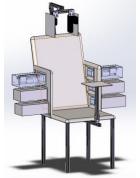
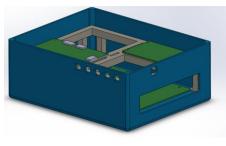

Test Readiness Review


CHAIR March 3, 2021

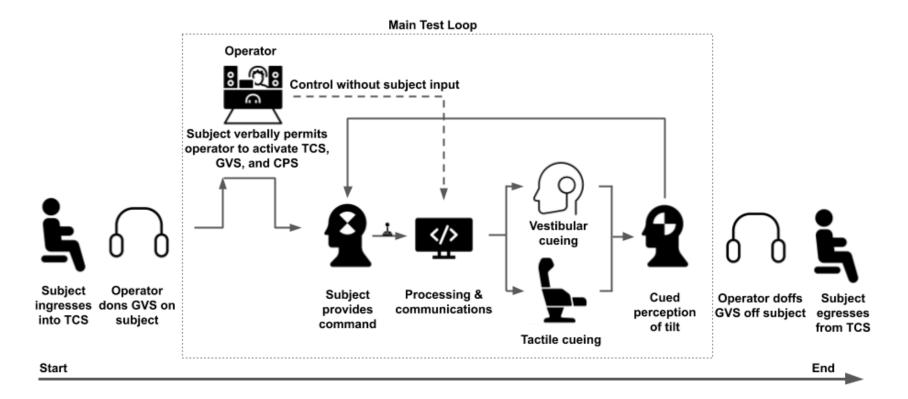
CHAIR Overview

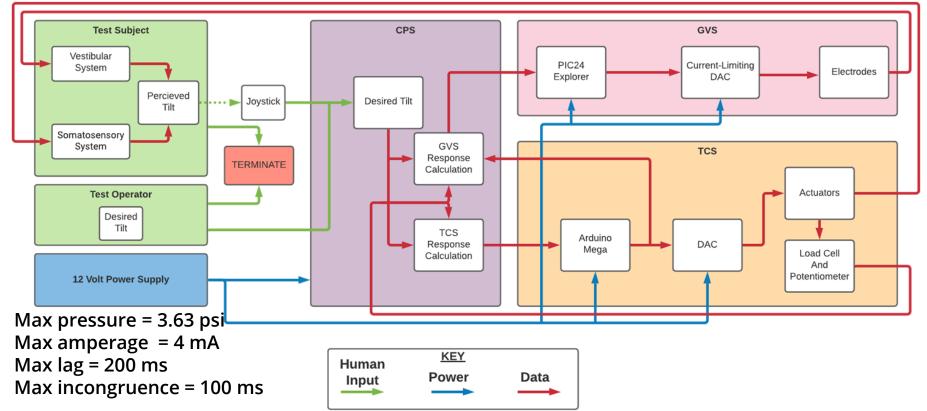

- Customer's Goal
 - Provide multiple sensory cues to remote pilots to increase aircraft attitude awareness
- Team CHAIR's Role
 - Create a proof of concept research tool that can be further developed into a complete system used by remote pilots
- Levels of Success
 - Level 1: Discrete, static tilt cueing about the body x axis
 - Level 2: Continuous, sinusoidal tilt cueing about the body x axis
 - Level 3: Variable tilt profile developed in real time through joystick control

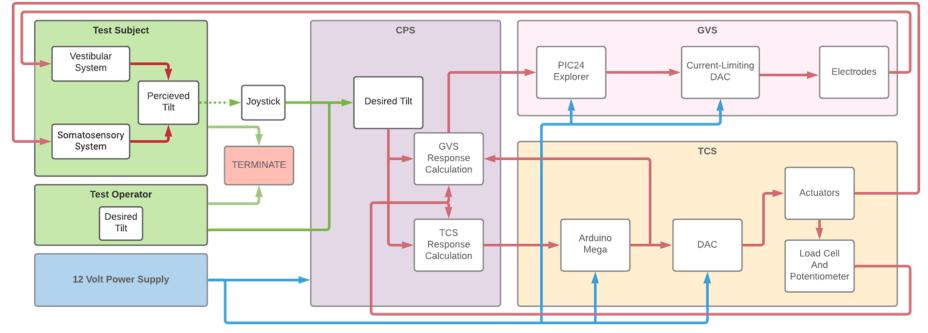


Critical Project Elements

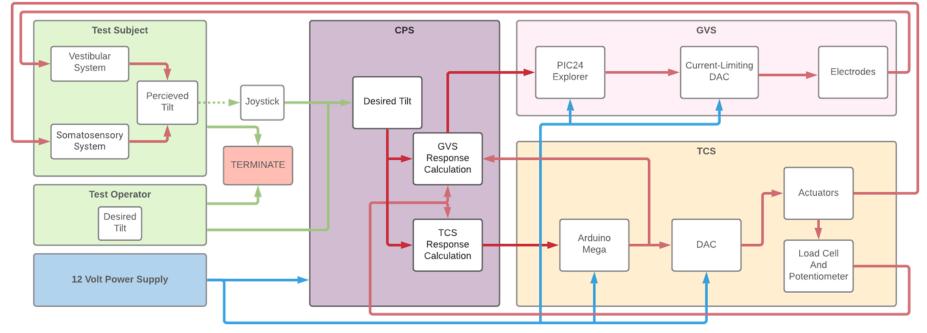
- **TCS** (Tactile Cueing System)
 - 3 pressure plates on each side
 - Actuators, Circuits and Hardware
 - Extension of pressure pads integrated with sensor feedback
- **GVS** (Galvanic Vestibular Stimulator)
 - Multi-Electrode Setup
 - Skin-Electrode Interface
 - Current Control
- **CPS** (Central Processing System)
 - Control Flow
 - Interfacing with the TCS, GVS or GUI

