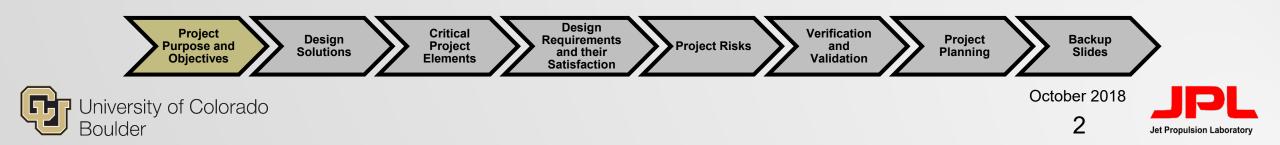


HERMES Hazard Examination and Reconnaissance Messenger for Extended Surveillance

CRITICAL DESIGN REVIEW

DECEMBER 3RD 2018


Presenters: Ashley Montalvo, Brandon Santori, Brindan Adhikari, Chase Pellazar, Katelyn Griego, Marcos Mejia, Michely Tenardi, Quinter Nyland
 <u>Customer:</u> Barbara Streiffert and Jet Propulsion Laboratory (JPL)
 <u>Advisor:</u> Dr. Kathryn Anne Wingate
 <u>Team:</u> Alexander Sandoval, Alexis Sotomayor, Ashley Montalvo, Brandon Santori, Brindan Adhikari, Chase Pellazar, Colin Chen, Junzhe He, Katelyn Griego, Marcos Mejia, Michely Tenardi, Quinter Nyland

October 2018

Project Purpose and Objectives

Project Heritage

The Jet Propulsion Laboratory's Fire Tracker System is a system that is designed to be a low-cost, hands-off approach to **forest fire identification**.

There have been three previous years of heritage:

1. INFERNO (2015-2016)


- Built a semi-autonomous drone capable of transporting and deploying sensor packages

2. CHIMERA (2016-2017)

- Built a landing, securing, and deployment system for the inherited semi-autonomous drone from INFERNO

3. DRIFT (2017-2018)

- Developed a **mother rover** to secure, carry, and level the semi-autonomous drone from INFERNO using the landing platform from CHIMERA



Project Motivation

The mother rover is large and difficult to navigate through forest like areas.

HERMES aims to improve the Fire Tracker System by path finding for the mother rover (MR) to avoid potential risk of damage by large obstacles and uneven terrain.

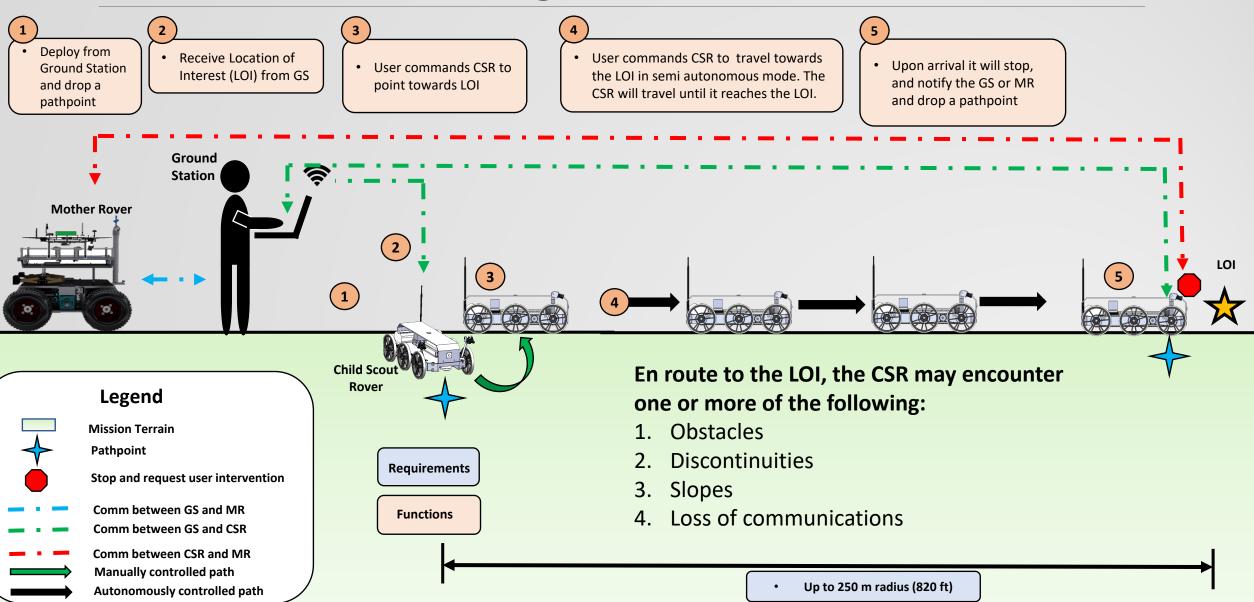
October 2018 4 Jet Propulsion Laborato

Project Statement

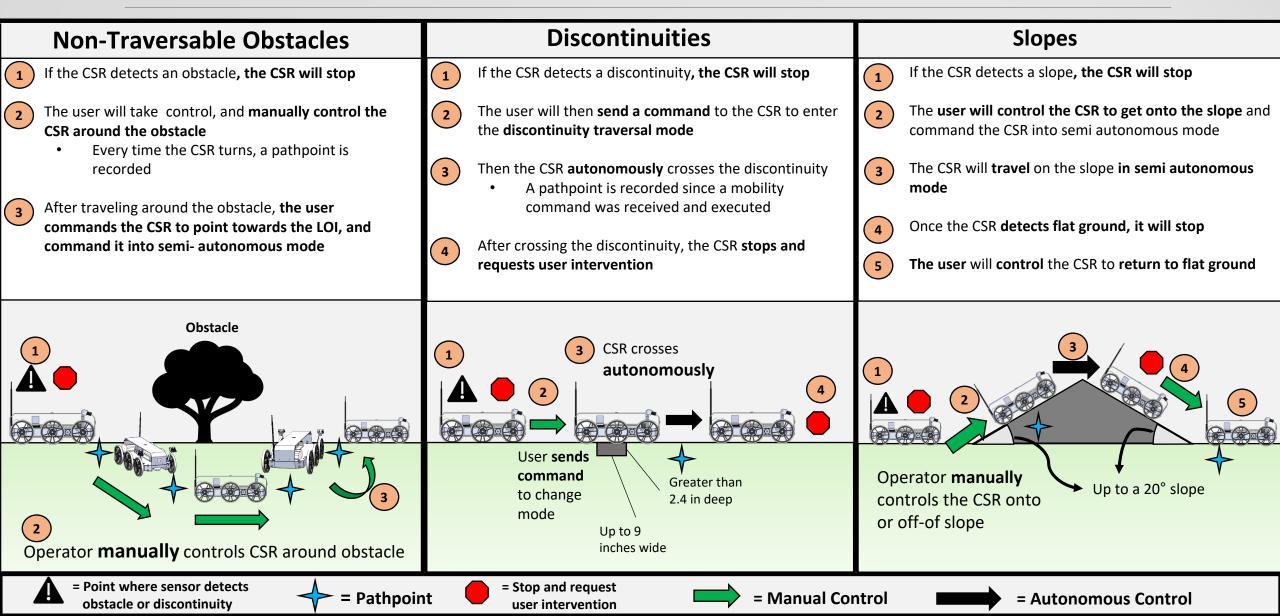
The HERMES team will design, build and test a **child scout rover** (CSR) that will **deploy** on command, take **images/videos** of the surrounding terrain, **determine** a **viable** path to a location of interest (LOI), and upon arrival to the LOI, the CSR will **send** the LOI **to** the **mother rover**, and then **re-dock** on the mother rover.

Definitions

Pathpoint – A point after a mobility command is received and executed by the CSR.


- This point is recorded onboard the CSR and sent to the GS as a GPS coordinate.
- An operator from the ground station initially issues the command.
- Previously referred to as 'waypoint', and changed for clarity
- Obstacle Roots, trees, rocks, shrubs, and inclined slopes with type A terrain (only leaves are present on type A terrain)
 - Traversable Obstacles
 - Any root or rock less than 2.4 inches (6 cm) (6 cm is based on average root diameter from 'Tree Root Systems' from the Arboricultural Advisory and Information Service)
 - Non-Traversable Obstacles
 - All trees
 - All shrubs
 - All roots and rocks greater than 2.4 inches

Discontinuity – A 9 inch wide gap with a depth larger than 2.4 inches. The width was previously 12 inches, however a model proved that the MR could only cross a 9 inch discontinuity (.229 m).



