C.R.O.A.C.S. Preliminary Design Review

October 18th, 2021

ASEN 4018-011 Team #6

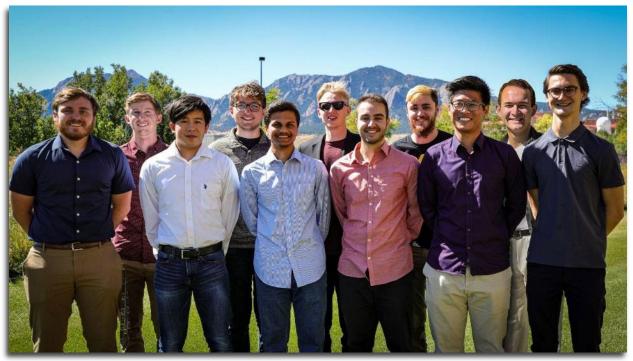
Company Sponsor:

Astroscale

Faculty Advisor:

Dr. Yu Takahashi

Presenters:


Brandon DiLorenzo, Tyler Gaston, Jason Le, Max Morgan, Walter Sabin, Shawn Stone

The Team

Jake Pirnack - Brandon diLorenzo - Zackary Hubbard - Max Morgan - Nick Herrington Tyler Gaston - Jason Le - Jash Bhalavat - Shawn Stone - Jianai Zhao - Walter Sabin

Presentation Outline

- 1. Project Overview Tyler Gaston
- 2. Feasibility: Software Brandon diLorenzo
- 3. Feasibility: Electronics Jason Le, Shawn Stone
- 4. Feasibility: CROACS Hardware Max Morgan
- 5. Feasibility: Client Hardware Walter Sabin
- 6. Feasibility: Financial Shawn Stone
- 7. Feasibility Summary Shawn Stone
- 8. Future Work Tyler Gaston

Project Overview

4

Project Overview

Background:

- Space Debris is growing concern, as more and more satellites are put into orbit.
- Astroscale is working on end of life satellite servicing for cooperative and noncooperative satellites.
- In order to attempt at de-orbiting debris its **attitude and position must be accurately measured.**

Motivation:

nn and H.J. Smea

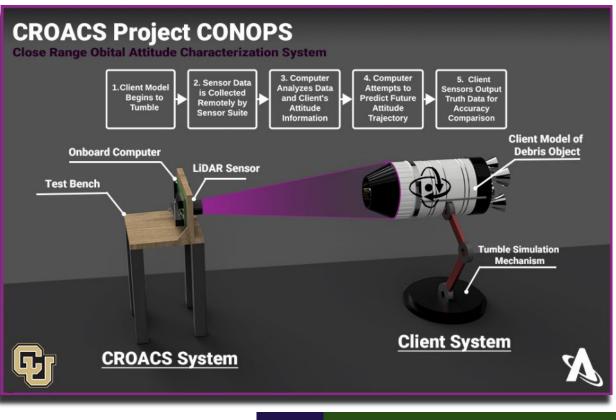
BSITY OF COLOBADO BOULDE

ace Engineering Sciences

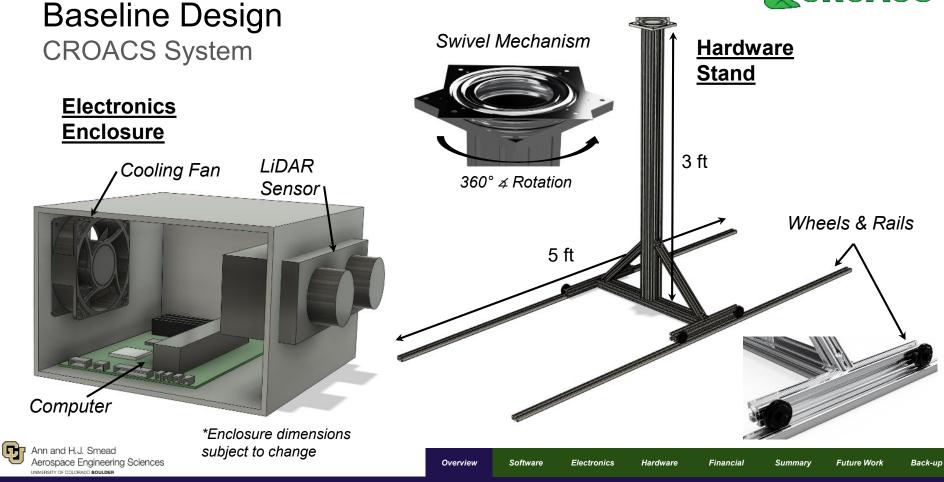
- Accuracy & Complexity: Current ground based satellite tracking has large margins of positional error, and is ineffective at determining attitude and pointing.
- **Safety:** The servicing satellite must have a way to sense the client satellite's attitude and position without increasing the risk of a collision or creating more debris.

Space Debris Field Timeline https://upload.wikimedia.org/wikipedia/commons/3/3d/Tough_Love_ESA19243296.gr

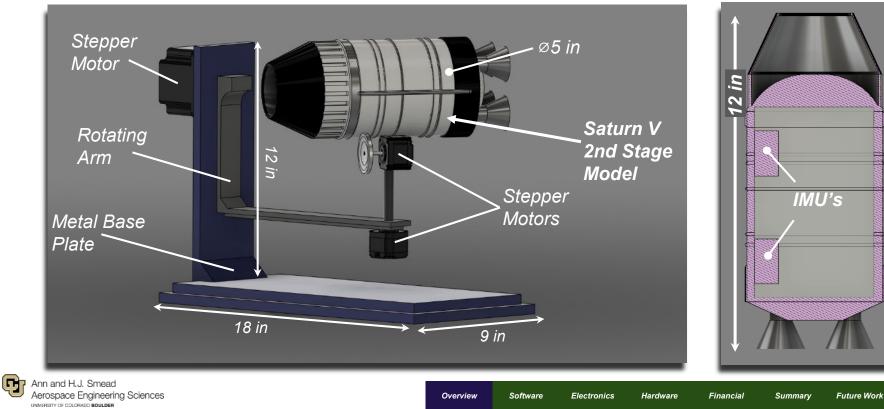
ISS Space Debris Damage https://spacenews.com/wpcontent/uploads/2021/06/canadarm-debris-2021.png


Mission Statement

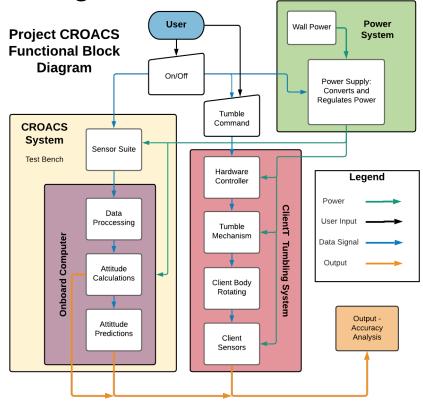
"Close Range Orbital Attitude Characterization System (CROACS) will remotely sense and analyze data of a client satellite to determine and predict relative position, relative velocity, attitude, and angular velocity."



Concept of Operations



Back-up


Baseline Design

Client System (Testing)

Functional Block Diagram

Critical Project Elements

СРЕ	Description		
[E1] Sensors and Imaging	-Imaging sensor collects and transmits data to on-board computer software verifies data is usable.		
[E2] CROACS Hardware	-Physical enclosure housing all CROACS electronics and sensors . -Capable of translation during testing.		
[E3] Space Debris Model	-Physical model of space debris with three axes of motorized rotation simultaneously. -Onboard Sensors must report truth data.		
[E4] Data Processing	-Software differentiates debris from background and models tumble.		
[E5] Prediction and Accuracy	-Software calculations must match truth data to a <10% margin of error . -At a 10°/sec angular rotation rate for each axis, the software is capable of making future predictions up to 5 minutes forward with <25% deviation after the first minute.		

Design Feasibility

Design Feasibility - CROACS Software

The software must be capable of processing LIDAR data and calculating a known client satellite's relative position, velocity, attitude, and angular velocity.