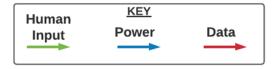


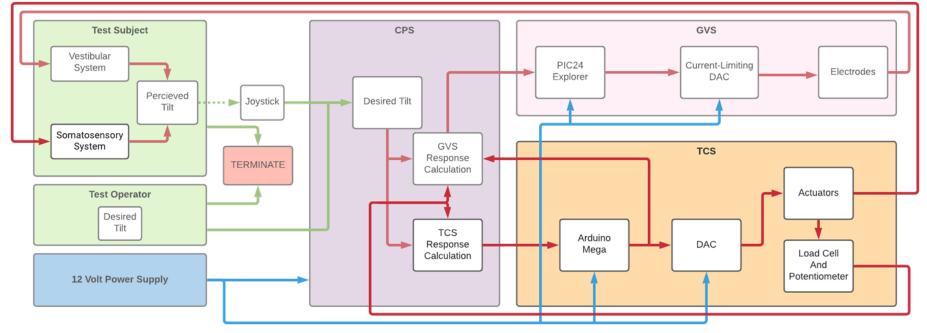


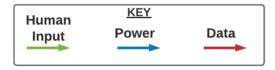


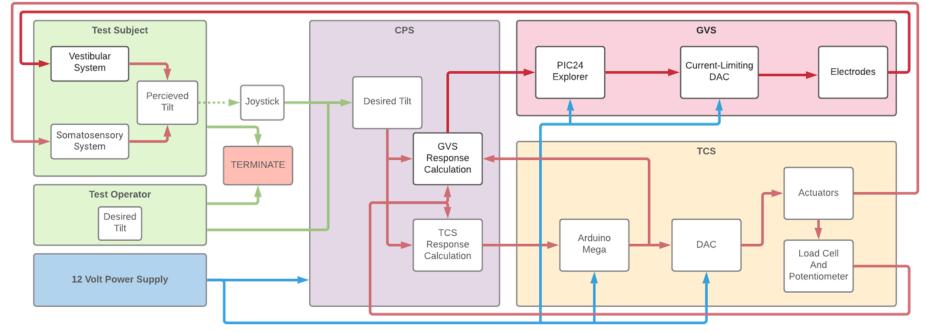

TCS Com	n App - → Serial
TCS_Com	m_App → ¬¬>enal ⊕// TCS Comm App.cpp : This file contains the source code for tansmitting and recieving data with the TCS.
	H)/ rcs_comm_App.cpp : his file concains the source code for cansmitting and recieving data with the rcs.
	⊟#include <iostream></iostream>
	#include "SerialClass.h"
	Escrial::Serial(const char* COM3)
	<pre>//We're not yet connected this->connected = false;</pre>
	Cits-/connected - Tatse,
	this->hSerial = CreateFileA(COM3,
	GENERIC READ GENERIC WRITE,
	NULL,
	OPEN_EXISTING,
	FILE_ATTRIBUTE_NORMAL,
	//Check if the connection was successfull
	□; if (this->hSerial == INVALID_HANDLE_VALUE)
	if (GetLastError() == ERROR_FILE_NOT_FOUND) {
	<pre>printf("ERROR: Handle was not attached. Reason: %s not available.\n", COM3);</pre>
	<pre>printf("ERROR!!!");</pre>
	//If connected we try to set the comm parameters
	DCB dcbSerialParams = { 0 };
	//Try to get the current
	<pre></pre>
	<pre>printf("failed to get current serial parameters!");</pre>
	//Define serial connection parameters: Baud, Bytes, Parity
	dcbSerialParams.BaudRate = CBR_115200; dcbSerialParams.ByteSize = 8;
	dcbSerialParams.StopBits = ONESTOPBIT;
	dcbSerialParams.Parity = NOPARITY;