CONOPS: Arriving to Location of Interest

CONOPS: Other Terrain

Functional Requirements

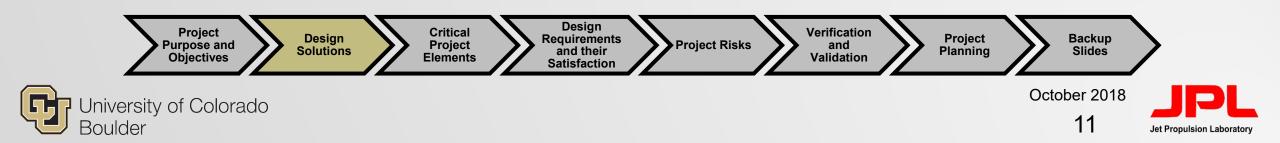
Requirement ID	Description
CSR.1	The CSR shall receive commands from the MR or the GS
CSR.2	The CSR shall send video, GPS coordinates, and sensor data to the GS or the MR through mission defined terrain
CSR.3	The CSR shall drive to a location of interest through mission defined terrain
CSR.4	The CSR shall travel back to the last reported pathpoint upon loss of communications with the MR and the GS
CSR.5	The CSR shall take video in position hold

Note: Docking/Deploying Requirement was descoped after discussions with our customer

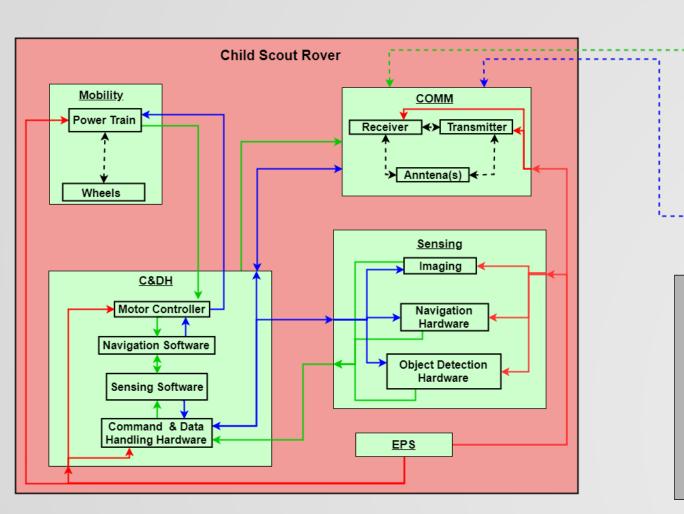
Primary Success Levels

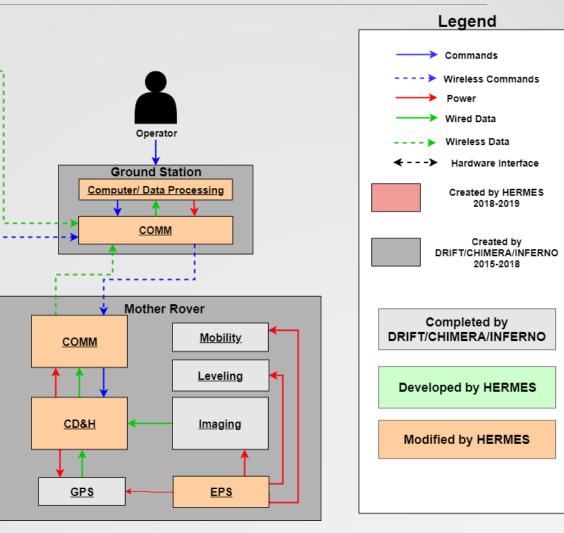
Criteria	Level 1	Level 2	Level 3
Video/ Image	 The imaging system on the CSR shall capture a FOV greater than 100° The imaging system shall send time-stamped images to the MR/GS 	 The CSR shall send videos to the MR/GS The MR shall toggle the video capture from the CSR on or off 	 The CSR shall send continuous video feed to the MR and GS
Control	 The CSR shall navigate by receiving control commands from the GS The CSR shall perform a 360° turn The CSR shall drive forward and reverse 	 The CSR shall navigate to a LOI and shall detect obstacles en route to the LOI, but manual control is needed to circumvent the obstacles. 	 The CSR shall autonomously return to the last known GPS location if connection to the GS and MR is lost.