Software Feasibility: Data Processing

- Object detection and isolation is an important step for our software.
- Range masking is a common technique.
 - Eliminating range outside of specified bounds
- Our ability to work with LiDAR data will be facilitated by the LiDAR toolbox in MatLab
 - Has the built in ability to process raw point cloud LiDAR data

Example of Range Masking in a LiDAR Capture

Software Feasibility: Data Processing LiDAR Data

- Object
 - Soda Can
- Captured using iPhone 12 Pro LiDAR capabilities
 - App: Poly Cam
 - Number of Points: 16440
 - o Data: 409 kB
- Processing
 - Intel(R) Core(TM) i5-8350 CPU @ 1.7 GHZ, 1.9 GHz
 - RAM: 16 GB

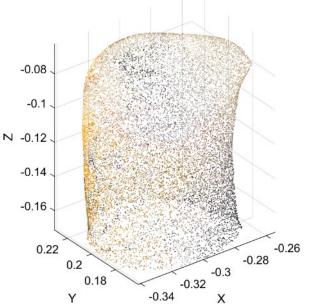
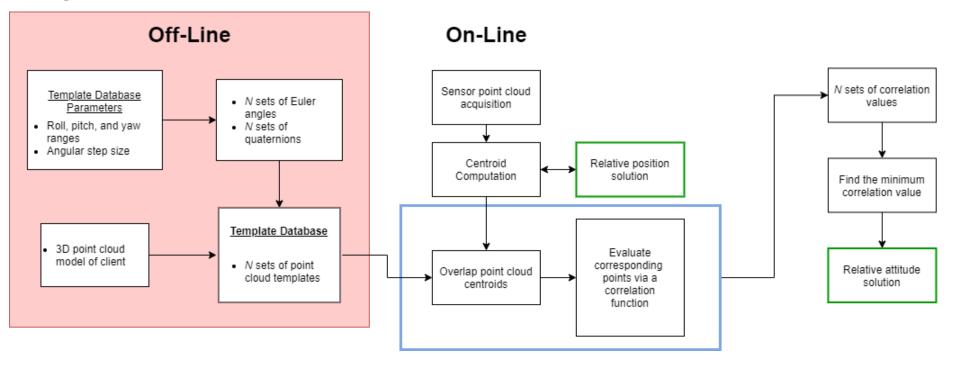



Figure: Processed LiDAR Point Cloud

Algorithm Flowchart

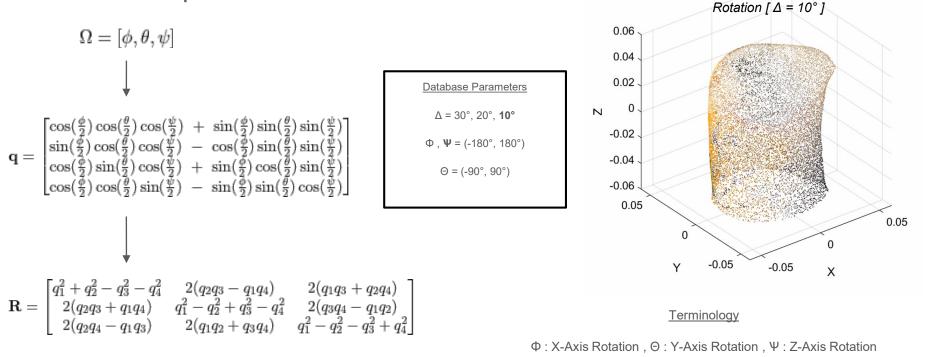

Ann and H.J. Smead Aerospace Engineering Sciences

Figure: Point Cloud Templates with Z-Axis

Software Feasibility: Attitude Calculations

Offline: Template Database

Overview

Software

Electronics

Hardware

Financial

Summary

Future Work

Back-up

(R)

Ann and H.J. Smead

INERSITY OF COLORADO BOULDE

Aerospace Engineering Sciences

Centroid Computation

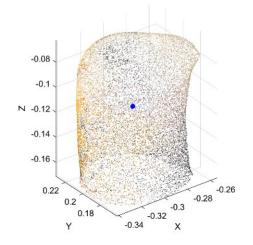
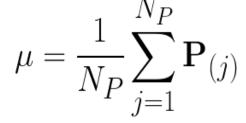



Figure: Centroid-Centered Point Cloud

μ = Centroid

 N_P = Number of Points

P_(i) = j-th Point

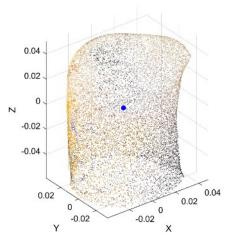
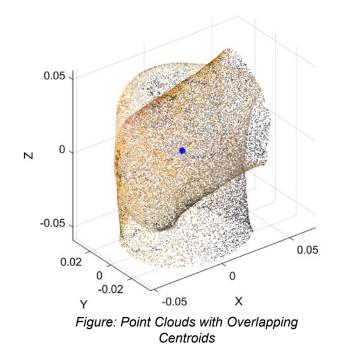



Figure: Origin-Centered Point Cloud

Online: Template Matching

Correlation Function

$$C(\Omega) = \frac{1}{N_P} \sum_{j=1}^{N_P} \left| \mathbf{P}_{SENSOR}^{(j)} - \mathbf{P}_{TEMPLATE}^{(j)}(\Omega) \right|^2$$

Online: Template Matching

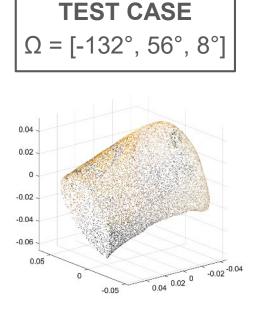


Figure: Point Cloud at Test Case Orientation

Ann and H.J. Smead

INVERSITY OF COLORADO BOLL DES

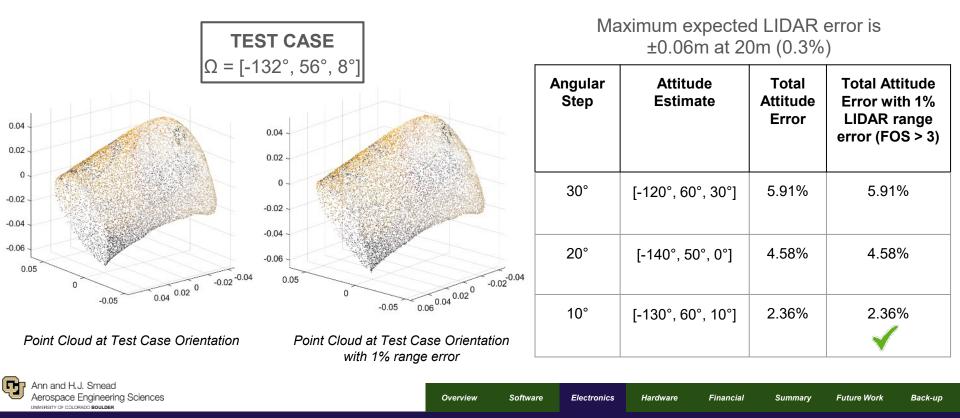
ace Engineering Sciences

Angular Step	Attitude Estimate [3-2-1]	Total Attitude Error
30°	[-120°, 60°, 30°]	5.91%
20°	[-140°, 50°, 0°]	4.58%
10°	[-130°, 60°, 10°]	2.36%

Initial attitude characterization <u>is feasible</u> within accuracy requirements, future work required for velocity and determining object from background.

$$\sigma_{\phi} = \frac{|\phi - \phi_{est}|}{360^{\circ}} \qquad \sigma_{\theta} = \frac{|\theta - \theta_{est}|}{180^{\circ}} \qquad \sigma_{\psi} = \frac{|\psi - \psi_{est}|}{360^{\circ}}$$

$$\sigma_{total} = 100\% * \sqrt{(\sigma_{\phi})^2 + (\sigma_{\theta})^2 + (\sigma_{\psi})^2}$$


Design Feasibility - Electronics

Sensors and other electronic hardware must have specifications capable of meeting accuracy requirements.

