

Critical Design Review

November 29th, 2021 ASEN 4018-011 Team #6

> <u>Company Sponsor:</u> Astroscale

Faculty Advisor: Dr. Yu Takahashi

Presenters:

Tyler Gaston, Jake Pirnack, Jash Bhalavat, Zack Hubbard, Nicholas Herrington, Jianai Zhao

Presentation Outline

- 1. Project Overview Tyler Gaston
- 2. Design Solution Zack Hubbard, Jake Pirnack
- 3. Critical Project Elements Jianai Zhao
- **4. Design Requirements Satisfaction** Jash Bhalavat, Nicholas Herrington
- 5. Risk Analysis Zack Hubbard
- 6. Verification and Validation Jash Bhalavat, Jake Pirnack, Nicholas Herrington
- 7. Project Planning Tyler Gaston , Jianai Zhao

CROACS

Project Overview - Purpose

Background:

- Space Debris is growing concern, as more and more satellites are put into orbit.
- Astroscale is working on end of life satellite servicing for cooperative and noncooperative satellites.
- In order to attempt at de-orbiting debris its **dynamics must be** accurately measured.

Motivation:

- Accuracy & Complexity: Current ground based satellite tracking has large margins of positional error, and is ineffective at determining attitude and pointing.
- **Safety:** The servicing satellite must have a way to sense the client satellite's attitude and position without increasing the risk of a collision or creating more debris.

Space Debris Field Timeline https://upload.wikimedia.org/wikipedia/commons/3/3d/Tough_Love_E5A19243296.gli

ISS Space Debris Damage https://spacenews.com/wj content/uploads/2021/06/canadarm-debris-2021.png

Project Overview - Specific Objectives

Remotely sense attitude, position, angular velocity, and translational velocity of a client satellite

Predict future dynamics of a client satellite based on remotely sensed data

Simulate 3D motion of an uncooperative, known satellite for testing

Concept of Operations

F

UNIVERSITY OF COLORADO BOULDER

Design Solution

7

Functional Block Diagram

Design Progress: **PDR** \rightarrow **CDR**

Servicer Software - Flowchart Overview

Test Stand Integration

Fr

Ann and H.J. Smead

UNIVERSITY OF COLORADO BOULDER

Aerospace Engineering Sciences

11

Backup

Servicer Electrical Design

AD-96TOF1-EBZ Lidar Sensor

Client Design Animation

Client Hardware Design: Motor Interfacing

Motor 1 (continuous rotation servo)

- Sits inside debris model, mounted with driving electronics
- Drives model using toothed belt

Motor 2 (continuous rotation servo)

 Mounted to rotation axis is perpendicular to L-arm, drives rotation directly

Motor 3 (stepper motor)

Drives planetary gearbox which directly

Overview

Ann and H.J. Schartives rotation of L-arm

Motor 1 Interfacing

Timer Belt Pulley

Wheels

Servo

 $\phi = 0.25$ "

1 ft Length

Motor

Electronics Mounting

Aluminum Rod

Interfacing Mount (PLA)

Client Electrical Design (Command & Data)

Client Electrical Design (Power)

Critical Project Elements

Critical Project Elements

CPE	Description	FR
[E1] Servicer Infrastructure	-Physical enclosure to house all electronics and sensors of the servicer. -Capable of translation during testing.	[FR4]
[E2] Client Model	- Physical model of space debris with three axes of motorized rotation. -Onboard sensors report truth data .	[FR5]
[E3] Data Processing	-Imaging sensor collects and transmits usable data to on-board processor -On-board processor meets specifications to run software close to real time	[FR1] [FR3]
[E4] State Determination	-Software differentiates client from background . -Software calculations match truth data to a <10% margin of error .	[FR2]
[E5] State Prediction	-Software is capable of characterizing steady state dynamics of client to a 95% confidence interval in order to predict future states.	[FR2]

Design Requirements & Satisfaction

Servicer Infrastructure (FR4)

DR 4.3: The servicer shall be capable of at least 3 ft of translation in at least 1 direction

Engineering Sciences

FRANK OF COLORADO BOULDER

- Aluminum 8020 Ground Track
 - 5 feet of track allowing 4 feet of translational motion.
 - Encoder on servicer wheels to monitor translational speed.

Design Requirement			Satisfaction					
	DR 4.2, 4.3			Yes				
n Solution	CPEs	Reas Satisfaction	Project R	isks	V&V	Project Planning	Backup	

Client Model (FR5)

DR 5.1: The client shall record measurement data about its position, orientation, and angular velocity. DR 5.2: The client shall be able to spin about three different axes at a rate of at least 10 deg/sec.

Overview

- IMU, Encoders, and Vicon System
 - Each record truth data to compare with software predictions
 - Devices verify each other.
 - Able to detect rotation speeds up to 10 deg/sec
- Continuous rotation servos
 - Smooth rotation at low speeds
 - Both servos meet torque requirements
- Stepper motor

na Sciences

BSITY OF COLOBADO BOULDER

- Planetary gearbox used to step down speed so that rotation is smooth
- Mitigates "jitter" at low speeds

Motor	Torque Requireme For 10 deg/s	ents sec Selected Motor Torque Rating				
1 (Servo)	≈ 1 [N cm) 20 [kg cm] or 1.96[N	20 [kg cm] or 1.96[N m]			
2 (Servo)	≈ 1 [N cm	i] 35 [kg cm] or 2.94[N	m]			
3 (Stepper Motor)	8 [N m]	9 [N m]				
Design Re	equirement	Satisfaction				
DR 5	.1, 5.2	Yes				
Design Solution ODEs Des	na Catiofaction Ducioat I	Diska VRV Dusiant Diswiss Baskur				

Data Processing (FR1)

DR 1.1: The servicer shall sample data at a rate suitable for a client spinning at a rate of, at most, 10 deg/sec. DR 1.3: The servicer shall be able to gather data from the client at a range of at least 3m.

Overview

- LiDAR Sensor: AD-906TOF1-EBZ
- Minimum Required Data Rate: 20 fps
 - For 1 degree accuracy at a Nyquist signal speed of 20 deg/sec
 - Max Data Rate of LiDAR Sensor: 30 fps
- 3 Sensing Modes:

n and H.J.