ConOps

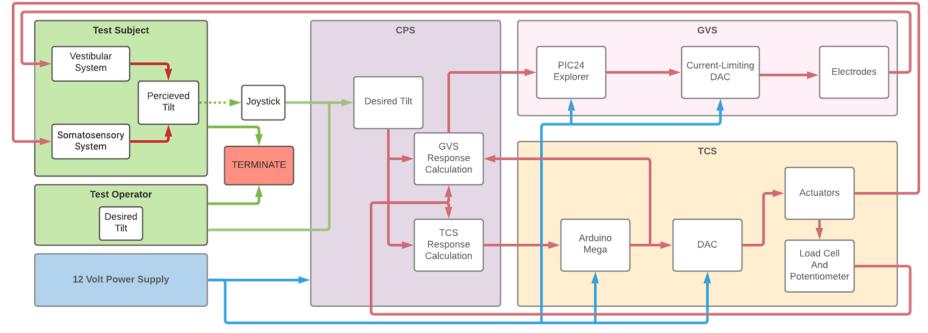




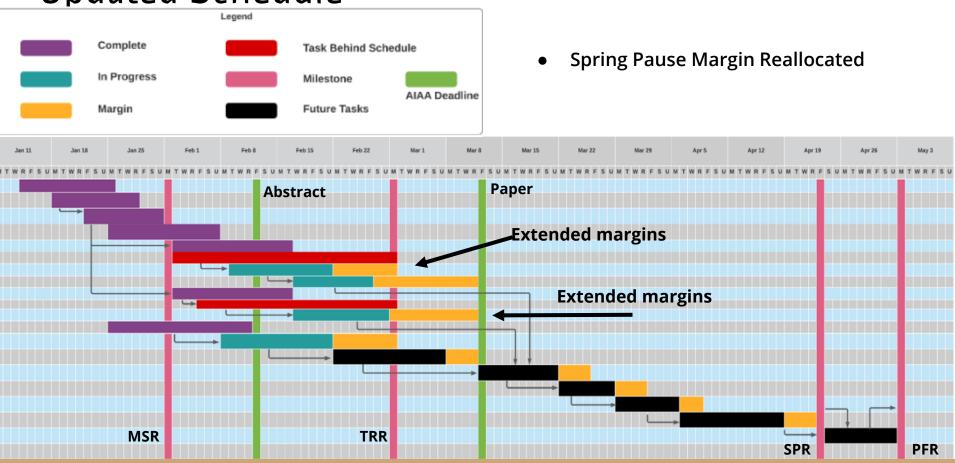


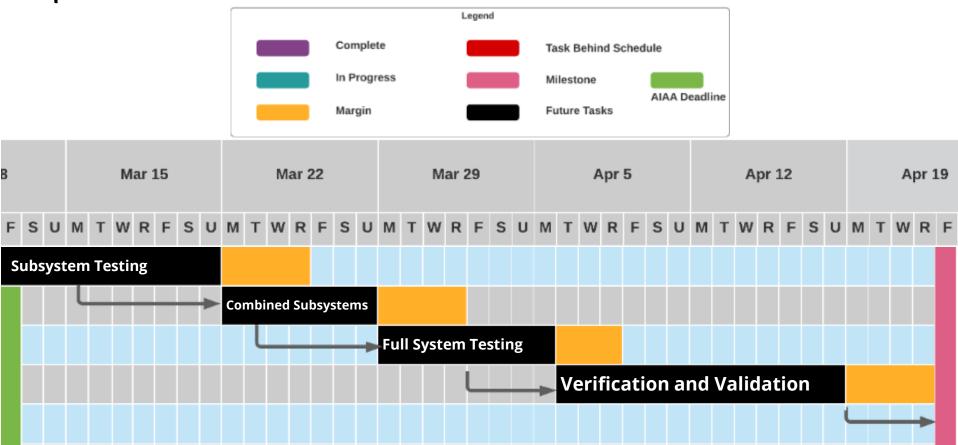


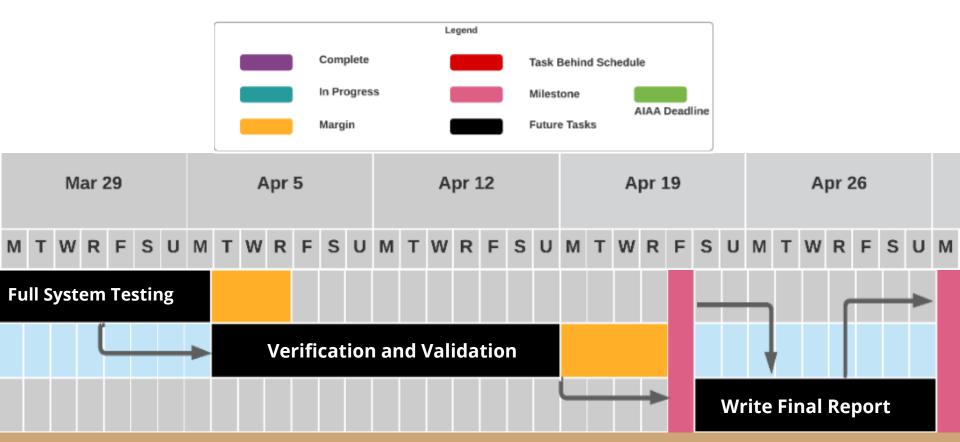




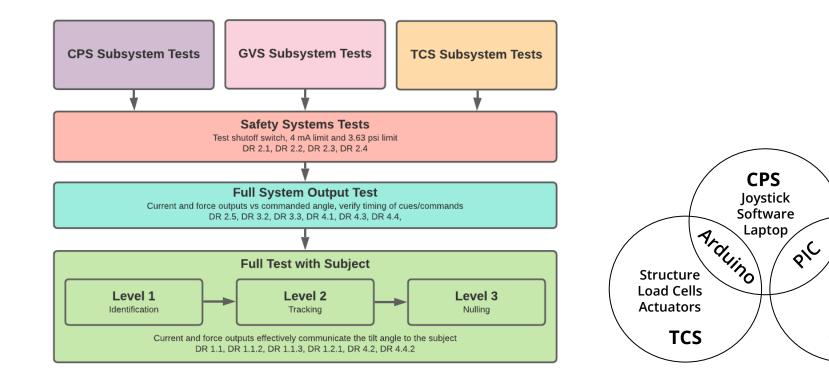





Schedule


Updated Schedule

Updated Schedule



Updated Schedule

Test Readiness

Testing Plan Overview

Electrode

S

GVS

CPS Complete Test List

In	progress
	pi 0gi 033

Planned

Complete

🔺 Safety

	Test Name	Description	Driving Requirements	Status
CPS Safety Test		1		
	Test Subject Button	Verify functionality of the test subject's terminate button	DR 2.5	IN PROGRESS
	Operator Button	Verify functionality of the operator's terminate button	DR 2.5	COMPLETE
Δ	Joystick Interference	Command a safe value but make it unsafe with joystick augmentation and ensure that it still terminates.	DR 2.4,	PLANNED
	TCS Safe Level	Record feedback data from the Arduino (load cells) to verify force of actuation. Ensure it is within safe bounds.	DR 2.4	PLANNED
	TCS Malicious Feedback	Create unsafe feedback from the TCS load cells and ensure that the test terminates	DR 2.4	PLANNED
	CPS Command	Record the CPS output while having operator command values higher than the allowed maximums. Ensure CPS does not command the in-appropriate values.	DR 2.4	COMPLETE
Suppo	rting Tests	1		
	CPS File Read	Verify that the CPS can successfully read files in the correct format		COMPLETE
	CPS Data Processing	Check that the given data is processed into the desired format		COMPLETE
	CPS Joystick Mode	Check that different joystick modes lead to the appropriate programs being run		COMPLETE
	CPS to GVS Comms	Establish UART Communication for the PIC and verify data sent & received.	DR 3.2,DR 3.3,DR 3.4	PLANNED
	CPS to TCS Comms	Establish UART Communication for the Arduino and verify data sent & received.	DR 3.1,DR 3.2,DR 3.3,DR 3.4	PLANNED
	CPS to TCS Command	Integrate Arduino software with the test hardware to fully test and tune a single actuator.	DR 3.1,DR 3.2,DR 3.3,DR 3.4	PLANNED
	CPS to GVS Command	Integrate PIC software with the test hardware to fully test and tune GVS.	DR 3.2,DR 3.3,DR 3.4	PLANNED
	System Comms	Verify successful communication & integration of both subsystems with CPS main program.	DR 3.1,DR 3.2,DR 3.3,DR 3.4	PLANNED
	Joystick Comms	Verify that the CPS can read the joystick data	DR 2.4 ,DR 2.5,DR 3.3	IN PROGRESS
	Terminate Response Time	Record CPS output and measure time between stop switch and outputs reaching 0	DR 2.5	PLANNED
