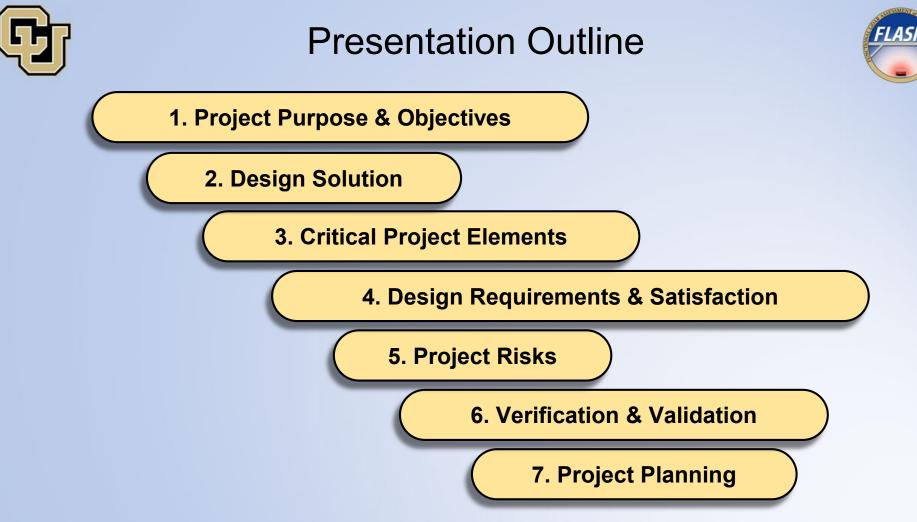


ASEN 4018: Senior Design Projects Fall 2020



FLASH: Functional LiDAR Assessment of Structural Health

**December 2, 2020** 




Team: Kunal Sinha, Ishaan Kochhar, Ricky Carlson, Fiona McGann, Jake Fuhrman, Shray Chauhan, Erik Stolz, Julian Lambert, Courtney Kelsey, Andrew Fu

Customer: ASTRA – Andrew Gisler, Chris Prince, Erik Stromberg

**Advisor: Professor Dennis Akos** 









# **Project Purpose & Objectives**





### **Motivation: Infrastructure Analysis**

#### **Statistics**

- 614,387 bridges in the US
- 200,000+ are over 50 years old
- 17% of bridges are inspected annually
- Infrastructure monitoring market valued at \$1.78B in the U.S.

#### Motivation

• More precision, efficiency, and less manpower required per bridge is the goal



Project Description

Design Solution Design Requirements

CPEs

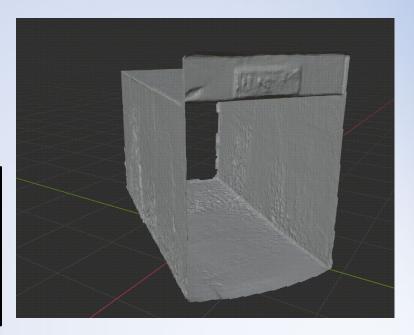
Pro Ris

Project Risks Verification & Validation

Project Planning



#### **Objective & Mission Statement**



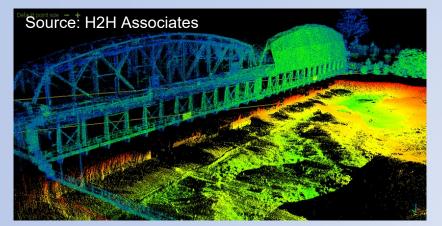

#### **Project Objective**

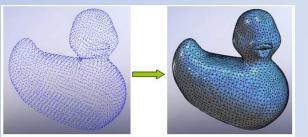
The system shall provide a low-cost and efficient way to monitor and assess infrastructure.

#### **Mission Statement**

Design, build, and deploy a dynamic, vehicle-based LiDAR sensor package which will scan infrastructure while in motion to produce a high-quality 3D map/model that can be used by engineers to assess structural health.






## What is LiDAR? What is a Point Cloud?



6





Source: Brett Rapponotti

- LiDAR stands for Light Detection and Ranging → commonly used for 3D mapping and modeling
- Repeating the scanning process millions of times per second creates a **point cloud**
- Collection of measured points in space, with each being represented by an x, y, and z coordinate

Project<br/>DesignDesign<br/>CPEsDesign<br/>RequirementsProject<br/>RisksVerificationProject<br/>Project<br/>& Validation



#### **Evaluation of Infrastructure**

FLASH data should be able to exhibit the following structural failure points:




Collecting a database of these failure points can...

**Decrease Length of Routine Inspection** 

Track Defect Propagation

**Give Context for Damage Inspections** 

Cheaper and faster than traditional inspection!



CPEs

Design

Solution

Design Requirements

Project Risks

Verification Project & Validation Planning



#### **Candidate Bridges for Inspection**



6th Ave. over Wadsworth Blvd. (Built 1072)



I-70 over Harlan Street (Built 1967)

These bridges clearly exhibit structural deficiencies in the form of cracking, spalling, corrosion, delamination, and deformation

#### Source: Google Maps, Denver7 News

I-70 over Kipling Street (Built <del>1967</del>) Design

Project Description Solution

Sept 2019

Requirements

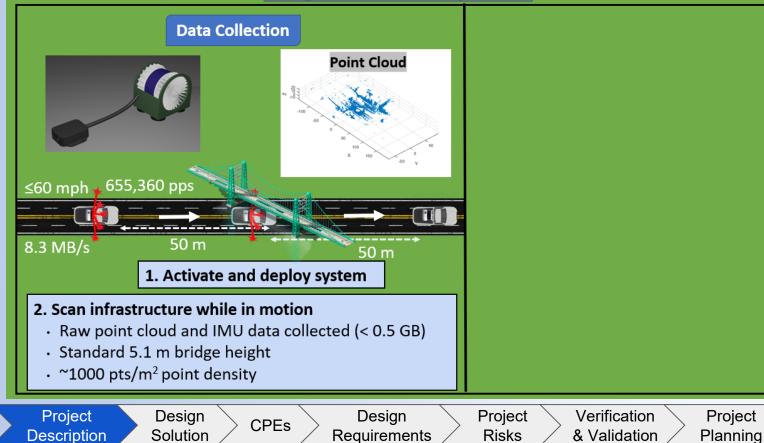
CPEs

Design

Project Risks

Verification & Validation

Project Planning



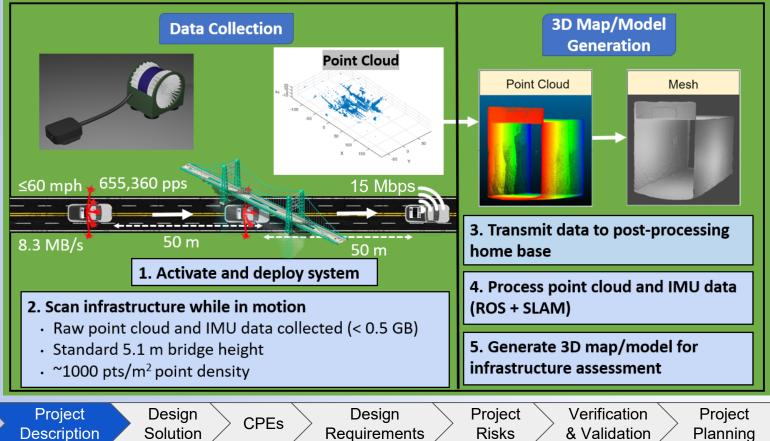

FLASH: Functional LiDAR Assessment of Structural Health

**FLASH** Concept of Operations

#### Single Infrastructure Inspection





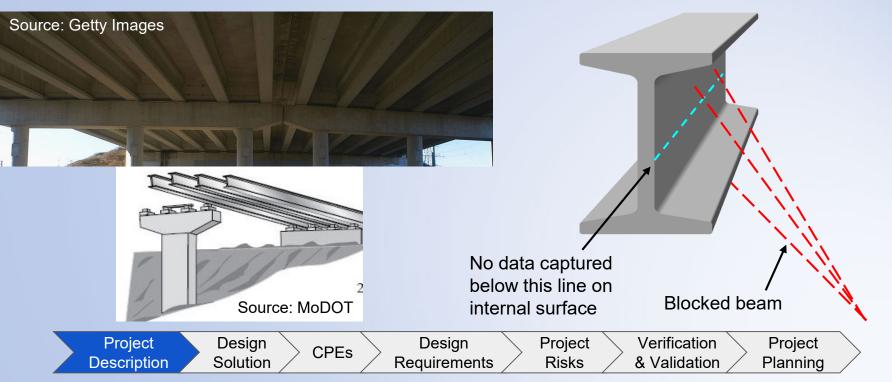



FLASH: Functional LiDAR Assessment of Structural Health

**FLASH Concept of Operations** 

#### Single Infrastructure Inspection








## **LiDAR Internal Blockage Limitation**

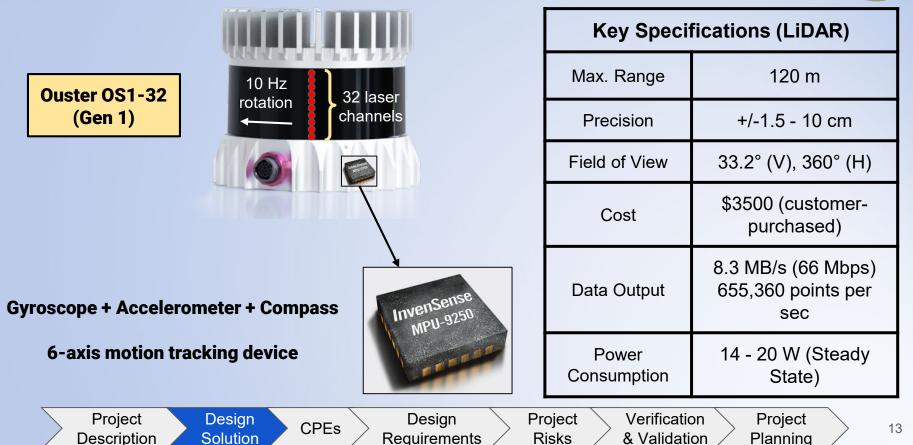
FLASH

- Bridges may be supported with beams/girders along the bridge length
- Bottom flanges block LiDAR beams  $\rightarrow$  some portions of underside not scanned
- Obstructed areas expected to be minimal compared to areas of captured data








# **Design Solution**



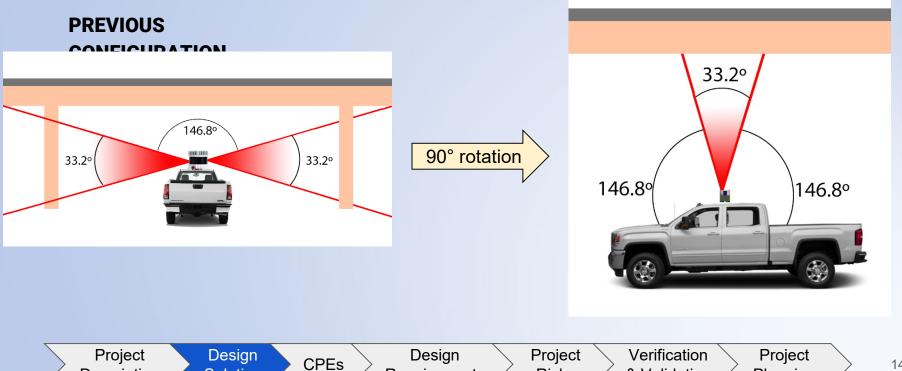


### Sensor Package (LiDAR + IMU)








Description

Solution

#### **New LiDAR Orientation**



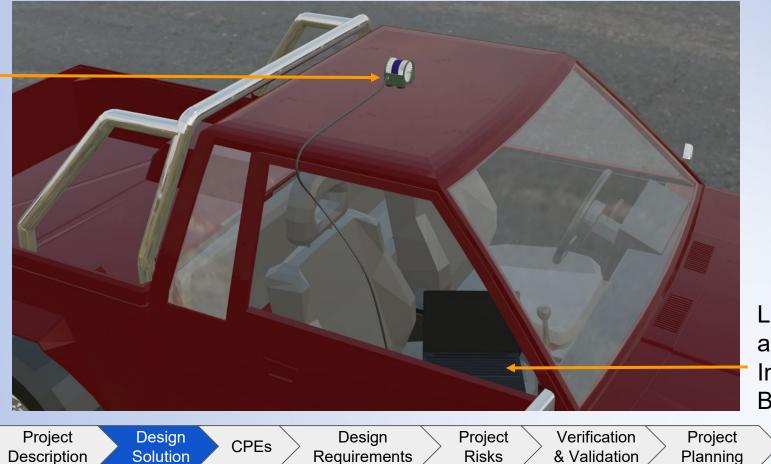
#### **UPDATED CONFIGURATION**



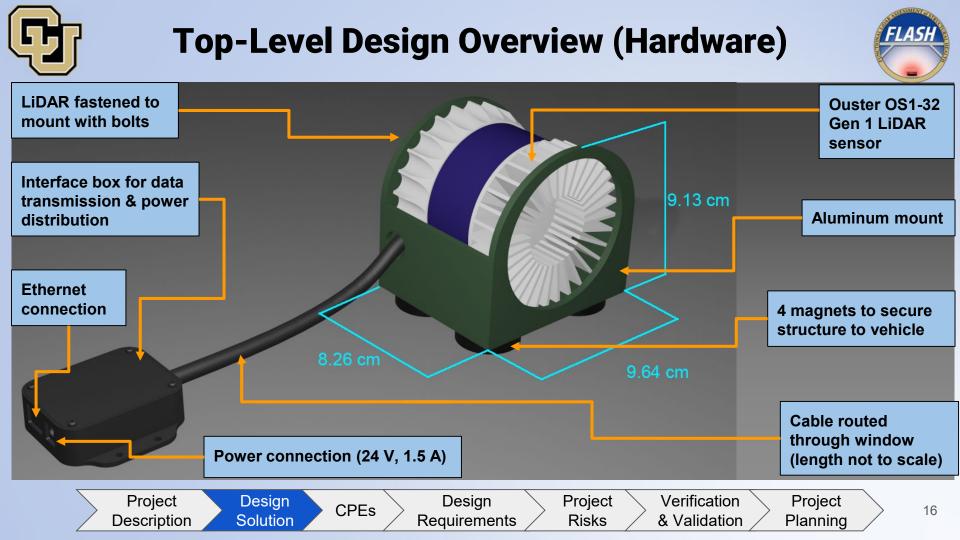
Requirements

Risks

& Validation


Planning

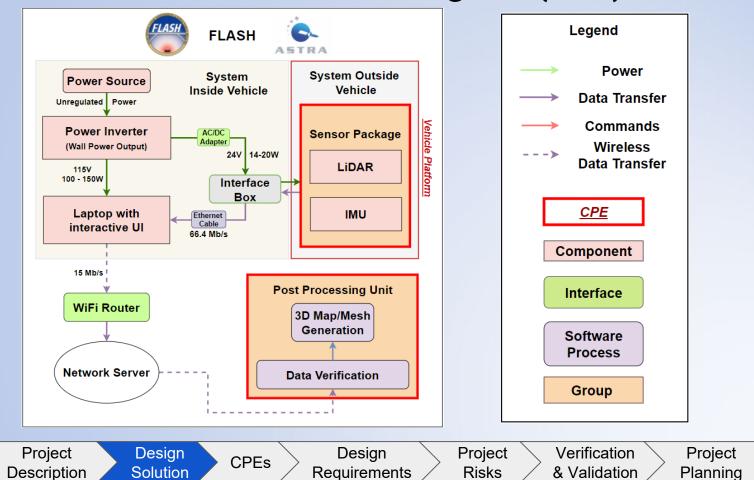



#### **Top-Level Design Overview (Hardware)**



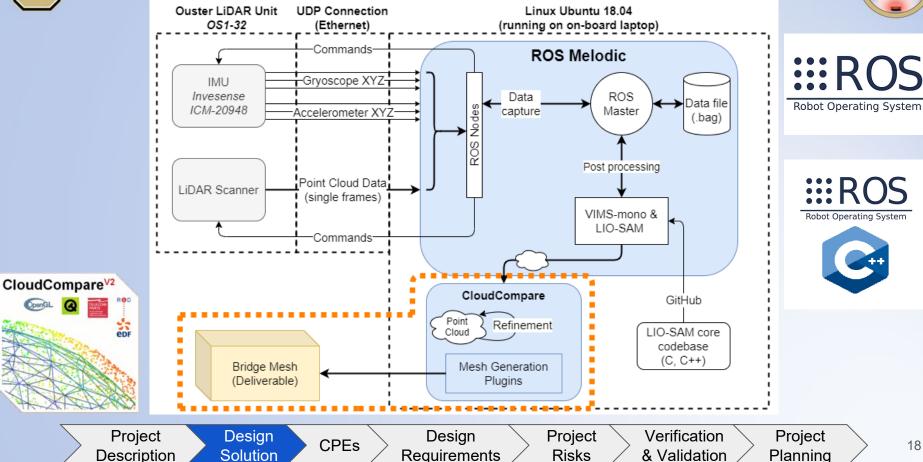
LiDAR & Mount




Laptop and Interface Box






#### **Functional Block Diagram (FBD)**







### **Top-Level Design Overview (Software)**



FLASH





# **Critical Project Elements**





#### **Critical Project Elements**



| Designation | Element                        | Components                                                                              | Why critical?                                                                                                                                             |
|-------------|--------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPE-1       | Sensor<br>Package              | Scanning LiDAR<br>sensor + integrated<br>IMU                                            | High-resolution, precise, and accurate data collection is key to insightful 3D mapping and model generation                                               |
| CPE-2       | Data<br>Processing<br>Software | ROS* and SLAM*-<br>based pipeline +<br>commercial<br>software package<br>(CloudCompare) | Will require the most time and effort; consolidation<br>of LiDAR and IMU data into a high-quality point cloud<br>or mesh is not a straightforward process |
| CPE-3       | Vehicle<br>Platform            | Magnetic mounts +<br>custom-fabricated<br>housing                                       | Sensor package must be secure up to highway speeds and must not pose a safety concern                                                                     |

\*ROS = Robot Operating System\*SLAM = Simultaneous Localization and MappingProjectDesignCPEsDescriptionSolutionCPEsDescriptionSolutionCPEsDescriptionSolutionProjectRequirementsRisks& ValidationProjectProjectPlanning





# Design Requirements & Satisfaction





### **LiDAR - Key Requirements for Scanning**



DR 1.1

The system shall have a measurement range of no less than 30 meters.

DR 1.2

The system shall be capable of scanning bridges at least 5.1 m (16.7 ft) in vertical clearance above road level.

DR 1.3

The system shall have a scanning coverage width of at least 7.2 m (24 ft) directly above the LiDAR sensor.