EBSITY OF COLORADO BOULDER

ce Engineering Sciences

- Near: 25 80 cm
- Medium: 30 cm 4.5 m
- Far: 3 6 m

Acquired LiDAR Data of Water Bottle from 4 meters away

Data Processing (FR3)

DR 3.3: The on-board computer shall have sufficient processing power to compute predictions at least 1 min into the future.

- Minimum Required Computation Power: 10-Core i7 32GB RAM
 - Initialization of algorithm took about 30 seconds
 - Improvement of algorithm efficiency and greater computation power

Overview

- On-board Processor: Desktop
 - 12-Core i7 12th gen CPU
 - 32GB RAM
- Minimum Required Data Transfer Rate: 38.1 MBps
 - USB 3.2 Gen 2X2: 2.5GBps transfer rate
- Minimum Required Storage: 15 minutes \rightarrow 34.29 Gb
 - Desktop Storage: 500GB SSD

State Determination (FR2)

DR 2.1: The software algorithm shall identify the known client from the background.

- Geometrical Noise Reduction
- The state determination module uses a bounding box to exclude the background
 - Bounding box adjusted to distance and velocity in area of client object
 - Iterate through point cloud and eliminate points that reside outside the bounding box

Overview

State Prediction (FR2)

DR 2.2: The software algorithm shall make predictions of the client's future attitude states. DR 2.2.1: The software algorithm shall have no more than 10% relative error to measured data, at a predicted time 1min in the

Overview

- Propagation module predicts Euler angles by matching equation to the data and then solving for the Euler angle
- Statistical approach negates the need for analytical solution, more accurate and brings down computation time

Project Risks

Risk Table

Risk Number	Description	Effect	Likelihood of Occurrence	Severity of Consequence	Risk Priority Number (RPN)
R1	Excessive software runtime	Predictions become useless	4	5	20
R2	Feature detection can't distinguish unique elements about radial symmetry of client	Failure to determine attitude state	4	5	20
R3	LIDAR data is too noisy to provide necessary detail at far range (3m+)	Unusable point cloud data	3	5	15
R4	Motors don't provide sufficient torque to rotate body about their respective axes at low speeds	Failure of client rotation about one or more axes	3	4	12
R5	Magnetic effects from spinning motors skews truth data measurements	Failure to provide accurate truth data	3	3	9
R6	Interfacing failure between client measurement sensors	Failure to provide truth data	2	4	8
R7	Budget exceeds \$5000	Failure to continue production	1	5	5

Initial Risk Matrix

Acceptable Tolerable Unacceptable

R1: Software runtime
R2: Radial symmetry
R3: Detail at range
R4: Motor Torque
R5: Magnetic effects
R6: Truth sensor interfacing

R7: Budget

		Severity of Consequence				
		1	2	3	4	5
Likelihood of Occurrence	5					
	4					R1 R2
	3			R5	R4	R3
	2				R6	
	1					R7

Mitigated Risk Table

Acceptable

R1: Software runtime

R2: Radial symmetry

R3: Detail at range

R4: Motor Torque

R5: Magnetic effects

R6: Truth sensor interfacing

R7: Budget

Mitigation Methods

R1: Parallel computing, algorithm optimization

R2: Determine other parameters with missing euler angle, use reflectivity instead of features

R3: Attitude regardless of noise, reflectivity of rotation stand, increase power to lasers

R4: Gear ratios, worm gears

R5: Determine bias from Vicon testing, provide truth data from multiple sources

R6: Alternate interfacing methods

R7: Finding cheaper components

		Severity of Consequence					
		1	2	3	4	5	
Likelihood of Occurrence	5						
	4					R1 \ R2 \\	
	3	R5 < -	R4 ◀ -	- 	- R4	- R3 /1	
	2			R3 [▲] [•] R6 ← -	R6	R2 R1	
	1					R7	

Verification and Validation

Testing Structure

Component Verification Servicer LiDAR Sensor

DR 1.4: The sensor suite shall have a range accuracy of at least 1 cm (at 1 standard deviation). DR 1.5: The sensor suite shall gather data under the harsh lighting conditions representative of satellites in a LEO orbit.

- Objective:
 - Confirm LiDAR sensor is within the accuracy tolerance
 - Prove LiDAR sensor can sense client in harsh lighting
- Testing Setup:
 - Location: Aero N200 / Fiske Planetarium
 - Equipment: AD-906TOF1-EBZ, Stage Lighting Fixtures, Dragonboard 410c, Measuring Tape
- Testing Plan:
 - Take multiple point cloud with maximum lighting
 - Compare point cloud to real world measurements
 - Take multiple point cloud with variable lighting
 - Compare accuracy between each lighting scenario
- Success Metrics / Testing Results:
 - LiDAR measure range within accuracy tolerance
 - Accuracy does not diminish between each lighting scenario

CPEs Regs. Satisfaction Project Risks V&V Overview Design Solution Project Planning Backup

Ŵ

33

DR 2.1: The software algorithm shall identify the known client from the background. DR 2.2: The software algorithm shall make predictions of the client's future attitude states.

- Objective:
 - Verify the servicer software meets baseline requirements
- **Testing Setup:**
 - Location: N200 \bigcirc
 - Equipment: Servicer computing hardware, client model Ο
- Testing Plan:

Engineering Sciences

EBSITY OF COLORADO BOULDER

- Standstill testing of servicer with LiDAR 0
- Physically change orientation of client Ο
- Success Metrics / Testing Results:
 - Differentiate client from its background Ο
 - Less than 10% error relative to measured data at 1 min \bigcirc into future

Subsystem Verification Servicer Software

- Equipment: On-board Processor, Dragonboard 410c, AD-96TOF1-EBZ, Arduino Nano, KY-040 Rotary Encoder, Power System
- **Testing Plan:**
 - Connect the on-board processor with the lidar and encoder
 - Extract the lidar and encoder data \bigcirc
- Success Metrics / Testing Results:
 - Have the processing power to compute 1 minute in the future
 - All electronics components interface correctly 0
 - Electronics is able to support 15 minutes of run time 0

Subsystem Validation Servicer Electronics

DR 3.1: The on-board computer shall handle data transfer rates of selected sensor(s) DR 3.3: The on-board computer shall have sufficient processing power to be able to compute predictions at least 1 min into the

- **Objective:**
 - Validate the on-board processor is able to run the software and interface with the sensors
- Testing Setup:
 - Location: Aero N200 / TBD
 - \cap

Overview Design Solution CPEs Reqs. Satisfaction Project Risks V&V Project Planning Backup

Comprehensive System Verification Servicer System

DR 4.1: The enclosure shall be built to secure the physical electronics in place. DR 4.2: The enclosure shall supply the correct power to all hardware and integrate electrical components it is housing.