	Joystick Delay	Record joystick input and CPS output and measure delay between command and cue (will need to be less than 200 ms to allow for actuation)	DR 3.3	PLANNED
	Sync	Use the user interface to command GVS and TCS magnitude and direction. Measure the microcontroller outputs to make sure they match up.	DR 3.4	PLANNED
	Record signal sent to TCS and signal sent to GVS and measure delay between equal states (will need to be less than 100 ms to allow for actuation)		DR 3.2	PLANNED

TCS Complete Test List

Planned

In progress

Complete

🔺 Safety

Test Name	Description	Driving Requirements	Status			
Electrical component verification test	Verify that individually all components behave as described by the manufacturer	DR 1.1,DR 1.1.1 ,DR 1.1.3,DR 2.1,DR 2.2	IN PROGRESS			
Single Command Single Actuator PCB test	Verify that the single actuator PCB is capable of commanding an uncontrolled force through the actuator	DR 1.1,DR 1.1.1,DR 1.1.3,DR 2.1	PLANNED			
Single Actuator Controls Test	Implement designed controls logic to command a range of forces dictated by tester on a single actuator	DR 1.1,DR 1.1.1 ,DR 1.1.3,DR 2.1	PLANNED			
Actuator Assembly Test	Implement commands to an actuator once assembled in the housing and attached to the chair	DR 1.1, DR 1.1.1 ,DR 2.1	PLANNED			
Single actuator over commanding test	Verify system actuator does not output more than 25 kPa when commanded above the required maximum	DR 1.1,DR 1.1.1 ,DR 1.1.3,DR 2.1	PLANNED			
Actuator Performance Test	Verify actuator performance is within pressure bounds when assembled and attached to the chair	DR 1.1,DR 1.1.3,DR 2.1	PLANNED			
Lab space test	Verify that the structure can fit within 6'x6' lab space	DR 4.1,DR 4.2	COMPLETE			
Seat Pan structural test	Verify that the seat pan can support the customer's weight. with a FOS of 1.2	DR 1.1.2,DR 4.2	PLANNED			
Seat back structural test	Verify that the seat back can support the back forces imparted by the customer with a FOS of 1.2	DR 1.1.2,DR 4.2	PLANNED			
Center of Gravity Test	Testing the center of gravity is over the seat pan when in operation	DR 1.1.2,DR 4.2	PLANNED			
Verify correct dimensions test	At least a 0.5" clearance between all surfaces except for the seat back, seat pan, and headrest.	DR 4.1,DR 4.2	IN PROGRESS			
Actuator Extension Test	Validate appropriate extension.	DR 1.1,DR 1.1.3	PLANNED			
Structural endurance test	Verify structural integrity after prolonged operation.	DR 4.2,DR 4.4,DR 4.4.2	PLANNED			
Multiple Operations Test	Operation system over multiple full cycle operations	DR 4.3,DR 4.4,DR 4.4.2	PLANNED			