Project Description > Design Solution Design Requirements

CPEs



Project Risks



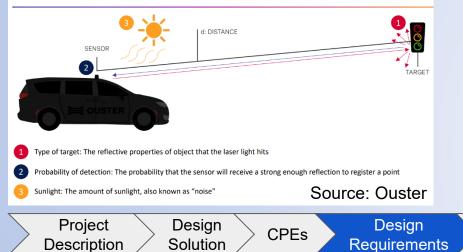
Project Planning



#### **LiDAR - Measurement Range**

day

Project


Risks



- Measurement range is constrained by scanning conditions
  - Probability of Detection: 90%
  - Reflectivity: 10%

Minimum Range: 31.8 m

#### The elements of range measurement



#### Inputs from datasheet

| Known Range              | 120 | < Enter values here |
|--------------------------|-----|---------------------|
| Reflectivity (%)         | 80% | < Enter values here |
| Probability of detection | 50% | Enter values here   |

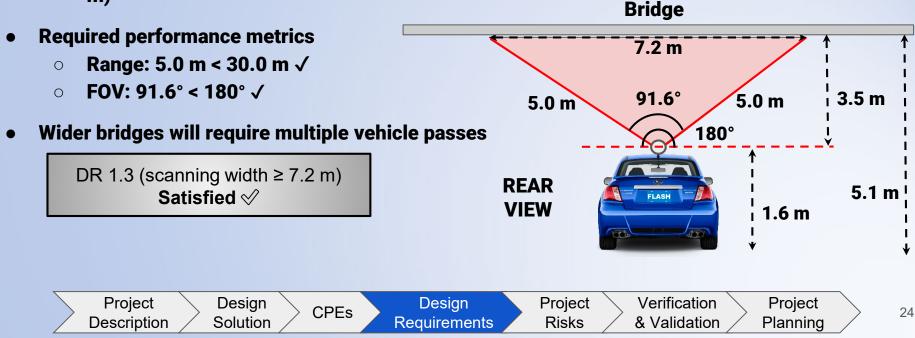
| Expected Range (90% PD) |                 |      |         |  |  |  |
|-------------------------|-----------------|------|---------|--|--|--|
| Reflectivity            | Range (High/low | v)   | Average |  |  |  |
| 10%                     | 31.8            | 53.5 | 42.7    |  |  |  |
| 20%                     | 45.0            | 63.6 | 54.3    |  |  |  |
| 30%                     | 55.1            | 70.4 | 62.8    |  |  |  |
| 40%                     | 63.6            | 75.7 | 69.7    |  |  |  |
| 50%                     | 71.2            | 80.0 | 75.6    |  |  |  |
| 60%                     | 77.9            | 83.8 | 80.8    |  |  |  |
| 70%                     | 84.2            | 87.0 | 85.6    |  |  |  |
| 80%                     | 90.0            | 90.0 | 90.0    |  |  |  |
| 94%                     | 97.6            | 93.7 | 95.6    |  |  |  |

#### \*Calculations assume worst-case sunlight $\rightarrow$ bright

Verification

& Validation

DR 1.1 (range ≥ 30 m) Satisfied ⊗∕


Project

Planning

## LiDAR - Scanning Coverage



- USDOT FHWA regulation sets lane width at 12 ft (3.6 m)
  - DR 1.3 accounts for two lane widths (24 ft or 7.2 m)





## LiDAR - Key Requirements for Data Quality



DR 2.1

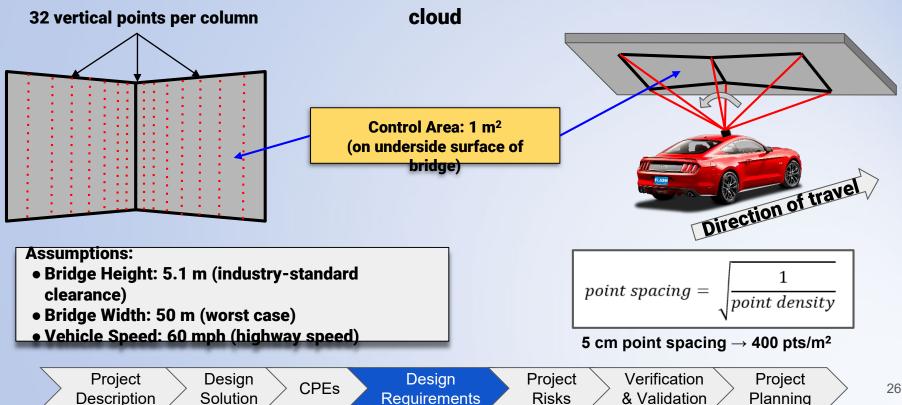
The point cloud shall have an instantaneous point density (resolution) of at least 400 points per square meter directly above the sensor.

DR 2.2

The sensor shall have an average measurement accuracy of at least 10 cm.

DR 2.3

The sensor shall have a range measurement precision (repeatability) of at least 10 cm.

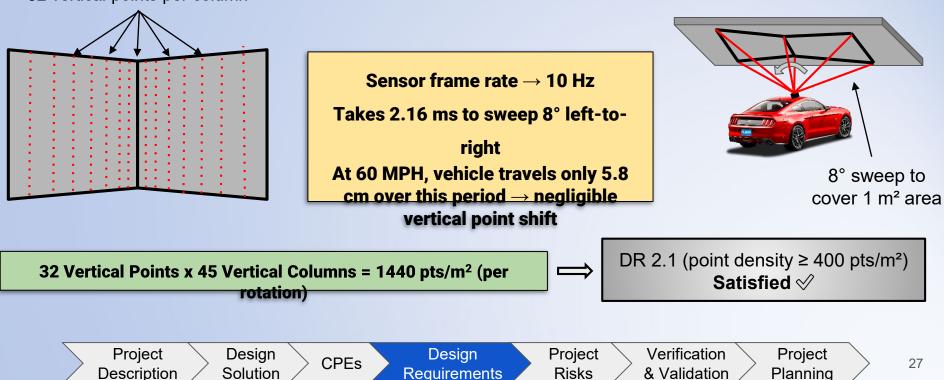





## **LiDAR - Point Density (Resolution)**



This is the key performance metric for identifying and discerning features in the point






## LiDAR - Point Density (Resolution)



This is the key performance metric for identifying and discerning features in the point32 vertical points per columncloud.



#### Accuracy → how close are the data points to their true, real-world positions in 3D space?

Especially important for clearance measurement

LiDAR - Accuracy

Design

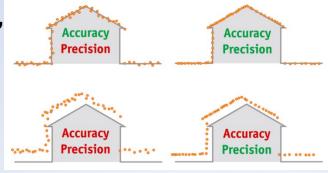
Requirements

- OS1-32 can allegedly achieve 1 to 1.5 cm of accuracy
  - Very limited data exists to support this metric
  - Depends on multiple external variables

Design

Solution

- Testing plan has been developed to estimate accuracy in the mission environment
  - More details coming up in verification + validation


CPEs



Project

Description





Source: YellowScan

DR 2.2 (accuracy ≤ 10 cm) To Be Confirmed •••

Project

Planning

Verification

& Validation

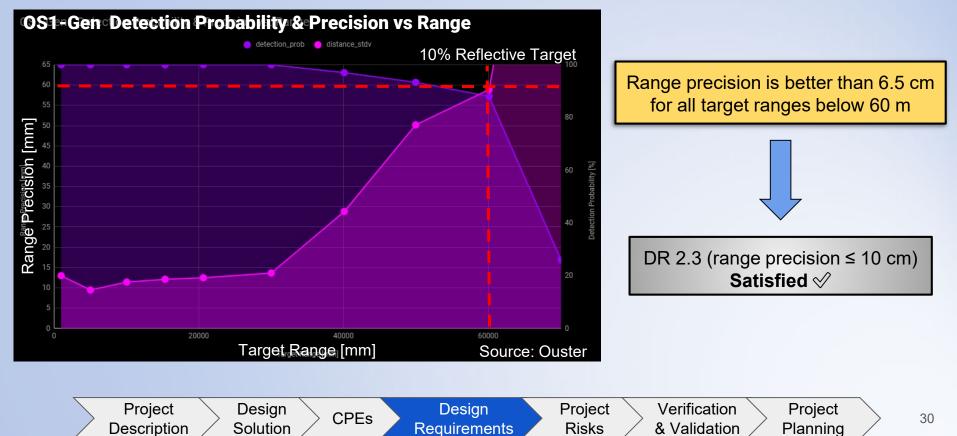
Project

Risks

### **LiDAR - Range Precision**



- LiDAR range precision indicates the repeatability of consecutive range measurements
- Critical for "crispness" in the context of 3D mapping
  - $\circ$  Less precision  $\rightarrow$  blurrier features
- Scanning of bridge underside will be in the 2 20 m range, which corresponds to 1.5 cm of precision


| OS1-32 Gen 1 |           |  |
|--------------|-----------|--|
| Range        | Precision |  |
| 0.8 - 2 m    | 3 cm      |  |
| 2 - 20 m     | 1.5 cm    |  |
| 20 - 60 m    | 3 cm      |  |
| > 60 m       | 10 cm     |  |





#### **LiDAR - Range Precision**







#### Software - Key Reqs. for Point Cloud Data



The onboard computer shall provide an interface between the LiDAR and auxiliary sensors for data collection.

# DR 3.2

DR 4.3

A GNSS-independent post-processing technique shall be implemented to produce a point cloud from raw sensor data.

# DR 7.1

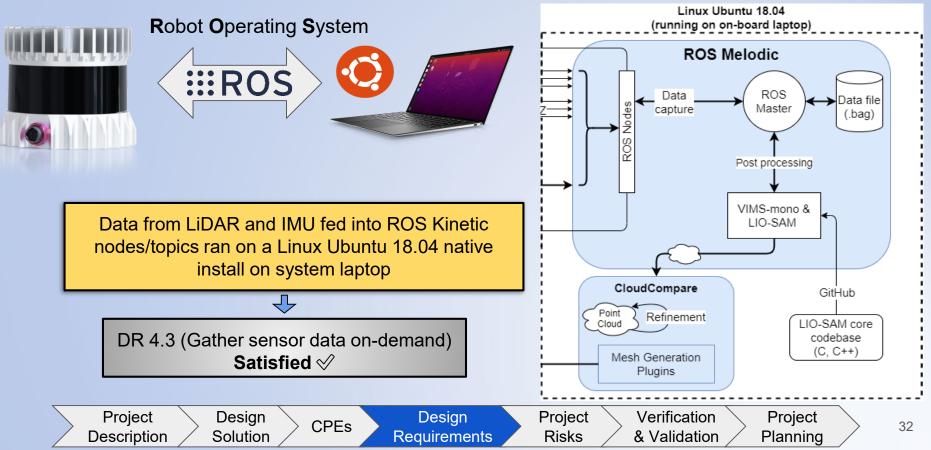
The point cloud data shall be combined with the localization data to create a 3D mesh.



CPEs F



Project Risks




Project Planning

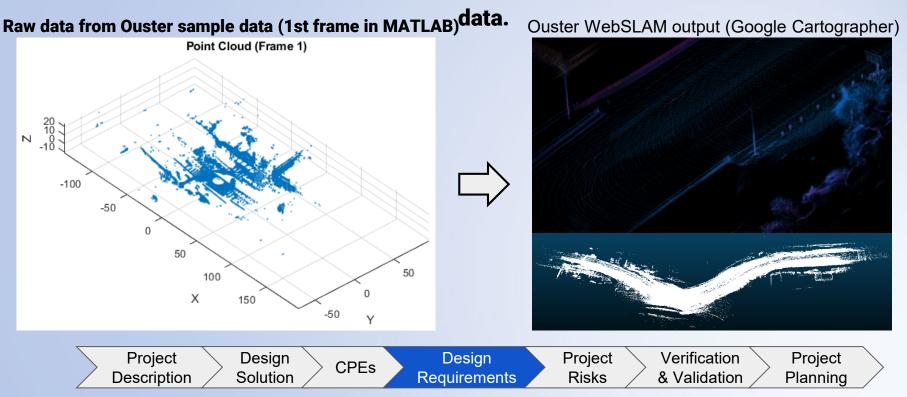


### **Software Pipeline - ROS**







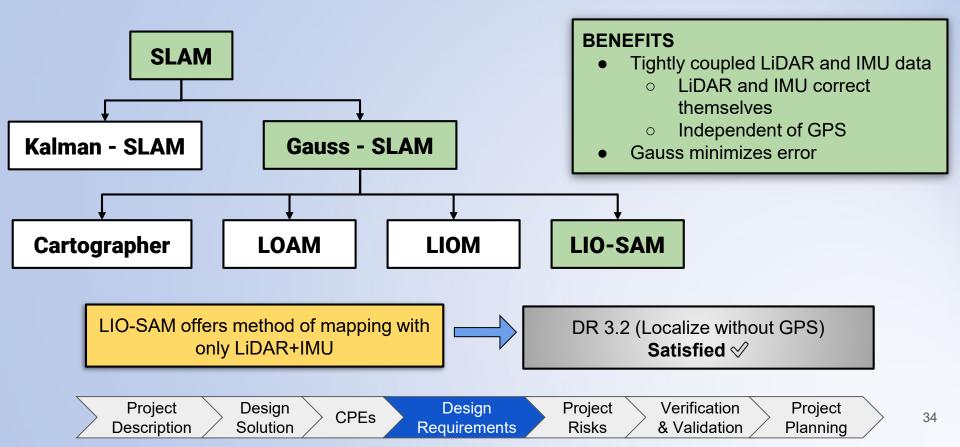





33

**Simultaneous Localization And Mapping** 

**Generates point cloud from raw LiDAR and IMU** 



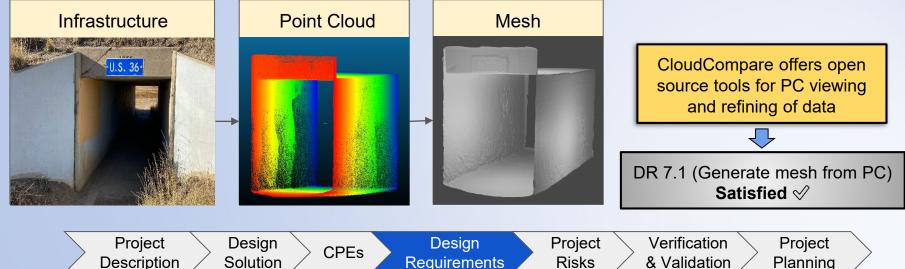



#### Software - SLAM $\rightarrow$ LIO-SAM



LiDAR Inertial Odometry - Smoothing And Mapping






### Software - Mesh from CloudCompare

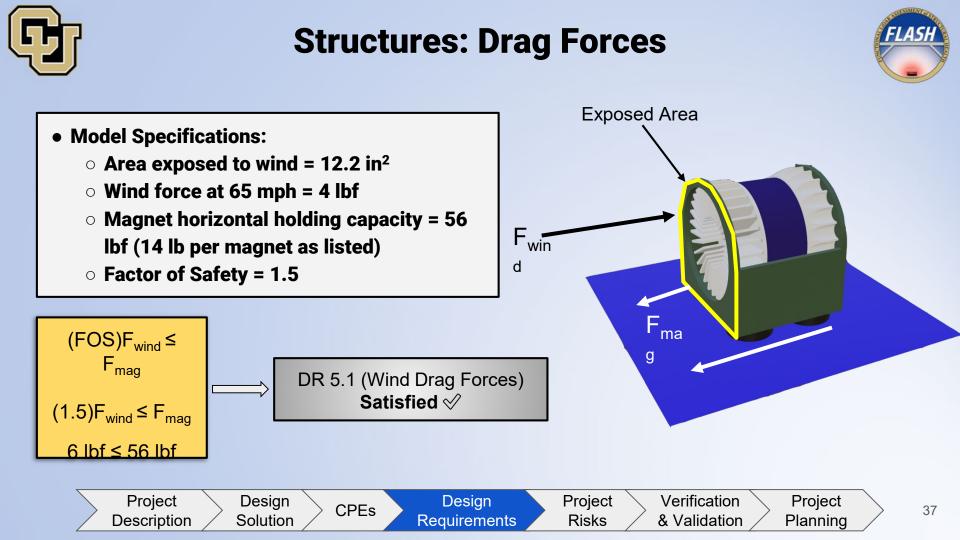


- CloudCompare will serve as primary software for point cloud visualization, refining, and mesh generation
  - Open source, industry standard
  - Easy framework for working with multiple scans
  - Currently used by our customer, ASTRA








#### **Structures - Key Requirement for Drag Forces**



#### DR 5.1

The mounting structure shall withstand drag forces associated with a vehicle speed of no more than 65 mph.