- Objective:
 - Verify successful integration of Servicer's subsystems
 - Prove integration does not hinder performance
- Testing Setup:
 - Location: Aero N200 / TBD (Ideally Planetarium)
 - Equipment: Servicer structure, Servicer electronics system, Stage Lighting Fixtures
- Testing Plan:
 - Perform monitoring for 15 minutes
 - Compare point cloud to real world measurements
 - Collect point cloud measurements at different locations and lighting
- Success Metrics / Testing Results:
 - All components connect/fit together properly
 - LiDAR sensor meets accuracy tolerance
 - Capable running for 15 minutes without data or processing

- Load each motor axle independently Ο
- 0
- Success Metrics / Testing Results:
 - Strain is kept below the yield strength of material Ο
 - Displacement of the stand components kept below 3 mm Ο

Subsystem Validation Client Hardware Structures

DR 5.2: The client shall be able to spin about three different axes at a rate of at least 10 deg/sec.

- Objective:
 - Client will be able to spin at 10 deg/sec around all 3 axis about the center of gravity
- Testing Setup:
 - Location: Aero N200 / Machine Shop
 - Equipment: Manufactured and assembled gimbal stand 0 with client model
- Testing Plan:
 - Displacement/stress analysis in Fusion 360 \bigcirc
 - Load motor axles simultaneously

neerina Sciences

EBSITY OF COLOBADO BOULDE

Overview Design Solution CPEs Reqs. Satisfaction Project Risks V&V Project Planning Backup

^{up} 37

Subsystem Validation Client Electronics

DR 5.1: The client shall record measurement data about its position, orientation, and angular velocity. DR 5.2: The client shall be able to spin about three different axes at a rate of at least 10 deg/sec.

- Objective:
 - Rotate model about three different axes and collect truth data
- Testing Setup:
 - Location: AERO N200
 - Equipment: Client structure and Client electronics system
- Testing Plan:

h and H.J.

BSITY OF COLOBADO BOULDE

e Enaineerina Sciences

- Ensure Client structure can rotate about three axes during construction
- Calibrate encoders as well as IMU and integrate the data
- Verify system testing length
- Success Metrics / Testing Results:
 - Collect verified encoder and IMU data
 - Able to rotate model about all three axes at 10 deg/sec

38

Able to model accuracy of IMU and Encoders Ο

Integrate and compare data from multiple sources

Comprehensive System Verification

Day in the life - 3 motors, 3 encoders and 1 IMU to

- Simulate testing conditions Ο
- Testing Plan: Mount IR balls onto physical model 0

Client System

Objective:

Ο

Ο

ace Engineering Sciences

n and H.J. Smead

MERSITY OF COLORADO BOULDER

- **Equipment: Vicon Sensors** Ο
- Location: CU Boulder ASPEN Lab \bigcirc

- Testing Setup:

Driving Requirements: All design requirements for client

Comprehensive System Testing Servicer + Client System

Driving Requirements: All design requirements

- Objective:
 - Get the servicer to observe the rotation of the client system and generate predictions
 - "Day in the life" testing
- Testing Setup:
 - Location: Aero N200 / TBD (ideally planetarium)
 - Equipment: Complete Servicer and Client systems
 - Client model is set from 3-6 meters from servicer
- Testing Plan:
 - Rotate model with known angular velocities
 - Take LiDAR data using servicer
 - Compare truth data with algorithm results
- Success Metrics / Testing Results:
 - Algorithm data matches truth data and produces accurate prediction of rotation.

Overview

CPEs

Design Solution

Project Planning

		<u>Project Manager</u> Tyler G.	<u>Systems Le</u> Shawn S.	ad		
<u>Software</u> Nick H Brandon D.	Electrical	Servicer Hardware	<u>Client Hardware</u>	Financial	Safety Max M	Manufacturing
				Jianai 2.		
lach	 Max	 Zook	 Drandan	Tulor	 Zool/	\\/altar
Jash	IVIAX	Zack	Brandon	Tyler	Zack	vvaller
Jason	Walter	Max	Max			Tyler
Jake	Nick	Tyler	Zack			Jianai
Jianai	Shawn		Jake			Jake
Shawn	Brandon		Jianai			Shawn
			Tyler			