Note: Blue used for emphasis


October 2018

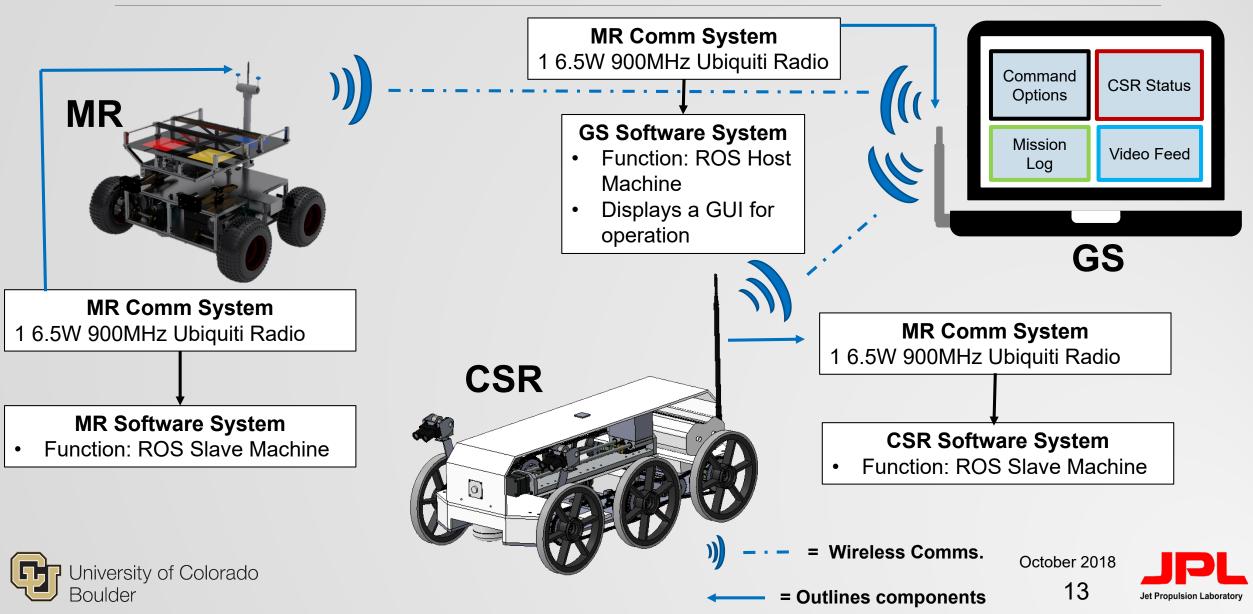
10

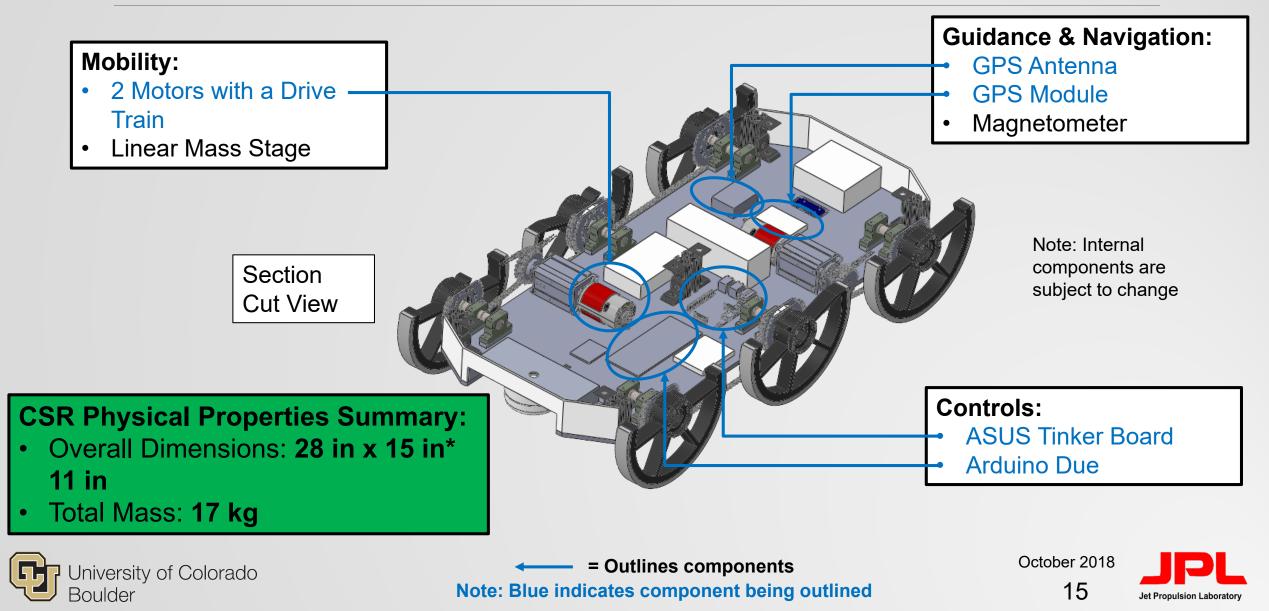



Note: Only main success levels are shown, the rest are in backup slides

Design Solution

Functional Block Diagram




Final Design Overview: System Interface

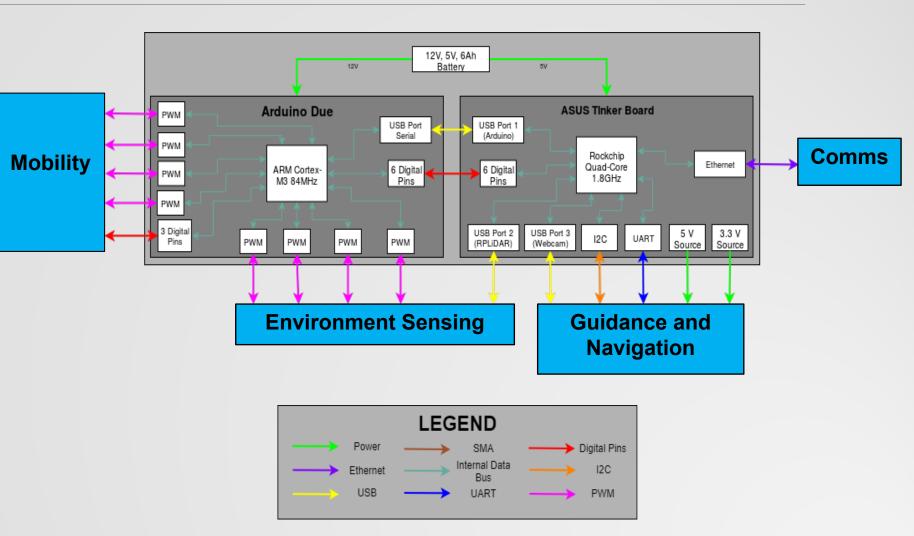
Final Design Overview: Child Scout Rover 20.2 in Front View Single beam **Mobility**: LiDARs are fixed at the same 2 Motors with a Drive angle and height Train 11 in Diagonal Linear Actuator with 5 kg View Mass Stage 2.4 in **Environmental sensing:** Single beam LiDAR 15.5 in (right above front 10in wheels) 0 Fisheye Lens Camera-Ultrasonic Sensors 360° RP LiDAR · 28 in **Guidance & Navigation:** 15.5 in **Bottom View GPS** Module **GPS** Antenna Magnetometer/Accelerometer October 2018 = Outlines components University of Colorado 8 in Note: Blue indicates component being outlined 14 Boulder

Jet Propulsion Laborator

Final Design Overview: Child Scout Rover

Major Element: Control

Single Board Computer (ASUS Tinker Board):


- Power: 5V, 2A
- Digital Pins: 28
- I2C Ports: 2
- UART Ports: 2
- USB Port: 4
- Supply Voltage: 3.3V/5V

ARM Microcontroller (Arduino Due):

- Power: 12V, 0.1A
- Digital Pins: 54
- Analog Pins: 12
- PWM Ports: 12
- USB Port: 1

Battery (TalentCell Lithium Ion):

• 12V, 5V, 6Ah

Major Element: Mobility

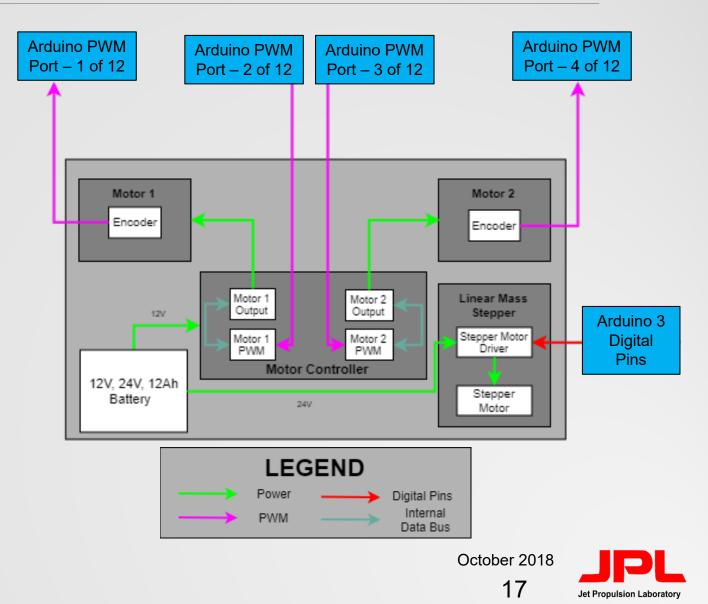
Motors (Redline 775, 57 Sport Gearmotor):

- Power: 12V, 1.5A Expected, 20A Max
- Encoders: 1 PWM Port

Motor Controller (Pololu Dual VNH5019):

- Power: 12V, 12A per motor, 30A Max
- Interface: 2 PWM Ports

Stepper Motor Driver (TB6560 Nema 23):


- Power: 24V, 3A
- Interface: 3 digital pins (step, dir, en)

Stepper Motor (Nema 23):

• Power: 24V, 3A

Battery (Gens Ace LiPo):

• 15.2V, 7.5Ah

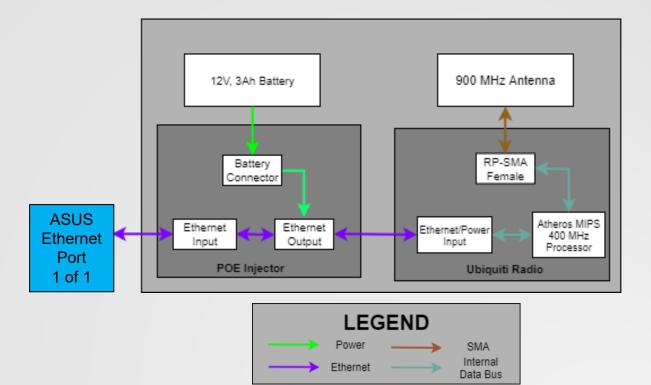
Major Element: Communications

Radio (Ubiquiti Loco M9):

- Power: 24V, 0.27A
- Interface: Ethernet
- Specs:
 - Range: +250m
 - Bandwidth: 10-15 Mbps

Omni-Directional Antenna (Rubber Duck):

- Interface: SMA
- Frequency: 900 MHz


POE Adapter (TP-DCDC-1224):

- Interface: Ethernet
- Specs: 12V to 24V step-up

Battery (TalentCell Lithium Ion):

• 12V, 3Ah

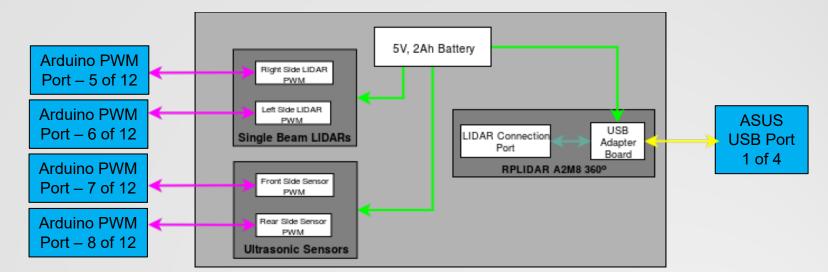
Major Element: Environment Sensing

Single Beam (LiDAR Lite v3):

- Power: 5V, 130mA
- Interface: PWM

360 LiDAR (RPLiDAR A2M8 360):

- Power: 5V, 0.6A
- Measurement Frequency: 2000-8000Hz
- Interface: USB


Ultrasonic Sensor (HC-SR04):

- Power: 5V, 15mA
- Interface: PWM

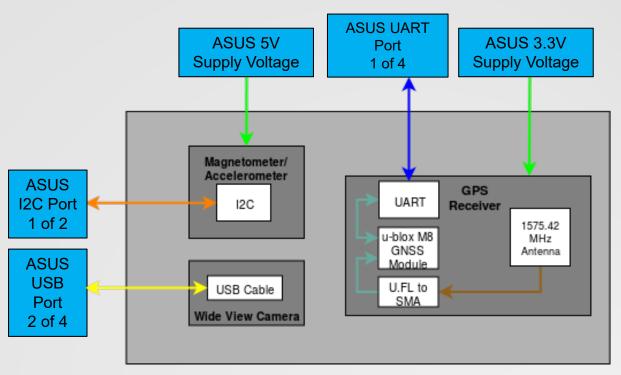
Battery (2 Lithium Ion Series):

• 3.7V, 2Ah

Major Element: Guidance and Navigation

Wide View Camera (180 Fisheye lens camera):