# **Project Risks**





#### **Initial Risk Matrix**



|             |               | Cons                    | equence:         | uence: Acceptable |                            | Tolerable                   |                  | erable                                             |    |
|-------------|---------------|-------------------------|------------------|-------------------|----------------------------|-----------------------------|------------------|----------------------------------------------------|----|
|             | Very Likely   |                         |                  |                   |                            |                             |                  |                                                    |    |
|             | Likely        |                         |                  |                   | Excessive<br>Vibrations    |                             |                  |                                                    |    |
| Probability | Possible      |                         |                  |                   | Scanning M<br>Obstructions |                             | eration<br>Ities | Point Cloud<br>Resolution,<br>Registration Failure |    |
| Prob        | Unlikely      |                         |                  | Inc               | IMU<br>Incompatibility     |                             | nt IMU           | Mounting<br>Mechanism<br>Detachment                |    |
|             | Very Unlikely |                         |                  |                   |                            |                             |                  | Power Supply<br>Insufficient                       |    |
|             |               | Negligible              | Mino             | or N              | Moderate                   | Signifi                     | cant             | Severe                                             |    |
|             |               |                         | Sev              | erity             |                            |                             |                  |                                                    |    |
|             |               | Design<br>Solution CPEs | Desi<br>Requirer | - /               | Project<br>Risks           | Verification<br>& Validatio | >                | Project<br>Planning                                | 39 |



## **Failure Modes and Effects Analysis (FMEA)**



| Risk                            | Subsystem  | Description                                                                                                         | Effect                                                                                                                                                 | SEV | PROB | Risk Priority<br>Number (RPN) |
|---------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------------------------------|
| Point Cloud<br>Resolution       | LiDAR      | Insufficient point cloud<br>resolution for defining<br>structural flaws.                                            | Catastrophic structural flaws<br>could exist but not detected by<br>the LiDAR if they are smaller<br>than the maximum LiDAR point<br>cloud resolution. | 5   | 3    | 15                            |
| Registration<br>Failure         | Software   | Registration is the process of<br>merging the time-sequenced<br>measurements to generate a<br>final 3D point cloud. | The outputted dataset will be<br>unusable for structural analysis<br>whatsoever.                                                                       | 5   | 3    | 15                            |
| Mesh Generation<br>Difficulties | Software   | From the 3D point cloud a 3D<br>mesh will be created to<br>represent the geometry of the<br>bridge.                 | The outputted 3D mesh will be unusable for structural analysis.                                                                                        | 4   | 3    | 12                            |
| Excessive<br>Vibrations         | Structures | Excessive vibrations causing data collection inaccuracies.                                                          | Accuracy and precision of the<br>LiDAR-generated point cloud<br>could be compromised.                                                                  | 3   | 4    | 12                            |

Requirements

Risks

& Validation

CPEs

Solution

Description

Planning



### **Risk Mitigation Methods**



| Risk                                        | Mitigation Method                                                                                                                                                |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Point Cloud Resolution                      | Apply maximum LiDAR data collection setting (maximum horizontal channels and rotation rate); reduce vehicle speed during data collection if needed.              |  |  |  |  |
| Registration Failure                        | Design ROS pipeline with maximal compatibility for<br>interchanging SLAM routines if LIO-SAM fails to produce<br>high-quality output. (i.e. Google Cartographer) |  |  |  |  |
| Mesh Generation Difficulties                | Survey and prepare for experimenting with alternative competing mesh generation algorithms that are compatible with CloudCompare.                                |  |  |  |  |
| Excessive Vibrations                        | Apply thermal paste and/or shock-absorbing material to structural housing; research effects of vibrations on LiDAR performance.                                  |  |  |  |  |
| Project Design<br>Description Solution CPEs | DesignProjectVerificationProject41RequirementsRisks& ValidationPlanning41                                                                                        |  |  |  |  |

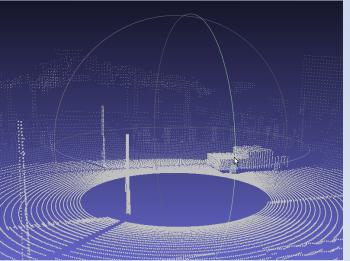


#### **Post-Mitigation Risk Matrix**



| ٦           |               | Cons                     | equence:                 | Acceptable | Tole                             | erable I                    | ntolerable          |            |
|-------------|---------------|--------------------------|--------------------------|------------|----------------------------------|-----------------------------|---------------------|------------|
|             | Very Likely   |                          |                          |            |                                  |                             |                     |            |
|             | Likely        |                          |                          |            |                                  |                             |                     |            |
| Probability | Possible      | Scanning<br>Obstructions | Excessive<br>Vibration   | -          |                                  |                             |                     |            |
| Prob        | Unlikely      |                          | Insufficient             |            | Mesh Generation<br>Difficulties  |                             | Registratio         | on Failure |
|             | Very Unlikely | IMU Incompatibility      | Power Sup<br>Insufficier | piy Me     | lounting<br>echanism<br>tachment |                             | Point (<br>Resol    |            |
|             |               | Negligible               | Minor                    | M          | oderate                          | Significant                 | t Sev               | ere        |
|             |               |                          | Seve                     | rity       |                                  |                             |                     |            |
|             |               | Design<br>Solution CPEs  | Desigr<br>Requirem       |            | roject<br>Risks                  | Verification & Validation / | Project<br>Planning | 42         |






## **Verification & Validation**





#### **Software: Carla Simulation**



"lidar point cloud ". Cameras and Sensors. https://carla.readthedocs.io/en/stable/cameras and sensors/, Nov. 2020

- LiDAR: 32 channel, 10Hz, 50m range
- IMU: 6 axis, Accel. Gyro.

Project

Description

Vehicle speed: (10 to 60mph), height: 1.6m

Design

Solution

Model: Simulated infrastructure



CPEs

Design Requirements

Project Risks

Verification & Validation

Project Planning

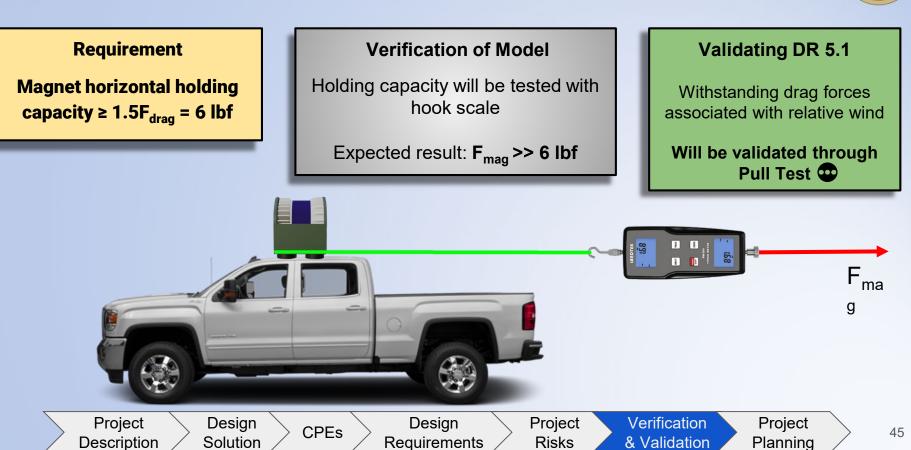


#### Requirement

A GNSS-independent post-processing technique shall be implemented to produce a point cloud from raw sensor data.

#### Validation Method

Carla will test our software pipeline by providing raw LiDAR and IMU data of a virtual environment with the exact parameters of our sensor package.


#### **Expected Result**

LIO-SAM registration and mapping will provide a point cloud that mirrors the virtual environment.



### **Structures: Pull Test**







#### **Comprehensive System Test**



LiDAR data will be collected as required by subteam tests, transmitted, and processed to generate a 3D point cloud and mesh

Requirements

All design requirements

#### **Expected Result**

Verification that the system performs as expected and generates a useable 3D map (as compared to a WebSLAM generated point cloud)



#### **Test environment:** Highway bridge underpass

**Equipment:** Complete system + vehicle

Project Description Design Solution Design Requirements

CPEs

Project Risks

Verification & Validation Project Planning



### **Comprehensive System Test: Data Quality**

Design

Requirements



#### Requirements

- Point cloud density (resolution) of at least 400 pts/m<sup>2</sup> directly above sensor
- Accuracy of at least 10 cm

Project

Description



Project

Risks

Multiple bridge passes

Fixed frame rate  $\rightarrow$  10 Hz

Increment vehicle speed from 0 MPH to speed limit

Project

Planning

#### Validation Method

<u>Resolution:</u> Density will be calculated via tool within CloudCompare software

<u>Accuracy</u>: Point cloud will be checked against stationary data and bridge clearance values from CDOT database (OTIS)

Design

Solution

CPEs

Test environment: Highway bridge underpass

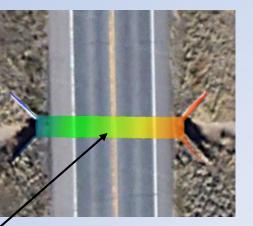
Equipment: Complete system + vehicle

#### **Expected Result**

How vehicle speed affects LiDAR resolution and accuracy

Verification

& Validation


47



#### Comprehensive System Test: Google Maps API Comparison







#### Google Maps API overlay

Design

Solution

CPEs

- Generated point cloud of chosen
   infrastructure using Lio-SAM method
- API map of chosen infrastructure

Project

Description

#### Requirements

The point cloud data shall be combined with the localization data to create a 3D mesh.

#### **Validation Method**

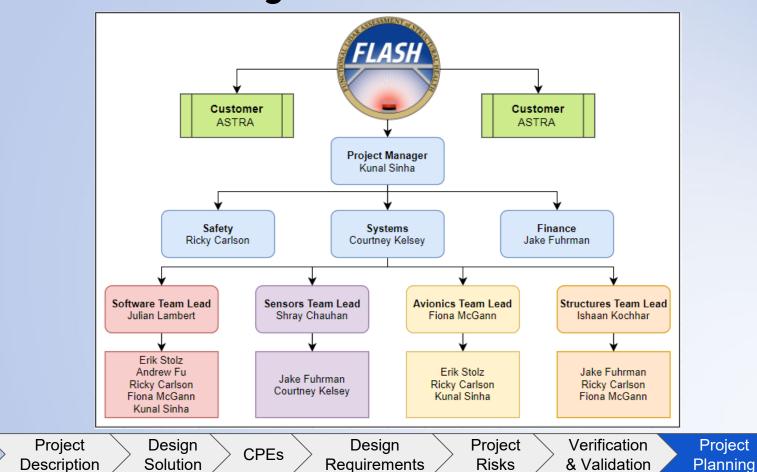
Google Maps API will provide true X/Y position that our mesh will be compared against.

#### **Expected Result**

Point cloud data from the Ouster will mirror X/Y of Google Maps API and any drift errors will be quantified

Design Requirements Project Risks



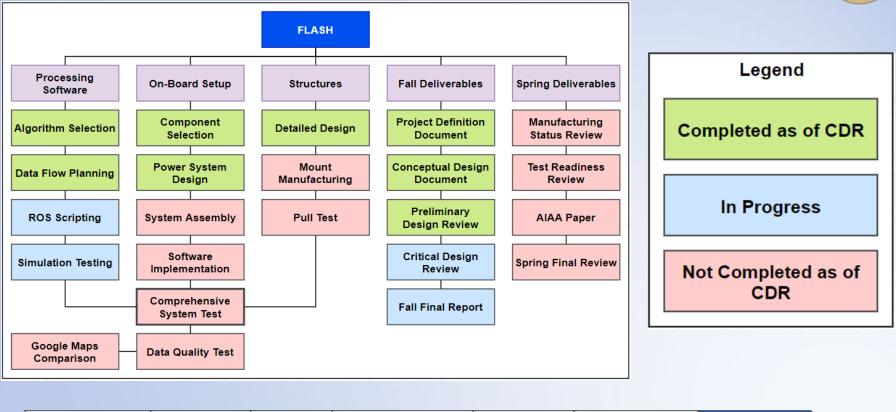



# **Project Planning**





#### **Organizational Chart**




FLASH

50

#### **Work Breakdown Structure**





Design

Requirements

Project

Description

Design

Solution

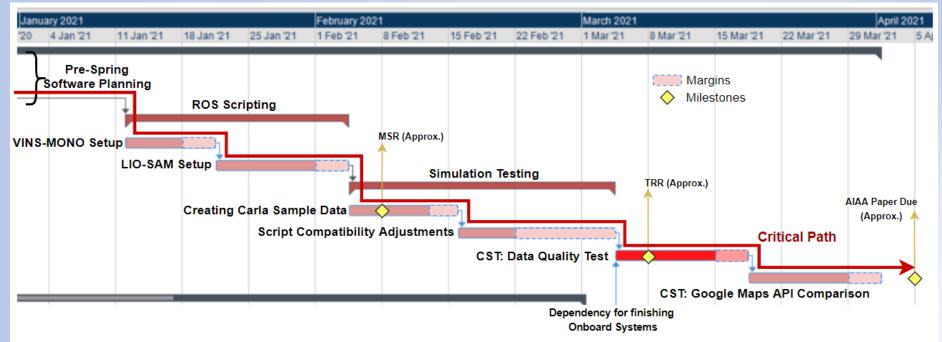
CPEs

Project

Risks

Verification

& Validation

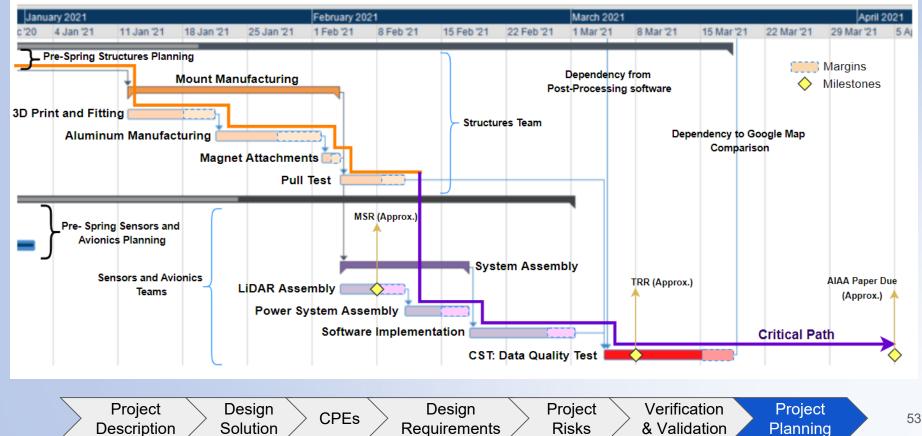

Project

Planning



### **Work Plan: Software**










### Work Plan: Structures & On-Board Setup







### **Cost Plan**



| nate:   | Cost Plan (Pre-Ma                        | Subsystem                                     | Total Cost (\$) |             |
|---------|------------------------------------------|-----------------------------------------------|-----------------|-------------|
| ed:     |                                          | Lidar                                         | (\$1537.35)     |             |
|         |                                          |                                               | Software        | \$0         |
|         | \$1,154.00,                              |                                               | Structures      | (\$94.80)   |
|         | \$1,154.00,<br>42%<br>\$1,537.35,<br>55% | Lidar                                         | Avionics        | (\$1154.00) |
|         |                                          | <ul><li>Software</li><li>Structures</li></ul> | Total           | (\$2786.15) |
| 0<br>2  |                                          | Avionics                                      | Cost Margin     | 20%         |
| -<br>)) | \$94.80 , 3%                             |                                               | Total w/ Margin | (\$3343.38) |



- Total Budget Allocate
  - · \$5,000.00
- Remaining Budget:
  - **\$1,656.62**

 ASTRA has agreed to purchase our OS1-32 LiDAR sensor (\$3500)









| Test # | Test Name                                                   | Duration                                           | Pre. | Resources                                                                                               | Location                                  |
|--------|-------------------------------------------------------------|----------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1      | Software: Carla Simulation                                  | 20 days                                            | NA   | <ul> <li>Processing Computer</li> </ul>                                                                 | Homebase (with WiFi)                      |
| 2      | Structures: Pull Test                                       | 1 week     1        • Hook Scale     Homebarspace) |      | Homebase (open parking space)                                                                           |                                           |
| 3      | Comprehensive System<br>Test: Data Quality                  | 2 weeks                                            | 2    | <ul> <li>Ouster OS1-32</li> <li>Mounting Structure</li> <li>CDOT Highway<br/>Database (OTIS)</li> </ul> | Low-traffic road with a highway underpass |
| 4      | Comprehensive System<br>Test: Google Maps API<br>Comparison | 2 weeks                                            | 3    | <ul> <li>Processing Computer</li> </ul>                                                                 | Homebase (with WiFi)                      |



### Thank You!

2

#### **Questions?**

FUNCTIONAL LIDAR ASSESSMENT OF STRUCTURAL HEALTH









- [1]"National Bridge Inspection Standards Other Programs- Federal-Aid Essentials for Local Public Agencies." Dot.Gov, 2020, www.fhwa.dot.gov/federal-aidessentials/catmod.cfm?id=87. Accessed 1 Oct. 2020.
- [2]"Who We Are | ASTRA Space." ASTRA Space, 2014, www.astraspace.net/who-we-are. Accessed 1 Oct. 2020.
- [3]"Study on the Resolution of Laser Scanning Point Cloud." Zhu, Ling, Yuqing Mu, and Ruoming Shi.ResearchGate. unknown, 2008. Web. 30 Sept. 2020.
- [4]"UDP (User Datagram Protocol)." Rouse, Margaret. SearchNetworking, TechTarget, 2017, searchnetworking.techtarget.com/definition/UDP-User-Datagram-Protocol#:~:text=UDP%20(User%20Datagram%20Protocol)%20is,provided%20by%20the%20receiving%20party. Accessed 30 Sept. 2020.
- [5]"Puck Hi-Res Lidar Sensor, Greater Image Resolution | Velodyne Lidar." Velodyne Lidar, 2019, velodynelidar.com/products/puck-hires/. Accessed 1 Oct. 2020.
- [6]"OSO Ultra-Wide Field-of-View Lidar Sensor for Autonomous Vehicles and Robotics." Ouster, ouster.com, 2014, ouster.com/products/os0-lidar-sensor/. Accessed 1 Oct. 2020.
- [7]"High-Resolution OS1 Lidar Sensor: Robotics, Trucking, Mapping." Ouster, ouster.com, 2014, ouster.com/products/os1-lidar-sensor/. Accessed 1 Oct. 2020.
- [8]"3D LiDAR Sensors | MRS1000 | SICK." Sick.Com, 2020, www.sick.com/us/en/detection-and-ranging-solutions/3d-lidarsensors/mrs1000/c/g387152. Accessed 1 Oct. 2020.
- [9]"Buy Livox Mid DJI Store." Dji.Com, 2020, store.dji.com/product/livox-mid?vid=48981. Accessed 1 Oct. 2020.





- [10] "What Is an Inertial Navigation System? OxTS." OxTS, 14 Oct. 2019, www.oxts.com/what-is-inertial-navigation-guide/. Accessed 1 Oct. 2020.
- [11]"GNSS Signal Navipedia." Esa.Int, 2011, gssc.esa.int/navipedia/index.php/GNSS\_signal. Accessed 1 Oct. 2020.
- [12] orolia-admin. "Time To First Fix (TTFF)." Orolia, 9 Aug. 2019, www.orolia.com/support/skydel/ttff. Accessed 1 Oct. 2020.
- [13]"Point Cloud." Mathworks.Com, 2020, www.mathworks.com/discovery/point-cloud.html. Accessed 1 Oct. 2020.
- [14] Gray, David. "What Are the Most Popular Types of Point Cloud Processing Software?" Vercator.Com, 2011, info.vercator.com/blog/what-are-the-most-popular-types-of-point-cloud-processing-software. Accessed 1 Oct. 2020.
- [15]Rack Attack. "Base Roof Rack Information: A Guide to Car Rack Crossbars." Rackattack.Com, 2020, www.rackattack.com/staticcontent/base-roof-rack-information.aspx. Accessed 1 Oct. 2020.
- [16] "50 LB Holding Power 2.4" Cup Magnets | Magnetic Round Base Mounting Magnets for Business or Car Top Signs, RB60 Pot Magnets 5 Pieces: Magnetic Sweepers: Amazon.Com: Industrial & Scientific." Amazon.Com, 2020, www.amazon.com/CMS-Magnetics-Magnets-Diameter-RB60/dp/B000WMQFQ0#descriptionAndDetails. Accessed 1 Oct. 2020.
- [17] CargoLoc 150 lbs. Capacity Adjustable Rooftop Rack Crossbars. "CargoLoc 150 Lbs. Capacity Adjustable Rooftop Rack Crossbars-32546 - The Home Depot." The Home Depot, 2018, www.homedepot.com/p/CargoLoc-150-lbs-Capacity-Adjustable-Rooftop-Rack-Crossbars-32546/309994583. Accessed 1 Oct. 2020.
- [18] "IoT Standards & Protocols Guide | 2019 Comparisons on Network, Wireless Comms, Security, Industrial." Postscapes, 2 Jan. 2020, www.postscapes.com/internet-of-things-protocols/. Accessed 1 Oct. 2020.