Project Timeline - Looking Forward

UNIVERSITY OF COLORADO BOULDER

Manufacturing Timeline

	Task Name	Jan, 02 '22 Jan, 09 '22 Jan, 16 '22 Jan, 23 '22 Jan, 30 '22 Feb, 06 '22 S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S
10	Hardware Manufacturing	Hardware Manufacturing 0%
11	Finalize Dimensions & Desi	Finalize Dimensions & Design Tolerances 0%
12	Custom Parts Machining	Custom Parts Machining 0%
13	Enclosure Walls - Cutting /	Enclosure Walls - Cutting / Sizing 0%
14	Vent Panels - 3D Printing / M	Vent Panels - 3D Printing / Milling 0%
15	Test Stand Lumber - Cuttin	Test Stand Lumber - Cutting , Sizing 0%
16	Test Stand 8020 - Cutting /	Test Stand 8020 - Cutting / Sizing 0%
17	U Channel - Milling , Sizing	U Channel - Milling , Sizing 0%
18	Base Plate - Milling , Sizing	Base Plate - Milling , Sizing 0%
19	Model - 3D Printing	Model - 3D Printing 0%
20	Motor 1 Cluster - 3D Printing	Motor 1 Cluster - 3D Printing 0%
21	Motor 3 Shelf - 3D Printing	€Motor 3 Shelf - 3D Printing 0%
22	Motor 1 Axle - Cutting / Sizing	Motor 1 Axle - Cutting / Sizing 0%
23	Timer Pulleys - Cutting , Siz	Timer Pulleys - Cutting , Sizing, Splicing 0%
24	L-Arm - Milling, Welding	L-Arm - Milling, Welding 0%
25	Motor 2 - Axle	Motor 2 - Axle 0%
26	Hardware Assembly	Hardware Assembly 0%
27	Enclosure	Enclosure 0%
28	Test Stand	Test Stand 0%
29	Client System	Client System 0%
30	Electronics Integration	Electronics Integration 0%
31	Power Integration	Power Integration 0%
32	Sensor Integration	Sensor Integration 0%
33	DAC and ADC Integration	DAC and ADC Integration 0%
34	Onboard Processor Integra	Onboard Processor Integration 0%
35	Motor Integration	Generation 0%
36	Data Transmission Integration	Data Transmission Integration 0%

- Critical Process Path

Testing Timeline

P

Ann and H.J. Smead

UNIVERSITY OF COLORADO BOULDER

Aerospace Engineering Sciences

Testing Logistics

	Test Name	Starting Date *	Ending Date *	Location	Location Feasibility	Safety Concerns
Compon	ent Testing	11/30/2021	2/2/2022			
Er	ncoders	1/26/2022	1/26/2022	Aero N200		- Electrical Fires
CI	lient Motors	1/25/2022	1/25/2022	Aero N200	>	- High Voltage / Current Steppers and Moving Parts
Ar	rduinos	1/28/2022	1/28/2022	Aero N200		- Electrical Fires
Se	ervicer Stand	1/20/2022	1/20/2022	Aero N200		Manufactuing Tools
Se	evicer Enclosure	1/18/2022	1/18/2022	Aero N200		Manufactuing Tools
CI	lient Structures	1/24/2022	1/24/2022	Aero N200		Manufactuing Tools
Lie	dar Sensor	11/30/2021	12/10/2021	Aero N200		
CI	lient Model	12/16/2021	12/16/2021	Aero N200		Manufactuing Tools
CI	lient Communication	2/2/2022	2/2/2022	Aero N200		
Subsyste	em Testing	1/1/2022	2/26/2022			
CI	lient Hardware	2/7/2022	2/26/2022	Aero N200 / Machine Shop		Moving Parts / Weight Testing
CI	lient Electronics	2/7/2022	2/26/2022	Aero N200 / Aspen Lab		High Wattage Components, ESD, Fire
Se	ervicer Hardware	2/7/2022	2/26/2022	Aero N200		Large Moving Structure
Se	ervicer Electronics	2/7/2022	2/26/2022	Aero N200		Wall Powered Parts , ESD, Fire
Se	ervicer Software	1/1/2022	2/14/2022	Aero N200		Too much screen time. Eyeballs need breaks :)
CI	lient Software	1/26/2022	1/30/2022	Aero N200 / Other		Too much screen time. Eyeballs need breaks :)
Compreh	hensive Testing	2/28/2022	4/3/2022			
CI	lient System Testing	2/28/2022	3/13/2022	Aero N200 / Planetarium		All of the above
Se	ervicer System Testing	2/28/2022	3/13/2022	Aero N200		All of the above
Fu	ull Day In the Life Testing	3/14/2022	4/3/2022	Aero N200 / Planetarium / Other		All of the above

* Predicted Dates - Subject to Change

Cost Plan

Hardware	Est. Cost	Subsystem	Est. Cost	
Servicer Hardware	\$274.18	Hardware	\$821.69	
Client Hardware		Electrical	\$1815.74	
<u>Cost Breakdown of Client Hardware</u>	\$546.91	Total	\$2637.43	
Total	\$821.69	Leftover*	+ \$2162.57	

Electrical	Est. Cost
<u>Client Electronics</u> - Steppers/Motors - Hardware Controller - Misc.	\$705
Servicer Electronics - LIDAR Sensor - Onboard Computer - Power System - Misc. Electrical	\$1110.74
Total	\$ 1815.74

** Heavily discounted LiDAR: significantly decreased our overall cost. **

46

Astroscale: Sandor Nemethy, Sam Laurila, and Rebeca Griego

Senior Design Coordinators: Dr. Kathryn Wingate and Dr. Jelliffe Jackson

Our Project Advisor: Dr. Yu Takahashi

And the rest of the PAB

Questions?

Supporting Slides

References

[1] - Ladra S., Luaces M.R., Paramá J.R., Silva-Coira F. (2019) Space- and Time-Efficient Storage of LiDAR Point Clouds. In: Brisaboa N., Puglisi S. (eds) String Processing and Information Retrieval. SPIRE 2019. Lecture Notes in Computer Science, vol 11811. Springer, Cham. https://doi-org.colorado.idm.oclc.org/10.1007/978-3-030-32686-9 36

[2] - "Lidar toolbox," Matlab Documentation Available: https://www.mathworks.com/help/lidar/index.html

[3] - Harwell based Astroscale completes successful space demonstration", Harwell Campus Ox-ford Available:<u>https://www.harwellcampus.com/news/astroscales-demonstrates-repeated-magnetic-capture/?home=1</u>.