- Power: 5V, 0.22A
- Resolution: 2 megapixel 1920x1080P
 Interface: USB 2.0

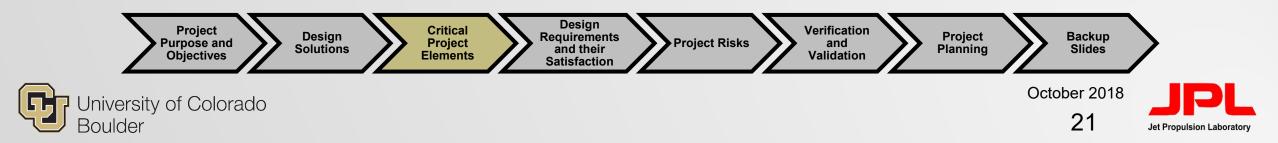

GPS Receiver (SparkFun GPS-RTK): • Power: 3.3V, ~35mA

- Accuracy: • 0.025m with RTK
- Time to First Fix: 29s (cold), 1s (hot)

GPS Antenna (GPS/GNSS Magnetic Mount Antenna): • Frequency Range: 1575 – 1610MHz

Magnetometer/Accelerometer (LSM303):

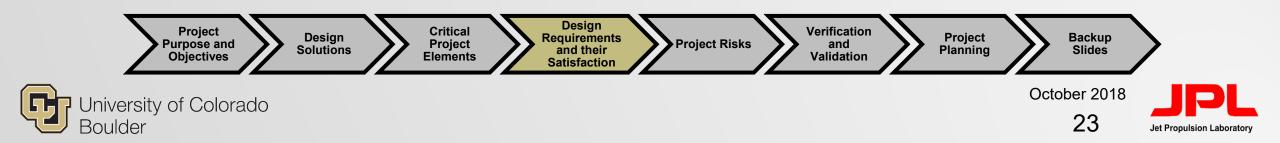
- Power: 5V, 15mA
- Interface: I2C



Critical Project Elements

Critical Project Elements

Critical Project Element (CPE)	Rationale
Mobility	The CSR must be able to travel forward and backwards in forest fire prone areas and perform 360° turns. Otherwise, it cannot navigate and would be unable to reach given LOI
Communications	The CSR must communicate with the GS and MR in wooded and open areas. If this is not achieved, then the CSR will not be able to send viable path, images, and video to the MR or GS.
Guidance, Navigation, and Control	The CSR must be controlled remotely by one operator. The CSR must always read its own GPS data accurately. Otherwise, the CSR will not be able to navigate or determine a viable path for the MR.
Environment Sensing	The CSR must accurately sense the terrain and obstacles around it. If this is not achieved, a single operator will be unable to guide the CSR remotely, and in the case of self-navigation, the CSR will be unable to detect obstacles.



Note: Blue used for emphasis

Design Requirements and their Satisfaction

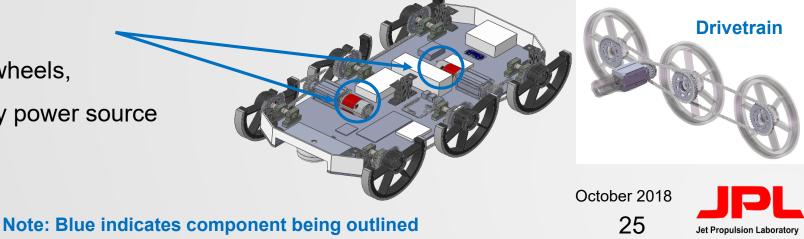
Mobility

DESIGN REQUIREMENTS AND THEIR SATISFACTION

Mobility Driving Requirements

Specific Requirements:

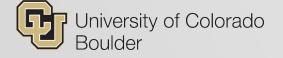
- MOB.3.2: The CSR shall be able to go over discontinuities up to 9 in. (0.2286 m)
- MOB.3.3: The CSR shall drive up or down a slope of up to 20° in type A terrain
 - Type A Terrain: 0 trees per acre, grain size of 0.00006 0.0039 mm, dirt with no vegetation (scattered leaves, etc).
- MOB.3.4.1: The CSR shall drive over a traversable obstacle up to 2.4 in. (0.06096 m) in height
- POW.3.1: The CSR Mobility power system shall provide at least 5400 mAh to the CSR



• 6 independent motors — 2 motors with a drivetrain

Designs Driven

• Drive motor, power train, wheels,


linear mass stage, mobility power source

Current Design Requirement Satisfaction

Component	Required Specifications	Achieved Specifications	Requirement Satisfied
 Power Train AndyMark 775 Redline Motor 57 Sport 64:1 Planetary Gearbox 1.71:1 Wheel: Gearbox Sprockets 	Torque – 12.3 Nm (9.1 ft-lbf) (Derived from obstacle mobility model)	 Torque – 40.1 Nm (29.6 ft-lbf)^[1] 	 MOB.3.2 MOB.3.3 MOB.3.4.1 POW.3.1
Wheels8" Rubber Treaded Wheel	 Wheel diameter for roll no-slip – 0.094 m (3.7 in) (Derived from obstacle mobility model) 	 Wheel diameter – 0.101 m (4 in)^[2] 	
 Drive Motor Controller Pololu Dual VNH5019 Motor Driver Shield 	 Instantaneous Current – 11.4 A Continuous Current – 1.5 A (Derived from motor data sheet [1] and mobility analysis) 	 Instantaneous Current – 30 A^[3] Continuous Current – 12 A^[3] 	
Battery • Gens Ace LiPo, 100 C, 15.2 V, 7.5 Ah	 Instantaneous Power – 0.275 kW* Capacity – 5400 mAh (Derived from power and mobility analysis) 	 Instantaneous Power – 11.4 kW[^{4]} Capacity – 7500 mAh[4] 	
Linear Stage ControllerTB6560 Stepper Driver	Current – 2.8 A	 Current – 3.5 A^[5] 	• MOB.3.2

MOB = Mobility Requirement, POW = Power Requirement

26

Mobility – Power Capacity

Projected Mission Characteristics

- Approximately 52 minutes of flat ground (gravel/dirt)
- 6 Inclined Slopes at 20°: 1 minute each slope
- **30 obstacles** with height of 2.4 in: 4 seconds each obstacle traversal

Obstacle	Flat Ground	Inclined Slopes	Obstacles (2.4 [in])	Total Required Capacity (with 20% inefficiency) = 5400 mAh	
Current Draw	3000 mA	11200 mA	22,860 mA		
Total Time	52 min (.87 h)	6 min (.1 h)	2 min (.03 h)		
Required Capacity	2600 mAh	1120 mAh	762 mAh	Mobility Battery Capacity 7500 mAh _[4]	

27

Jet Propulsion Laborato

Communication

DESIGN REQUIREMENTS AND THEIR SATISFACTION

Communications Driving Requirements

Specific Requirements:

- CSR.1: The CSR shall be able to receive commands from the MR or the GS
- **CSR.2:** The CSR shall send video and GPS coordinates to the GS or the MR through mission defined terrain

- Wi-Fi communication system with the MR and the GS acting as wireless access points
- Point to multipoint high data rate radios using IP protocols

Designs Driven:

• Radio, antennas, communication power source

Note: Blue indicates component being outlined

0

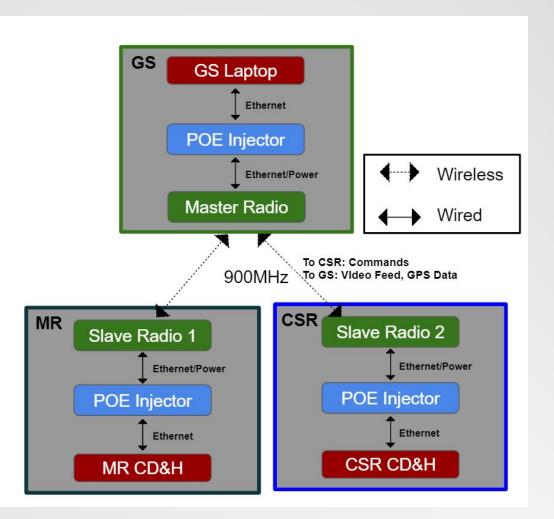
29

Communication Data Flow Diagram

900 MHz Link Radio's

- 10-15 Mbps -> Total Bandwidth
- 28 dBm transmission power
- -96 dBm receiver sensitivity
- 360° coverage
- POE (Power over Ethernet)

Transmitted Data:


1) Continuous transmission:

Video feed from CSR to GS ~ 9.44 Mbps w/compression

2) On command transmission:

- Commands from GS to CSR ~ 10 bit/packet = 1.25 bytes
- GPS/Magnetometer data from CSR to GS ~ 30 Bytes (String messages) *1 character = 1 byte
 Maximum required Data Rate: 9.44 Mbps
 Data Rate Margin: .56-5.56 Mbps