- [19]"VisibleBreadcrumbs." Mathworks.Com, 2010, www.mathworks.com/help/vision/ug/point-cloud-registration-workflow.html. Accessed 1 Oct. 2020.
- [20] "MEMS Sensor: Working Principle, Types, Advantages & Its Applications." ElProCus, 22 Aug. 2019, www.elprocus.com/memssensor-working-and-its-applications/.
- [21]Wikipedia Contributors. "Fibre-Optic Gyroscope." Wikipedia, Wikimedia Foundation, 16 Apr. 2020, en.wikipedia.org/wiki/Fibre-optic\_gyroscope. Accessed 1 Oct. 2020.
- [22] Kvh.Com, 2020, www.kvh.com/admin/products/gyros-imus-inss/fiber-optic-gyros/dsp-3000/commercial-dsp-3000. Accessed 1 Oct. 2020.
- [23] "Puck Hi-Res Lidar Sensor, Greater Image Resolution | Velodyne Lidar." Velodyne Lidar, 2019, velodynelidar.com/products/puck-hires/. Accessed 30 Sept. 2020.
- [24] "3D LiDAR Sensors | MRS1000 | SICK." Sick.Com, 2020, www.sick.com/us/en/detection-and-ranging-solutions/3d-lidarsensors/mrs1000/c/g387152. Accessed 30 Sept. 2020.
- [25]"The Battle Between MEMS and FOGs for Precision Guidance." Analog.Com, 2010, www.analog.com/en/technical-articles/the-battlebetween-mems-and-fogs-for-precision-guidance.html. Accessed 1 Oct. 2020.
- [26] "Point Cloud Scene Layer—ArcGIS Pro | Documentation." Arcgis.Com, 2020, pro.arcgis.com/en/pro-app/help/mapping/layer-properties/point-cloud-scene-layer-in-arcgis-pro.htm. Accessed 1 Oct. 2020.







- [27] Amazon: Adapter <a href="https://www.grainger.com/product/WESTWARD-Inverter-26W998">https://www.grainger.com/product/WESTWARD-Inverter-26W998</a>.
- [28] Amazon: Inverter: <a href="https://www.amazon.com/TKDY-Adapter-Speaker-Cleaner-Cleaner-Compatible/dp/B08F7DVY8G/ref=sr\_1\_3?crid=25780LQAJGLUA&dchild=1&keywords=24v%2B1.5a%2Bpower%2Bsupply&qid=16058359">https://www.amazon.com/TKDY-Adapter-Speaker-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleaner-Cleane
- [29] Amazon: Lenovo Legion 5: <u>https://www.amazon.com/Lenovo-1920x1080-Processor-Windows-82B1000AUS/dp/B08BB9RWXD/ref=sr 1 3?dchild=1&keywords=Lenovo+Legion+5&qid=1605984002&sr=8-3</u>
- [30] "What Matters in LiDAR." McEnery Convention Center: Autonomous Vehicle Sensors Conference 2018, 26 June 2018, www.autonomoustechconf.com/sites/autosensorsconf/files/assets/6D%20LiDAR%20Face-Off%20Ouster\_Mardirosian.pdf.
- [31] Mann, Tanveer. "One Dead, Five Injured after Bridge Collapses over Busy Road in Italy." Metro, Metro.co.uk, 11 Dec. 2019, metro.co.uk/2016/10/29/one-dead-five-injured-after-bridge-collapses-over-busy-road-in-italy-6222543/.
- [32] "Cormidi Bridge Inspection Equipment." *Cormidi Bridge Access & Maintenance Equipment All Access Rigging*, www.allaccessrigging.com/cormidi-bridge-inspection-equipment.
- [33] <u>https://www.amazon.com/Mutuactor-Strong-Neodymium-Magnetic-Pull-</u> <u>Force/dp/B07JLKXRV6/ref=pd\_ybh\_a\_4?\_encoding=UTF8&psc=1&refRID=YDDN52T8VEF5EXEPHG17 (magnets)</u>





## **Backup Slides**



### **Sources of Damage**

Design

Requirements

Project

Risks



# Sources of damage observed in bridges:

- Vehicular impact
- Environmental
  - strain/deterioration
- Excessive loading or fatigue

Design

Solution

CPEs

Construction error





Verification

& Validation

Project Description

63

Project

Planning



## **Applications of this System**



- Damage identification and evaluation
- Clearance measurement
- General bridge monitoring and documentation
  - Central repository of bridge scan data over time
  - Side-by-side comparison of bridges
  - Estimation of future workloads

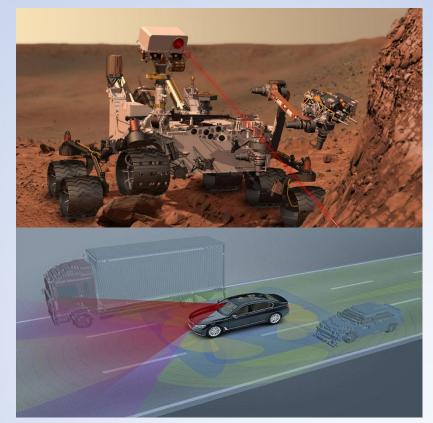






## **Future Applications**




#### **3D Map creating system uses:**

- Self-driving cars
- Mapping planetary bodies
- Cave inspection
- Forest surveying
- Underwater exploration

Design

Solution

Battlefield mapping



Project Description Design Requirements Project Risks Verification
 & Validation

Project Planning



### **Ouster LiDAR Testimonial (11-4-2020)**



- Krishtof Korda Field Application Engineer
  - Ouster OS1-32 Gen 1 Q&A
    - Range/Resolution
      - "Within 60% of the LiDAR's maximum range (<30m) the accuracy and precision are both within 1-1.5 cm"
      - "OS1-32 Gen 1 accuracy is equal to or better than OS1-32 Gen 2 accuracy"
      - "Range resolution (like the tick marks on a ruler) has been reduced to 0.03 cm"
    - Data Collection
      - "Not losing any data quality by driving at highway speeds"
      - "Recommend operating at 20 Hz to collect twice as many data points"
    - Accuracy
      - "Assume Ouster-generated error estimates, would recommend conducting your own error testing upon purchase of the LiDAR"
      - "Field test of mapping my neighborhood worked very well"



### **Ouster LiDAR Testimonial (11-4-2020)**



- Krishtof Korda Field Application Engineer
  - Ouster OS1-32 Gen 1 Q&A
    - SLAM Approach
      - "Would recommend Google Cartographer"
      - "Mapping is exclusive to LiDAR/IMU combination, does not need GPS input"
      - "Ouster-based WebSLAM used as a mid-fi SW for SLAM beginners"
      - "Mesh models of Ouster data do exist, and colorization can be done via mapping camera pixels to LiDAR pixels"
    - Interfacing
      - "90 deg orientation rotation will have no effect on data -> must apply transforms properly to ensure accurate point cloud maps"
      - "Set 'Azimuth Window' to 180-220 deg to block out specific data"
        - "Data will be collected in the same way, with the same lasers, and sent at the same speeds, just without the neglected FOV"
      - "Post-data collection offload via Wifi should be reasonable"



### **Ouster LiDAR Testimonial (11-4-2020)**



- Krishtof Korda Field Application Engineer
  - Ouster OS1-32 Gen 1 Q&A
    - Structures
      - "OS1 has a customizable structural housing"
      - "Thermal fins on top of the LiDAR are used for heat sinking"
      - "Built-in IMU uses MEMS, so magnetic mounting should not affect its accuracy"
      - "LiDAR was operational for all Ouster-related vibrational tests, no systematic failures reported"



#### **Ouster OS1-32 Gen 1 Qualifications**



- 360 deg horizontal allows for a wide range of inspection
- 33.2 deg vertical is the largest available given the team's cost constraints (< \$5,000)</li>
- FOV can be configured/limited to remove excess data points
- Accuracy
  - Greater accuracy than commercial Velodyne LiDAR solutions
- Power/Mass
  - Both well within requirements
- Resources
  - Option to talk with Ouster Field Engineers



https://levelfivesupplies.com/introducing-ouster-3d-sensing-from-san-francisco/

"Sweeping" LiDAR units, like the OS1-32 Gen 1, offer great FOV, accuracy, and points per second for their limited cost, which is why they are commonly used for vehicular applications

Ouster creates "Mobile LiDARs" which utilize multiple lasers (32 for the OS1) rather than just one laser (commonly used for bathymetry)





#### **Ouster OS1-32 Gen 1 Qualifications**



- NOTE: Ouster OS1-32 Gen 1 replaces Ouster OS1-16 Gen 1
  - Current LiDAR selection (OS1-32) has greater accuracy and data output than scored in the original trade (OS1-16)

|                         |        | Velodyne Puck<br>Hi-Res | Ouster<br>OS0-32 | Ouster OS1-16<br>(Gen 1) | SICK<br>MRS1000 | Livox<br>Mid-100 | Velodyne<br>Puck |
|-------------------------|--------|-------------------------|------------------|--------------------------|-----------------|------------------|------------------|
| Criteria                | Weight | Score                   | Score            | Score                    | Score           | Score            | Score            |
| Accuracy                | 7.5%   | 4                       | 3                | 2                        | 1               | 5                | 4                |
| Range                   | 7.5%   | 4                       | 1                | 2                        | 3               | 5                | 4                |
| Field of View           | 30%    | 3                       | 5                | 4                        | 2               | 1                | 3                |
| Cost                    | 20%    | 1                       | 2                | 4                        | 3               | 5                | 3                |
| Data Output             | 20%    | 3                       | 5                | 4                        | 2               | 3                | 3                |
| Platform<br>Integration | 5%     | 4                       | 3                | 3                        | 5               | 3                | 4                |
| Mass                    | 5%     | 3                       | 4                | 5                        | 2               | 1                | 3                |
| Power                   | 5%     | 5                       | 3                | 3                        | 4               | 1                | 5                |
| Total                   | 100%   | 2.9                     | 3.7              | 3.65                     | 2.45            | 2.9              | 3.3              |



#### **Critical Project Elements**



#### 7.1 Sensor Package

The success of FLASH depends upon the selection of a capable light detection and ranging (LiDAR) system. The use of LiDAR is a customer requirement, but the particular LiDAR system has not been specified. The sensor package must be able to scan infrastructure while in motion and collect data to a 5cm accuracy from a 50m range to allow for 3D mapping and model generation. Acquiring a reliable LiDAR system will likely be the highest project expenditure. Thus, a rigorous trade study will be critical in selecting a reasonably priced system while adhering to functional requirements.





### **Critical Project Elements**



#### 7.2 Software/Algorithm Development

In order to transform the raw LiDAR data into a useful form, a robust software solution must be implemented, likely as part of an embedded system. This will require point cloud processing/registration so that detailed 3D maps/models of infrastructure can be created. In addition, the software shall incorporate a simultaneous localization and mapping (SLAM) algorithm to work in conjunction with the selected LiDAR system. SLAM will enable the system to continuously construct a map of the vehicle's surroundings while estimating the vehicle's location within that map (all in real-time). Software implementation is a critical component of the project because it will likely require the most time and effort. Insightful damage assessment and infrastructure analysis cannot occur without operational software architecture.





#### **Critical Project Elements**



#### 7.3 Vehicle Platform

The LiDAR system shall be mounted onto a motor vehicle to allow for autonomous "drive-by" surveying of infrastructure. The mounting fixture must secure all hardware to the vehicle and the structure must incorporate housing to protect hardware from adverse conditions (rain, wind, snow, etc.). Additionally, since FLASH will often operate around other vehicles, the fixture must ensure that the system does not pose a safety concern. A poorly designed vehicle mount may obstruct system performance; hence, this aspect of the project is critical and it presents a challenge in material selection and structural design.





#### **Critical Project Elements**



#### 7.4 Data Transmission

The system shall be capable of transmitting point cloud data and supplementary information (date/time, position, unit number) to an established ground station. This wireless transmission shall be possible up to a 183 meter (200 yard) range from the ground station to ensure effective and timely data processing (exact rate to be determined). This aspect of the project poses a challenge because the size of the point cloud data may be substantial and the LiDAR/SLAM system may not be compatible with transmission hardware straight "out-of-the-box".





#### **Functional Requirements**



| FR 1  | The system shall utilize a 3D LiDAR sensor to survey infrastructure of interest.                                                                               |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FR 2  | The LiDAR sensor shall collect and output usable 3D point cloud data.                                                                                          |  |  |  |
| FR 3  | The system shall be capable of localizing itself even when GNSS services are not readily available.                                                            |  |  |  |
| FR 4  | The on-board processing unit shall be capable of data storage, handling, and interfacing between components.                                                   |  |  |  |
| FR 5  | The system shall be capable of mounting onto a vehicle and operating while the vehicle is in motion.                                                           |  |  |  |
| FR 6  | The system shall incorporate a power source that is capable of continuously supplying power to all applicable components.                                      |  |  |  |
| FR 7  | The point cloud and localization data shall be consolidated and post-processed into an interactive digital 3D map/model to quickly identify structural faults. |  |  |  |
| FR 8  | The on-board communications unit shall be capable of wirelessly transferring point cloud and localization data directly to a designated headquarters.          |  |  |  |
| FR 9  | The system shall be capable of initiating and terminating data collection with minimal driver interaction.                                                     |  |  |  |
| FR 10 | The system shall conform to all relevant safety regulations and guidelines.                                                                                    |  |  |  |



#### **Communications: Onboard Computer**



DR 4.1

The system shall accommodate a cumulative data size of at least 5 GB.

DR 4.2

The memory unit shall be compatible with a UDP connection over gigabit ethernet.

DR 4.3

The onboard computer shall provide an interface between the LiDAR and auxiliary sensors for data collection as well as a wireless communication interface for uploading purposes.

Project Description Design Solution

Design Requirements

CPEs

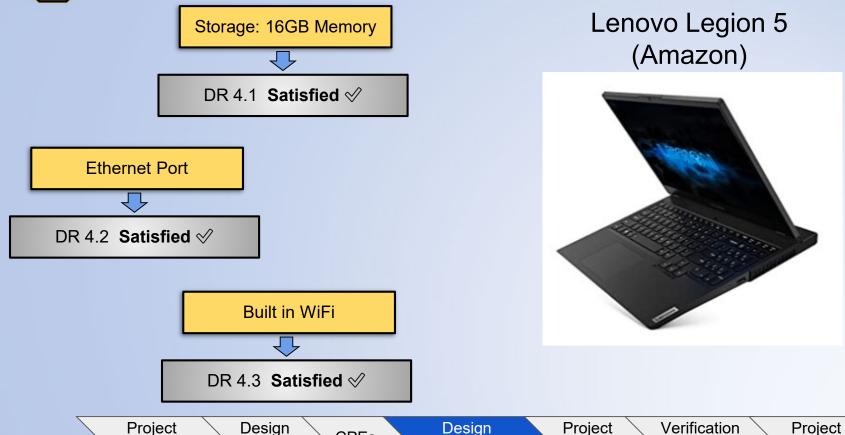
nts Ri

Project Risks Verification & Validation

Project Planning



Description


#### **Communications: Onboard Computer**

Requirements

Risks

& Validation





CPEs

Solution

Planning



#### **Communications: Power**



#### The power system shall supply no less than 30V.

#### DR 6.2

DR 6.1

The power system shall be capable of supplying 25W of continuous steady-state power.





Design

Requirements

Project

Risks

Verification

& Validation

Project

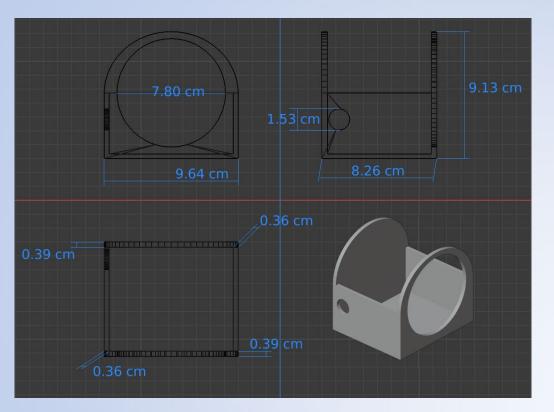
Description

Design

Solution

CPEs

80


Project

Planning

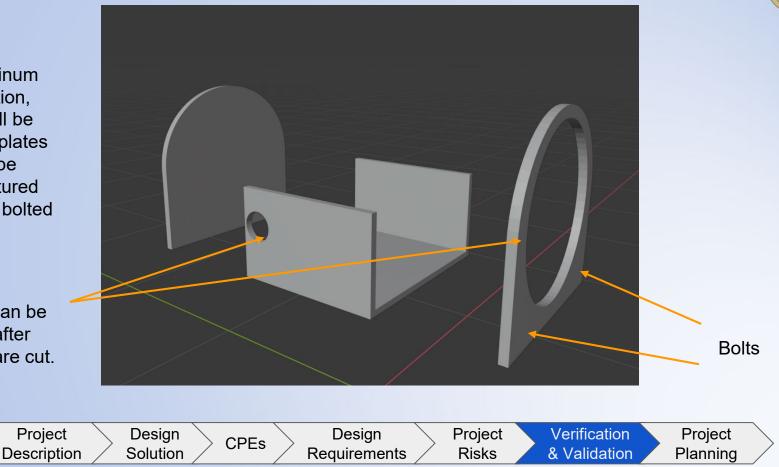


#### **Structures: Drawing for 3D print**










#### **Structures: For Aluminum construction**



For aluminum construction, mount will be split into plates that can be manufactured and then bolted together.

Holes can be drilled after plates are cut.





#### **Top-Level Design Overview (Hardware)**









# **LiDAR: Data Quality Test**



- Purpose:
  - Determine how vehicle speed affects point cloud accuracy and resolution
- Description:
  - System will be deployed under bridge with LiDAR set at 10 Hz + 2048 horizontal channels
  - $\circ$  Scanned on multiple passes  $\rightarrow$  vehicle speed increments from 0 to 60 MPH for each pass
  - Collected LiDAR data processed and compared to truth values of bridge clearance
  - **Resolution verified via point density assessment tool within CloudCompare**
- Materials:
  - Ouster OS1-32 Gen 1 LiDAR sensor
  - Vehicle mounting structure with computer + electronics inside vehicle
  - Laser distance measurement device (for truth values)
- Facilities:
  - $\circ$  Field test  $\rightarrow$  low-traffic road with bridge underpass/overpass
- Expected Result:
  - Maximum vehicle speed at which required accuracy and resolution can be achieved



#### **LiDAR - Key Requirements for Scanning**



The system shall have a measurement range of no less than 30 meters.

The system shall be capable of scanning bridges 5.1 m (16.7 ft) in vertical clearance above road level.

The system shall have a scanning coverage width of at least 7.2 m (24 ft) directly above the LiDAR sensor.

CPEs

Motivation:: In order to meet the precision requirement as mentioned in DR 2.3, the LiDAR sensor component must be capable of detecting infrastructure at a range of 30m from the system. This was also a customer-inspired requirement.

Verification: This will be determined by the range of the chosen LiDAR sensor and any software or hardware updates to ensure the sensor shall conform to this distance requirement. This shall also be tested by comparing the data received to known around truth measurements.

Motivation: The industry-standard for bridge clearance (distance between road level and the bridge bottom) is approx. 5.1 m (16.7 ft). Motivation: The LiDAR scanner used for this project should be able to scan these bridges, as well as higher bridges, given the scanning area is sufficient for meaningful data collection.

Verification: Product specifications will be verified by testing range with known targets at least X m away. This will be accomplished by taking stationary data sets as well as data in motion in order to assure the product specifications are met with a high enough accuracy.

Motivation: This requirement is in relation to DR 1.2 and DR 2.1. A larger scanning coverage width results in fewer vehicle pass-throughs under the bridae.

