeployed (including payload)
- Have a mass of less than **1.5 kg** (not including payload)
- Have a first resonant frequency over **2.5 Hz**
- Deploy on command in **under 2 minutes**
- Provide routing for power and data cabling to/from payload

Purpose & Objectives

Select Levels of Success

Project Element	Level 1	Level 2	Level 3
Boom Structure: Deployment Length	The boom can be extended to 60 cm past the spacecraft body.		The boom can be extended to 1 m past the spacecraft body.
Boom Structure: Resonant Frequency	The boom has a first resonant frequency mode of greater than 2.5 Hz when analytically modelled.		The boom demonstrates a first frequency mode over 2.5 Hz in a vibe table test environment.
Boom Structure: Total Mass & Size	The deployable boom system and the 1.5 U containment structure have a mass of less than 1.5 kg.		
Environmental Resilience	Analysis indicates probably 1 year lifespan on orbit.	Vacuum testing indicates probably 1 year lifespan on orbit.	TVac testing indicates probable 1 year lifespan on orbit.
Software Interface	The external C2 computer is able to send commands to the boom electronics.	The external C2 computer is able to receive telemetry from the deployment sensor.	The boom successfully deploys when commanded.
Payload Connectivity	The system is able to deploy power and data cables to the sensor payload at the end of the boom.		

CONOPS

Purpose & Objectives

Design Description

Purpose &
ObjectivesDesign
DescriptionTest
OverviewTest
ResultsSystems
EngineeringProject
Management

Critical Project Elements

	 Deployable Boom Structure Stow in 1.5U with an 8x8x8 cm, 500 g payload First resonant frequency ≥ 2.5 Hz
e e	 Payload Connectivity Power/data cable provisions
	 Software Interface Command and telemetry
\bigcirc	 Deployment System Deploy on command Confirm deployment via telemetry
	 5. Environmental Resilience LEO radiation/thermal environment Vibrational launch environment

Design Description

Baseline Design - Deployment Mechanism

Design Description

Release Pin Stand Alone Testing

Polyethylene Burn Rope and Pin Movement (Nichrome Current = 800 mA)

Design Description

Baseline Design - Software

• Not for delivery

- MATLAB GUI
 - Built in App Designer
 - Uses Arduino Hardware Support Package
- vl.1 is released for use
 - Temperature display
 - Burn wire relay arm/control
 - IR spool revolution sensor te le metry

Baseline Design - Test Electronics

• Not for delivery

- 3 separate circuits
 - IR LED and phototransitor voltage divider
 - Thermistor voltage divider
 - Burn wire relay

Purpose &
ObjectivesDesign
DescriptionTest
OverviewTest
ResultsSystems
EngineeringProject
Management16

M	500				(JI)II
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled	Scheduled •	Scheduled	Scheduled	Scheduled	Scheduled
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed •	Processed
		Test Overview			17

M	500				CILLI
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled	Scheduled •	Scheduled	Scheduled •	Scheduled •	Scheduled •
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed	Processed
		Test Overview			18

Cable Routing Test

Motivation - Verify that the cable routing design allows for full deployment of the boom and cables are still functioning after deployment

Facilities:

• Electronics Lab, Pilot Room

Equipment:

- Arduino Due microcontroller (as mock flight computer)
- Keysight 34461A Digital Multimeter
- Sorensen XPH 35-4D Power Supply set as Current Supply
- Keysight 33220 A Function/Arbitrary Wave form Generator*
- Oscilloscope*

General Procedure:

- Attach deployment equipment to the undeployed boom
- Send deployment command from mock flight computer.
- Check for physical damage to boom and/or cables
- Check for cable functionality with a continuity test and successfully send and receive a differential signal*
- Restow boom

*Unavailable due to current circumstances

Requirements Under Test				
DR_2.1	Boom shall have capability of routing three wire power setup			
DR_2.2	Boom shall have capability of routing 3 separate differential cables			
FR_2	Boom shall provide routing for power and signal cabling			