Electronics Feasibility: CROACS Electronics LIDAR Sensor Error

Electronics Feasibility: CROACS Electronics Onboard Processing - File Size

- LAS typical LiDAR point cloud data format
- LIDAR sensor points per second (pps) varies: roughly 100,000 to 2M
 - Does not account for elimination of background information

Table 2: Comparison of the space (MB) and average time (in milliseconds) for queries *getRegion* and *FilterAttRegion*.

Dataset # points		Space (MB)		GetRegion (ms)		FilterAttRegion (ms)		
		LAS	LAZ	k^3 -lidar	LAZ	k^3 -lidar	LAZ	k^3 -lidar
PNOA-small	$13,\!265,\!144$	254	43	119	1,524	249	1,517	145
PNOA-medium	$25,\!108,\!130$	479	80	225	2,521	424	$2,\!655$	374
PNOA-large	$52,\!627,\!503$	1004	173	471	6,859	$1,\!189$	6,283	1,264
TUB1	$32,\!597,\!694$	622	196	304	6,145	383	_	_
FireBrigade	$10,\!406,\!389$	199	77	100	1,717	74	_	_

Ladra, 2019 [1]

Software

Electronics

Hardware

Financial

Summary

Future Work

Back-up

Overview

Electronics Feasibility: CROACS Electronics

Onboard Processing - Transfer Speeds

	# of Points	MB for LAS file type	Points per MB (ppMB)
	13,265, <mark>1</mark> 44.0	0 254.00	52,224.98
	25,108, <mark>1</mark> 30.0	0 479.00	52,417.81
	52,627,503.0	0 1,004.00	52,417.83
	32,597,694.0	0 622.00	52,407.87
	10,406,389.0	0 199.00	52,293.41
TOTAL	134,004,860.0	0 2,558.00	52,386.58

Expected data transfer rates are feasible, but required storage might affect processor choice or data acquisition time

- 2M pps for worst case \rightarrow 38.1 MBps maximum data transfer rate
 - Typical read/write speeds on the order of GB/s
- Sensor running continuously for 15 minutes \rightarrow 34.29 Gb of total storage /

Overview

Software

Summary

Electronics Feasibility: Client Electronics

Truth Data Sensor System

Fundamental equations:

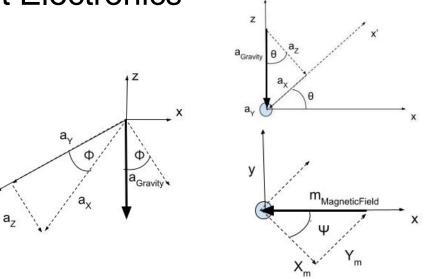
$$\theta = -\arctan(\frac{a_x}{a_y})$$
 $\phi = -\arctan(\frac{a_y}{a_z})$
 $\psi = \arctan(\frac{Y_m}{X_m})$

$$X_m = m_x \cos(\theta) - m_y \sin(\phi) \sin(\theta) + m_z \cos(\phi) \sin(\phi)$$

 $Y_m = m_y \cos(\phi) + m_z \sin(\phi)$

From IMU Specifications:

- Accelerometer error (a_x, a_y, a_z) : **±4%**
 - Reduces to ±2.83% for 2 IMU's
- Magnetometer error (m_x, m_y, m_z): **±8%**
 - Reduces to ±5.66% for 2 IMU's

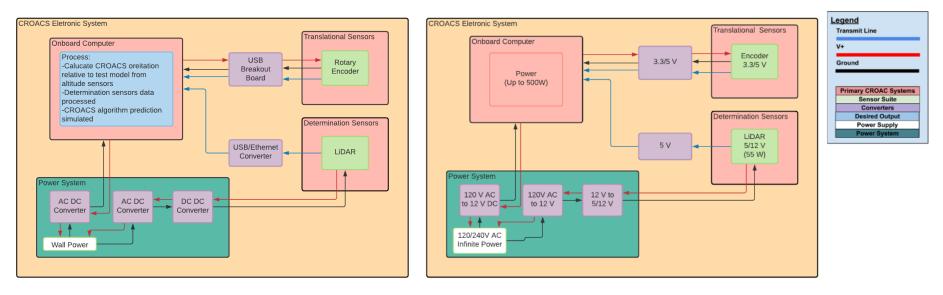


δ_θ= 0.013
 δ_Φ= 0.022

٧

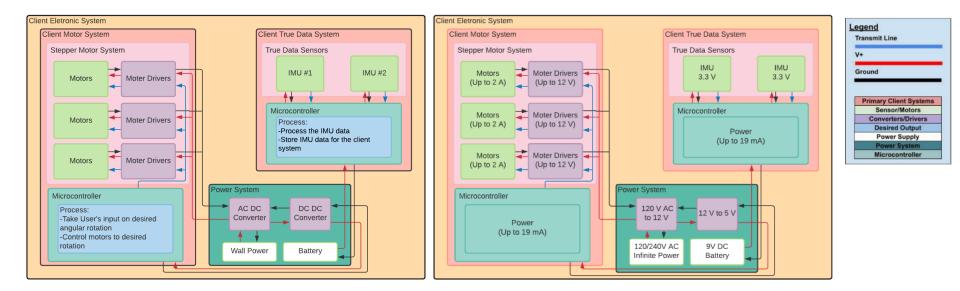
Overview

 $\delta_{\phi} = 0.022$ $\delta_{\psi} = 0.029$ Truth Data Sensor System <u>is feasible</u> based on Euler angle error less than 3%



Ann and H.J. Smead Aerospace Engineering Sciences

Electronics Feasibility: CROACS Electronics CROACS Power Diagram



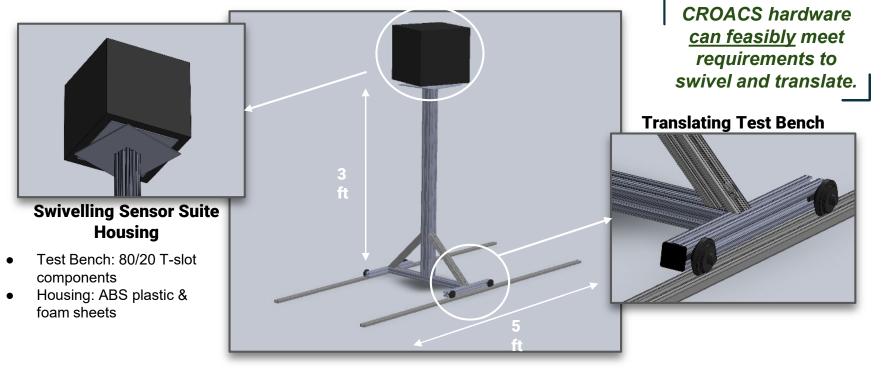
CROACS electronics are <u>power feasible</u> as the project is not power limited and wall power is accessible.

Electronics Feasibility: Client Electronics Client Power Diagram

Client electronics are power feasible as the project is not power limited and wall power is accessible.

Design Feasibility - CROACS Hardware

The test bench shall have sufficient dimensions capable of enclosing the onboard computer and LIDAR sensor. The enclosure must be able to rotate and translate to perform testing.