GVS Complete Test List

Planned

In progress

Complete

🔺 Safety

		Driving	
Test Name	Description	Requirements	Status
Float conversion via UART test	Send a UART command, set a debug breakpoint after the float conversion, verify successful interpretation	DR 1.2	COMPLETE
SPI Output test	Set a constant SPI output. Execute this command. Analyze endianness, speed, CS behavior	DR 1.2	COMPLETE
PCB Connection Test	Use a multimeter in buzzer mode to test all connections between the pins on the custom PCB	DR 1.2	COMPLETE
Send a +000 and -000	Verify no operation	DR 1.2	PLANNED
Send +400, +000, -400, +000 in order	DR 1.2.1, also verifies current can be stopped with cmd Assess signal stability over time. (what is stable?)	DR 1.2,DR 2.3	PLANNED
Send various values between [+400 and -400]	(valid codes, should be accepted and written)	DR 1.2,DR 2.3	PLANNED
Send values between [+625 +400] and [-625 and -400]	(valid DAC codes exist, but should be rejected by the uC)	DR 1.2,DR 2.3	PLANNED
Send values in excess of +625 and -625	(valid DAC codes do not exist, should be rejected by uC)	DR 1.2,DR 2.3	PLANNED
Send junk values	(e.g., 9999, asdf, ~\$@#\$, all should be rejected) Might need to add num-specific acceptance criteria	DR 2.3	PLANNED
Middle glitch power test	Test and measure middle glitch power, i.e. the maximum error on value transition. Send +3.12, then send +3.13, then repeat for the negatives		PLANNED
Start a 1mA current, leave running for 20 minutes,	verify current accuracy is acceptable (what is acceptable?). Repeat for 4mA	DR 4.4.2,DR 4.4	PLANNED
POR test	Press the Power button. Record current. Press again. Record current.	DR 4.4.2,DR 4.4	PLANNED
Unplug UART/Power test	Send 4mA current cmd, unplug device. Record current. Plug back in. Record current.		PLANNED
Unplug 24V power test	Send 4mA current cmd, unplug 24V power. Record current. Plug bag in. Record current.	DR 4.4.2,DR 4.4	PLANNED
Apply electrodes across the mastoids. Send a +/- 1mA command	Assess current response	DR 1.2	PLANNED
Send a +/- 4mA command.	Assess current response.	DR 1.2	PLANNED
5-Electrode Testing Mode	Repeat all relevant tests for 5 electrodes	Reach Goal	PLANNED

Subsystem Test Overview

......

In Progress

Planned

Planned

CPS		тс	CS	GV	S
CPS Command	Complete	Seat Structural	Planned	Software & Component	
CPS to GVS Comms	Planned	Center of Gravity	Planned	Resistor "dummy	
CPS to GVS Command	Planned			load"	
Sync Delay	Planned	Actuator Assembly	Planned	Human testing	
Test Subject Button	In progress	Actuator Performance	Planned		

CPS	
CPS Command	Complete
CPS to GVS Comms	Planned
CPS to GVS Command	Planned
Sync Delay	Planned
Test Subject Button	In progress

Equipment: Laptop

Expected Results: Safe and correct value will be calculated/logged. Unsafe commands will be captured, changed and alerted to operator

Rationale: CPS needs to <u>command correct and safe</u> <u>state values.</u> Motivated by DR 2.4 **Procedure:** <u>Send commands</u> via operator commandline and joystick. <u>Verify correctness. Verify unsafe</u> <u>commands are captured, changed and alerted.</u> **Risk Reduction:** To ensure the safety of the system it is vital that the CPS calculate the correct state and limit unsafe inputs.

CPS	
CPS Command	Complete
CPS to GVS Comms	Planned
CPS to GVS Command	Planned
Sync Delay	Planned
Test Subject Button	In progress

Equipment: Laptop, USB cable, and GVS PIC **Expected Results:** Communication will work

Rationale: Ensure communication between CPS and GVS. Motivated by DR 3.2, DR 3.3 and DR 3.4 **Procedure:** Command CPS to send a signal and check that the correct value is received by the GVS. **Risk Reduction:** Secure and positive communication with the GVS is instrumental to safe operation.

CPS	
CPS Command	Complete
CPS to GVS Comms	Planned
CPS to GVS Command	Planned
CPS to GVS Command Sync Delay	Planned Planned

Rationale: Verify that the PIC embedded code converts the commanded state to the correct current. Motivated by DR 3.2, DR 3.3 and DR 3.4.
Procedure: Command state x and check that the output current is correct.
Risk Reduction: The ability to properly command the GVS system is vital to ensuring the safety of any test subject

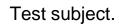
Equipment: Laptop, USB cable, GVS PIC and DAC **Expected Results:** Correct voltages being output

CPS	
CPS Command	Complete
CPS to GVS Comms	Planned
CPS to GVS Command	Planned
Sync Delay	Planned
Test Subject Button	In progress

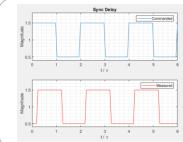
Equipment: Laptop, TCS Arduino, GVS PIC, associated cables. .

Expected Results: Delay between GVS and TCS is <100ms.

Rationale: Ensure synergy between GVS cue, and


TCS cue. Motivated by DR 3.3. (<100ms))

Procedure: Quantify time from signal command to


actuation for both GVS and TCS.

- 1. Commands at a determined period will be sent to GVS/TCS via the CPS.
- 2. The output waveform is phase shifted at the GVS/TCS and will be measured with an oscilloscope.
- 3. The delta between these two phases will be the 'delay' time.

Risk Reduction: Prevents possible disorientation

CPS	
CPS Command	Complete
CPS to GVS Comms	In progress
CPS to GVS Command	In progress
Sync Delay	Planned
Test Subject Button	In progress

Equipment: Laptop,oscilloscope, GVS and TCS. **Expected Results:** The button will terminate all operation of the system.