Cable Routing Test

Preliminary Testing:

• Continuity Check performed successfully

Analytical Model:

Goal: Estimate maximum data rate in kb/s

Steps:

- 1. Circuit Equivalent Model
- 2. Attenuation generated by circuit
- 3. Estimate fastest rise time limited by cable attenuation
- 4. Estimate maximum data rate from fastest rise time

Cable Routing Test, Steps 1 and 2

Analytical Model:

Goal: Estimate maximum data rate in kb/s

Step 1: Equivalent Circuit

- 2 models used to estimate circuit's **R**, **G**, **L**, and **C** per unit length based on line characteristics
 - $\circ \quad \text{Two wire line model} (d \gg a)^{[1]}$
 - Twisted pair model^[2]
- Resistance per unit length, \mathbf{R}' , is heavily dependent on frequency, f
 - High f causes \mathbf{R}' to depend on a surface resistance $\mathbf{R}'(\mathbf{R}_{s}(f))$
 - $\circ \quad R_{S} = \sqrt{(2\pi f/\sigma_{c})}$

Step 2: Attenuation of Circuit

- Solution to the voltage along circuit given by sine wave: $V(z)=V_+e^{-i\gamma(f)z} + V_-e^{+i\gamma(f)z}$ [V]
- Propagation $\operatorname{coef} = \gamma(f) = \sqrt{[(\mathbf{R}(f)' + i\omega L')(\mathbf{G}' + i\omega C')]}$
 - Attenuation(f) = $\operatorname{Real}(f)$ [Np/m]

[1] \vw}p' Zoya B., and \vw}p' Branko D. Introductory Electromagnetics Prentice Hall, 2000.
 [2] Christopoulos, Christos. The TransmissionLine Modeling Method: TLM Oxford, Angleterre, 1995.

Test Results

Cable Routing Test, Steps 3 and 4

Analytical Model

Goal: Estimate maximum data rate in kb/s

From steps 1 and 2: Attenuation(f) = Real $\sqrt{[(R(f)'+i\omega L')(G'+i\omega C')]}$

Step 3: Rise Time Defined by Bandwidth

- Digital signals can be characterized by a Rise Time, RT_{10-90}
 - RT_{10-90} : time for signal to go from 10% to 90% of final voltage
- Maximum $RT_{10-90} = 0.35/BW^{[3]}$
 - Defining bandwidth, BW, as a 3dB attenuation off of the amplitude of the harmonics of an ideal square wave: $RT_{10-90} = 0.35 \mu s$

Step 4: Data Rate Limitation

- Estimating RT₁₀₋₉₀ as 7% of the digital signal period
 - $\circ \quad \text{period} = 0.35\,\mu\text{s}/7\% = 5\,\,\mu\text{s}$
 - \circ f = 1/period = 200 kHz
- Predicted: 200 kb/s data rate

*Note: analysis does not take into account impedance mismatches, coupling to other line pairs, radiative loss or em interference

[3] Bogatin, Eric. Signal and Power Integrity, Simplified Prentice Hall, 2018.

Test Results

M	E.				CILLI
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled •	Scheduled •	Scheduled	Scheduled •	Scheduled •	Scheduled •
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed •	Processed
		Test Overview			23

Launch Environment Test

Motivation - Verify that the boom assembly components can survive the vibrational loads experienced during launch.

Facilities:

• Vibe room

Equipment:

- UD shaker table
- 8-Bay Structure

General Procedure:

- Setup undeployed boom on shaker table
- Qualification test
 - General Environmental Verification Standard
- Remove boom from shaker table
- Deploy boom structure

Requirements Under Test				
FR_7	Survive 10 G vibrations in the undeployed state.			
DR_7.1	Survive under the conditions of the launch environment in the undeployed state.			