Back-up

Hardware Feasibility: CROACS Hardware

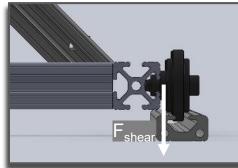
Test Bench & Sensor Suite Housing

Hardware Feasibility: CROACS Hardware

Swivel Structural Analysis

Overview

Software


Hardware Feasibility: CROACS Hardware

Test Bench Structural Analysis

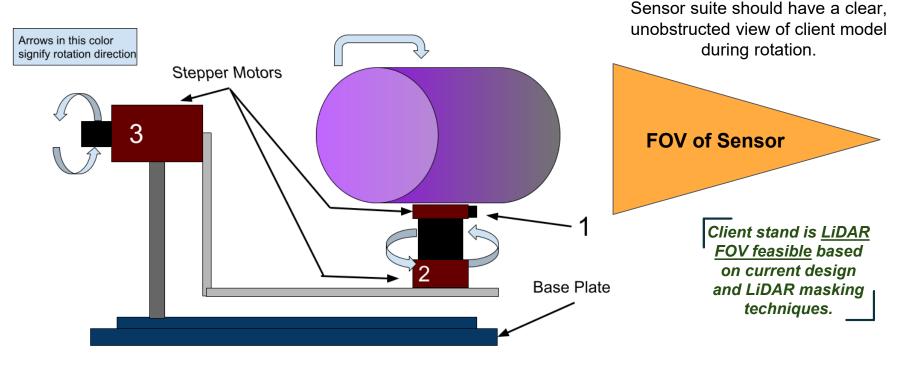
Vertical Deflection at Center of Cross Beam

Shear Strength of Wheel Axials

8	80/20 T-Slot Profile	e Wheels
Material:	<u>Aluminum</u>	Nylon PA Glass Fiber Reinforced
Grade:	6105-T5	K222-D
Yield Strength:	35 ksi / 241.32 MPa	7.98 ksi / 55 MPa
Young's Modulus:	10,200 ksi / 7.033 GPa	174 ksi / 1.20 GPa

- <u>Deflection Feasibility:</u>
 - Estimated applied load 21.14 lb w/ FOS
 - **FOS = 1.5**
 - Assumptions: center point load, 2-fixed ends
 - $\delta_y = 0.0008$ inches ≈ 0
- <u>Shear Strength Feasibility:</u>
 - Tensile Strength = 7980 psi
 - Estimated Shear Strength = 4788 psi
 - Estimated applied load (w/ FOS)
 - 24.65 *lb* total
 - <u>6.16 lb per wheel</u>
 - Cross-sectional Area of Axial = 0.0192 in²
 - Required Shear Strength = 320.9 psi << 4788 psi

Software


Design Feasibility - Client Hardware

The client satellite model must be able rotate around 3 axes simultaneously without interfering with the CROACS sensing.

Hardware Feasibility: Client Hardware Rotational Stand Lidar Interference Diagram

Hardware Feasibility: Client Hardware

Stepper Motor Torque Analysis

• Estimate torque experienced by Motor 3 to see if solution is feasible

Mass Estimation: Items rotated by Motor 3

Object	Expected Mass [kg]
1/82 Scale Saturn V Second Stage	1.74
Motor 1	0.13
Motor 2	0.23
Extra PLA (supports and connections)	0.25
Total Mass	2.35

From initial design, the moment arm that motor 3 sees is expected to be 7in = 0.1778m **Torque Calculation:**

- T = torque ; m = total mass
- r = expected moment arm
- g = acceleration due to gravity

$$T = mgr = (2.35)(9.81)(0.1778)$$

- T = 4.01 Nm
- T = 4.0Nm

Hardware Feasibility: Client Hardware Stepper Motor Torque Analysis

- Expected torque, T = 4.0Nm becomes $T_s = 8.0Nm$ (Factor of Safety = 2)
 - Numerous motors exist that have sufficient torque ratings
 - Many fall within desired price window (< \$150)

https://www.omc-stepperonline.com/s-series-nema-34-closed-loop-stepper-motor-9-nm-1274-76oz-in-encoder-1000cpr.html?search=Nema%2034%20closed%20loop

Hardware Feasibility: Client Hardware

Stepper Motor Torque Analysis - Motors 1 & 2

 \propto = 0.1745 [rad/sec²]

Expected Moment:	l _Y = 0.0306 [kg m ²]	l _z = 0.034 [kg m²]
Required Torque:	T ₂ = 0.5 [N cm]	T ₁ = 0.6 [N cm]

Nema 17 Stepper Motor

- 59 [N cm]
 - \circ Well over FOS = 2
- \$13.99
 - Ships from U.S

Client hardware motors <u>are feasible</u> based on current client designs and motor options

https://www.amazon.com/STEPPERONLINE-Stepper-Bipolar-Connector-compatible/dp/B00PNEQKC0/rel

Hardware

Electronics

are Financial

Design Feasibility - Financial

Cost of all purchase should under \$4800 after deducting \$200 for tool kit damage deposit.

Finances

Hardware	Est. Cost	Subsystem	Est. Cost	
CROACS Hardware	\$300 ± 50	Hardware	\$600 ± 100	
Client Hardware <u>Cost Breakdown of Client Hardware</u>	\$300 ± 50	Electrical	\$2500 ± 750	
Total	\$600 ± 100	Manufacturing Budget	\$500	CROACS project is
Electrical	Est. Cost	Total	\$3600 ± 850 (<\$4800)	financially feas based on curr designs and cu
<u>Client Electronics</u> - IMU x2 - Stepper Motors - Hardware Controller	\$500 ± 150	Leftover*	+ \$350	market price
- Misc./Power CROACS Electronics - LIDAR Sensor		Est. Cost = Mean(Price Poir Total Est. Margin =		
- Onboard Computer - Power System - Misc. Electrical	\$2000 ± 600	*Leftover: Buffer in budget ad Used for miscellaneous parts, d	ccounting for max Est. Cost amaged parts, expedited shipping fe	esetc.
Total	\$2500 ± 750			

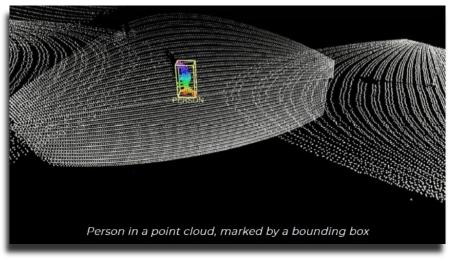
Feasibility Conclusions

Back-up

Feasibility Conclusions

System	CPE	Feasible	Reasoning
Software	E4, E5	Yes*	Attitude can be found within accuracy requirements, need to implement method of determining object from background. Computational time is also a concern.
CROACS Electronics	E1, E2	Yes*	LiDAR range accuracy is acceptable for attitude characterization. Onboard processor can handle data transfer rates but storage might affect processor choice or data acquisition time.
Client Electronics	E3, E5	Yes	Truth data sensors give measurements within acceptable limits.
CROACS Hardware	E2	Yes	CROACS hardware meets functional requirements (swivel and translation), also meets structural needs.
Client Hardware	E3	Yes	Custom rotational stand doesn't interfere with sensor line of sight, motors can feasibly torque weight of model.
Cost	N/A	Yes	Total cost of parts, accounting for alternate selections, manufacturing costs, and tool kit deposit, is below \$4800.

Future Work



41

Future Work Software

- **Object Detection** (Edge tracking, range masking, etc)
- Research and testing for Iterative Closest Point (ICP) method for angular velocity
- Research and testing for integration of position data to get translational & angular velocity
- Further research into template matching Algorithm Optimization

Object detection in LiDAR data [7]

Back-up

Future Work Electronics

- Down selecting specific LiDAR sensor
- Determining specific onboard processor
 - Further investigate minimum hardware specifications for reliable software execution.
- Interfacing between selected LiDAR sensor and on board processor
- IMU selection
- Selecting specific **power converters**

Future Work Hardware

- CROACS Hardware
 - Determine electronics enclosure dimensions
 - Ensure electronics compatibility
 - Analyze electronic thermal output to determine required cooling
- Client Hardware
 - Ensure no rotation stand LiDAR interference
 - Integrate **electronic pathing** into design
 - Designing motor interfacing
 - Specifically motor 1 with client model

Back-up

Acknowledgements

Astroscale:

Sandor Nemethy, Sam Laurila, and Rebeca Griego

Senior Design Coordinators:

Dr. Kathryn Wingate and Dr. Jelliffe Jackson

Our Project Advisor: Dr. Yu Takahashi

The Projects Advisory Board Members

Special Thanks for PDR Review Sessions with:

DR. Yu Takahashi and Emma Markovich

Questions?