Verification: Scanning coverage width will be verified by testing range with known targets at least 30 m away. This will be accomplished by taking stationary data sets as well as data in motion in order to assure the product specifications are met with a high enough accuracy.

Project Description

DR

1.1

DR

1.2

DR

1.3

Design Solution

Design Requirements Project Risks



# LiDAR - Key Requirements for Data Quality



DR 2.1 The point cloud shall have an instantaneous point density (resolution) of at least 400 points per square meter directly above the sensor.

DR 2.2

The sensor shall have an average measurement accuracy of at least 10 cm.

DR 2.3

The sensor shall have a range measurement precision (repeatability) of at least 10 cm.

CPEs

*Motivation:* Dictates how easily objects/features can be identified and distinguished in a point cloud (high detail required)

Verification: Point density measurement tool in CloudCompare

*Motivation:* Knowledge of the true, real-world position of 3D points is required for clearance and long-term deflection measurement. Relative accuracy defines how close a point's apparent position is to its actual position.

*Verification:* Test/experiment involving scanning of stationary targets with known positions

*Motivation:* Precision dictates the "crispness" of 3D maps in terms of clean corners, defined features, smooth walls, etc. It ensures that blurriness/noise is minimized so that features can actually be classified and so that there is agreement among consecutive measurements.

*Verification:* Cross-checking with product specifications and data provided by LiDAR manufacturer

Project Description > Design Solution Design Requirements Project Risks Project Planning



Project

Description

Design

Solution

CPEs

# **Key Requirements for IMU/Accelerometer**



| DR<br>3.1 | The system shall<br>incorporate<br>accelerometers capable of<br>measuring ±2g and<br>gyroscope capable of 180°<br>per second. | <ul> <li>Motivation: In order for the system to recognize where a structure is before it saves the 3D point cloud it must have an inertial reference</li> <li>Verification: This requirement will be verified by comparing the inertial navigation device readings to a reputable navigation map by determining the difference between these two sets of information the error/bias will be determined and verified.</li> </ul>                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR<br>3.2 | Implement a non-GNSS<br>dependent post-<br>processing technique to<br>produce a point-cloud<br>map from the raw data.         | <ul> <li>Motivation: Traditional mapping techniques typically rely on GNSS systems. There exist many cutting-edge approaches for LiDAR based mapping systems that do not implement a traditional sensor suite.</li> <li>Verification: This requirement will be verified by comparing the inertial navigation device readings to a simulation of our geometric and sensor conditions by determining the difference between these two sets of information the error/bias will be determined and verified.</li> </ul> |

Design

Requirements

Project

Risks

Verification

& Validation

 $\rangle$ 

87

Project

Planning



#### **Key Requirements for Communications**



DR The system shall accommodate a cumulative data size of at least 64 GB.

> The memory unit shall be compatible with a UDP connection over gigabit ethernet.

DR 4.3

DR

4.2

The onboard computer shall provide an interface between the LiDAR and auxiliary sensors for data collection as well as a wireless communication interface for uploading purposes. *Motivation:* A simple LiDAR scan can produce a file size on the order of 100 MB. This system will only be active for short multiple second long periods but the size of the data will still add up over time.

*Verification:* The product specifications will be compared to a stationary test that will accumulate a large file of data for the onboard processor to store and save correctly. If the system can handle a very large test file, then it will be successful in storing multiple data files from the structure scans.

Motivation: A user datagram protocol is a communications protocol that is primarily used for establishing low-latency and loss-tolerating connections between applications on the internet. This will be used to help transfer the data stored by the system to a homing device for post processing by the customer.

Verification: This requirement will be verified by confirming the systems memory unit is compatible with a UDP connection over gigabit ethernet.

Motivation: A processing unit should successfully communicate with all of the onboard sensors as well as establish wireless capabilities. This will collect and store the data outputted by the system, as well as broadcast it to a homing device for post processing.

Verification: This requirement will be verified through a systems test once all the sensors have been tested individually. If the onboard processor can send commands to the individual sensors and receive a confirmation response, then the requirement will be verified.

Project Description Design Solution Rec

CPEs

Design Requirements

Project Risks

Verification & Validation

Project Planning



### **Key Requirements for Mounting Structure**



DR 5.1 The mounting structure shall withstand drag forces associated with a vehicle speed of no more than 65 mph. *Motivation:* As a group of multiple aerospace engineers the study and effect of drag forces is very well understood. Therefore, since the sensor is being mounted on a car and will be driving anywhere from walking speed to 65 mph the structure itself needs to be able to withstand the drag forces and any extra bouncing forces it may encounter while surveying rural areas.

*Verification:* This requirement will be verified through a bounce test where the vehicle the structure is mounted on will travel through a specific test area where it will experience high velocity air flow as well as various bumps where the system must maintain its fixed position upon the vehicle.





#### **Key Requirements for Power Supply**



| DR<br>6.1 | The power system shall supply no less than 30V.                                               | <ul> <li>Motivation: A power supply of 30 V was estimated to be the required amount to successfully power all the components of the system.</li> <li>Verification: This requirement will be verified by checking the power supply with a voltmeter once all of the components have been added on. This will ensure that the power supply is functioning normally and if all of the components are functioning normally with respect to the supply.</li> </ul>                                                            |
|-----------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR<br>6.2 | The power system shall<br>be capable of supplying<br>25W of continuous<br>steady-state power. | <ul> <li>Motivation: A power supply of 25W has been estimated to ensure the successful operation of all the system components. The customer has also provided this power requirement of 25W in order to operate the system to within functional specifications.</li> <li>Verification: The power supply will be tested using a power meter under field load conditions with all of the sensor components attached and functioning normally. If this test is successful then the requirement will be verified.</li> </ul> |

Project Description Design Solution

CPEs Req

Design Requirements Project Risks

Verification & Validation

Project Planning

# **Key Requirements for Point Cloud Processing**



DR 7.1

DR

7.2

#### The point cloud data shall be used to create a 3D mesh.

Motivation: The engineers that use this data for structural analysis will interface with our 3D mesh generated from the point cloud. This mesh model will be far more useful than the point cloud representation for the purposes of structural analysis due to the difficulty of visualizing structural faults within the context of single points. This process will fill out the surface from which it can even be assigned further material properties in structural analysis software.

Verification: This requirement will be verified by testing the system and its sensors in a static environment and confirming that the data collected has been converted into a useful 3D point cloud when it has finished. This will be confirmed by using a test data set that will go through post processing and will be verified for the correct package structure.

The point cloud and 3D mesh data can be visualized, interacted with, and modified as necessary.

Motivation: For three-dimensional analysis it is far more useful to have dynamic control over a 3D model rather than simple static representations, such as perspective renderings. Therefore, the system needs the output models to be viewable in a visualization environment, as well as be compatible with other mainstream visualization tools for 3D maps and models.

Verification: This requirement will be verified by opening the final 3D point cloud and mesh outputs within the software environment. The mesh will be inspected to assess the feasibility of discerning structural faults within the infrastructure that was scanned, as well as tested in many major mainstream software packages in order to ensure maximal compatibility across systems.

Project Description

Design Solution

CPEs



Project Risks

Project Planning



#### **Key Requirements for Data Transmission**



DR<br/>0.1The system shall be<br/>capable of transmitting<br/>data at a range of 10<br/>meters.

The system shall be capable of transmitting data at a minimum rate of 15 Mbps. *Motivation:* This range allows for multiple vehicles to be in a single garage and start transferring their data to a local/online server. This range allows for the vehicle and the system to be a decent distance away from the homing station in a parking lot and still be able to transmit the data for a quicker turnaround of the results.

*Verification:* This requirement will be verified by creating a static test where the system will be placed up to 70 meters away from the homing station and will attempt to transmit test data back to the station. If the test data is received then the test will be deemed a success and the requirement will be verified.

*Motivation:* The LiDAR sensor will be creating large data files from each structure scan and in order to save time on sending this large amount of data the transmission rate must be reasonably high.

*Verification:* This requirement will be verified by setting up a static test of the transmission rate by using test data from the system which will be transmitted to the homing station. If this occurs at a rate of 15 Mbps allotted then the requirement will be verified.

Project Description

DR

8.2

Design Solution Design Requirements

CPEs

nents

Project Risks

Verification & Validation Project Planning



#### **Key Requirements for Data Colection**



obstructions to create a map accurately. If the system is started early enough then, with enough repetitions, the system will be The system shall begin data able to map the start and end points of the infrastructure with collection no less than 50 m DR greater accuracy. The 50m distance was chosen by looking at away from the infrastructure an average of 30m range on budget-allowing LiDAR sensors. and shall terminate 50 m after 9.1 Verification: The data collected will be overlaid with a GPS map infrastructure of interest. of the locality to get start and end locations of the system. This data will be visually tested to ensure the system is turned ON 50m before target and OFF 50m after target. Motivation: In case the automated, distance-based initiation/termination described in DR 9.1 fails, there must be a failsafe "start/stop" button that allows the passenger to start The system shall provide a and end data collection manually. Although this will require DR means of manual data driver awareness, a single button press is considered minimal interaction. collection initiation and 9.2 termination via a passenger Verification: A "start/stop" button will be integrated with the LiDAR sensor package and it will be pressed multiple times to operated interface. verify that it does indeed initiate and/or terminate data

Project Description

Design Solution

CPEs

Design Requirements

collection.

Project Risks

Verification & Validation

Motivation: The LiDAR sensor takes multiple scans of same

Project Planning



Project

Description

Design

Solution

CPEs

#### **Key Safety Requirements**



| DR<br>10.1 | The system shall adhere to<br>all applicable Federal<br>Motor Vehicle Safety<br>Standards (FMVSS). | Motivation: LiDAR scanners come with safety hazards of causing eye-injuries<br>and damage to silicon-based sensors on the road. These hazards can be<br>avoided by choosing products that adhere to FMVSS protocol.<br>Verification: After choice of LiDAR sensor, the safety manager of the team will<br>run through LiDAR guides provided by the National Transportation Library<br>(NTL) in, "Review of Federal Motor Vehicle Safety Standards for Automated<br>Vehicles" (2016), by National Highway Traffic Safety Administration (NHTSA)<br>in, "LIDAR Speed-Measuring Device Performance Specifications" (2013), and<br>FMVSS Article No.150, "Vehicle-to-Vehicle Communication<br>Technology" (2016), and check if the product matches the design specifications<br>given. |
|------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR<br>10.2 | The LiDAR sensor shall<br>adhere to laser safety<br>regulations under IEC<br>60825-1:2014.         | <ul> <li>Motivation: All laser emitting products used publicly must adhere to<br/>International Electrotechnical Commission's safety regulations. Article<br/>IEC 60825-1:2014 specifies the Classification and requirements of<br/>laser products.</li> <li>Verification: After choice of LiDAR Sensor, it will be verified the<br/>wavelength of the beam emitted will be in a range of 180 nm to 1 mm.<br/>After preliminary comparison of article guidelines and sensor choice,<br/>the team will contact the manufacturer for documentation on<br/>adherence to these policies. This will be a criteria for further trade<br/>studies.</li> </ul>                                                                                                                             |

Design

Requirements

Project

Risks

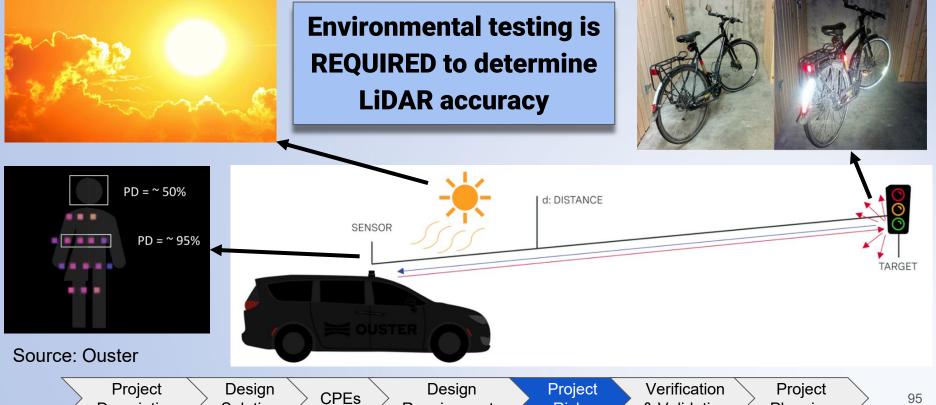
Verification

& Validation

94

Project

Planning




Description

Solution

#### **LiDAR Error Analysis**





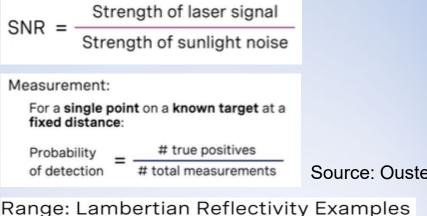
Requirements

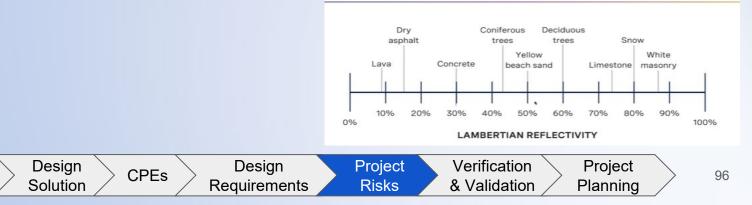
**Risks** 

& Validation

Planning

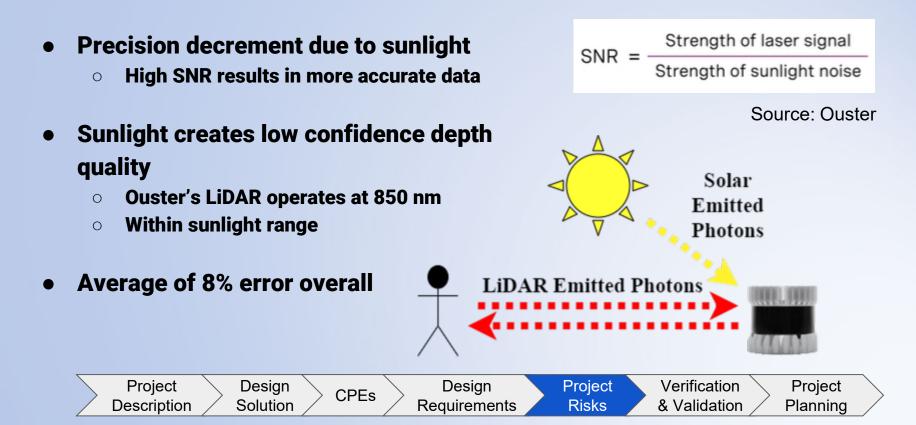
# LiDAR Error Analysis: Candidates





- Precision decrement due to sunlight st
- Probability of Detection (PD)
- Reflectivity of the object

Project

Description


• Potholes / Obstructions in the road



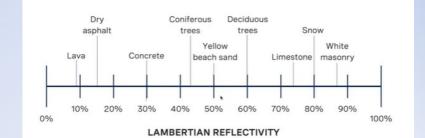


# **LiDAR Error Analysis: Sunlight**








### **LiDAR Error Analysis: Reflectivity**



#### Range: Lambertian Reflectivity Examples

#### Target reflectivity affects precision of range measurements

- Concrete: 30% reflectivity
- Retroreflectors: 90% reflectivity (e.g. stop signs, traffic cones, etc.)









#### LiDAR Error Analysis: PD

Design

Requirements



#### **Probability of Detection (PD)**

#### Measurement:

For a single point on a known target at a fixed distance:

# true positives Probability of detection # total measurements

- **Excel Spreadsheet Calculation** 
  - **Expected Range in [ft]** Ο

Design

Solution

CPEs

- 90% PD: 150 ft  $\bigcirc$
- 50% PD: 200 ft  $\bigcirc$

Project

Description

| Known Range              | 150 | < Enter values here                   |
|--------------------------|-----|---------------------------------------|
| Reflectivity (%)         | 30% | < Enter values here                   |
| Probability of detection | 90% | <ul> <li>Enter values here</li> </ul> |

| Expected Range (90% PD) |          |           |         |  |
|-------------------------|----------|-----------|---------|--|
| Reflectivity            | Range (H | ligh/low) | Average |  |
| 10%                     | 86.6     | 114.0     | 100.3   |  |
| 20%                     | 122.5    | 135.5     | 129.0   |  |
| 30%                     | 150.0    | 150.0     | 150.0   |  |
| 40%                     | 173.2    | 161.2     | 167.2   |  |
| 50%                     | 193.6    | 170.4     | 182.0   |  |
| 60%                     | 212.1    | 178.4     | 195.3   |  |
| 70%                     | 229.1    | 185.4     | 207.3   |  |
| 80%                     | 244.9    | 191.7     | 218.3   |  |
| 94%                     | 265.5    | 199.6     | 232.5   |  |

|     | Average   | iah/low) | Range (Hi | Reflectivity |
|-----|-----------|----------|-----------|--------------|
|     | 133.7     | 151.9    | 115.4     | 10%          |
|     | 172.0     | 180.7    | 163.3     | 20%          |
| _   | <br>200.0 | 200.0    | 200.0     | 30%          |
|     | 222.9     | 214.9    | 230.9     | 40%          |
|     | 242.7     | 227.2    | 258.1     | 50%          |
|     | 260.3     | 237.8    | 282.8     | 60%          |
| Soι | 276.3     | 247.1    | 305.4     | 70%          |
|     | 291.0     | 255.5    | 326.5     | 80%          |
| Ous | 310.0     | 266.0    | 353.9     | 94%          |

Verification

& Validation

Project

Risks

e:

99

Project

Planning



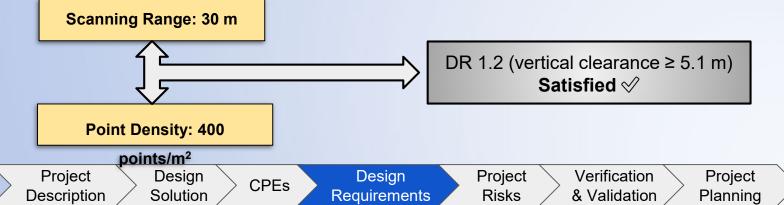
# **LiDAR Error Analysis: Potholes**



- Ouster conducted extensive vibration tests on the Ouster LiDARs while they were functioning
  - Test Results: Passed
- Overall 8% measurement error in a vibrations-intensive environment
  - Driver will need to make an attempt to avoid potholes during testing








# LiDAR - Bridge Height



- USDOT Federal Highway Administration (FHWA) regulation
  - Vertical clearance height of highway and pedestrian bridges  $\rightarrow$  5.1 m (16.7 ft)
- Requirement dependent on satisfying measurement range (DR 1.1) and point cloud resolution (DR 2.1)
  - $\circ$  DR 1.1 and DR 2.1 satisfied  $\rightarrow$  DR 1.2 satisfied







#### **LiDAR Point Volume**



| Vertical Points   | 32     |
|-------------------|--------|
| Horizontal Points | 2048   |
| Frame Rate        | 10 Hz  |
| Points per Second | 655360 |