Risk Reduction:

• Ensure that the boom will survive the launch environment and function as expected afterwards

Launch Environment-Restraining Cord

M	500				CILL
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled •	Scheduled •	Scheduled	Scheduled •	Scheduled •	Scheduled •
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed	Processed
		Test			26

Overview

Vibration Analysis with Payload using Solidworks							
Number of Bays	No Instrument [Hz]	No Instrument - Error [Hz]	500 gram Instrument [Hz]	500 gram Instrument - Error [Hz]			
1	236.1	2.25	35.0	0.3			
2	111.0	4.59	19.8	0.5			
3	76.2	6.75	14.7	0.7			
4	56.8	9.00	12.1	1.0			
5	46.0	11.25	10.3	1.3			
6	38.3	13.50	9.0	1.5			
7	31.7	15.75	8.1	1.8			
8	27.9	18.00	7.2	2.0			

	Single Rod	Single Bay	Full Boom	+ Instrument
Analytical	452.2 Hz	401.5 Hz	71.6 Hz	-
SOLIDWORKS	452.6 Hz	371.24 Hz	31.1 Hz	7.22 Hz ± 2 Hz
Ansys	-	302.5 Hz	-	-
Testing	-	Inconclusive	-	2.6 Hz / 0.5Hz

Test Overview

Motivation - Verify that the boom assembly resonant frequency falls within acceptable ranges

Facilities:

• Electronics shop

Equipment:

- Mallet
- 2 Teardrop accelerometers
- Horizontal Shaker Table
- 8-Bay Structure

General Procedure:

- Setup deployed boom on shaker table with accelerometers
- Sweep through low frequencies and measure the driven response
 - Data has been processed
- Hit the boom with a mallet and measure the impulse response
 - Data not yet processed

Requirements Under TestFR_6Demonstrate a resonant frequency
greater than 2.5 Hz when fully deployed.

Resonant Frequency Tests (Driven vs Hammer tests)

Hammer Test

Test

Overview

Resonant Frequency Test Driven Tests

Goal: Determine resonant frequency from driven frequency

- Driven results verify 2.5 Hz requirement
 - First resonant mode **2.6 Hz**
- Acceleration of top and bottom plate were measured until steady state was reached at each frequency
- Displacement was normalized and peaks were found

Driven

Resonant Frequency Test-Hammer Tests

Goal: Determine resonant frequency from an impulse 15

- Impulse results do not verify 2.5 Hz requirement
 - \circ First resonant mode 0.27 Hz
- Analysis based on MATLAB *fft()*
 - Raw data converted to dB scale
 - Ref. displacement 1 mm
 - Fast Fourier Transform
 - Results in frequency domain
 - Null out "negative" frequencies
 - Double "positive" frequencies
 - Peaks are resonances

Frequency [Hz]

Resonant Frequency Test-Hammer Tests

Goal: Determine resonant frequency from an impulse

- Resonant frequency below requirement
 - Displacement only 0.27 Hz
 - Normalized displacement 0.56 Hz
- Contributing factors
 - Impulse not representative of operations
 - Possible structural damage
 - Baseplate moved during test (micron scale)
 - Still on shaker (restrained)
- Root cause
 - Test execution

Possible fixes

- Secure baseplate
 - Baseplate moved during test
- Pretest structural inspection
 - Possible epoxy failure before/during test
- Perform smaller test on single carbon fiber longeron to verify analysis results
- Apply impulse at multiple locations

M	500				CILLI
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled •	Scheduled •	Scheduled	Scheduled	Scheduled •	Scheduled •
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed	Processed
Full Deployment Test

Motivation - Verify the deployment capabilities of the fully assembled boom through a commanded deployment and verify restow capability.