References

[1] - Ladra S., Luaces M.R., Paramá J.R., Silva-Coira F. (2019) Space- and Time-Efficient Storage of LiDAR Point Clouds. In: Brisaboa N., Puglisi S. (eds) String Processing and Information Retrieval. SPIRE 2019. Lecture Notes in Computer Science, vol 11811. Springer, Cham. <u>https://doi-org.colorado.idm.oclc.org/10.1007/978-3-030-32686-9_36</u>

[2] - "Lidar toolbox," Matlab Documentation Available: https://www.mathworks.com/help/lidar/index.html

[3] - Harwell based Astroscale completes successful space demonstration", Harwell Campus Ox-ford Available: https://www.harwellcampus.com/news/astroscales-demonstrates-repeated-magnetic-capture/?home=1.

[4] - Opromolla, R., Fasano, G., Rufino, G., and Grassi, M., "A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations," Progress in Aerospace Sciences, Vol. 93, 2017, pp. 53–72. <u>https://doi.org/10.1016/j.paerosci.2017.07.001</u>

[5] - Rangwala, S., "The iphone 12 - LIDAR AT YOUR FINGERTIPS," Forbes Available: https://www.forbes.com/sites/sabbirrangwala/2020/11/12/the-iphone-12lidar-at-your-fingertips/?sh=f950d063e285

[6] - Lee , T. B., "Lidar used to cost \$75,000-here's how Apple brought it to the iPhone," Ars Technica Available: https://arstechnica.com/cars/2020/10/the-technology-behind-the-iphone-lidar-may-be-coming-soon-to-cars/

[7] - Wojtech, R., "Object detection using LIDAR - head in the (point) clouds," Blickfeld Available: <u>https://www.blickfeld.com/blog/lidar-data-processing-for-object-detection/</u>

[8] - Sanatkar, M., "Lidar 3D Object Detection Methods," Towards Data Science Available: <u>https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea</u>

References

[9] - "RotaryEncoder,",2021.URLhttps://create.arduino.cc/projecthub/MisterBotBreak/how-to-use-a-rotary-encoder-16e079.

[10] - "Titan S1 - Neuvition: Solid-state lidar, LIDAR sensor suppliers, Lidar Technology, Lidar Sensor," Neuvition Available: <u>https://www.neuvition.com/products/titan-s1.html</u>

[11] - "Ad-96TOF1-EBZ," Analog Devices Available: <u>https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/ad-96tof1-ebz.html#eb-overview</u>

[12] - "2D/3D dual solid state tof lidar," CYGBOT Available: <u>https://www.cygbot.com/2d-3d-dual-solid-state-tof-lidar</u>

[13] - "Cepton Vista®-P Lidar," Cepton Available: <u>https://www.cepton.com/products/vista-p</u>

[14] - "Intel® NUC kit NUC5CPYH - product specifications," Intel Available: <u>https://www.intel.com/content/www/us/en/products/sku/85254/intel-nuc-kit-nuc5cpyh/specifications.html</u>

[15] - "Nvidia Jetson TX2: High performance ai at the edge," NVIDIA Available: <u>https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/</u>

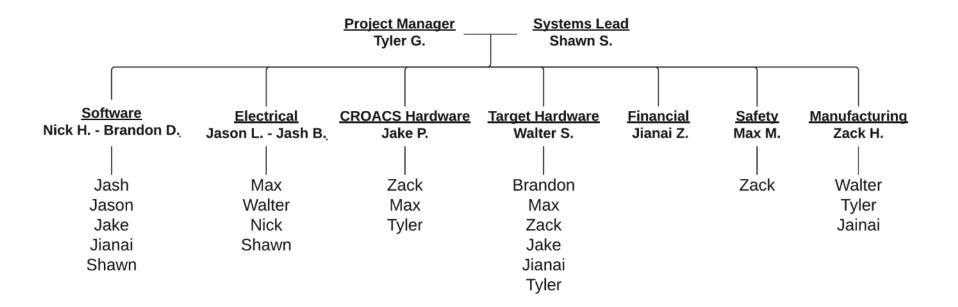
[16] - "Optiplex 3080 Micro Form Factor Desktop," Dell Available: <u>https://www.dell.com/en-us/work/shop/desktops-all-in-one-pcs/optiplex-3080-micro-desktop/spd/optiplex-3080-micro</u>

[17] - "MSI Cubi," MSI USA Available: https://us.msi.com/Business-Productivity-PC/Cubi/

Backup Slides

Administrative/Financial Software Electronics Hardware

Administrative/Financial


Return to Top

50

The Team - Team Organization

Critical Feasibility Statements

Category	Statement	CPE	Functional Requirement
Electronics	Sensors and other electronic hardware must have specifications capable of meeting accuracy requirements.	E1,E3	FR1,FR3
CROACS Hardware	The test bench shall have sufficient dimensions capable of enclosing the onboard computer and LIDAR sensor. The enclosure must be able to rotate and translate to perform testing.	E2	FR4
Client Hardware	The client satellite model must be able rotate around 3 axes simultaneously without interfering with the CROACS sensing.	E3	FR5
Software	The software must be capable of processing LIDAR data and calculating a known client satellite's relative position, velocity, attitude, and angular velocity.	E4,E5	FR2
Financial	Cost of all purchase should under \$4800 after deducting \$200 for tool kit damage deposit.	E1,E2,E3	N/A

Cost Breakdown of CROACS Hardware

Supplier	Description	Part Number	Cost		Quantity			Shipping
	10 series one-sided beam	1050	\$0.20	per inch	120	\$24.00		Website: https://8020.net/shipping-information_40 days for shipping. \$33.83 for current order
	10 series 45 degree 12" beam	2570	\$18.24	per	2	\$36.48		
	10 series beam	1010	\$0.28	per inch	24	\$6.72]	
	10 series wide beam	1020	\$0.48	per inch	18	\$8.64]	
	20 series beams	2020	\$0.69	per inch	36	\$24.84		
80/20	10 series wheels	2281	\$17.34	per wheel	4	\$69.36	\$205.44	
	10 series inside corner bracket + mounting HW	4119	\$4.05	per bracket + mounting HW	4	\$ 16.20		
	20 series inside corner bracket + mounting HW	20-4113	\$7.16	per bracket + mounting HW	2	\$14.32		
	end caps	2015	\$1.22	per cap	4	\$4.88	1	
	corner-reinforcing bracket	15705A34	\$2	per bracket	6	\$15		
McMASTER-CARR	corner bracket	15705A45	\$0.77	per bracket	2	\$1.54	\$29	
	10-24 screws	91772A374	\$5.64	per 100 pack	1	\$5.64	1	
	surface mount hinge	1488A11	\$7.10	per hinge	1	\$7.10	1	Normal shipping cost
	ABS Plasic Sheets	https://www.ama	\$4.37	per 12"x12" sheet	3	\$13.11		
Other (Amazon)	Foam Sheets	https://www.ama	\$14.92	per 10 pack of 9"x12" sheets	1	\$14.92	\$64.72	
	swivel plate	Amazon.com: S	\$36.69	per part	1	\$36.69	1	Normal shipping cost
Miscellaneous	plywood, 3D printer components, clips, other mounting hardware, etc.	N/A	N/A	N/A	N/A	N/A	\$25	
Estimated Total	\$324.38							

Overview

Ann and H.J. Smead Aerospace Engineering Sciences

Summary

Cost Breakdown of Client Hardware

	Description	Part Number	Cos	t	Quantity	То	tals
	0.25" Aluminum sheet	2455	\$36.60	per sq.ft.	1.5	\$54.90	
8020	10 series inside corner bracket + mounting HW	4119	\$4.05	per bracket + mounting HW	4	\$16.20	\$85.42
	20 series inside corner bracket + mounting HW	20-4113	\$7.16	per bracket + mounting HW	2	\$14.32	
McMASTER-CARR	corner bracket	15705A45	\$0.77	per bracket	2	\$1.54	\$7.18
MCMASTER-CARK	10-24 screws	91772A374	\$5.64	per 100 pack	1	1 \$5.64	
Other (Amazon)	ABS Plasic Sheets	https://www.ama	\$4.37	per 12"x12" sheet	3	\$13.11	\$35.60
	Overature PLA		\$14.99	per kg	1.5	\$22.49	
	0.59Nm Stepper Motor		\$13.99	per unit	1	\$13.99	
Motors	1Nm Stepper Motor		\$25.99	per unit	1	\$25.99]
	7.07Nm Stepper Motor		\$71.42	per unit	1	\$71.42	\$111.40
Estimated Total	\$239.60						