Requirements Satisfied: CSR.1 & CSR.2 due to this margin

Guidance, Navigation and Control

DESIGN REQUIREMENTS AND THEIR SATISFACTION

GNC Driving Requirements

Specific Requirements:

- CSR.3: The CSR shall drive to a location of interest through mission defined terrain
- CDH.3.3: The CSR C&DH system shall determine if the CSR is within ± 5 meters of the location of interest
- CDH.3.4: The CSR C&DH system shall determine the heading of the CSR
- MOB.3.2: The CSR shall be able to go over discontinuities up to 9 inches
- SENS.5.1.3: The CSR Sensing system shall capture video with a field of view of at least 100 degrees

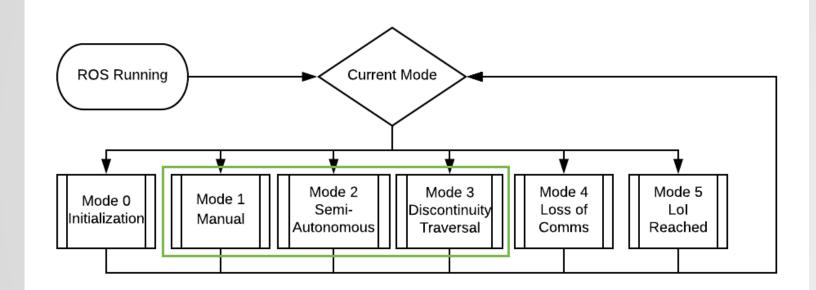
• N/A

Designs Driven:

- Positioning devices used GPS and magnetometer/accelerometer
- Imaging system used
- · Control algorithms used, control hardware used, software being used

Current Design Requirement Satisfaction

Component	Required Specifications	Achieved Specifications	Requirement Satisfied
GPS • GPS-RTK Board – NEO M8P-2	 Horizontal Positioning Accuracy of ± 5 meters within LOI (From statement of work) 	 Horizontal Positioning Accuracy: 0.025m^[7] 	 CDH.3 CSR.3.3
3 axis Magnetometer/ + Accelerometer: • LSM303	 Resolution: 1 µT (derived from 250 m range with a needed accuracy of 5 m from LOI) 	 Resolution: 0.058 μT^[8] 	• CDH.3.4
Imaging SystemFisheye Lens	• At least 100° FOV (From statement of work)	• 180° FOV	• CSR.5



CDH = C&DH Requirement, CSR = Functional Requirement

October 2018 **33**

GNC CSR Software Architecture

Primary Modes Covered

The CSR functions in 6 different modes:

- Modes 0,5: Initialization and end of mission modes
- Modes 1-4: Traversal modes

Primary command distribution occurs within the main loop which makes calls to individual modes which further distribute commands to appropriate subsystems

The mode architecture allows for sensor data to only be processed when needed so as to reduce computational load

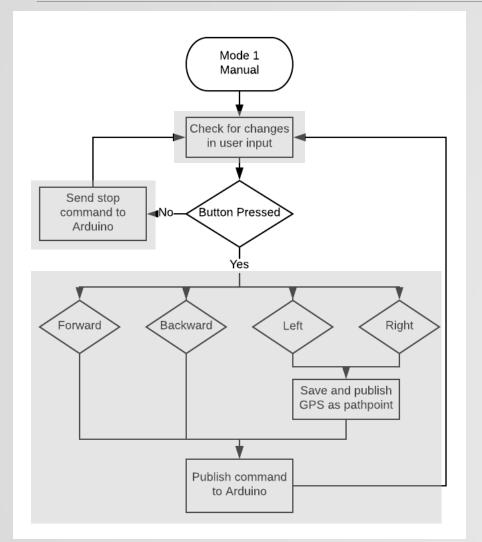
GNC CSR Software Functionality

Mode Helper Functionality

This functionality only handles dealing with user input commands and interrupt signals from ROS nodes to switch the mode of operation

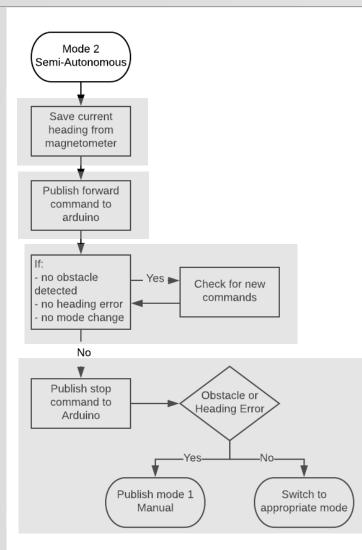
- Allows for the main program loop execution to be modular and simple
- Allows for the complex sensing integration to be handled elsewhere

Background ROS Nodes Functionality


This functionality allows for independent programs (nodes) to be running simultaneously outside of the main program loop for reading sensor data, comms data, navigation data, and mobility data

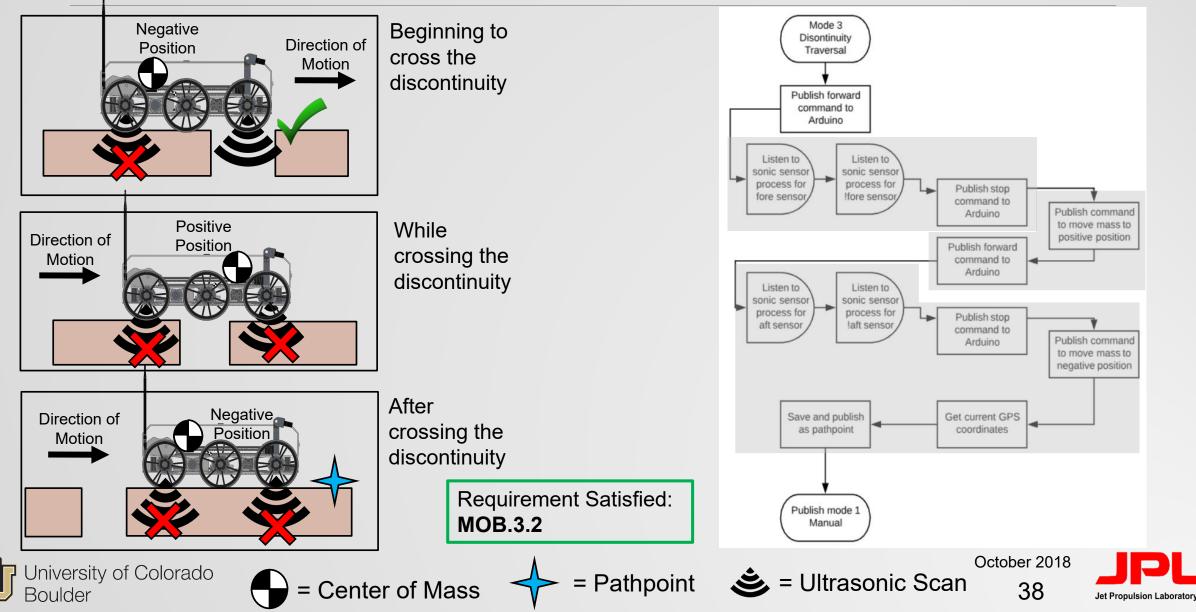
- Each independent node will be checking various data to signal if a mode switch is necessary
- Each independent node will only process data depending on the mode of operation

GNC CSR Manual Mode



- Upon entering manual mode, the CSR continuously checks for changes in user input
- If the user is pressing a button, the CSR determines whether or not to set a pathpoint and then sends the command to the Arduino
- The CSR then checks for a change in user input
- If no buttons are pressed, it then stops the motors and continues checking for input updates

GNC CSR Semi-Autonomous Mode


University of Colorado

Boulder

- Upon entering semi-autonomous mode, the CSR begins by saving its current heading
- A command is sent to the Arduino where it causes the motors to drive forward
- The CSR enters a while loop while checking for obstacles, heading error, and mode changes
- Upon exiting the while loop, the CSR sends a command to the Arduino to stop all motors and then either sets the mode to manual or switches to the appropriate mode if a mode change has already been made

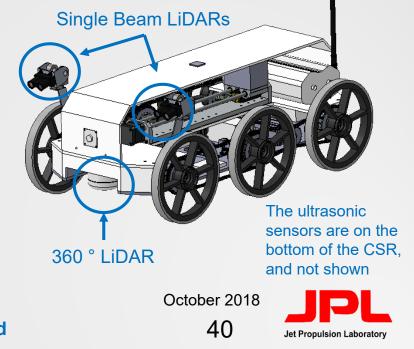
GNC CSR Discontinuity Traversal Mode

Environment Sensing

DESIGN REQUIREMENTS AND THEIR SATISFACTION

Environment Sensing Driving Requirements

Specific Requirements:


- **SENS.3.1:** The CSR Sensing system shall detect objects at least 37.5 inches (3.125 ft, 0.9525 m) from the Sensing system
- **SENS.3.1.1:** The CSR Sensing system shall detect objects within a field of view of at least 103.5° from the Sensing system
- SENS.3.1.2: The CSR Sensing system shall detect objects at least 1 inch in width
- SENS.3.2: The CSR Sensing system shall detect discontinuities at least 2.4 inches deep



- - 1. 360° single beam LiDAR to detect in plane objects
 - 2. Two fixed single beam LiDAR's to detect discontinuities
 - 3. Two ultrasonic sensors to complete discontinuity maneuver

Designs Driven:

• Type of sensors used, main controller(s)

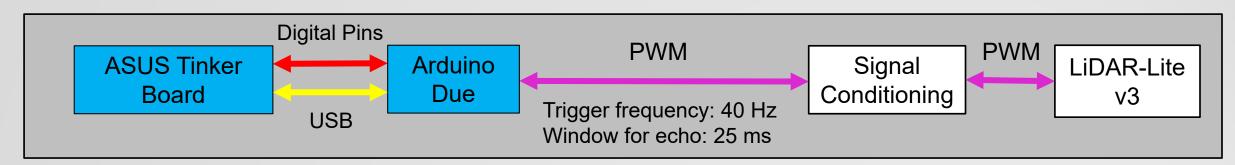
Note: Blue indicates component being outlined

Current Design Requirement Satisfaction

	Required Specifications	Achieved Specifications	Requirements Satisfied
 In-Plane Object Detection Slamtec RPLiDAR A2M8 360° Laser Range Scanner 	 Range – 3.125 ft (0.9525 m) Field of View – 103.5° Angular Resolution – less than 1.54° 	 Range – 39.4 ft (12 m)^[9] Field of View – 360° ^[9] Angular Resolution – 0.45° to 1.35° ^[9] 	 SENS.3.1 SENS.3.1.1 SENS.3.1.2
Discontinuity DetectionGarmin LiDAR-Lite 3 Laser Rangefinder	 Range – 6.25 ft (1.905 m) (derived from mounting location of LiDAR-Lite 3) 	 Range – 131.2 ft (40 m) ^[10] 	• SENS.3.2
 Discontinuity Depth Sensing (for Discontinuity Traversal) Itead Studio HC-SR04 Ultrasonic Sensor 	 Range – 4.8 in (0.12 m) (derived from mounting location of HC-SR04) 	 Range – 19.7 in (0.5 m) ^[11] 	

Beyond Physical Capability of Sensors:

- The sensing system must have the capability to use sensor data to detect if objects are present
- Integration of sensors with C&DH system is critical for requirement satisfaction

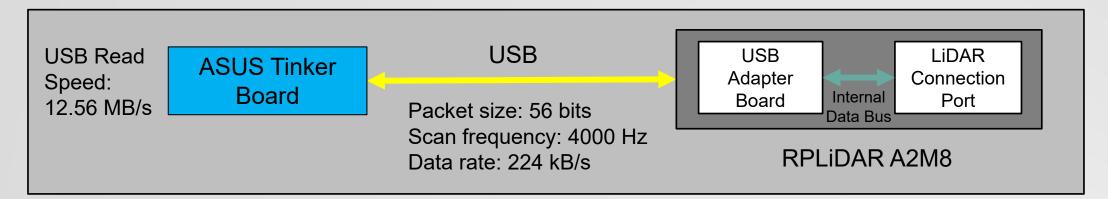


SENS = Sensing Requirement

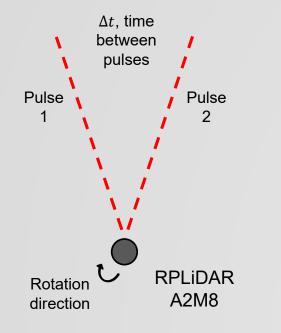
Discontinuity Detection – Integration

Integration Needs

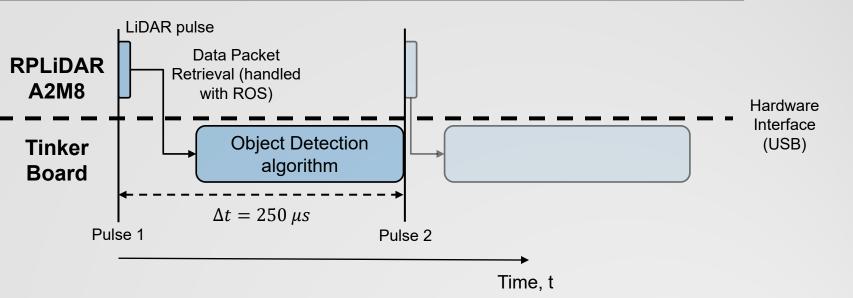
- Physical hardware interface (2 PWM pins)
- Tinker Board ROS integration (software)
- Arduino sketch that controls the PWM triggers/echoes to sensor (software)
 - LIDAR-Lite v3 maximum response time is \sim 20 ms which is < 25 ms
 - LIDAR-Lite v3 has enough to time to receive trigger and return echo before next trigger is received
- Signal conditioning
 - A 1 k Ω resistor required to isolate Arduino pins for cross-talk elimination
 - Digital signaling is usually resistant to system noise, so most likely, additional filtering is not required


Note: The integration scheme for the HC-SR04 Ultrasonic sensor is almost identical to the LiDAR-Lite 3

In-Plane Detection – Integration


Integration Needs

- Physical hardware interface (USB)
- Tinker Board ROS node development (software)
 - Integration with ROS package
 - Implementation of Object Detection Algorithm
- Data conditioning
 - Tinker Board must process LiDAR data faster than it is sent to Tinker Board (no post-processing)
 - Object Detection Algorithm must process faster than RPLiDAR
 A2M8 response time
 - If it can, then data buffering is not required



In-Plane Detection – Data Processing

Scan Time and Data Flow Diagrams

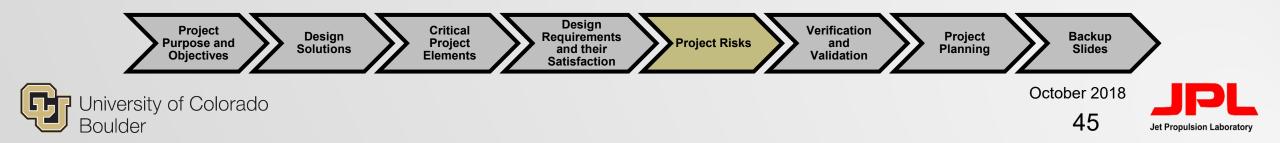
- RPLiDAR sends 1 data packet per 1 pulse
- Object Detection algorithm must process data before next data packet is received

Processor Benchmark Test

- Simulated processor: Intel® Core™ i7-8550U Processor 1.8GHz
- Tinker Board Processor: Rockchip Quad-Core RK3288 processor 1.8GHz
- Expected Python sketch executes in $\sim 10 \ \mu s$
- Estimated ROS data retrieval time $\sim 50 \ \mu s$
- Total processing time is $\sim 60 \ \mu s$ which is $< 250 \ \mu s$

Conclusion:

No data buffering or conditioning is required for RPLiDAR integration to satisfy requirements SENS.3.1, SENS.3.1.1, and SENS.3.1.2


October 2018

44

Project Risks

Risk Introduction

Severity Risk Levels

Level	Technical	Schedule
1	Minimal or no impact	Minimal or no impact
2	Small reduction in technical performance	Additional activities required; able to meet key dates
3	Some reduction in technical performance	Minor schedule slip; will miss need date
4	Unacceptable; but workarounds available	Program critical path affected
5	Unacceptable; technical goals cannot be achieved	Cannot achieve key program milestone

Likelihood Risk Levels

Level	Likelihood
1	Not Likely
2	Low Likelihood
3	Likely
4	Highly Likely
5	Near Certainty