Rationale: Provides the test subject with a means to quickly and effectively terminate all cueing.
Procedure:: <u>Test safety button</u> within all modes of CHAIR operation.
Risk Reduction: Added layer of safety.

TCS		
Seat Structural Test	Planned	
Center of Gravity Test	Planned	
Actuator Assembly Test	Planned	
Actuator Performance Test	Planned	

Expected Results: The seat will securely support the customer. **Models Validated:** Structural model

Rationale: Verify that the <u>seat can support the forces</u> imparted by the customer, specifically the <u>weld</u> between seat back and seat pan. Procedure: Clamp the chair to a workbench so that the seat back is parallel to the ground. Load the face of the seat back with <u>5 times the expected force</u> that will be applied to the seat back by the customer. Risk Reduction: Structural failure

TCS	
Seat Structural Test	Planned
Center of Gravity Test	Planned
Actuator Assembly Test	Planned
Actuator Performance Test	Planned

Expected Results: The chair will remain in a stable upright position. **Models Validated:** Structural model **Risk Reduction:** Rapid unplanned reorientation

Rationale: Verify that the <u>chair will not tip over</u> when being operated by customer
Equipment: Protractor
Procedures: Locate the <u>angle of equilibrium</u> of chair from vertical when tilted backwards, add weights until angle is at least <u>20 degrees</u> from vertical

TCS	
Seat Structural Test	Planned
Center of Gravity Test	Planned
Actuator Assembly Test	Planned
Actuator Performance Test	Planned

Procedures: Extend to 3" and back 10 times. Extend to 3" in half inch increments and pause for 5 seconds at each extreme.
Expected Results: The actuator will be able to extend to full extension (3") and back 10 times. The length from an external measurement and the actuator feedback at either extreme should both be

within $\frac{1}{8}$ of the commanded input and between each

Rationale: Verify that the actuators can properly

actuate once assembled and attached to chair

Equipment: Caliper

Expected Results: The chair will remain in a stable upright position. Other. Models Validated: Actuator extension model Risk Reduction: Actuator jam

TCS	
Seat Structural Test	Planned
Center of Gravity Test	Planned
Actuator Assembly Test	Planned
Actuator Performance Test	Planned

Rationale: Verify that <u>actuator assembly applies</u> <u>commanded pressure</u> to test subject Procedures: Input representative cueing angles (2-15, increment 1) for 5 seconds each **Expected Results:** The pressure at the minimum representative cueing angle (2) and at the maximum representative cueing angle (15) should be above 2.65 kPa 95% of the measured pressure profile and below 25 kPa. The commanded force should be within 10% of the force sensor output.

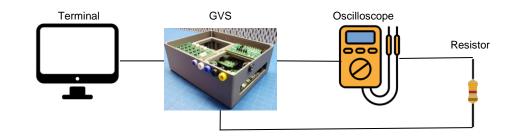
Equipment: Dr. Clark's dummy

Models Validated: Anthropometric measurements, force-pressure model **Risk Reduction:** Effective cueing, the subject will not be at risk for pain due to actuators

Galvanic Vestibular Stimulator Testing

GVS	
Software & Component Testing	In Progress
Resistor "Dummy Load" Testing	Planned
Human Testing	Planned

Rationale: Verify software elements perform as expected, accept/reject CPS packets appropriately, and <u>interface with GVS circuitry</u>
Procedure: Use debugging tools, logic analyzers, and a multimeter to test UART, SPI, and DAC output
Risk Reduction: Reduced risk of project delays due to component failure

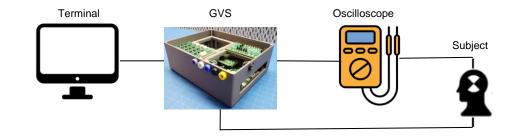

Expected Results: Outputs match the configuration bit settings and/or data sheets Models Validated: GVS circuit model

Normal Simple Pulse Protocol Position: 16 us - 8 Single 🚊 🔶 Source: Digital Inputs: 100MHz x1 -5 us/div -Base: N. L. E. Q. 🔞 Stop 4096 samples at 50 MHz | 2021-02-24 16:13:23.700 Name Pin MOSI DIO 0 SCK cs

Galvanic Vestibular Stimulator Testing

GVS	
Software & Component Testing	In Progress
Resistor "Dummy Load" Testing	Planned
Human Testing	Planned

Rationale: Determine timing and error to inform how the CPS will send signals & test protocols
Procedure: Use oscilloscope data to determine DAC error, Power-on Reset behavior, endurance behavior, without a human
Risk Reduction: Reduced risk of inappropriate current conditions


Expected Results: GVS controls currents to meet command values within +/- 1 LSB Models Validated: GVS circuit model, DAC datasheet

Galvanic Vestibular Stimulator Testing

GVS	
Software & Component Testing	In Progress
Resistor "Dummy Load" Testing	Planned
Human Testing	Planned

Rationale: Verify that the system can drive currents with a <u>human in the loop</u>
Procedure: Attach electrodes to test subject, send current commands, analyze <u>timing</u> and re-analyze <u>error</u> values.
Risk Reduction: Reduced risk of failure to meet

customer requirement of driving up to 4mA current

Expected Results: The GVS will command currents with performance identical to the resistor network **Models Validated:** GVS circuit model