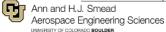
Cost Breakdown of Onboard Processor

Processors:	Cost:	AC DC Converters:	Cost:	DC DC Converters:	Cost:	LIDAR:	Cost:	Encoders:	Cost:	Miscellaneous:	Cost
Intel NUC 5	\$519	Wagan EL9903 - 5 amp AC to DC Power Adapter, 5A Power Converter, Converts 110V AC to 12V DC	\$29.99	Buck Converter 24v to 5v,	\$10.49	Neuvition Titan S1	\$1,399.00	SparkFun Qwiic Twist	\$22.95	Wires	\$10
MSI Cubi	\$549.99	12V 5A Power Supply, Waysse Power Supply Adapter, AC DC Converter	\$9.99	12V to 5V DC USB Buck Converter, DROK Dual USB Port Fast Charger	\$12.99	Analog Devices AD-96TOF1-E BZ	\$812.50	Cylewet 5Pcs KY-040 Rotary Encoder Module with 15×16.5 mm with Knob Cap for Arduino	\$9.29		
HP EliteDesk	\$396.74	ALITOVE DC 12V 5A Power Supply Adapter Converter Transformer AC 100-240V	\$11.99	12v to 5v Converter - iGreely DC 12V 24V to 5V 10A Step Down Converter Adapter DC	\$10.99	Cygbot 3D Dual Solid State ToF LiDAR	\$170.00	Cylewet 5Pcs 360 Degree Rotary Encoder Code Switch Digital Potentiometer	\$8.89		
Jetson TX2	\$520	Chanzon UL Listed 12V 5A 60W AC DC Power Supply Adapter 2.1x5.5 2.5x5.5 Plug (Input 110V-220V,	\$15.99	12v to 5v Volt Converter, DROK DC Voltage Regulator Board Power Supply Module	\$12.59	Yujin YRL Series 3d LiDAR	\$1,200.00	Signswise Incremental Optical Rotary Encoder for Arduino	\$15.99		
HP TG01 i5	749.99\$	2V 5A Power Supply, LeTaoXing AC 100-240V 50/60Hz to DC 12V 5A	\$12.98	UCTRONICS DC 6V 9V 12V 24V to DC 5V 5A Buck Converter Module	\$14.99	Terabee TeraRanger Evo 64px	\$127.51	Taiss/Incremental Rotary Encoder DC 5-24v Wide Voltage Power Supply 6mm Shaft Optical	\$20.99		
OptiPlex 3080 Micro	\$689										
											<u> </u>
Statistics:											<u> </u>
Processor Mean	\$571	AC DC Converter Mean	\$16.19	DC DC Converter Mean	\$12.41	LiDAR Mean	\$741.80	Encoder Mean	\$15.62	Miscellaneous Mean	\$10
Processor Standard Deviation	128.1203456	AC DC Converter Standard Deviation	8.013489876	DC DC Converter Standard Deviation	1.783816134	LiDAR Standard Deviation	581.198119	Encoder Standard Deviation	6.481984264	Miscellaneous Standard Deviation	#DIV/ 0!

Overview

Software

Electronics


Hardware

Financial

Summary

Future Work

Back-up

Back-up

ork

Cost Breakdown of LiDAR Sensor

Neuvition Titan S1	https://www.neuvitio	See folder in drive	LIDAR-video fusion? Possibly proprietery software	\$1,399.00	Waiting for email	response	Yes	
Analog Devices AD-96TOF1-EBZ	https://www.analog.e	Found on main link	Open software (cross platform library), max range of 6m	\$812.50	https://www.mous	up to 13 weeks	Yes	
Leddar Pixell	https://leddartech.co	Found on main link	Used for autonomous driving applications, has strange interfacing & specs	Need to look at specific distributors	https://leddartech.	Can come from Canada, China, South Korea, Japan, or the UK	Maybe	
Velodyne HDL-32E	https://velodynelidar	Found on main link	Used for drones, has 360deg FOV	Need to email	Need to email	Need to email	Need to email	
Velodyne Puck (VLP 16)	https://velodynelidar	Found on main link	Used for drones, has 360deg FOV	Need to email	Need to email	Need to email	Need to email	
Velodyne Puck Hi-Res	https://velodynelidar	Found on main link	Used for drones, has 360deg FOV	Need to email	Need to email	Need to email	Need to email	
Livox Horizon	https://www.livoxtec	Found on main link	Autonomous driving, 81.7°H ×25.1°V, HAS POINT CLOUD DATA AVAILABLE		Need to email	Need to email	Need to email	Scanning Lidar, not scannerless
			70deg circular FOV, used for close	\$000100			riced to email	Counting Load, not counterford
Livox Mid-70	https://www.livoxtecl	Found on main link		\$799.00	Need to email	Need to email	Need to email	Scanning Lidar, not scannerless
Cygbot 3D Dual Solid State ToF LiDAR	https://www.cygbot.c	https://fd6aa090-08	Budget LiDAR, 120h 65v FOV	\$170.00	https://www.spark	1-5 Business Days	Yes	
Yujin YRL Series 3d LiDAR	https://yujinrobot.com	Found on main link	Used for robots, 270h 90v FOV	\$1,200.00	https://www.robots	S	Yes	
Quanergy M8-Series Lidar	https://guanergy.com	See folder in drive	ToF lidar with 360H +- 20V FOV		Maiting for or	mail response		https://on-demand.gputechconf.com/gtc/2016/pr entation/s6726-louay-eldada-guanergy-systems df
Headwall Photonics Sensors	https://www.headwa	Found on main link	I dont think they are applicable, pretty sure they are all scanning LIDAR. However they seem really unique (they can scan across a wide range of wavelengths?)	1				
Intel® RealSense™ LiDAR Camera L515	https://www.intelreal	Found on main link	Works like a camera, but does LIDAR? Separate LIDAR + camera system? Not sure how to classify this one, has 70H 55V FOV.		https://store.intelro	e	Yes	Says its going to be discontinued in Feb 2022, a links a bunch of other options here: https://www.intelrealsense.com/message-lo-cus mers/
Advanced Scientific Concepts LLC: GSFL-4K 3D Full Motion Video LIDAR	https://asc3d.com/gs	Found on main link	Solid State Flash/Pulsed LIDAR with 15 to 45deg scalable FOV		Waiting for er	mail response		
Cepton Vista-P60	https://www.cepton.c	Waiting for email response	60H by 22V FOV with 10Hz frame rate	\$4,000.00	Need to email	3-4 weeks	Yes	
Robosense RS-LiDAR-M1		https://www.roscom			https://www.rosco		Yes	
Terabee TeraRanger Evo 64px	https://www.roscom	https://www.roscom	Only 64 pixels, 15deg (square?) FOV	\$127.51	https://www.rosco	15 business days	Yes	
Opsys SP- Series LIDAR	https://www.opsys-te	Waiting for email re	Solid State LIDAR with 45-120H s (custom) by 13V FOV		Waiting for er	mail response		Scanning Lidar, not scannerless
Pandar LIDAR Sensors	https://www.hesaited	See folder in drive	Found through matlab documentation, HAS POINT CLOUD DATA AND OPEN SOURCE CODE		Waiting for er	mail response		Scanning Lidar, not scannerless
Ouster OS1	https://ouster.com/pi	See folder in drive						Scanning Lidar, not scannerless
Ouster ES2 Solid State	https://ouster.com/p	See folder in drive						
				Overview So	oftware	Electronics Ha	rdware	Financial Summary Fut