Type of Risks

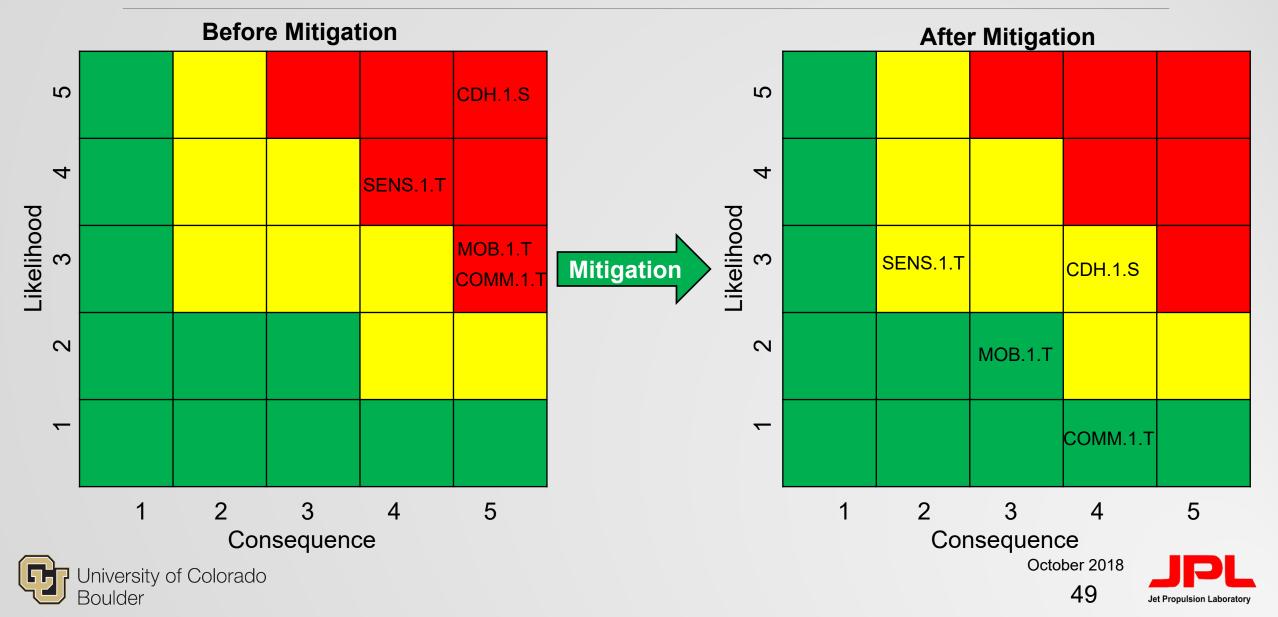
Subscript	Туре
Т	Technical
S	Schedule

Risk Descriptions

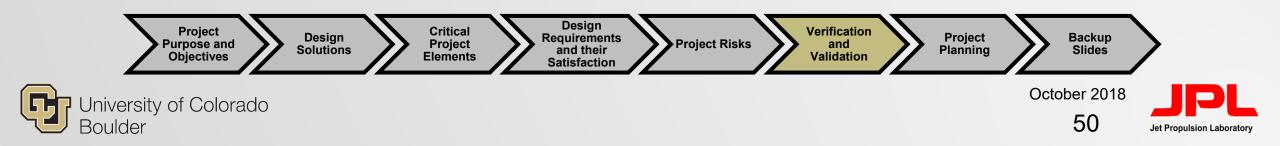
Risk	Туре	Description	Effect	Likeli hood	Severity	Total
CDH.1.S	S	Software development is complex and timely	System integration will not be possible. Functional requirements cannot be verified and validated. Schedule will not be met.	5	5	25
SENS.1.T	Т	Integration of 360° LiDAR is too complex	Solution would require extensive time and resources , which would affect other critical project elements.	4	4	16
MOB.1.T	Т	Motors and motor controller failure due to overheating from stalling, back current, power cycling	The motor does not function properly and cannot complete mission successfully.	3	5	15
COMM.1.T	Т	Data budget deficit	Unable to send all necessary data back to the GS (video/images, GPS, magnetometer)	3	5	15

October 2018

47



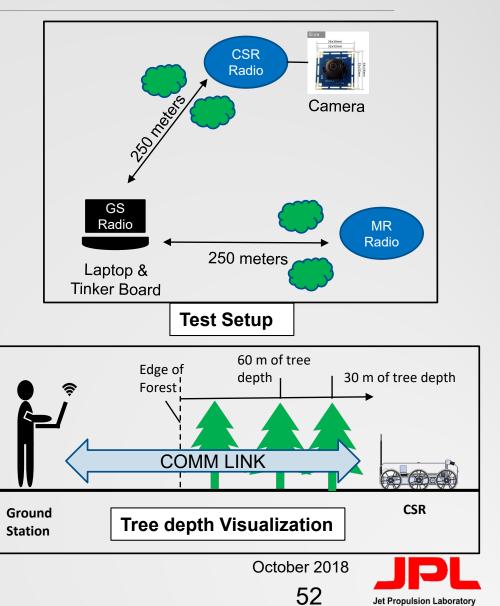
Risk Mitigation


		After	Mitigation -	
Risk	Mitigation Strategy	Likelihood	Severity	Total
CDH.1.S	Allow enough time for software development with sufficient time margin, 5 team members assigned to software development, frequent code reviews	3	4	12
SENS.1.T	Members increase skill set with ROS early in schedule, move to off-ramp options by February 4th	3	2	6
MOB.1.T	Ensure sufficient airflow around motors and implement heat sinks; utilize current limiters and monitor current	2	3	6
COMM.1.T	Allocate a sufficient margin in data budgets; start testing components early to validate data budget	1	4	4

Risk Matrices

Verification and Validation

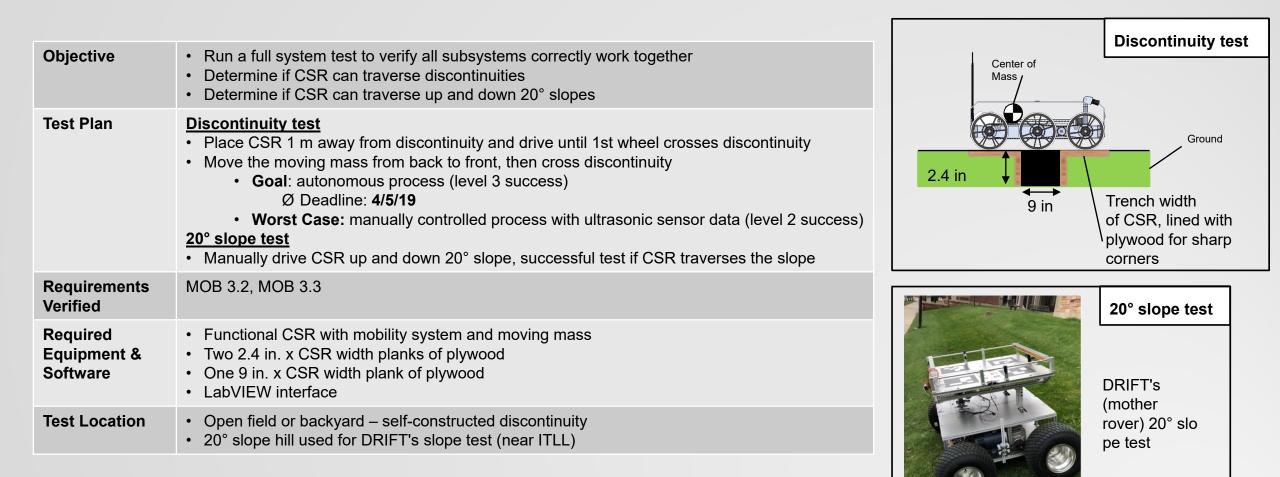
Verification Plan


Phase 1: Components and Subsystems Testing	Phase 2: Subsystem Integration	Phase 3: Full System Integration
 1/14/19 - 2/24/19 Sensing Testing Object detection testing Discontinuity detection testing Mobility Testing Motor validation - Torque curve characterization C&DH and Software V&V Individual mode testing Communications Testing Attenuation characterization GNC Testing GPS accuracy Magnetometer accuracy Camera operations testing 	 2/24/19 - 3/19/19 Sensing Integration Integrating all sensors and microcontrollers Mobility Integration & Testing Motor mounting to chassis Drive train integration Forward & backwards motion C&DH and Software Integration ✓ Loss of communication navigation testing 	 3/19/19 - 4/22/19 Full System Integration Combined Environment maneuverability and object detection integration Full System Mobility Testing Environmental maneuverability testing Endurance Testing Obstacle maneuverability testing Rover functional testing

Phase 1 – Communications Testing

Objective	 Determine largest tree depth for successful transmission and reception of data Ensure video, GPS, and sensor data can be transmitted and received
Test Plan	 Largest Tree Depth: Send video, simulated GPS, and simulated sensor data between radios at 250 meters apart at varying levels of tree depth to determine maximum tree depth Send constant stream of video, regular intervals of simulated magnetometer and GPS data using Linux Ping Command
Requirements Verified	COMM 1.1, COMM 2.4, COMM 2.5, COMM 2.6
Required Equipment & Software	 2 Ubiquiti Radios 1 Laptop 1 ASUS Tinker Board 1 USB Camera
Required Measurements	Signal strength sensitivity
Test Location	CU Boulder South Campus
Test Errors	Measurement of tree depth and densitiesEstimate of simulated data packet sizes