Assuming vehicle speed of 60 MPH (26.82 m/s)

Every 26.82 meters traveled  $\rightarrow$  655360 points collected

50 meter travel distance under bridge  $\rightarrow$  **1.22 million points total** 



#### **LiDAR Data Budget**



#### Assuming vehicle speed of 10 mph\* (4.47 m/s) + bridge width of 50 m = 11.2 seconds under bridge

#### Sensor data rate of 66.23 Mbps + 11.2 seconds under bridge = 740.8 Mb = **92.6 MB of data**

#### Upload speed of 15 Mbps + 92.6 MB of data = **49 seconds to upload**

\*Represents maximum data collection for a single pass through



# **Software - VINS-mono (Initialization)**



• Underlying algorithm LOAM/LIOM *must* have 9-axis input even though it is not used for positional calculations in LIO-SAM when not using GPS data

- For compatibility concerns, data must be initialized using VINS-mono's initialization routines
  - VINS-mono is a complete SLAM implementation, but we only require one subcomponent





# **Software Pipeline - ROS**

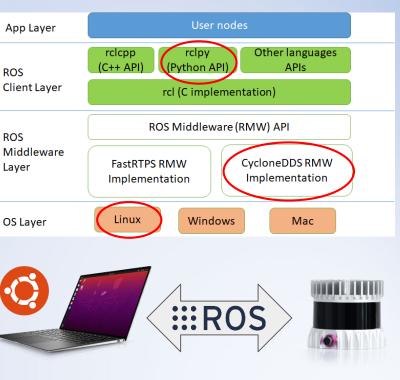


- **ROS provides a powerful framework for generically** interfacing between OS and hardware systems
  - Primarily based off of networking protocols Ο
    - We will be using TCP over ethernet
  - Industry standard, directly supported by Ouster Ο
- Outputs single *.bag* file which will be ingested by LIO-SAM automatically during post-processing

Data from LiDAR and IMU fed into ROS Kinetic nodes/topics ran on a Linux Ubuntu 18.04 native install on system laptop

DR 4.3 (Gather sensor data on-demand) Satisfied *√* 

Project Description

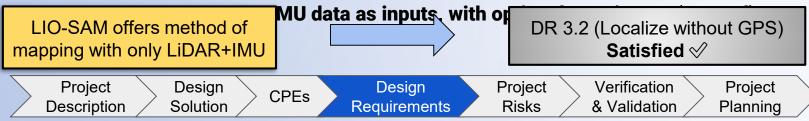

Design CPEs Solution

Design Requirements

Project Risks

Verification & Validation

Project Planning






# Software - SLAM and LIO-SAM



- A Simultaneous Localization and Mapping (SLAM) algorithm will be used to build the 3D point cloud from raw LiDAR and IMU data
  - Note: 'Simultaneous' does not suggest real-time processing is required
- SLAM uses alignments of LiDAR data between frames to correct pose estimation from odometry
  - **Reduces sensor requirements over traditional mapping techniques, no GPS required!**
  - Two broad categories: 'filtering' accepts measurements one-by-one, 'smoothing' calculates trajectory with the complete dataset as input
    - **Since FLASH is non-autonomous, smoothing SLAM algorithms are highly preferable**
    - Note: The pose graph undergoes 'smoothing', not the map. No detail is lost via smoothing.
- A state-of-the-art smoothing SLAM algorithm called LIO-SAM was chosen for FLASH





#### **Software - LIO-SAM Overview**

Design

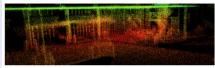
Requirements



- Released in 2020, LIO-SAM is an improvement of LOAM and LIOM, two of the most popular LiDAR+IMU-based SLAM algorithms
  - Improves drift error for long-distance and/or high-speed data 0
  - Actively maintained and rapidly becoming SLAM-of-choice for 0 many applications, including CU's ROBOSUB team
- Developed for and tested with an Ouster OS1 system (OS1-128)
  - **External IMU was used in original implementation due to 6-axis** Ο output of OS1's built in IMU (Invesense ICM-20948)
    - 6-9th axis is magnetometer, used to calculate yaw and primarily used for initialization of data *if* using GPS
    - VIMS-mono's initialization tool applied for 6-axis data to ensure compatibility

CPEs

Design


Solution

Project


Description

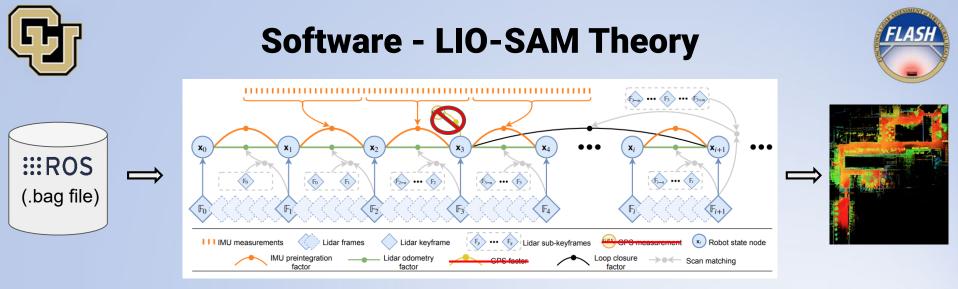






(b) LOAM




(c) LIO-SAM

(b) LOAM (c) LIOM (a) Google Earth (d) LIO-SAM Project

Risks

Verification & Validation Project

Planning



- Two maps are maintained throughout the process
  - One map is responsible for initial position estimation for the scan matching process by estimating the bias in the IMU
  - One map is responsible for point cloud distortion correction by using lidar odometry
- High speeds will 'skew' a point cloud, LIO-SAM does a 'deskewing' method by using the IMU data
  - Raw IMU data gets transformed to LiDAR frame, pose estimates for every point in a single scan are made, IMU pose is optimized until deskewing process converges



# **Software Pipeline - CloudCompare**



- CloudCompare will serve as primary software for point cloud visualization, refining, and mesh generation
  - **Open source, industry standard** Ο
  - Easy framework for working with multiple scans Ο
  - Currently used by our customer, ASTRA Ο
- Offers many built-in tools for modifying and refining data
  - **Outlier filters**  $\bigcirc$
  - **Point classification tools** Ο
  - ...many, many more! Ο
- Runs mesh generation algorithm(s) as plugins
  - **Highly configurable** 0
  - **Can write custom plugins if customer prefers** Ο alternative/proprietary mesh generation



Design Solution

Design Requirements

CPEs

Project Risks

Verification & Validation

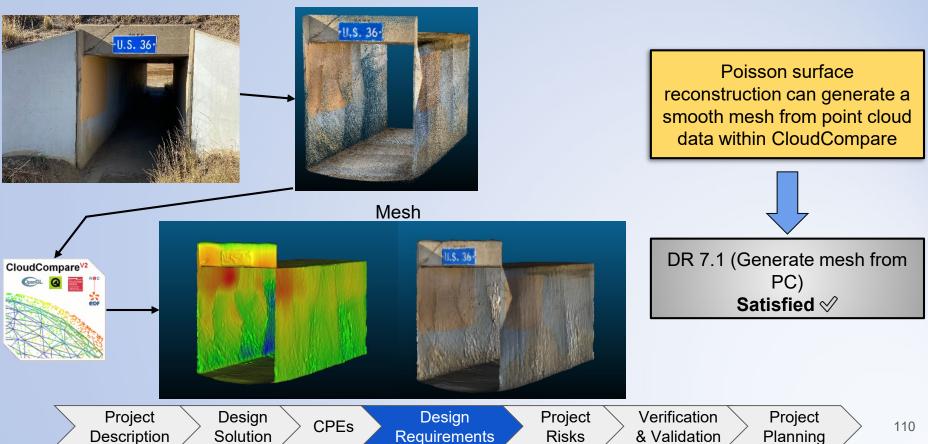
CloudCompare offers open

source tools for PC viewing

and refining of data

DR 7.2 (Visualize mesh/PC)

Satisfied *√* 


Project

Planning



#### **Software - Mesh Generation**

Point Cloud



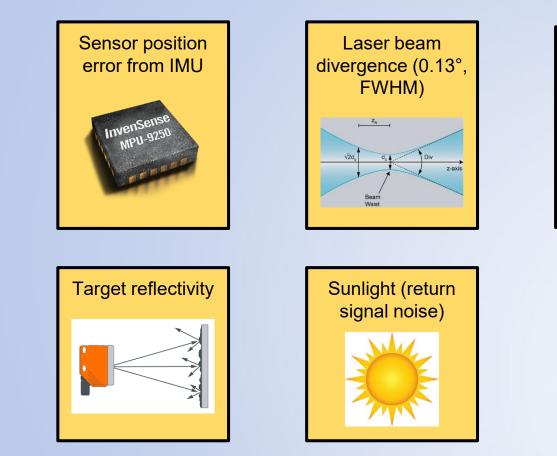


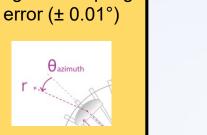

### **Software - Comparing SLAM**



Tightly coupled  $\rightarrow$  IMU is used for de-skewing and optimization




- Improved smoothing


Project<br/>Design<br/>DescriptionDesign<br/>CPEsProject<br/>Design<br/>RequirementsVerification<br/>& ValidationProject<br/>Planning



### **LiDAR - Primary Sources of Error**







Time

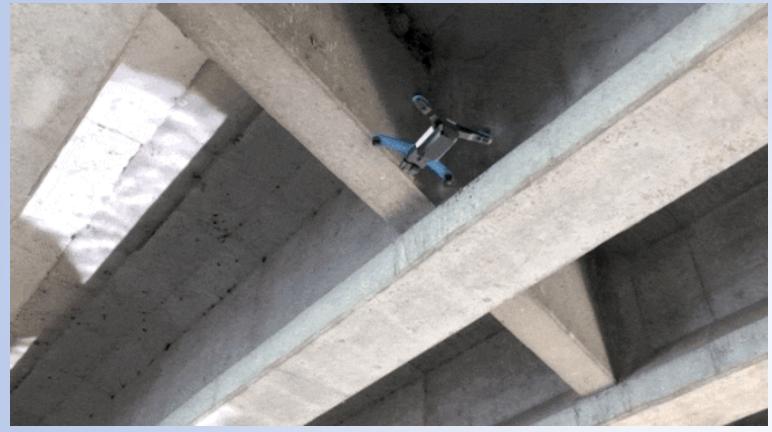
synchronization

(10 ppm drift)

Angular sampling

OTADT DO

UART 16x CLOCK 8 CLOCK 16 CLOCK CYCLES CYCLES


red

UART RECEIVED



#### **Solution to Internal Blockage**





Source: Skydio



### **Types of Damage to be Identified in Data**

- Types of damage/defects to be identified
  - **Concrete spalling** 0
    - ~15 cm or more in diameter
    - ~2.5 cm or more in depth
  - Concrete delamination
    - ~2.5 to 7.5 cm in size
  - **Destructive losses due to impact** 0
    - Size varies, but typically largest form of damage
  - Corrosion in reinforcement
    - ~5 to 20 cm in size
- Limitations •
  - Long-term deformation/displacement 0

Design

Solution

- On the mm scale
- Cracking
  - On the mm scale



CPEs

Design Requirements

Project Risks

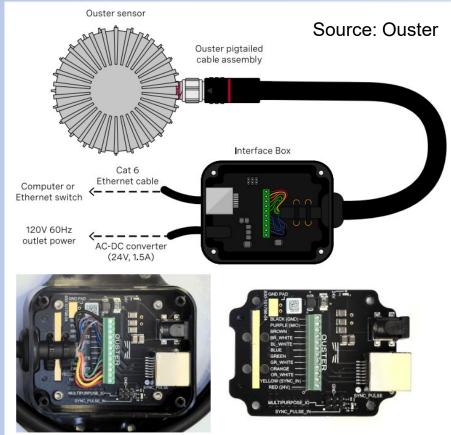
Verification Project & Validation Planning





114




#### **LiDAR Sensor Outputs (Data Packets)**



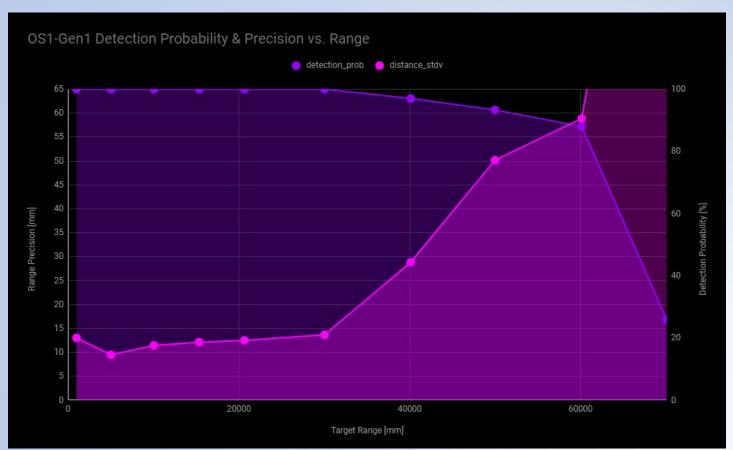
| Range           | Distance of point from beam origin in mm                  |  |
|-----------------|-----------------------------------------------------------|--|
| Signal Photons  | Intensity/strength of return signal                       |  |
| Ambient Photons | Estimated ambient light/noise                             |  |
| Reflectivity    | Estimated reflectance of target                           |  |
| Timestamp       | Timestamp of measurement in ns                            |  |
| Measurement ID  | Sequentially incrementing azimuth measurement (0 to 2047) |  |
| Frame ID        | Index of scan, increments every rotation                  |  |
| Encoder Count   | Azimuth angle as a raw encoder tick                       |  |
| Beam Altitude   | Angle of range measurement above sensor XY plane          |  |
| Beam Azimuth    | Angle of range measurement w.r.t. radial line from center |  |



#### **LiDAR Electrical Interface**





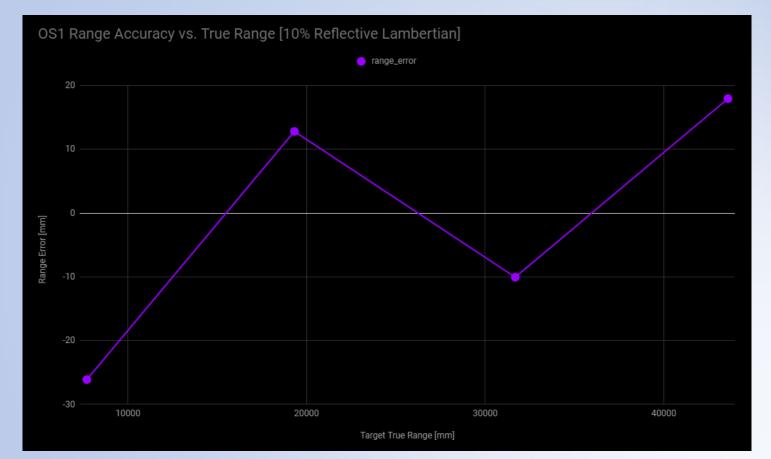

# $\begin{array}{l} \textbf{Data output} \rightarrow \textbf{gigabit Ethernet interface} \\ \textbf{via standard RJ45 connector} \end{array}$

**Power**  $\rightarrow$  24V DC supply



#### **Range Precision Data from Ouster**



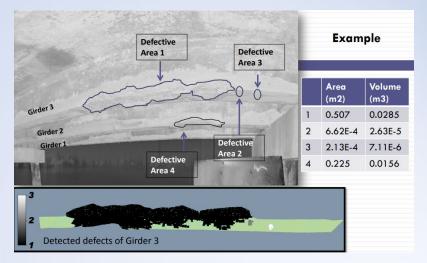



117



#### **Range Accuracy Data from Ouster**








# How can LiDAR data be used to assess structural integrity?



- Large defects and geometric deformations can simply be identified by visual examination of the point cloud
- Algorithms can be applied to point clouds for more advanced detection and quantification of defects/damages
- Discrepancies in periodic LiDAR scans of the same bridge can reveal long-term displacement that may be overlooked by traditional inspection
- Intensity and reflectivity data can reveal surface defects such as metal corrosion, section loss, concrete spalling, and



Source: UNC Charlotte



### **Required Resolutions for Bridge Inspection**



|     | Cause                         | Observations           | Required resolution | Cause                    | Observations            | Required<br>resolution<br>Bridge deck |
|-----|-------------------------------|------------------------|---------------------|--------------------------|-------------------------|---------------------------------------|
| ł   | Sun shadow                    | Shading                | 1m                  | Abutment shift           | Relative displacement   | 0.025m                                |
| H   |                               | Shading                | 0.5m                | Pier displacement        | Relative displacement   | 0.025m                                |
| ł   | Rain dampness<br>Car accident | Shading                | 1m                  | Bridge deck displacement | -                       | 0.02.5m                               |
|     | Car accident                  |                        | Im                  | Bridge deck displacement |                         |                                       |
|     | Section loss                  |                        | 0.5m                | Deck punch-through       | Large openings          | 0.5m                                  |
|     | Deterioration                 |                        | 0.1m                | Deck corrosion           |                         | 0.5m                                  |
| 1   | Chemical spill                | Discoloring            | 0.1m                | Wear at joint            | Gap at expansion joints | 0.1m                                  |
|     | Collision                     | Deformation            | 0.1m                |                          |                         |                                       |
| -   |                               |                        |                     |                          | , w                     | earing surface                        |
| 1   | New wear surface              | Discoloring            | 1.0m                | Cracking                 | Shading                 | 0.005m                                |
|     | Raveling                      | Local discoloring      | 0.5m                | Potholing                |                         | 0.1m                                  |
| 1   |                               |                        |                     | Rutting                  |                         | 0.1m                                  |
|     |                               |                        | Railing             |                          |                         | Curb                                  |
|     | Missing railing               |                        | 0.5m                | Cracking                 | Shading                 | 0.005m                                |
|     | Cracking                      | Shading                | 0.005m              | Spalling                 |                         | 0.1m                                  |
|     | Section loss                  |                        | 0.1m                | Alignment                | Curb edge detection     | 0.5m                                  |
|     | Spalling                      |                        | 0.1m                | Collision damage         | Shading, edge detection | 0.1m                                  |
|     |                               | Rive                   | r bank (1 miles)    |                          |                         | Sidewalk                              |
| - t | Pollution                     | De-vegetation          | 1m                  | Deterioration            | Shading                 | 0.1m                                  |
|     | Smaller flow                  | River channel widening | 0.5m                |                          | D                       | rainage device                        |
| t   |                               |                        | Traffic             | Scaling potion           |                         | 0.1m                                  |
| [   | Increase in ADT               |                        | 1m                  |                          |                         | Land use                              |
|     | Increase in trucking          |                        |                     | Surrounding land use     | Changes in image        | 1m                                    |
|     | Rush hour traffic             |                        |                     |                          | Geor                    | netry of bridge                       |
| NC  | Loading condition             |                        |                     | Edge detection           | Horizontal misalignment | 0.5m                                  |
|     |                               |                        |                     |                          |                         | Utilities                             |
|     | Light shape, cables           |                        | 0.1m                | Traffic line             |                         | 1m                                    |
|     |                               |                        |                     |                          |                         |                                       |