•

and H.J

UNIVERSITY OF COLORAD

Cost Breakdown of Client Electronics

Component	Website	Cost (without tax	Link	Quantity
Stepper Motor (NEMA 17)	Amazon	\$13.99	https://www.ama	1
Stepper Motor (NEMA 23) 1 Nm	StepperOnline	\$25.99	https://www.omc	1
Stepper Motor (NEMA 23) 7.07 N	StepperOnline	\$71.42	https://www.omc	1
A4988 Stepper Motor Driver	Amazon	\$9.29	https://www.ama	1
EASON DM556	Amazon	\$28.89	https://www.ama	2
Arduino UNO	Arduino	\$23	https://store-usa	2
Nano 33 BLE	Arduino	\$20.20	https://store-usa	1
IMU	Adafruit	\$19.95	https://www.adaf	1
Battery	Mouser	\$7	https://www.mou	1
Misc (Wires, solder, etc.)		\$15		1
Total		\$286.57		

Software

Return to Top

Software - Computation Time

Angular Step	Attitude Estimate [3-2-1]	Total Attitude Error	Computation Time
30°	[-120°, 60°, 30°]	5.91%	~20 s
20°	[-140°, 50°, 0°]	4.58%	~75 s
10°	[-130°, 60°, 10°]	2.36%	~680 s

- Intel(R) Core(TM) i5-8350 CPU @ 1.7 GHZ, 1.9 GHz
- RAM: 16 GB

Software - Edge Detection

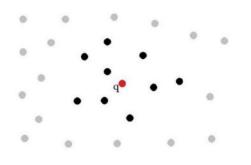
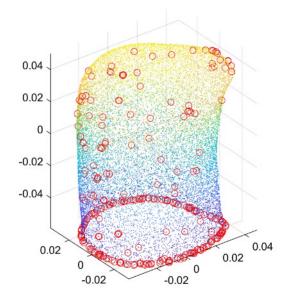
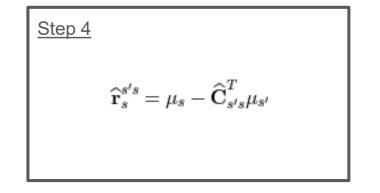



Figure: Nearest Neighbor

- Involves finding the nearest neighbors to each point
 - Euclidean Distance
- Finds the deviation of each point to its neighbors
- The points whose deviation passes a threshold are classified as "edge points"

Software - ICP Algorithm

- 1. Get an initial guess for the transformation and translation
- 2. Associate each point in the transformed point cloud with the nearest point in the original point cloud
- 3. Solve for the optimal transformation and translation
- 4. Repeat until convergence



Software - ICP Optimization

Step 1: Centroid Computation
$$\mu_s = \frac{1}{n} \sum_{j=1}^{n} \mathbf{P}_{\mathbf{s}}^{(j)} \qquad \mu_{s'} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{P}_{\mathbf{s}'}^{(j)}$$

<u>Step 3</u>: Singular Value Decomposition $\mathbf{W}_{s's} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ $\widehat{\mathbf{C}}_{s's} = \mathbf{U}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det \mathbf{U} \det \mathbf{V} \end{bmatrix} \mathbf{V}^T$

Step 2: Point Cloud Spread
$$\mathbf{W}_{s's} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{P}_{s}^{(j)} - \mu_{s}) (\mathbf{P}_{s'}^{(j)} - \mu_{s'})^{T}$$

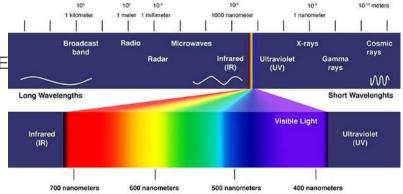
Software - Programming Language

• MATLAB

- Already known to our team
- Robust signal processing toolbox
- More efficient matrix algebra operations
- Proprietary code
- Portability Issues
- Multi-threading
- Python
 - Object-based language
 - More versatile class and function definitions
 - Not as good documentation for python LiDAR processing libraries
 - Does not have true multi-threading capabilities, only multiprocessing
- Conclusion: MATLAB

Software - OS

- Windows
 - System instabilities due to oversimplified design
 - Higher resource usage
 - More user-friendly GUI
 - Limited Customization options
 - Widespread and well-known to team
- Linux
 - Deep-rooted emphasis on process management, system security, and uptime
 - Lighter resource usage
 - More versatile
 - Easier integration between software modules



Software - iPhone LiDAR

The Spectrum of Light

- Flash Illumination and No Scanning
 - Emission
 - Vertical Cavity Surface-Emitting Lasers (VCSE
 - Detector
 - Single Photon Avalanche Diode (SPAD)
 - Wavelength
 - 800-899 nm
 - Range
 - 5 m

References

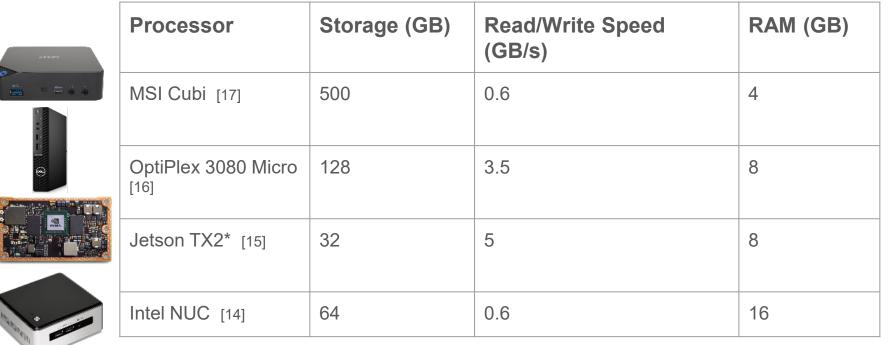
Forbes
 Ars Technica

Electronics

Return to Top

Electronics - Sensor Suite

Background Information:


LIDAR Sensor	Points per Second (pps)	Range Accuracy
Neuvition Titan S1 [10]	230,000	± 3cm at 50m
Yujin YRL Series 3d LiDAR [11]	130,000	± 1cm at 20m
Analog Devices AD- 96TOF1-EBZ [12]	300,000	± 6cm at 20m
Vista X90 [13]	1,000,000	± 2.5cm at 50m

Back-up

Electronics - Onboard Processing

Background Information:

Overview

Software

Electronics

Hardware

Financial

Summary

Future Work

*Optimized for AI and computer vision performance

68

(**n**)

Ann and H.J. Smead

INVERSITY OF COLORADO BOLL DES

ace Engineering Sciences

Electronics Feasibility: CROACS Electronics Onboard Processing

Overview

Software

Electronics

Hardware

With 16GB of RAM \Rightarrow Under 2 minutes processing for current algorithm

• Used 72% of total RAM

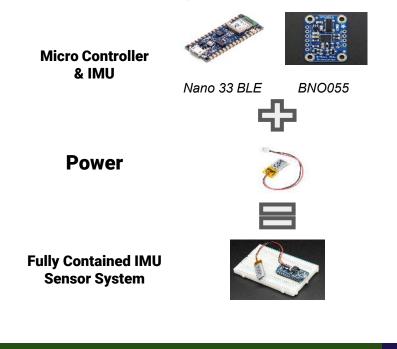
	Performance	App history	Startup	Users	Details	Services				
	^					4	%	82%	1%	0%
ame			Statu	IS		CF	PU	Memory	Disk	Network
Apps (9))									
📑 An	aconda Naviga	ator				0.1	1%	8.4 MB	0 MB/s	0 Mbps
🧿 Go	ogle Chrome ((30)				0.2	2%	1,322.2 MB	0.1 MB/s	0 Mbps
• 📣 м/	ATLAB R2021b	(7)				¢2	2%	2,589.7 MB	1 MB/s	0 Mbps
I	ava Chromium	Embedded Fr				/ c)%	2.5 MB	0 MB/s	0 Mbps
I	ava Chromium	Embedded Fr				0.1	1%	4.5 MB	0 MB/s	0 Mbps
J.	ava Chromium	Embedded Fr				c	0%	0.5 MB	0 MB/s	0 Mbps
J,	ava Chromium	Embedded Fr				c	0%	0.9 MB	0 MB/s	0 Mbps
J.	ava Chromium	Embedded Fr				0.1	1%	98.1 MB	0 MB/s	0 Mbps
J.	ava Chromium	Embedded Fr				\ c	0%	22.9 MB	MB/s	0 Mbps
🔺 N	ATLAB R2021	b				0.	%	2,460.3 MB	8.1 MB/s	0 Mbps
📫 Mi	icrosoft Teams	(5)				0.1	1%	51.9 MB	0.1 MB/s	0 Mbps
• Se	ttings				φ	C	0%	0 MB	0 MB/s	0 Mbps
髏 Sla	ack (4)					C	0%	130.5 MB	0 MB/s	0 Mbps
Spotify (6)						0.1	۱%	23.5 MB	0 MB/s	0.1 Mbps
Sh sh										