[4] - Opromolla, R., Fasano, G., Rufino, G., and Grassi, M., "A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations," Progress in Aerospace Sciences, Vol. 93, 2017, pp. 53–72. <u>https://doi.org/https://doi.org/10.1016/j.paerosci.2017.07.001</u>

[5] - Wojtech, R., "Object detection using LIDAR - head in the (point) clouds," Blickfeld Available: <u>https://www.blickfeld.com/blog/lidar-data-processing-for-object-detection/</u>

[6] - Sanatkar, M., "Lidar 3D Object Detection Methods," Towards Data Science Available: <u>https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea</u>

[7] - "Ad-96TOF1-EBZ," Analog Devices Available: <u>https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/ad-96tof1-ebz.html#eb-overview</u>

- [8] "RotaryEncoder,",2021.URLhttps://create.arduino.cc/projecthub/MisterBotBreak/how-to-use-a-rotary-encoder-16e079.
- [9] Horn, K.P., "Closed-Form Solution of Absolute Orientation Using Orthonormal Matrices" Available:

http://graphics.stanford.edu/~smr/ICP/comparison/horn-hilden-orientation-josa88.pdf

[10] - Horn, K.P., "Closed-form solution of absolute orientation using unit quaternions" Available:

https://people.csail.mit.edu/bkph/papers/Absolute Orientation.pdf

Servicer Software - Backup

Servicer Software - Template Matching

Ann and H.J. Smead Aerospace Engineering Sciences

Servicer Software - Template Matching

Improved Computation Time

Angular Step	Comp Time @ PDR	Comp Time @ CDR		
30°	~20 s	~1 s		
20°	~75 s	~4 s		
10°	~680 s	~28 s		

With improved computation times achieving the same accuracy, we believe that 5° and 1° step sizes are feasible with enough computing storage

Servicer Software - Velocity Solutions

Both methods involve finding the transformation and translation between two point clouds. Timestamps of the two clouds will allow for solving <u>angular and translational velocities</u>.

- Iterative Closest Point (ICP)
 - Requires threshold to be met
 - Iterative in nature

ce Engineering Sciences

EBSITY OF COLORADO BOULDER

- Absolute Orientation
 - No threshold
 - Closed-form solution

Servicer Software - ICP / Absolute Orientation

Testing Plan

- Take two points clouds at different orientations
- Angular difference represents the angular velocity of the client
 - Mimics two sets of data taken one after the other
 - For testing purposes, time between frames is assumed to be 1 sec

56

Servicer Software - ICP / Absolute Orientation

Results - Test #1

- Initial Orientation
 - o **[0, 0, 0]**
- Final Orientation
 - **[1, 1, 1]**
 - **[10, 10, 10]**
 - **[9.16, -2.34, 3.75]**

Angular Velocity (Truth)	ICP	Absolute Orientation
[1, 1, 1]	[0.983, 1.017, 0.983]	[1, 1, 1]
[10, 10, 10]	[9.537, 10.166, 0.948]	[10, 10, 10]
[9.16, -2.34, 3.75]	[8.856, -2.103, 1.107]	[9.16, -2.34, 3.75]

57

Servicer Software - ICP / Absolute Orientation

Results - Test #2

- Initial Orientation
 - o **[20, 30, 40]**
- Final Orientation
 - **[21, 31, 41]**
 - o **[20, 40, 50]**
 - [23.75, -28.66, 49.16]

Angular Velocity (Truth)	ICP	Absolute Orientation
[1, 1, 1]	[0.983, 1.017, 0.983]	[1, 1, 1]
[10, 10, 10]	[11.066, 9.382, -4.748]	[10, 10, 10]
[9.16, -2.34, 3.75]	[9.297, -1.708, 4.076]	[9.16, -2.34, 3.75]

58

- Recognizing features plays a significant role in finding the attitude and angular velocity of the client
- Desired Features:
 - Boosters
 - Top Edge
 - Side Features

- Primary Component Analysis (PCA)
 - Good for establishing top edge of booster

- Surface Variation
 - Good for establishing the boosters and bottom edge of booster

- Roughness
 - Good for establishing the boosters and bottom edge of booster

Servicer Software - CloudCompare

n and H.J. Smead

INVERSITY OF COLORADO BOULDER

ace Engineering Sciences

• Software designed specifically to

process 3D point cloud data

- Potential Uses:
 - Feature Recognition
 - Noise Reduction
 - Iterative Closest Point (ICP)

Overview

Backup

Servicer Software - Background Differentiation

- Set bounds from known distance
- Adjust bounds with template velocity
- Bounding box excludes background

Servicer Software - Euler Angle Characterization

Servicer Software - Rotation Simulation

- 1. Use the form given from the Characterization module
- 2. Perform regression fit to determine equation of motion that fits the data for each individual Euler angle
- 3. For given range of time, input timesteps into the EOM for each Euler angle
- 4. Output future Euler angles
- 5. Send Euler angles to visualization module to create visual simulation

Servicer Software - Operating System

File Actions Edit V	iew Help									
rea@rea-virtu	albox: ~/Desktop	/MATLAB/b	in (0						
rea@rea-virtualbox Desktop Documents	-\$ ls Downloads	Music	Pictures	Public T	emplates Videos					
rea@rea-virtualbox	•				MATLAB R2021b - acad	emic use				
MATLAB is selection	HONE					1 1 1 1 1	😑 🕑 🐵 Search Doc	sumentation	P 🔅 Nich	nolas -
1 1	New New Script Live Script	New Open	Find Files	Minport S Data Wor	Ave Variable	Favortes	Analyze Code Analyze Code Run and Time Code Code Code	ENVIRONMENT	RESOURCES	3
NT LXOL		0/ + hom	a ⊧ rea ⊧ Des	ktop +						+ 5
Version: 0.16.0	Current Folder		• 26	ditor - Jhomel UDAR_main.m	rea/Desktop/lidar-processin	ig-software	rt.iDAR_main.m			• •
About Authors Advanced, easy-to-use, a LXQt would not have bee contributors.	example-pro Idar-process MATLAB Computer de LIDAR-main. matlab network.desi	ject ing-software esktop m	-	1 % Br 2 % N 3 clea 5 clor 6 clc; 7 8	andon diLorenzo Lcholas Herrington ar ae all					
Homepage: <u>https://lxqt.</u>	Details	ad ply	· 1	9 %% 0	Het Point Cloud Data and	Process				
GNU General Public Licer	Workspace		· 1	1 <u>%</u> R	an in data	-			,	
	Name 4.	Value	Con	imand Windo	*					0
	4		New fit =	× to MATLAB? Se >	ee resources for <u>Getting Starte</u>	<u>d</u>				,