Facilities:

• Electronics Lab, Pilot Room

Equipment:

- Sorensen XPH 35-4D Power Supply set as Current Supply
- Arduino Due microcontroller (as mock flight computer)
- Westward Tape Measure, +/- 1 cm
- Teardrop Accelerometer
- Timer
- Roller

General Procedure:

- Attach the various equipment to the undeployed boom assembly such that gravity does not affect deployment
- Send deployment command from mock flight computer
- Confirm deployment telemetry is being received
- Restow boom assembly

Requirements Under Test					
FR_1Deploy an instrument of up to 500 g, with 8 x 8 x 8 cm dimensions					
FR_4	FR_4 The boom assembly can communicate with the flight computer				
FR_5 Provide ability to re-stow for redeployment					
Additionally: DR_1.1, DR_1.2, DR_1.4, SR_1.4.1, DR_ DR_4.1, DR_4.2, SR_4.2.1, DR_4.3, DR_5.1					

Risk Reduction:

• Proves that the boom assembly fully deploys as intended and demonstrates designed capabilities

Test Overview

Full Deployment Test

Full Deployment Test-Video Analysis

Goal: Determine maximum acceleration on payload during deployment

- Used Video Tracker
 o From 2003 lab
- Analyzed data with MatLab

 Built in diff function
- Results (shown on next slide)
 - \circ Max 1.65 at 0.728 seconds
 - Consistent with accelerometer data
 - Occurs as payload begins to turn

Full Deployment Test-Video Analysis

Test Results

Full Deployment Test-Accelerometer Analysis

Goal: Determine maximum acceleration on payload during deployment

- Data captured with teardrop accelerometer and beam airplane lab VI
- Spike at 15.6 m/s
- g load of 1.59 g's
 - Matches with Video Analysis

Full Deployment Test - Result Comparison

- Accelerometer and Total Video Analysis
- Both predict about 1.6 g's at around 0.7 seconds

Full Deployment Test-Model Correlation

Goal: Compare original model to test results

- Acceleration
 - Model: 1.12 g
 - Video: 1.65 g
 - Accelerometer: 1.59 g
- Time
 - \circ Model: 0.4 s
 - Experimental: 2 s
- Conclusions
 - Initial acceleration 32% faster than expected
 - Nitinol nonlinearity
 - No use ful comparison in time since test went side ways

Full Deployment Test-IR Sensor

Goal: Determine if telemetry circuit worked as expected

- Failed to detect deployment
 - Sampling rate 10-12 Hz
 - Spool deployed 15-20 Hz
- Contributing factors
 - Brake tuning
 - Nitinol temperature
 - Arduino Due sampling rate
- Root cause
 - Reliance on Due ADC
- Possible fixes
 - Different microcontroller
 - External ADC

M	500				CILLIN
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled •	Scheduled •	Scheduled	Scheduled •	Scheduled	Scheduled
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed	Processed
		_			

Overview

Mass/Dimension Test

Motivation - Verify that the physical characteristics of the undeployed boom assembly fit within the given requirements .

Facilities:

• Electronics Lab

Equipment:

- Shars Aventor Calipers, +/- 0.01 mm
- Acculab SV-50 Scale, +/- 10 g

General Procedure:

- Measure the dimensions of the x-y-z axes
- Measure the accommodation space for the guide rails
- Weigh the full boom assembly

Risk Reduction:

• Confirms that the manufactured boom assembly fits within the sizing and weight constraints set at the start of the project

Requirements Under Test						
DR_3.1	Stow with a length less than or equal to 15 cm, including instrument					
DR_3.2	Stow with a height less than or equal to 10 cm, including instrument					
DR_3.3	Stow with a width less than or equal to 10 cm, including instrument					
DR_3.4	R_3.4 Provide 6 mm by 6 mm accommodation space at each corner for NanoRacks guide rails					
FR_9 The whole system, including instrument, will have a maximum total mass of 2kg						

Mass/Dimension Test

Test Results					
Req. ID	Expected Result	Result			
DR_3.1	Length = 15 cm	Length = 14.99 cm			
DR_3.2	Height = 10 cm	Height = 9.95 cm			
DR_3.3	Width = 10 cm	Width = 9.95 cm			
DR_3.4	Guide Rail Space = 6 mm x 6 mm	Guide Rail Space = 6 mm x 6 mm			
FR_9	Mass \leqslant 2 kg	Mass = 0.89 kg			

Test Results ARC

M	500				CILILI
Cable Routing	Launch Environment	Resonant Frequency	Full Deployment	Mass / Dimension	LASP Thermal Chamber
Planned	Planned	Planned	Planned	Planned	Planned
Scheduled •	Scheduled •	Scheduled	Scheduled •	Scheduled •	Scheduled
Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Completed	Completed	Completed	Completed	Completed	Completed
Processed	Processed	Processed •	Processed	Processed •	Processed

Overview

LASP Thermal Chamber Test

Motivation - Verify that the boom assembly components can survive the thermal fluctuations experienced in space and establish a deployment temperature.