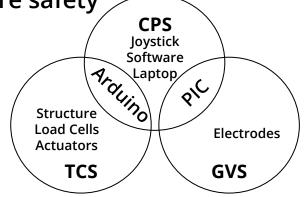
Full System: Functionality vs Performance

• Functionality

- Conventional verification tests
- Directly measurable quantities
- Derived from models

• Performance

- Limited scope due to human test subjects
- Human perception can't be measured directly
- Variance between test subjects

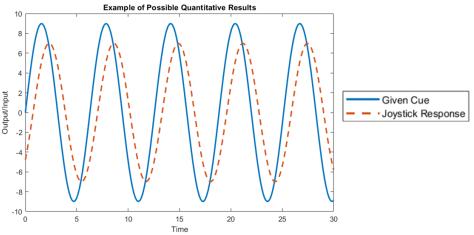

Requirement Satisfaction

Levels of Success

Full System Integration: Functionality

• Extension of subsystem testing

- Test setup comes directly from high-level subsystem tests
- Microcontrollers are each tested with two subsystems
- Integration tests will focus on verifying full system communication
- Measured quantities are used to verify all requirements
 - Force, current, lag time, safety stops
- All system tests will be performed twice to ensure safety /



Full System Integration: Performance

- Small sample size makes statistical validation inaccurate
- Full system performance will be shown through demonstration
- Human perception can't be directly measured
 - Qualitative surveys will provide insight into subject perception
 - Recorded joystick data can provide quantitative data
 - Level 1: Joystick indication
 - Level 2: Joystick tracking
 - Level 3: Tilt nulling

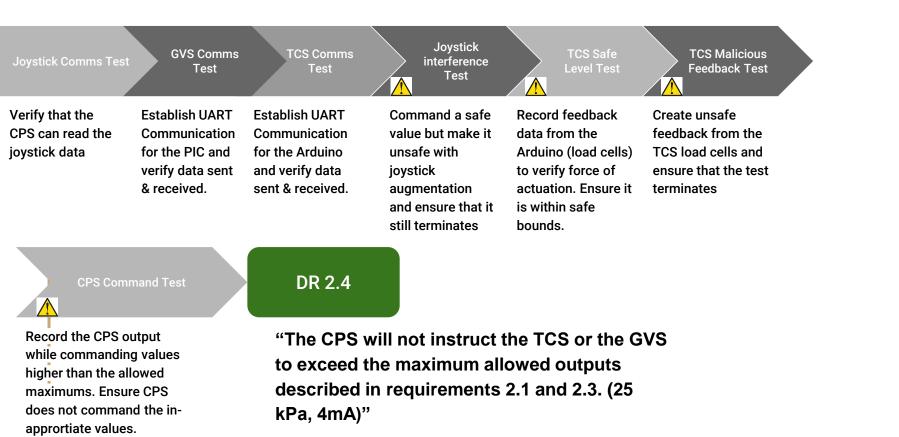
Procurement Status

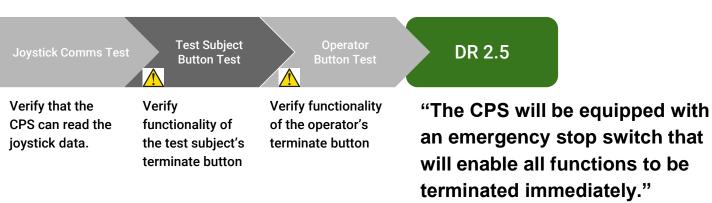
Subsystem Procurement Breakdown												
Subsystem	Received	Delivered	Pending	Backorder	Planned							
Galvanic Vestibular Stimulator (GVS)	25	0	4	0	0							
Tactile Cueing System (TCS)	51	0	0	0	0							
Central Processing System (CPS)	28	0	0	0	2							
Total	104	0	4	0	2							

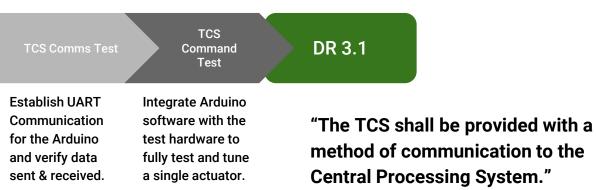
Pending Items: Connectors/Fasteners for GVS, arrive this week Planned Items: PCB housing materials, Full scale PCB, <1 week lead

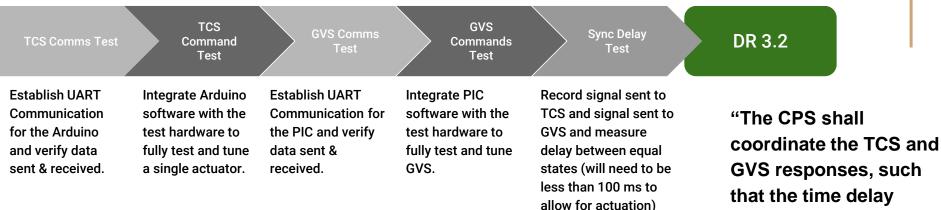
All key items required to move forward with testing have been received