66

- lubuntu LxQT v0.16.0
- Lightweight OS means more computing power available to run our software suite
- Linux environment is suitable for modular application structure and for version control with git

Servicer Software - Development Environment

- VirtualBox v6.1.26
- Virtual Machine used by each software team member to ensure same dev environment
- Allows virtual hardware

configuration of machines

Servicer Software - Version Control

R

Ann and H.J. Smead

UNIVERSITY OF COLORADO BOULDER

Aerospace Engineering Sciences

- Git v2.30.2
- Industry standard
- Software team always have latest changes

CROACS

- Allows concurrent development of same modules
- Tracked changes with comments, ability to merge request and to rollback changes if needed
- Tasking on GitLab

Servicer Electronics

LiDAR System

AD-906TOF1-EBZ

DragonBoard 410c

LiDAR Specs

- Range
 - Near: 25cm to 80cm
 - Medium: 30cm to 4.5m (Rev.B: 80cm to 3m)
 - Far: 3m to 6m
 - Accuracy: < 2% for all ranges
- Frame Rate: up to 30 fps dependent on processor board, OS and interface to host computer
- Resolution: 640 x 480 pixels
- Operating Temperature: -20°C to 85°C
- 940nm VCSEL with 110° x 85° batwing profile diffuser
- Receive lens: FoV 90° x 69.2° including 940nm BPF
- 96Board mezzanine high speed and low speed expansion connector compatibility
- Raspberry Pi camera connector to connect to any compatible processor board
- Connectivity support for USB or Network(WiFi, Ethernet)
- 5V DC Input
- 20W max power consumption

CROACS

72

DragonBoard Specs

- **SoC** Qualcomm APQ8016E
- CPU ARM Cortex-A53 Quad-core up to 1.2 GHz per core
- **GPU** Qualcomm Adreno 306 @ 400 MHz for PC-class graphics with support for Advanced APIs, including OpenGL ES 3.0, OpenCL, DirectX, and content security
- RAM 1GB LPDDR3 SDRAM @ 533MHz
- Storage 8GB eMMC 4.51 on board storage and MicroSD card slot
- Ethernet Port USB 2.0 expansion
- Wireless WLAN 802.11 b/g/n 2.4 GHz, Bluetooth 4.1, GPS. On board GPS, BT and WLAN antennas
- Display 1 x HDMI 1.4 (Type A full) 1 x MIPI-DSI HDMI output up to FHD 1080P
- Camera Integrated ISP with support for image sensors up to 13MP
- Expansion Interface 40 pin low speed expansion connector: +1.8V, +5V, SYS_DCIN, GND, UART, I2C, SPI, PCM, PWM,GPIO x12 60 pin high speed expansion connector: 4L-MIPI DSI, USB, I2C x2, 2L+4L-MIPI CSI
- **Power Source -** 8V~18V@3A, Plug specification is inner diameter 1.7mm and outer diameter 4.8mm
- OS Support Android / Linux / Windows IoT Core
- **Size** 85mm x 54mm

Preliminary LiDAR Testing

Camera Mode: FAR Distance: 3 m Camera Mode: FAR Distance: 4 m Camera Mode: FAR Distance: 5 m

CROACS

Preliminary LiDAR Testing

Camera Mode: **MEDIUM** Distance: **1 m** Camera Mode: **MEDIUM** Distance: **2 m** Camera Mode: **MEDIUM** Distance: **3 m**

Onboard Processor Components

Component	Selection		Base	Promo	Shipping	Tax		Price	Where		
<u>CPU</u>	Come	Intel Core i7-12700KF 3.6 GHz 12-Core Processor	\$429.99		\P rime		¢	\$429.99	amazon.com	Buy	×
CPU Cooler	đ	ARCTIC Freezer 34 eSports DUO CPU Cooler	\$49.94		\P rime		¢	\$49.94	amazon.com	Buy	×
Motherboard		MSI PRO Z690-A DDR4 ATX LGA1700 Motherboard	\$219.99	-\$10.00 ¹	FREE		¢	\$209.99	Lewegy	Buy	×
<u>Memory</u>		Team T-FORCE VULCAN Z 16 GB (2 x 8 GB) DDR4-3200 CL16 Memory	\$50.99		FREE		¢	\$50.99	(newogg	Buy	×
<u>Memory</u>		Team T-FORCE VULCAN Z 16 GB (2 x 8 GB) DDR4-3200 CL16 Memory	\$50.99		FREE		¢	\$50.99	Leweg	Buy	×
	+ Add	Additional Memory									
<u>Storage</u>		Western Digital Blue 500 GB M.2-2280 Solid State Drive	\$54.99		\Prime		¢	\$54.99	amazon.com	Buy	×
	+ Add	Additional Storage									
Video Card	+ Choo	se A Video Card									
Case	+ Choo	se A Case									
Power Supply		Corsair RM (2019) 650 W 80+ Gold Certified Fully Modular ATX Power Supply	\$78.84		\P rime		¢	\$78.84	amazon.com	Buy	×

Overview Design Solution CPEs Reqs. Satisfaction Project Risks V&V Project Planning Backup

76

Servicer Encoders

Magnetic Encoders

- AS5600
 - o **12-bits**
 - Analog/PWM/I²C interface
 - 3-3.6 V OR 4.5-5.5 V Input

Servicer - Arduino Nano

- Microcontroller: ATmega328P
- Operating Voltage: (logic level) 5 V
- Input Voltage: (recommended) 7V-12V
- **Digital I/O Pins:** 14 (of which 6 provide PWM output)
- Flash Memory: 32 KB (ATmega328) of which 2 KB used by bootloader