Facilities:

• LASP Thermal Chamber Room

Equipment:

- Big White Thermal Chamber
- Thermocouples
- 2-Bay Structure

General Procedure:

- Setup undeployed boom in thermal chamber
- Ramp down to -60 $^{\circ}$ C
- Ramp up to $10 \,^{\circ}\mathrm{C}$
- Deploy Boom
- Ramp down to -60 $^{\circ}$ C
- Return to ambient and repeat with different deployment temperatures

Requirements Under Test DR_8.1 The boom assembly shall survive the thermal fluctuations of the space environment in both the deployed and undeployed configuration.

Risk Reduction:

- Establish feasibility of components not breaking due to extremely low temperatures
- Establish adequate deployment temperatures for the Nitinol hinges

LASP Thermal Chamber- Basis for Temperatures

LASP Thermal Chamber Test

Temperature	No Deployment	Partial Deployment	Full Deployment	No component damage was observed even after reducing the structure down
-10°C	X			to the minimum of -60 $^{\circ}$ C
D° 0	X			
5 °C		X		
10 <i>°</i> ℃			X	Established Deployment Temperature

-10°C No Deployment

5 °C Partial Deployment

10°C Full Deployment

LASP Thermal Chamber Test

Video of Thermal Deployment at 10°C

Systems Engineering

Purpose &
ObjectivesDesign
DescriptionTest
OverviewTest
ResultsSystems
EngineeringProject
Management50

Systems Engineering "V" Guideline

Issues / Challenges Encountered

- Trade Study Completion
 - $\circ~$ Not every possible trade study was carried out at the start of the project
 - $\circ~$ Lead to problems within design during manufacturing
- Design Changes During Manufacturing
 - $\circ~$ To alleviate certain complications design changes were implemented
 - \circ Ended up causing manufacturing to be longer than originally planned ultimately delaying testing

Lessons Learned:

- Fully analyze each aspect of the design and perform all required trade studies early rather than performing a trade study to design a new part when it is determined one is functionally unachievable.
- Keep better track of the division of work between each sub-system group
- Develop more thorough interface documents at the start of the design process
- Try to avoid design changes during manufacturing

Requirement Flow Down

Key Trade Study: Design Baseline Concept

Trade	Weight	ISS-Like	Stackable	Inch Worm	Coilable Truss	Screw
Mass	10%	5	5	5	5	4
Manufacturability	20%	4	4	4	4	4
Complexity	20%	4	4	3	4	3
Heritage	15%	5	3	3	5	4
Rigidity	15%	5	5	5	5	4
Team Knowledge	20	5	5	4	4	4
Total	100%	4.6	4.3	3.9	4.4	3.8

Key Trade Studies: Deployment Telemetry

Trade	Weight	LiDAR Module	Electric Sensor	Camera	Break-Wire
Mass	10%	5	5	1	4
Volume	15%	5	5	2	5
Team Knowledge	20%	4	5	4	5
Risk	20%	2	4	5	5
Accuracy	35%	5	5	2	4
Total	100%	84%	96%	56%	91%

Systems Engineering

Key Trade Studies: Deployment Progress Sensor

Trade	Weight	Snap Switch	IR Sensor	Optical Encoder
Mechanical Complexity (0-5)	30%	2	5	3
Redundancy Opportunity (0-1)	10%	0	1	1
Software Complexity (0-5)	10%	5	5	3
Power Draw (0-5)	10%	5	3	4
Size (0-5)	40%	1	5	4
Total	100%	40%	96%	74%