Budget Status

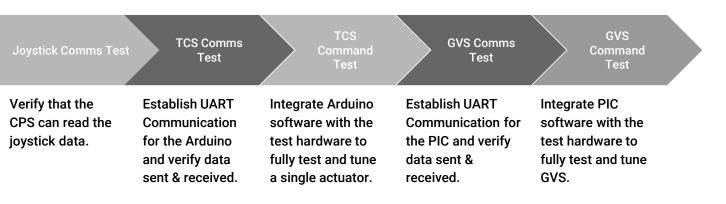

Subsystem Breakdown											
Subsystem	Budget	Margin	Total Expenses	Remaining Budget							
Galvanic Vestibular Stimulator (GVS)	\$ 775.00	\$ 86.11	\$ 772.97	\$ 2.03							
Tactile Cueing System (TCS)	\$ 2,850.00	\$ 316.67	\$ 2,816.19	\$ 33.81							
Central Processing System (CPS)	\$ 650.00	\$ 72.22	\$ 628.12	\$ 21.88							
Misc	\$ 225.00	\$ 25.00	\$ 204.38	\$ 20.62							
Total	\$ 4,500.00	\$ 500.00	\$ 4,421.66	\$ 78.34							

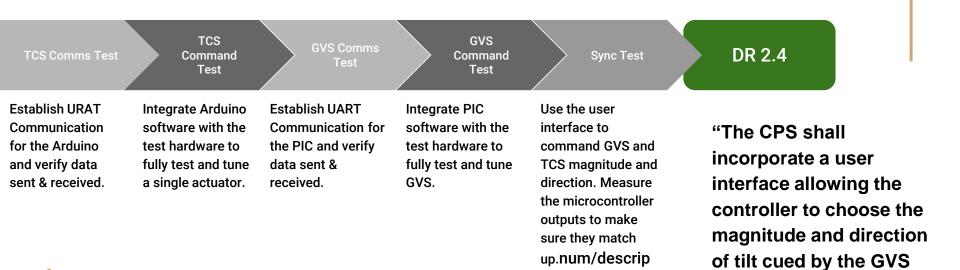

Concerns

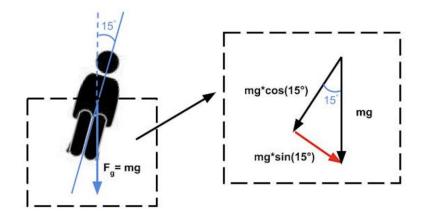

- Massive failure of GVS or TCS could put us over budget
- If the electronics need a redesign we might not be able to get team shirts for expo



Backup Slides




coordinate the TCS and GVS responses, such that the time delay between the TCS and GVS cues as experienced by the test subject is less than 100 ms."


Record joystick input and CPS output and measure delay between command and cue (will need to be less than 200 ms to allow for actuation)

"The CPS shall coordinate the hardware response such that the time delay from the joystick signal commanded by the test subject to the TCS and GVS cueing is within 200 ms."

and TCS systems."

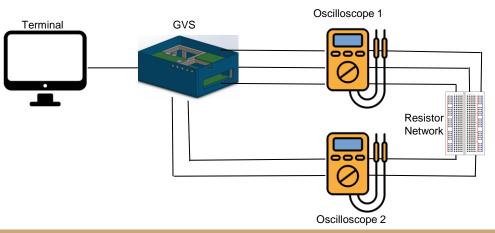
TCS Actuator Performance Representative Model

*representative

Max test subject weight: 215 lb

Max side force applied: $mgsin(15^{\circ}) = 55 \text{ lb}$

Side actuators must apply a total of 55 lb to mimic horizontal gravitational force during 15° roll angle


TCS Electronics Low Level Testing

Test	Status
Component Verification	incomplete
Single Actuator PCB Single Command	incomplete
Single Actuator PCB Controls Test	incomplete
Single Actuator	

Galvanic Vestibular Testing

GVS									
Software & Component testing	In Progress								
Resistor breadboard testing (dual-electrode)	Incomplete								
Human testing (dual- electrode)	Incomplete								
Reach goal testing (five- electrode)	Incomplete								

Equipment: 2 Oscilloscopes, laptop, electrodes Models Validated: Power circuit model Risk Reduction: N/A, reach goal Rationale: Verify our reach goal of subsystem
capability to discreetly control 5 currents
Procedure: Repeat prior resistor and human testing
with 5 electrodes connected through 5 channels
across 2 oscilloscopes

Entire Gantt Chart Printout

Objective	Jan 11	Jan 18	Jan 25	Feb 1	Feb 8	Feb 15	Feb 22	Mar 1	Mar 8	Mar 15	Mar 22	Mar 29	Apr 5	Apr 12	Apr 19	Apr 26	May 3
	MTWRFSU	MTWRFSUM	TWRFSU	MTWRFSUN	TWRFSU	MTWRFSU	MTWRFSU	MTWRFSU	JMTWRF	SUMTWRFSU	MTWRFS	JMTWRFSU	MTWRFSU	MTWRFSU	MTWRFSU	MTWRFSU	MTWRFSU
Remote Inventory of Winter Orders																	
Finalizing Manufacting Schematics & Plans																	
Send Primary Work Orders																	
Odering of Remaining Material																	
Physical Inventory of Materials				•													
Circuit Prototyping																	
Circuit Revisions					•												
Circuit Assembly																	
Send Secondary Work Orders				*			L										
Actuator Control Prototyping				L>													
Assembly of Final Structure																	
CPS Main Script & MCU Logic																	
Integration of Software																	
Debugging of Software					L					11							
Safety & Functionality Testing of Subsystems																	
Final Assembly of CHAIR																	
Safety & Functionality Testing of CHAIR												÷			_		
CHAIR Verification & Validation													*			↓ I	
Draft Conclusions for SFR																	