Servicer Hardware - Backup

Servicer Hardware - Translation

D

Ann and H.J. Smead

UNIVERSITY OF COLORADO BOULDER

Aerospace Engineering Sciences

Backup 79

Project Planning

Servicer Hardware -

Servicer Hardware -

Encoder Side View

Servicer Hardware -

Ann and H.J. Smead Aerospace Engineering Sciences

Client Electronics - Backup

Client Electronics - Power Budget

Subsystem	Components	Required Input Current	Notes	Data Sheet	Total Current	Battery	Operational Time	
IMU System	Nicola Microcontroller	250mA	Likey much higher estimate than will actually be drawn during operation.	ABX00050-datas	250mA	Li-poly - 500mAh	~2hrs	
	IMU	N/A	On Nicola MC N/A					
	Arduino Uno MC	160mA	40mA per I/O pins used. 2 for servo, 2 for encoder.	<u>UNO_wifi (mous</u>				
Motor 1 System	Magnetic Encoder	6.5mA	Under normal operating conditions. Also has low power mode options.	AS5600 (mouse) 166.5mA + 221.61mA		9V - 600mAh	~1.55hrs <i>(min)</i>	
	Servo 1	221.6mA	Estimated max based on stall torque and rpm rating at 6V					
	Arduino Uno MC	280mA	40mA per I/O pins used. 2 for servo, 6 for encoder.	UNO_wifi (mous				
Motor 2 System	ATM Encoder	86mA	16mA for operation. 15mA per single channel (x3). 25mA per differential channel (x1)	A per A per 1) AMT <u>13-V Kit Da</u> 366mA + 390mA		9V - 600mAh	~0.79hrs <i>(min)</i>	
	Servo 2	180mA	no load	https://www.foot				
	JCIVU Z	390mA	stall current (maximum value)	https://www.leete				

Client Electronics - IMU Drift/Magnetometer

- Gyro drift results in a change in what would be expected during the collection of data
- It is measurable, and if measured prior to testing, can be corrected for by applying a small, constantly increasing offset to balance out any drift
- Additionally, the Nicola Sense ME includes Bosch sensor fusion algorithm BSX, which has the ability to account for sensor drift
 - The level of BSX integration into the Nicla Sense ME is not well documented, so testing will have to be done after sensor acquisition to determine if this fully accounts for gyro drift that may occur, or if external processing will be required to account for drift
- The gyro and accelerometer sensors are able to be used without the magnetometer on the Nicla Sense ME; their use will be avoided due to the potential for magnetic interference from the motors.

Client Electronics - Encoders

Magnetic Encoders

- AS5600
 - o 12-bits
 - Analog/PWM/I²C interface
 - 3-3.6 V OR 4.5-5.5 V Input

Modular Encoders

- AMT132Q
 - Up to 12-bits
 - Quadrature output
 - Incremental/Absolute encoder

87

Client Electronics - Arduino BLE Library

- BLE Bluetooth Low Energy
- Central Devices
 - View the services
 - Get the data
 - Move on
- Peripheral Devices
 - Post data for all radios to read
 - Servers in a client-server transaction

Client Electronics - Portenta H7

CROACS

- Specs
 - Two Cores
 - Cortex® M7 480 Mhz
 - Cortex® M4 240 Mhz
 - STM32H747 processor's on-chip GPU
 - 16MB NOR Flash
 - WiFi/BT Module
 - External Antenna
- Speeds
 - Each instruction is about 8.3 ns
 - Handling of data and receiving data should be under 1000 ns with interrupts

Client Hardware - Backup

Test Stand Assembly

Motor 3 Integration

93

Motor 3 Integration

Motor 1

Motor 1

Client

L Arm Stress Analysis

R

UNIVERSITY OF COLORADO BOULDER

L Arm Stress Analysis

L Arm Stress Analysis

D

Aerospace Engineering Sciences

UNIVERSITY OF COLORADO BOULDER

Overview Design Solution CPEs Reqs. Satisfaction Project Risks V&V Project Planning Backup

Client Hardware Interfacing: Motor 2

F

Mounted in L-arm, drives stem that rotates motor 1 system

Client Hardware Interfacing: Motor 3

- Mounted to U-bar connected to base, directly drives L-arm
- Planetary gearbox steps down rotation speed so required torque can be achieved (see torque curve)

• Estimate torque experienced by Motor 3

Mass Estimation: Items rotated by Motor 3

Object	Expected Mass [kg]
1/82 Scale Saturn V Second Stage	1.74
Motor 1	0.13
Motor 2	0.23
Extra PLA (supports and connections)	0.25
Total Mass	2.35

From initial design, the moment arm that motor 3 sees is expected to be 7in = 0.1778m **Torque Calculation:**

- T = torque ; m = total mass
- r = expected moment arm
- g = acceleration due to gravity

$$\Gamma = mgr = (2.35)(9.81)(0.1778)$$

- T = 4.01 Nm
- T = 4.0Nm

FOS of 2 was used: T = 8.0Nm

Motors 1 and 2 Torque Estimates

 \propto = 0.1745 [rad/sec²]

Expected Moment:	l _Y = 0.0306 [kg m ²]	l _z = 0.034 [kg m²]		
Required Torque:	T ₂ = 0.5 [N cm]	T ₁ = 0.6 [N cm]		

Torque Estimation (Motors 1&2)

Mass moment of inertia about y axis

Mass moment of inertia about z axis

 $I_{z} = (m/2) * (R_{1}^{2} + R_{2}^{2})$

 $I_v = (m/12) * (3*(R_2^2 + R_1^2) + h^2)$

Source: https://amesweb.info/inertia/hollowcylinder-moment-of-inertia.aspx

eerina Sciences

EBSITY OF COLOBADO BOULDE

m = 1.7385 [kg]; R_1 = 6 [in] = .1524 [m]; R_2 = 5 [in] = 0.127 [m]; h = 12 [in] = 0.3048 [m] W = 2(10 [deg/sec]) = 0.349 [rad/sec]; t = 2 [sec]