Systems Engineering

Developed Interfaces

Risk Management Matrix

Engineering

62

Project Management

Purpose &
ObjectivesDesign
DescriptionTest
OverviewTest
ResultsSystems
EngineeringProject
Management63

Project Management

Team Hours Worked

Total: 5267 Hours

Project Budget Evolution

Margin Analysis

Line Item	CDR	+ Contingency	Final	Difference
Tooling	\$43.66	\$52.39	\$272.04	\$219.65
Hardware	\$410.55	\$492.66	\$427.93	\$64.73
Ероху	\$90.58	\$108.70	\$90.58	\$18.12
PEEK	\$540.95	\$649.14	\$770.66	\$121.52
Carbon Fiber	\$399.17	\$479.00	\$627.94	\$148.94
Nitinol	\$295.80	\$354.96	\$295.80	\$59.16
Wiring	\$300.00	\$360.00	\$338.34	\$21.66
LASP	\$750.00	\$900.00	\$175.00	\$725.00
Test Equipment	\$100.00	\$120.00	\$140.09	\$20.09
Shipping	\$300.00	\$360.00	\$273.46	\$86.54
Machine Shop/Classes	\$350.00	\$75.00	\$350.00	\$75.00
Total	\$3,297.6 2	\$3,887.38	\$3,586.84	\$300.54
				Project Management

Costs Breakdown

Materials Cost Breakdown

Total Project Cost Breakdown

Industry Cost = (2*Salary)+Materials = (2*164,594)+3,586.84 = \$329,188 + 3,586.84

Successes, Challenges & Lessons Learned: Project Management

- Few issues with internal deadlines being met, but with a team calendar/task list and more thorough explanation of expectations, project tasks were kept on track.
- Through the creation of personal slide decks everyone had the opportunity to see what other team members were doing and keep our expectations in line with reality and keep the team accountable.
- Over-all, a lot of hard work and effort went into this project from everyone, and we almost made it to the end of the project even with the reduced schedule.

Lessons Learned:

- Make the schedule early and make sure everyone knows what is expected and agrees to follow it.
- Frequent reviews of each team member's contribution (especially with individual powerpoints) helps keep everyone up to date on the project and reduces surprises.
- There are a lot of experts in the building who are very willing to help us work through engineering design/analysis problems.

Questions?

CUBE³

Backup Slides

71. Materials
72.-75. Cable Routing
76. Twisted Wire Analysis
77.-83. Resonant Frequency Analysis
84.-86. Thermal Chamber Analysis

Environmental - Structure Material

Material	Temp Range °C	Radiation	Outgassing
Aluminum	Max Temperature: 475 °C Min Temperature: Well below operation range	High UV tolerance	Little to no outgassing
Carbon Fiber	Max Temperature: 70-100 °C depending on type Min Temperature: Well below operation range	Large UV resistance	Low outgassing
Nitinol	Max Temperature: Annealing temperature of the specific Nitinol used Min Temperature: survives, but becomes non- elastic at below 10°C	High UV tolerance	Low outgassing

Cable Routing Test-Step 1

Steps:

- 1. Circuit Equivalent Model
 - a. Find: R', G', C', L'

$$C'\frac{dv_n}{dt} = - \frac{i_n - i_{n-1}}{\Delta z} \rightarrow \frac{\partial i(t,z)}{\partial z} = - C'\frac{\partial v(t,z)}{dt}$$
Cable Routing Test-Step 2: Skin Depth Attenuation

10-3

10

10⁻²

As frequency of sinusoidal current increases, current distributes itself towards surface of conductor

Current density vector decreases exponentially with increasing y at a distance:

$$\delta = \sqrt{\frac{2}{2\pi f \mu \sigma}}$$

Frequency [MHz] Majority of current flows through silver after 1 GHz, computations therefore assume a copper conductor

 10^{2}

10⁴

 10^{0}

Cable Routing Test-Step 3

Analytical Model:

Goal: Estimate data rate in kB/s

*Note: analysis does not take into account impedance mismatches, coupling to other line pairs, radiative loss or em interference

Steps:

- 3. Rise time degradation caused by attenuation
 - a. Define bandwidth, BW, of transmission line

Defining Bandwidth of the Transmission Line

- 1. In a realistic time domain waveform, the higher spectral components will drop off faster than an ideal square wave
 - a. How many spectral components are deemed significant?
- 2. Defining significance as keeping at least 50% of an ideal square waves power
 - a. Relates to keeping 70% of an ideal square wave's harmonic amplitude
 - b. In dB this relates to keeping all amplitudes with less than a 3dB attenuation

Relationship Between Bandwidth of a Square Wave and Its 1090 Rise Time^[3] BW = 0.35/RT

100 3

10

Cable Routing Test-Step 4

Analytical Model:

Goal: Estimate data rate in kB/s

*Note: analysis does not take into account impedance mismatches, coupling to other line pairs, radiative loss or em interference

Steps:

- 4. Data rate limitation
 - a. Dependent on bandwidth of transmission line

Defining Data Rate Limitation Based on BW

- 1. Attenuation increases along length of transmission line
 - a. Leads to a specific BW for a given length along the line
 - i. $\alpha(f) \ge d$
- 2. Using an estimation of the RT being 7% of the clock frequency
 - a. $\operatorname{Period}_{\operatorname{clock}} = \operatorname{RT}/0.07 \simeq 15 \operatorname{RT}$
 - b. $Period_{clock} = 15*0.35/BW$
 - c. $BW_{clock} = 5F_{clock}$

Twisted Wire Analysis- Propagation Coef

Skin depth explanation

even at 1 MHz

Single Rod Verification

♦ X

Analytic Result	Solidworks Result	Percent Difference	
452.2 Hz	452.6 Hz	0.0885%	

Four Rod Verification

Analytical Method

*Assume: Bending response dominated by longeron axial stiffness.

Х

Solidworks Method

1250 mm, carbon fiber rods, 1 bay

	Analytic Result	Solidworks Result	Percent Difference
/	53.9 Hz	61.1 Hz	13.4%

12 Bay Truss Verification Direct Stiffness Method (DSM)

Analytic Result	Solidworks Result	Percent Difference	
24.5 Hz	21.3 Hz	13.1%	

♦ X

Boom Structure Feasibility-Vibration

Bending

Analytical Validation of Solidworks Vibration Analysis for First Resonant Frequency

Simplified Model	Analytic Result	Solidworks Result	Error
Single Rod, 110 mm, no payload mass	452.2 Hz	452.6 Hz	0.0885%
4 Rods, 1250 mm, no payload mass	53.9 Hz	61.1 Hz	13.4%
12 bay truss, 1250 mm, no payload mass	71.6 Hz (in plane)	31.1 Hz	56.6%
4 Rods, 1250 mm, torsion analysis	24.5 Hz	21.3 Hz	13.1%

Resonant Frequency

	Single Bay	Full Boom	Full Boom + Instrument
Analytical Method	401.5 Hz	71.6 Hz	N/A
SOLIDWORKS	371.24 Hz	31.1 Hz	8.8 Hz
Ansys	302.5 Hz	N/A	N/A
Visual			

Vibration Analysis with Payload using Solidworks

Number of Bays	No Instrument [Hz]	No Instrument - Error [Hz]	500 gram Instrument [Hz]	500 gram Instrument - Error [Hz]
1	236.1	2.25	35.0	0.3
2	111.0	4.59	19.8	0.5
3	76.2	6.75	14.7	0.7
4	56.8	9.00	12.1	1.0
5	46.0	11.25	10.3	1.3
6	38.3	13.50	9.0	1.5
7	31.7	15.75	8.1	1.8
8	27.9	18.00	7.2	2.0

LASP Thermal Test-Temperature Profile 10°C

LASP Thermal Test- Temperature Profile 0°C

Thermal Model

Backup Slides