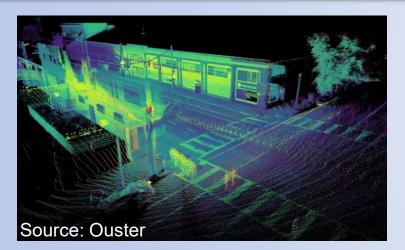


|                                                                  | HIGH                                           | MEDIUM                                                          | LOW                                      |
|------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|
| Accuracy                                                         | < 0.05 m                                       | 0.05 to 0.20 m                                                  | > 0.20 m                                 |
|                                                                  | (< 0.16 ft)                                    | (0.16 to 0.66 ft)                                               | (> 0.66 ft)                              |
| Density                                                          | 1A                                             | 2A                                                              | 3A                                       |
|                                                                  | <ul> <li>Engineering surveys</li> </ul>        | <ul> <li>Forensics/Accident</li> </ul>                          | <ul> <li>Roadway condition</li> </ul>    |
|                                                                  | <ul> <li>Digital Terrain Modeling</li> </ul>   | Investigation                                                   | assessment (general)                     |
|                                                                  | <ul> <li>Construction Automation/</li> </ul>   | <ul> <li>Historical Preservation</li> </ul>                     |                                          |
|                                                                  | Machine Control                                | <ul> <li>Power line clearance</li> </ul>                        |                                          |
|                                                                  | <ul> <li>ADA compliance</li> </ul>             |                                                                 |                                          |
| ~ ~                                                              | Clearances                                     |                                                                 |                                          |
| ££                                                               | <ul> <li>Pavement analysis</li> </ul>          |                                                                 |                                          |
| ts/pts                                                           | <ul> <li>Drainage\flooding analysis</li> </ul> |                                                                 |                                          |
| E 0 6                                                            | <ul> <li>Virtual, 3D design</li> </ul>         |                                                                 |                                          |
| FINE<br>>100 pts/m<br>(>9 pts/ft <sup>3</sup> )                  | <ul> <li>CAD models\baseline data</li> </ul>   |                                                                 |                                          |
|                                                                  | BIM\BRIM                                       |                                                                 |                                          |
|                                                                  | <ul> <li>Post-construction quality</li> </ul>  |                                                                 |                                          |
|                                                                  | control                                        |                                                                 |                                          |
|                                                                  | <ul> <li>As-built/As-is/repair</li> </ul>      |                                                                 |                                          |
|                                                                  | documentation                                  |                                                                 |                                          |
|                                                                  | <ul> <li>Structural inspection</li> </ul>      |                                                                 |                                          |
|                                                                  | 1B                                             | 2B                                                              | 3B                                       |
|                                                                  | Unstable slopes                                | <ul> <li>General Mapping</li> </ul>                             | <ul> <li>Asset Management</li> </ul>     |
|                                                                  | <ul> <li>Landslide assessment</li> </ul>       | <ul> <li>General measurements</li> </ul>                        | <ul> <li>Inventory mapping</li> </ul>    |
| ≝ે≞િ⊂                                                            |                                                | <ul> <li>Driver Assistance</li> </ul>                           | (e.g. GIS)<br>• Virtual Tour             |
| A is is                                                          |                                                | <ul> <li>Autonomous Navigation</li> </ul>                       | • Virtual Tour                           |
| b g g                                                            |                                                | <ul> <li>Automated\semi-<br/>automatic extraction of</li> </ul> |                                          |
| INTERMEDIATE<br>30 to 100 pts/m<br>(3 to 9 pts/ft <sup>2</sup> ) |                                                | signs and other features                                        |                                          |
| at of the                                                        |                                                | Coastal change                                                  |                                          |
| = <u>8</u>                                                       |                                                | Safety                                                          |                                          |
|                                                                  |                                                | Environmental studies                                           |                                          |
|                                                                  |                                                |                                                                 |                                          |
|                                                                  | 10                                             | 2C                                                              | 3C                                       |
|                                                                  | • Quantities (e.g., Earthwork)                 | Vegetation Management                                           | <ul> <li>Emergency Response</li> </ul>   |
|                                                                  | <ul> <li>Natural Terrain Mapping</li> </ul>    |                                                                 | Planning                                 |
| щ Ę Ę                                                            |                                                |                                                                 | <ul> <li>Land Use\Zoning</li> </ul>      |
| COARSE<br><30 pts/m <sup>2</sup><br>(<3 pts/ft <sup>2</sup> )    |                                                |                                                                 | <ul> <li>Urban modeling</li> </ul>       |
| 0 0 0                                                            |                                                |                                                                 | <ul> <li>Traffic Congestion\</li> </ul>  |
| 0 0 2                                                            |                                                |                                                                 | Parking Utilization                      |
|                                                                  |                                                |                                                                 | <ul> <li>Billboard Management</li> </ul> |

FLASH

Suggested accuracy and point cloud density for various mobile LiDAR applications

Source: National Cooperative Highway Research Program (NCHRP)




#### **LiDAR vs. Photogrammetry**



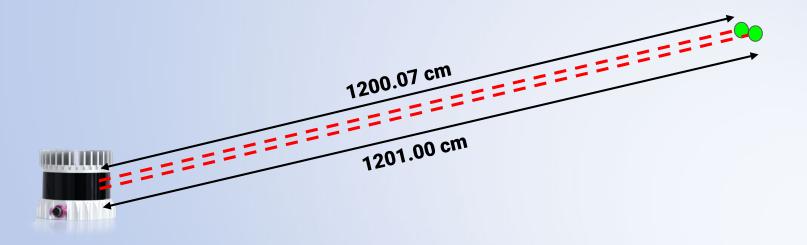
#### Lidar

- 3D coordinates automatically registered from a single viewpoint
- Point clouds contain millions of points with high point density
- Higher cost implementation



#### Photogrammetry

- 3D coordinates extractable via multiple view shots and complicated feature matching processes
- Datapoints dependent to photo quality and digitization technique
- Lower cost implementation





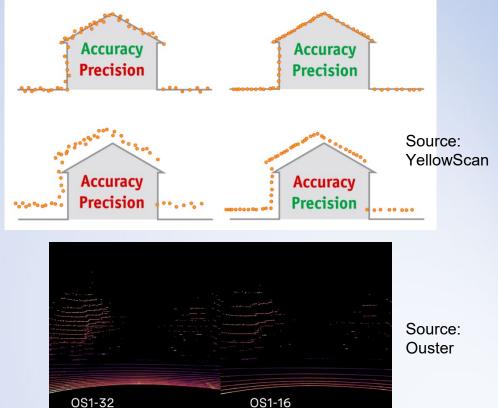

#### **LiDAR Range Resolution**

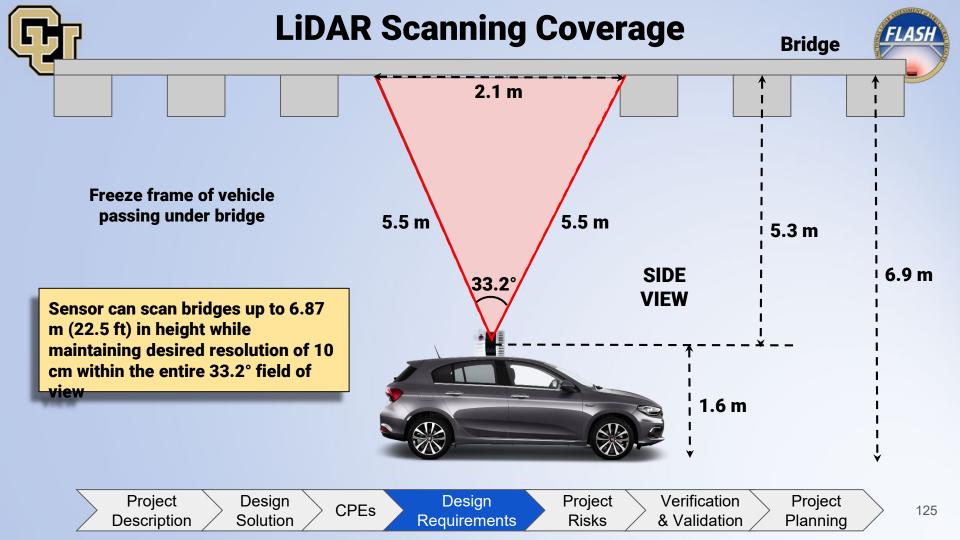


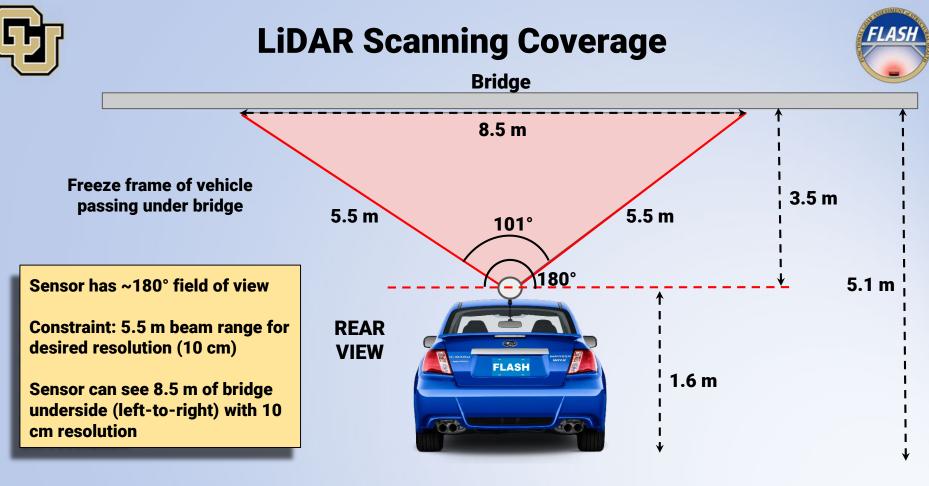
- Range resolution indicates the smallest increment by which range measurements can be made → analogous to "ticks on a ruler"
- The OS1-32 Gen 1 has a range resolution of 0.03 cm (0.3 mm) with fixed resolution per frame
- This means we can likely resolve defects with depths of 0.3 mm or more!






#### **LiDAR Metric Definitions**

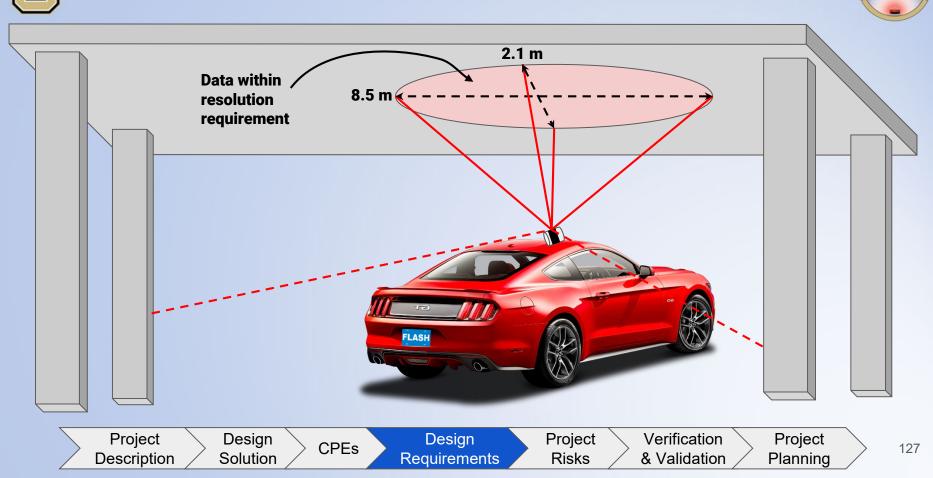




Accuracy  $\rightarrow$  How close are the measured points to the true/actual position of the structure being scanned?

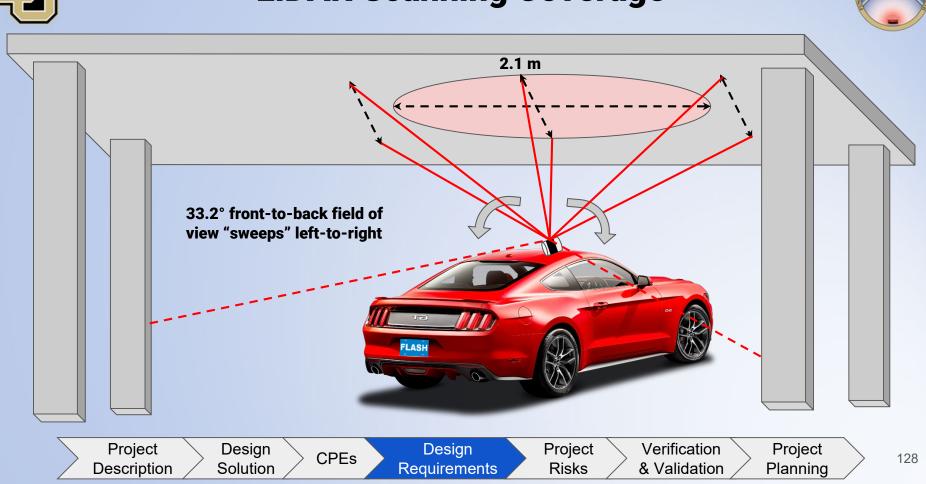
**Resolution**  $\rightarrow$  How far apart are the measured points? How dense is the point cloud?

**Precision**  $\rightarrow$  How repeatable are the measurements? How much noise is observed in the point cloud?








#### **LiDAR Scanning Coverage**

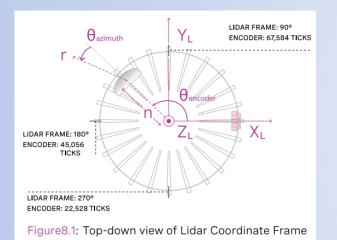
FLAS

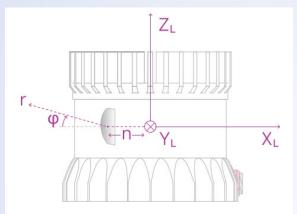


#### **LiDAR Scanning Coverage**






#### **LiDAR Coordinate Frame**


The Lidar Coordinate Frame follows the right-hand rule convention and is defined at the intersection of the lidar axis of rotation and the lidar optical midplane (a plane parallel to Sensor Coordinate Frame XY plane and coincident with the 0° elevation beam angle of the lidar).

#### The Lidar Coordinate Frame axes are arranged with:

- positive x-axis pointed at encoder angle 0° and the red external connector
- positive y-axis pointed towards encoder angle 90°
- positive z-axis pointed towards the top of the sensor

The Lidar Coordinate Frame is marked in both diagrams below with  $X_L$ ,  $Y_L$ , and  $Z_L$ .







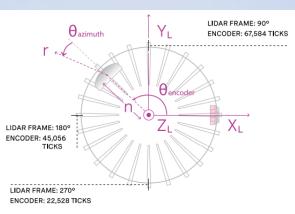


#### **LiDAR Range to XYZ Data**

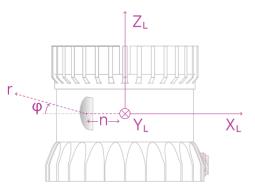


#### From an azimuth data block from the UDP packet:

- encoder\_count of the azimuth block
- range\_mm value of the data block of the *i*-th channel


#### From the get\_beam\_intrinsics TCP command:

- Iidar\_origin\_to\_beam\_origin\_mm value
- beam\_altitude\_angles array
- beam\_azimuth\_angles array


The corresponding 3D point can be computed by

$$\begin{split} r &= range\_mm \\ n &= lidar\_origin\_to\_beam\_origin\_mm \\ \theta_{encoder} &= 2\pi \cdot \left(1 - \frac{encoder\_count}{90112}\right) \\ \theta_{azimuth} &= -2\pi \frac{beam\_azimuth\_angles[i]}{360} \\ \phi &= 2\pi \frac{beam\_altitude\_angles[i]}{360} \end{split}$$

$$\begin{aligned} x &= (r-n)\cos\left(\theta_{encoder} + \theta_{azimuth}\right)\cos(\phi) + n\cos\left(\theta_{encoder}\right) \\ y &= (r-n)\sin\left(\theta_{encoder} + \theta_{azimuth}\right)\cos(\phi) + n\sin\left(\theta_{encoder}\right) \\ z &= (r-n)\sin(\phi) \end{aligned}$$

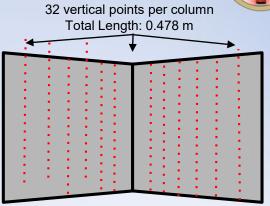


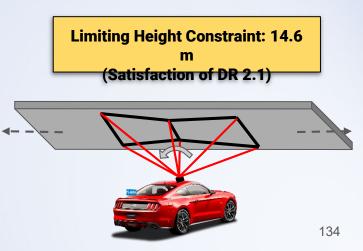
#### Figure 8.1: Top-down view of Lidar Coordinate Frame





|                             | OS1-16                          | OS1-32                        | OS1-64             |
|-----------------------------|---------------------------------|-------------------------------|--------------------|
| VERTICAL RESOLUTION         | 16 channels                     | 32 channels                   | 64 channels        |
| HORIZONTAL RESOLUTION       | 512, 1024, or 2048              | 512, 1024, or 2048            | 512, 1024, or 2048 |
| RANGE                       | 120 m                           | 120 m                         | 120 m              |
| VERTICAL FIELD OF VIEW      | 33.2° (±16.6°)                  | 33.2°(±16.6°)                 | 33.2° (±16.6°)     |
| VERTICAL ANGULAR RESOLUTION | 0.53º - 2.2º (multiple options) | 0.53º - 1º (multiple options) | 0.53°              |
| PRECISION                   | ±1.5 - 10 cm                    | ±1.5 - 10 cm                  | ±1.5 - 10 cm       |
| POINTS PER SECOND           | 327,680                         | 655,360                       | 1,310,720          |
| ROTATION RATE               | 10 or 20 Hz                     | 10 or 20 Hz                   | 10 or 20 Hz        |
| POWER DRAW                  | 14 - 20 W                       | 14 - 20 W                     | 14 - 20 W          |
| WEIGHT                      | 425 g                           | 425 g                         | 425 g              |
| INGRESS PROTECTION RATING   | IP68, IP69K                     | IP68, IP69K                   | IP68, IP69K        |




#### **LiDAR Bridge Height Constraint**



- Bridge Height Constraint is controlled by design requirement satisfaction:
  - Satisfaction of DR 1.1 (Range  $\geq$  30 m):
    - ~30 m Max Height
  - Satisfaction of DR 2.1 (Point Density ≥ 400 pts/m<sup>2</sup>):
    - 14.6 m Max Height
  - Satisfaction of DR 2.3 (Range Precision  $\leq$  10 cm):
    - ~60 m Max Height
- As bridge height increases, so does the required number of pass throughs:
  - 14.6 m bridge height -> 105 minimum pass throughs (assuming a bridge width of 50 m)
- The acceptable maximum bridge height will be determined by the number of driveable lanes beneath it (and corresponding maximum pass throughs)







# **Structures - Withstanding Drag Forces (MATH)**



DR 5.2 The mounting structure shall withstand drag forces associated with a vehicle speed of no more than 35 mph

- Constraints:
  - Area exposed to wind: 78.8 cm<sup>2</sup> (add visual too)
  - Wind force at 65 mph = 78.8 cm<sup>2</sup>\*1.14 kg/m<sup>3</sup> \*  $0.5*(30 \text{ m/s})^2 = 4 \text{ lbf}$
  - Magnet vertical holding capacity = 33 lb / magnet determine final magnet type
  - Magnet horizontal holding capacity = 14 lb / magnet \* 4 magnets = 56 lb
    - Will be determined experimentally, depends on coefficient of friction
  - Factor of Safety = 1.5
    - Structure needs to hold 6 lbs (will be determined through testing)



# **Structures: Magnetic Attachment Concerns**



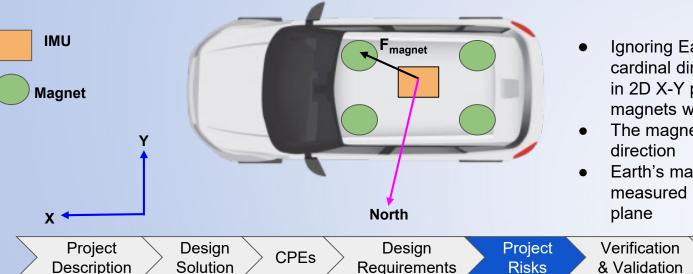
Nut

Mutuactor

33lb Rubber Magnet

Flat Washer + Spring Washer

- Scratching vehicle surface:
  - Switched to rubber-coated magnets to eliminate this concern
- Magnetic effect on IMU:
  - LiDAR interior IMU upper limit: 490 Gauss
  - Magnet strength: 13,200 Gauss
  - Not an issue:
    - Magnet strength is concentrated, field strength drops off with distance Source:
    - Magnet distribution is equal, IMU should still gauge accurately
    - Magnet field does not fluctuate, any disturbance is constant and can be accounted for
    - Assumptions:
      - magnetometer in IMU affected two-dimensionally by earth's magnetic field
      - Driving on a flat surface (ignore earth's curvature)




# **Structures: Magnetic Attachment Concerns**



#### • Magnetic effect on IMU (size not to scale):

- Magnets are equidistant to IMU in the X-Y plane
- Magnetic field drops off with distance
- Only possible force IMU would feel from magnets is in -Z direction
- This force is constant and can be corrected in the dataset





With the outer steel covering, the magnetic Circuit will concentrate on the bottom of cup magnets , the magnetic pull-force is high by 2.0 time than an individual magnet.