 $\propto = \Delta w/t;$ $T = I \propto$

Project Planning - Cost Analysis

Client Electronics - Component Costs

Component	Website	Cost (without tax)	Link	Quantity	Datasheet	Location	P <mark>urp</mark> ose	Comments
Servo 1	Amazon	\$20.00	JX Servo	1		Inside Model	Model - Roll	
Servo 2	Amazon	\$30.00	FEETECH	1		Outside Model	Model - Yaw	
AS5600	EBay	\$5.00	AS5600	2		On Servo 1 and 2	Measure motor rotation	
Motor 3 and Driver	Amazon	\$170	NEMA 34. Drive	1		Outside Model	Stepper and Driver	
AMT132Q-V	Future Electronics	\$33.00	AMT 13 Series	2		On Stepper motor	Measure motor rotation	https://www.cui devices.com/pr oduct/resource/ amt13-v.pdf
Vector Board	Mouser	\$23	Vector8001	1		Inside Model	Substitute to PCB - Connect components	
Battery	Amazon	\$34	<u>EBL 9V</u> Batteries	1		Inside Model	Provide power	
Quadrature clock	Digi-Key	\$6	<u>LS7184</u>	3		Inside Model	Convert encoder data	
Arduino UNO	Mouser	\$45.00	<u>Arduino UNO</u> <u>WiFi Rev2</u>	3		1x Inside Model 2x Outside Model	Control motors and data from encoders	
Portenta H7	Arduino	\$104.00	<u>Arduino</u> Portenta H7	1		Primary Controller	Control all 3 motors and encoders	

Ann and H.J. Smead Aerospace Engineering Sciences

Client Electronics - Component Costs

Component	Website	Cost (without tax)	Link	Quantity	Datasheet	Location	Purpose	Comments
Nicla Sense ME	Arduino	\$71.00	<u>Nicla Sense</u> <u>ME</u>	1		Inside Model	IMU	Should be 1
Adafruit 1578 Lithium-Ion-Polym er	Amazon	\$13.00	<u>Adafruit Li-Po</u> <u>Battery</u>	1		Inside Modle	Charge IMU	system!
Battery Charger	Adafruit	\$7.00	<u>Adafruit</u> <u>Micro-Lipo</u> <u>Charger</u>	1		Outside Model		
JST wires	Sparkfun	\$2.00	https://www.spa rkfun.com/prod ucts/13685	2		Outside Model	connect arduino to encoder	
Encoders Connector	Digi-Key	\$30.00	AMT-18C-3-03 6	2		Outside Model	Connect AMT encoder to Arduino	Request Samples!!!!!
Misc	N/A	\$17.00				N/A	Jumper wires, header pins, etc.	

108

Servicer Electronics - Component Costs

Component	Cost
Computer	
CPU	\$430.00
Cooler	\$50.00
Motherboard	\$200.00
Ram	\$100.00
SSD	\$60.00
PSU	\$80.00
Fans	\$20.00
Encoder	\$25.00
Arduino Nano	\$10.00
Lidar Sensor + Dragon Board	\$185.00
Power Cables / margin	\$40.00
	\$1,200.00

Manufacturing Materials Cost - Servicer

Element	Supplier	Description	Part Number	Cost		Quantity	Totals		Link
Test Bench	80/20	10 series one-sided beam	1050	\$0.20	per inch	120	\$24.00	\$144.12	
		10 series beam	1010	\$0.28	per inch	24	\$6.72		
		10 series wide beam	1020	\$0.48	per inch	18	\$8.64		Website: https://8020.net
		20 series beams	2020	\$0.69	per inch	0	\$0.00		/shipping-infor
		10 series wheels	2281	\$17.34	per wheel	4	\$69.36		mation. 40
		10 series inside corner bracket + mounting HW	4119	\$4.05	per bracket + mounting HW	4	\$16.20		days for shipping. \$33.83 for current order
		20 series inside corner bracket + mounting HW	20-4113	\$7.16	per bracket + mounting HW	2	\$14.32		current order
		end caps	2015	\$1.22	per cap	4	\$4.88		
	Home Depot	1" x 1" x 36" pine square dowel	N/A	\$4.84	per piece	2	\$9.68	\$52.25	Woodgrain Millw
		1/4" x 4' x 8' Plywood	N/A	\$29.92	per sheet	1	\$29.92		Sandeply 5.2mm
		4x4 stand center beam	N/A	\$12.65	per piece	1	\$12.65		https://www.hom
Enclosure	Amazon	120mm fan covers	N/A	\$8.39	per pack of 4	1	\$8.39	\$104.57	https://www.ama
		soft close hinge	N/A	\$5.89	per hinge	2	\$11.78		e Cabinet Hinge
		mesh wire lid	N/A	\$11.77	per sheet	1	\$11.77		Amazon.com: 30
		120mm fans	N/A	\$13.99	per two pack	1	\$13.99		Amazon.com: Ve
		Swivel	N/A	\$36.68	per piece	1	36.68		https://www.ama
	Home Depot	Pins for securing enclosure	N/A	\$5.49	per pin	4	\$21.96		Prime-Line White

Manufacturing Materials Cost - Client

		Metal base plate	10408	\$33.91	per sheet	1"x2"x0.25"	\$33.91		/products/1-4-hot
Client Stand	Fast Metals	U Channel	10106	\$15.55	per piece	4"x12"	\$15.55	\$58.76	e50b2c15bdf8d1
		Aluminum L arm base	10230	\$4.74	per piece	24"x1"x3/8"	\$4.74		tions/aluminum-e
	Online Metals	Aluminum L arm Channel	10605	\$4.56	per piece	24"x.25"x.25"	\$4.56	\$14.71	ons/aluminum-ex
		Motor 2 Aluminum Pipe	1217	\$10.87	per ft	0.25" x Sched. 40 x 12"	10.87		0-25-nom-schedu
	Amazon	Motor 1 Aluminum Round Bar	1080	\$3.84	per ft	0.25"x12"	3.84	\$48.07	um/0-25-aluminu
		R4 Bearing	N/A	\$9.30	per 10 pack	1	\$9.30		-2RS-Sealed-Be
		Timer Pulleys	N/A	\$7.99	per 5 pack	1	\$7.99		/ref=sr_1_4?keyv
		Pulley Belt	N/A	\$9.79	per 8 pack	1	\$9.79		a-c41c-422e-990
		PLA	N/A	\$20.99	per kg	1	\$20.99		a+filament+for+3
	Ebay	Planetary Gearbox	N/A	\$90.00	per gearbox	1	\$90.00	\$90.00	472252&targetid=
	Home Depot	Miscellaneous Fasteners	N/A					\$30.00	
Total Cost	\$542.48								

110