Financial

Summary

Future Work

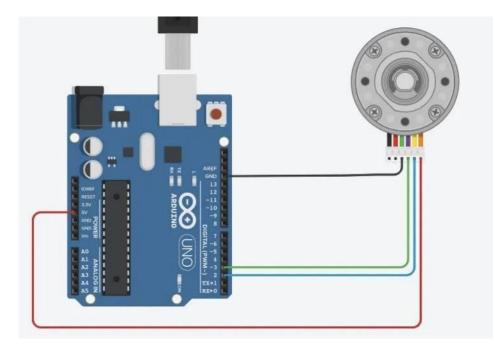
Back-up



Electronics - Truth Data Sensor System

GOAL - Truth data sensor system must be self-contained and fit inside the physical model.

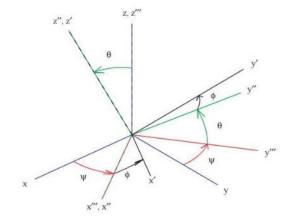
Component	Size	Volume
Nano 33 BLE	45 mm x 18 mm x 5 mm	4050 mm ³
BNO055	27 mm x 20 mm x 3 mm	1620 mm ³
Battery	21 mm x 19 mm x 2 mm	798mm ³
TOTAL		6468 mm ³


		_	_	_			_			_	_		_		_	_	_	_	_	_		_	_
1	P	hy	sic	al	Мс	bde	el C	Dim	ne	ns	io	ns	s -	1	.6	98	8	ee	s n	nn	1 ³		

Translation Truth Data

Motor encoders will be used on the axles of the wheels along with the known circumference of the wheels on the rail system to determine the true translation of the CROACS test bench

https://www.electroniclinic.com/arduino-dc-motor-speed-control-with-encoder-arduino-dc-motor-encoder/

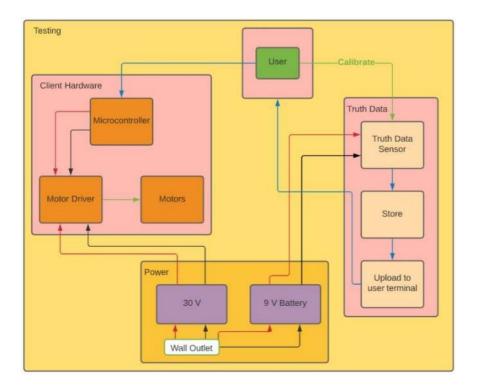

Truth Data Transformation

To calculate X_m , Y_m and the Euler angles (ϕ , θ , Ψ) <u>here</u> when the IMU is not aligned with the physical model axes i.e. the body axes are not aligned with the inertial axes, the following equations can be used.

 $\begin{aligned} R_{313}(\phi,\theta,\psi) &= R_3(\phi)R_1(\theta)R_3(\psi) \\ &= \begin{pmatrix} \cos(\phi)\cos(\psi) - \sin(\phi)\cos(\theta)\sin(\psi) & \cos(\phi)\sin(\psi) + \sin(\phi)\cos(\theta)\cos(\psi) & \sin(\phi)\sin(\theta) \\ -\sin(\phi)\cos(\psi) - \cos(\phi)\cos(\theta)\sin(\psi) & \sin(\phi)\sin(\psi) + \cos(\phi)\cos(\theta)\cos(\psi) & \cos(\phi)\sin(\theta) \\ & \sin(\theta)\sin(\psi) & -\sin(\theta)\cos(\psi) & \cos(\theta) \\ \end{pmatrix} \end{aligned}$

 $R_B = R_E^B R_E$ After converting the vector to the body frame, all the equations <u>here</u> can be applied.

Diebel, James (2006). Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors https://www.astro.rug.nl/software/kapteyn-beta/_downloads/attitude.pdf



Electronics - Motor System - Power

GOAL - All the client hardware shall run off of the wall power outlets and the drivers should be able to drive the motors from commands given by the microcontroller.

Stepper Motor	Torque	Rated Current	Driver
NEMA 17	0.59 Nm	2.0 A	TB6600
NEMA 23 P Seri	1.0 Nm	5.5 A	EASON DM556
NEMA 34	4.5 Nm	5.5 A	EASON DM556
NEMA 34	7.07 Nm	2.12 - 4.24 A	EASON DM556

Electronics - Feasibility Analysis - Testing

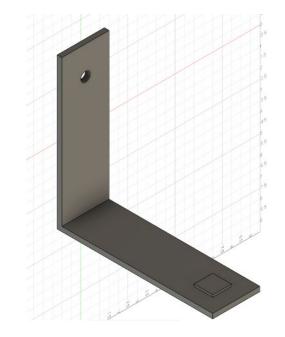
Stepper Motor	Torque	Rated Current	Driver
NEMA 17	0.59 Nm	2.0 A	A4988
NEMA 23 P series	1 Nm	5.5 A	EASON DM556
NEMA 34	4.5 Nm	5.5 A	EASON DM556
NEMA 34	7.07 Nm	2.12 - 4.24 A	EASON DM556

Hardware

Return to Top

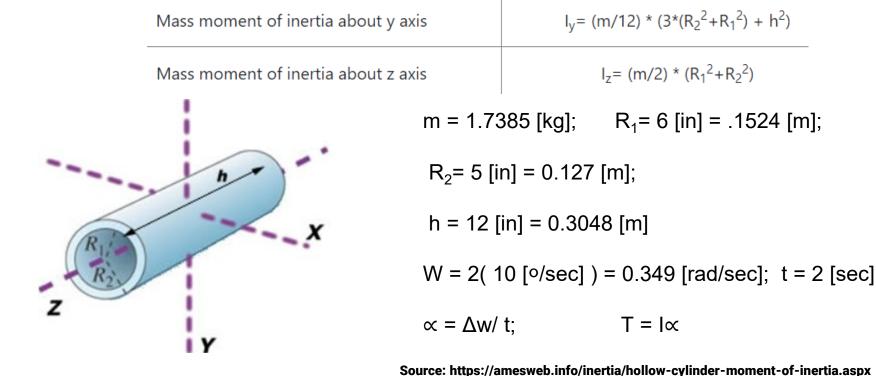
CROACS Hardware Weight Estimates

Category	Component	Estimated Weight (lbs)	Totals w/o FOS	
	1010	1.0176	Weight on Swivel:	5.88
	1020	1.324	Weight for Deflection Calculation:	14.0948
	2020	4.3128	Weight on Wheels:	16.4364
3020 Hardware	4119	0.15		
	20-4113	0.15	Totals w/ FOS	
	2015	0.032	Weight on Swivel:	8.832
	2570	1.162	Weight for Deflection Calculation:	21.1422
	swivel	2.4	Weight on Wheels:	24.6546
Ususian	foam (660 in^2)	0.5		
Housing Structure	1/8" thick ABS plastic (500 in^2)	1.807		FOS = 1.5
	miscellaneous hardware	0.25		
Floreformion	LiDAR sensor suite	1		
Electronics	on-board processor	1.8		
Other	plywood (10" x 10" x 1/4")	0.531		


Aerospace Engineering Sciences UNIVERSITY OF COLORADO BOULDER

Hardware Feasibility: Estimation of Support weight

- Support components are likely to be made out of PLA
- Rough models were made using CAD


 Mass was taken from properties list
- Expected of combined PLA support is approx. 0.25kg

Hardware Feasibility: Torque Estimation (Motors 1&2)

Overview

Software

Electronics

Hardware

Financial

Summary

Future Work

Back-up