COTS magnets selected have concentrated field

- Ignoring Earth's curvature, cardinal directions (N,S,E,W) are in 2D X-Y plane, which the magnets will not affect
- The magnets only affect the Zdirection
- Earth's magnetic field will be measured as a 2D vector in X-Y plane

Project

Planning



#### **Structures: Pothole Concerns**



- No real method of simulating pothole impact
- Variables include: road type, pothole shape/size/depth, car suspension, vehicle speed, tire pressure
- Consideration: perform pull test at varying angles to simulate pothole shock impact and/or drive over potholes with accelerometer to gauge force-loading and whether magnetic attachments can withstand that force





### **Structures: Road Vibration Concerns**



#### • Ouster OS1-32 Gen 1 data sheet:

| Vibration | IEC 60068-2-64 (Amplitude: 3 G-rms, Shape: 10 - 1000 Hz, Mounting: sprung |
|-----------|---------------------------------------------------------------------------|
|           | masses, 3 axes w/ 8 hr duration each)                                     |

- *IEC 60068-2-64*: can withstand dynamic loads without unacceptable degradation of functional performance / operation
- Typical road vibrations: varies based on speed
- Car suspension minimizes vibrations to: 1-2 Hz
- Ouster should operate without degradation of performance on typical road
- Validation: Road Test





### **Failure Modes and Effects Analysis (FMEA)**



140

| Risk                         | Subsystem          | Description                                                                                                                                                                                       | Effect                                                                                                                                                                    | SEV        | PRO<br>B | Risk Priority<br>Number<br>(RPN) |
|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------------------------------|
| IMU<br>Incompatibility       | LiDAR,<br>Software | The original LIO-<br>SAM/LOAM<br>implementation<br>technically requires<br>9-axis input, the OS1<br>only outputs 6. This<br>is being addressed<br>with VIMS-mono's<br>initialization<br>routines. | LOAM-based algorithms will be<br>incompatible without an<br>external IMU (or just<br>magnetometer). Alternative<br>initialization procedure to<br>VIMS-mono must be used. | 3          | 2        | 6                                |
| Power Supply<br>Insufficient | Power              | The power<br>requirements from<br>the vehicle may not<br>be sufficient to<br>power all of our<br>electronic                                                                                       | One or more of the devices will<br>go through brownout/blackout,<br>potentially during data<br>collection.                                                                | 5          | 1        | 5                                |
| Project                      | Desig              | n components.                                                                                                                                                                                     | Design Project V                                                                                                                                                          | erificatio | n        | ,                                |
| Descripti                    | on 🦯 Soluti        | on / Ci Ci / Re                                                                                                                                                                                   | quirements Risks &                                                                                                                                                        | Validatio  | on / I   | Planning                         |



### **Failure Modes and Effects Analysis (FMEA)**



| Risk                                | Subsystem  | Description                                                                                                    | Effect                                                                                                                             | SEV | PRO<br>B | Risk Priority<br>Number<br>(RPN) |
|-------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----------------------------------|
| Mounting<br>Mechanism<br>Detachment | Structures | Detachment of<br>mounting mechanism<br>during vehicle<br>operation.                                            | Could lead to catastrophic<br>damage of the LiDAR sensor.<br>The LiDAR unit is not<br>replaceable for this project.                | 5   | 2        | 10                               |
| Scanning<br>Obstructions            | LiDAR      | Bridge geometry (i.e.<br>I-beams) could<br>cause "blind spots",<br>unseen and<br>unregistered by the<br>LiDAR. | Catastrophic structural flaws<br>could exist but not be seen<br>by the LiDAR if hidden from<br>the LiDAR's line-of-sight<br>(LOS). | 3   | 3        | 9                                |
| Insufficient<br>IMU                 | Lidar      | Ouster built-in IMU<br>does not have<br>sufficient<br>accuracy/data output<br>for SLAM SW.                     | Quality of SLAM-generated 3D<br>model will be degraded<br>compared to that generated<br>with a higher-quality, external<br>IMU.    | 4   | 2        | 8                                |

141



#### **Risk Mitigation Methods**



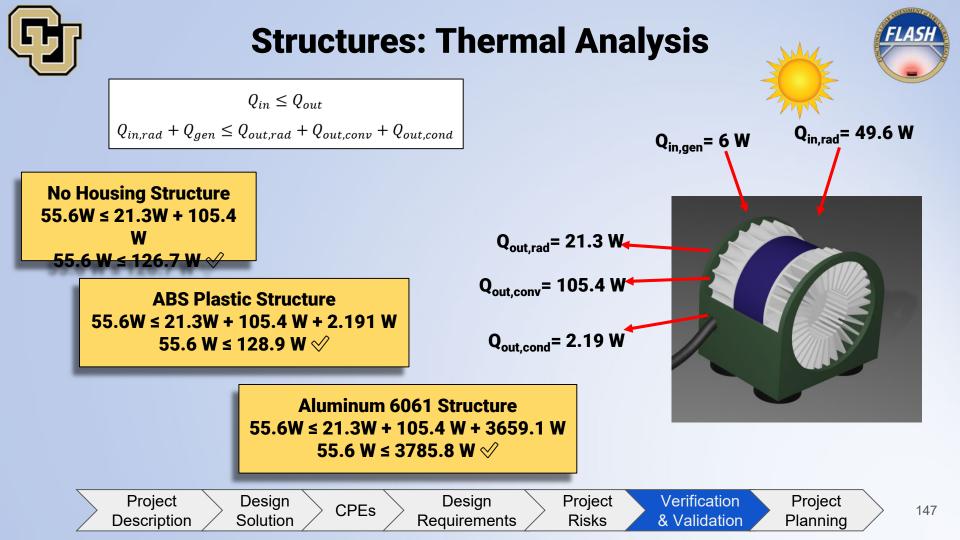
142

| Risk                          | Mitigation Method                                                                                                                                                                                                                              |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Supply Insufficient     | Obtain required power adapter modules; include additional power from external power banks if necessary.                                                                                                                                        |
| IMU Inaccuracies              | Reconsider external IMU ( <i>very unlikely</i> ). This could be easily integrated into current mounting structure as it must be attached to LiDAR unit directly.                                                                               |
| IMU Incompatibility           | If no alternative to VIMS-mono exists, set IMU yaw measurements to zero manually, (assuming a mostly straight road). Worst-case: change SLAM algorithm to compatible one, e.g. Google Cartographer (tested working).                           |
| Mounting Mechanism Detachment | Uphold a minimum 1.5 FOS for magnetic force in both tensile and shear directions; perform a drop test on the LiDAR structural housing.                                                                                                         |
| Scanning Obstructions         | As a mostly programmatic risk, these blind spot areas will be descoped<br>from the project's expected inspection since neither a LiDAR nor visible<br>light camera can reasonably capture these surfaces while mounted to a<br>moving vehicle. |

Project<br/>DesignDesign<br/>CPEsDesign<br/>RequirementsProject<br/>RisksVerificationProject<br/>Planning



### **LiDAR and Structures: Road Test**




- Purpose:
  - Validate LiDAR data usability at certain speeds depending on typical road vibration
- Description:
  - The structure will be mounted with an accelerometer to determine typical road vibrational frequencies
  - LiDAR data will be processed and data quality will be compared
- Materials:
  - Ouster OS1-32 Gen 1 LiDAR sensor
  - Prototype of housing structure
- Facilities:
  - Performed on predetermined driving path
- Expected Result:
  - Determine if dampening road vibrations is necessary and feasible





146





## **Structures: Thermal Analysis**

Design

Requirements

Project

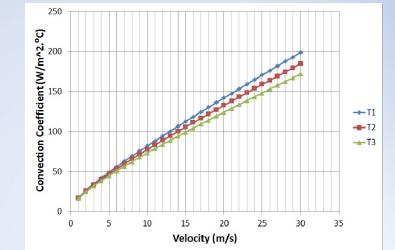
Risks

- Assumptions
  - Forced convection coefficient of air at 60 mph: 125 W/m<sup>2</sup>K

CPEs

- LiDAR heat transfer: 6 W
- Material: ABS Plastic (housing), Al 6061 (housing), Anodized Aluminum (LiDAR)
- No gaps at contacts
- Boundary Conditions

Project


Description

• Maximum LiDAR temperature: 40-50°C

Design

Solution

• Solar load: 1000 W/m<sup>2</sup>



Project

Planning

Verification

& Validation



#### **Structures: Thermal Analysis**

$$Q_{in} \leq Q_{out}$$

$$Q_{in,rad} + Q_{gen} \leq Q_{out,rad} + Q_{out,conv} + Q_{out,cond}$$

$$q_{in,rad}A_L + Q_{gen} \leq q_{out,rad}A_L + q_{out,conv}A_L + q_{out,cond}A_B$$

$$q_{in,rad}A_L + Q_{gen} \leq \varepsilon \sigma T_L^4 A_L + h(T_L - T_\infty)A_L + \frac{k(T_L - T_\infty)}{L_A}A_B$$



LiDAR Surface Area =  $A_L = 0.0496 m^2$ Emmissivity of Anodized Aluminum =  $\varepsilon = 0.77$ Stefan Boltzmann Constant =  $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ LiDAR Operating Temperature =  $T_L = 315 K$ Air Temperature =  $T_{\infty}$  = 298 K Conductivity of Aluminum =  $k = 167 \frac{W}{mK}$ Conductivity of ABS Plastic =  $k = 0.1 \frac{W}{mK}$ Length of Aluminum Plate (at LiDAR Base) =  $L_4 = 0.0039 cm$ Diameter of LiDAR Base =  $A_B = 0.005 m^2$ Forced Convection Coefficient =  $h = 167 \frac{W}{m^2 K}$ 

Project<br/>Design<br/>DescriptionDesign<br/>CPEsProject<br/>Design<br/>RequirementsVerification<br/>& ValidationProject<br/>Planning



#### **Structures: Drop Test**



- Purpose:
  - Assess structural integrity for possible drop off of vehicle
- Description:
  - The housing structure must be strong enough to not rupture and not damage the LiDAR system in the event it falls off the vehicle
- Materials:
  - 3D-printed "dummy" LiDAR with similar weight
  - Housing structure prototype (Al 6061, CNC)
- Facilities:
  - Can be performed anywhere, should be dropped from moving vehicle not in traffic
- Expected Result:
  - Structure should be secure enough to maintain integrity (no cracks or damage), and the dummy LiDAR should remain secure inside the housing when dropped/thrown
  - Final housing material: CNC Aluminum 6061 (feasible with minimal design tweaks)



#### Comprehensive System Test: Google Maps API Comparison





Credit: Tixiao Shan

- Generated point cloud of chosen infrastructure using Lio-SAM method
- API map of chosen infrastructure



> Design Requirements

CPEs

Project Risks

ect ks

Verification & Validation

Project

Planning

Requirements

The point cloud data shall be combined with the localization data to create a 3D mesh.

#### **Validation Method**

Google Maps API will provide true X/Y position that our mesh will be compared against.

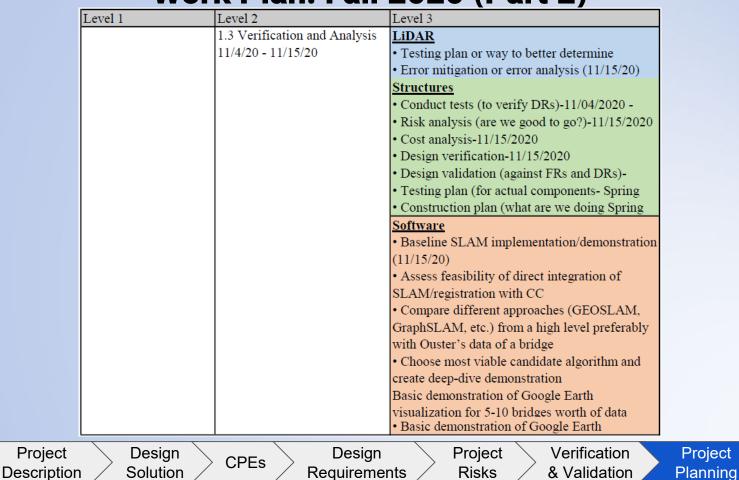
#### **Expected Result**

Point cloud data from the Ouster will mirror X/Y of Google Maps API and any drift errors will be quantified

152



#### Work Plan: Fall 2020 (Part 1)




| Level 1             | Level 2                     | Level 3                                           |
|---------------------|-----------------------------|---------------------------------------------------|
| 1 Schedule Post CDR | 1.1 Finalize Items From CDR | LiDAR                                             |
|                     | 10/25/20 - 11/1/20          | • Finalizing LiDAR orientation (11/1/20)          |
|                     |                             | • Redoing the relevant analyses for PDR with      |
|                     |                             | Structures                                        |
|                     |                             | • Finalized parts list -10/28/2020                |
|                     |                             | Software                                          |
|                     |                             | • Test Ouster's datasets with provided C++        |
|                     | 1.2 Research and            | LiDAR                                             |
|                     | Development                 | • Talk to field engineers (Ouster) about          |
|                     | 11/1/20 - 11/8/20           | • Gather whatever technical/quantitative info     |
|                     |                             | • Testimonials if not possible to get quantitativ |
|                     |                             | • Figure out how long we can be under bridge      |
|                     |                             | <u>Structures</u>                                 |
|                     |                             | Mechanical drawing tree-11/04/2020                |
|                     |                             | Material selection-11/04/2020                     |
|                     |                             | Baseline CAD model (dimensions and                |
|                     |                             | Risk identification-11/04/2020                    |
|                     |                             | • Testing plan (to verify DRs)-11/04/2020         |
|                     |                             | Software                                          |
|                     |                             | • Request a dataset(s) from Ouster specifically   |

na



#### Work Plan: Fall 2020 (Part 2)

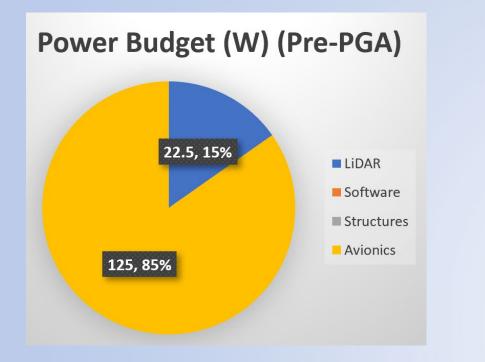






#### Work Plan: Fall 2020 (Part 3)




| Level 1 | Level 2               | Level 3                                      |
|---------|-----------------------|----------------------------------------------|
|         | 1.4 Final Preparation | ALL                                          |
|         | 11/15/20 - 11/23/20   | TA Practice and Review - 11/19/2020          |
|         |                       | Finalize all content in the CDR - 11/20/2020 |
|         | 1.5 Presentation      | CDR DUE DATE-11/23/2020                      |
|         | 11/23/20              | CDR Presentation - 12/2/2020 1:50pm          |

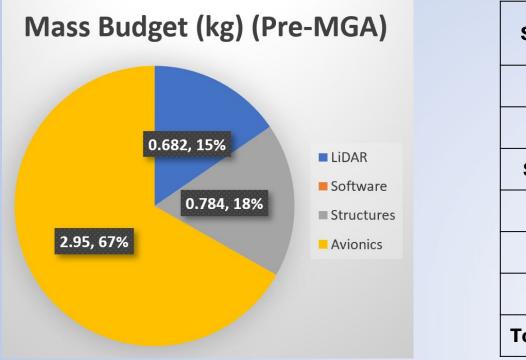




**Power Budget** 






| Subsystem    | Total Power<br>(W) |
|--------------|--------------------|
| Lidar        | 22.5               |
| Software     | 0                  |
| Structures   | 0                  |
| Avionics     | 125                |
| Total        | 147.5              |
| PGA          | 10%                |
| Total w/ PGA | 162.25             |

Project<br/>DesignDesign<br/>CPEsDesign<br/>RequirementsProject<br/>RisksVerification<br/>& ValidationProject<br/>Planning



**Mass Budget** 





| Subsystem    | Total Mass<br>(kg) |
|--------------|--------------------|
| Lidar        | 0.682              |
| Software     | 0                  |
| Structures   | 0.784              |
| Avionics     | 2.95               |
| Total        | 4.416              |
| MGA          | 20%                |
| Total w/ MGA | 5.23               |
|              |                    |

ProjectDesignCPEsDesignProjectVerificationProjectDescriptionSolutionCPEsRequirementsRisks& ValidationPlanning