Phase 2 – Sensing Integration

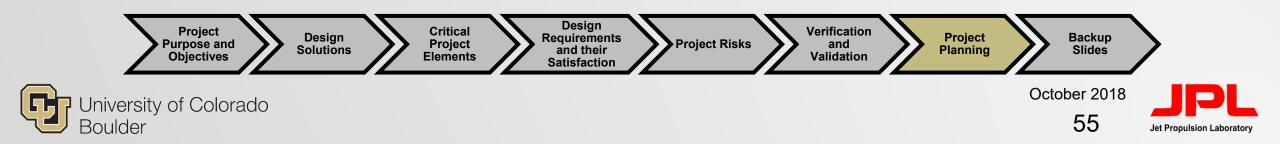

Boulder

Objective	 Integrate sensors with C&DH system Determine if Arduino connected to single beam LiDAR sends a mode change signal when detecting a discontinuity Determine if Arduino connected to 360° LiDAR sends a mode change signal when detecting an obstacle 				
Test Plan	 Single Beam LiDAR: Move box toward LiDAR, when LiDAR beam hits the ground the Arduino should send a "STOP" signal which alters GNC mode from 2 to 1 360° LiDAR Sensor: Move 1 inch wide by 3 inch high cylinder towards the LiDAR, when the object is 1 m (3.3 ft) away from the LiDAR the Arduino should send a "STOP" signal which alters GNC mode from 2 to 1 				
Requirements Verified	SENS 3.1, SENS 3.3				
Required Equipment & Software	 Single Beam LiDAR Ultrasonic Sensor Arduino Due ASUS Tinker Board 				
Required Measurements	 Single beam LiDAR reading > 3.4 ft +/- error and 360° LiDAR reading = 3.3 ft +/- error 				
Test Location	• ITLL				
Test Errors	Sensor measurement error				
Colora	LiDAR mounted on tripod Arduino Laptop & Tinker Board 3.3 ft (Distance to Discontinuity) Arduino Laptop & Tinker Board Arduino Cotober 2018				

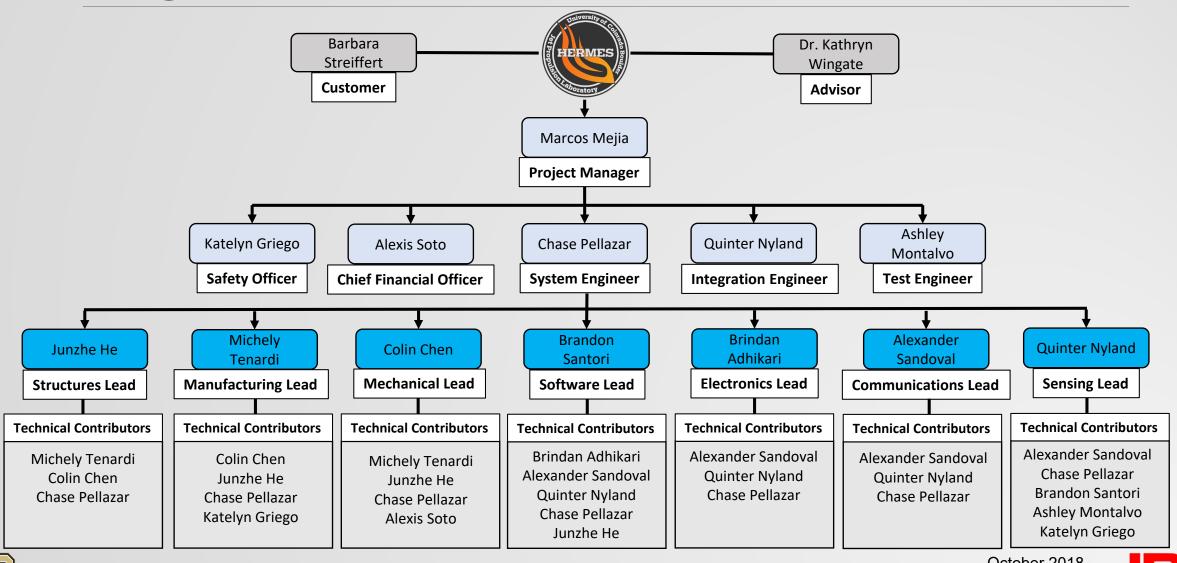
53

Jet Propulsion Laboratory

Phase 3 – Obstacle Maneuverability Testing

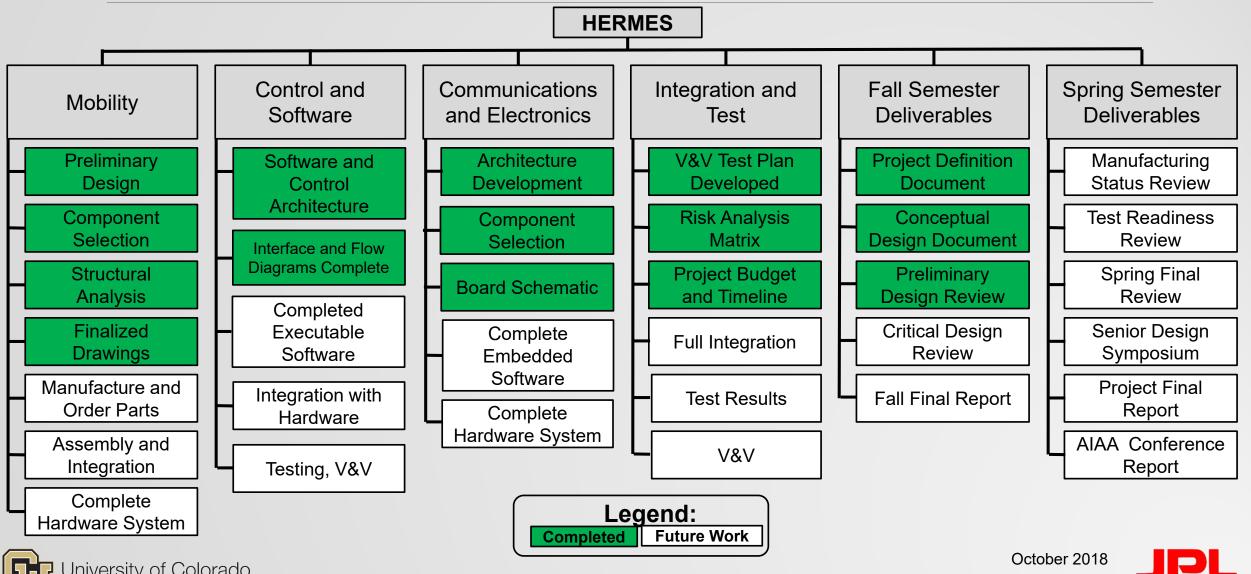


October 2018 54

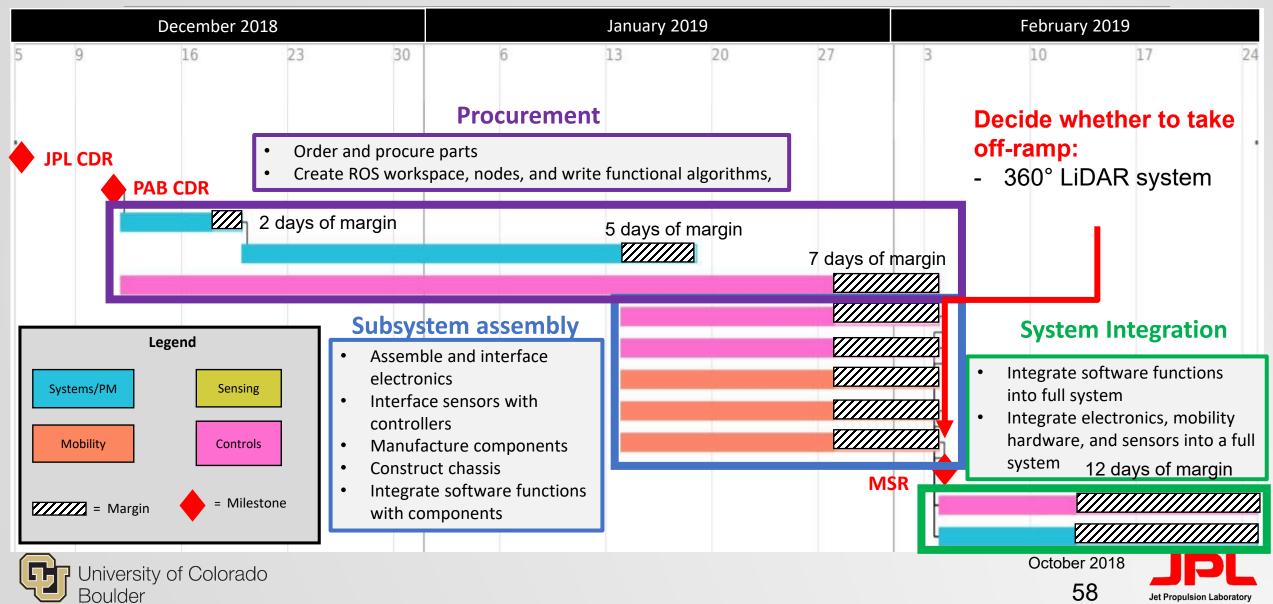


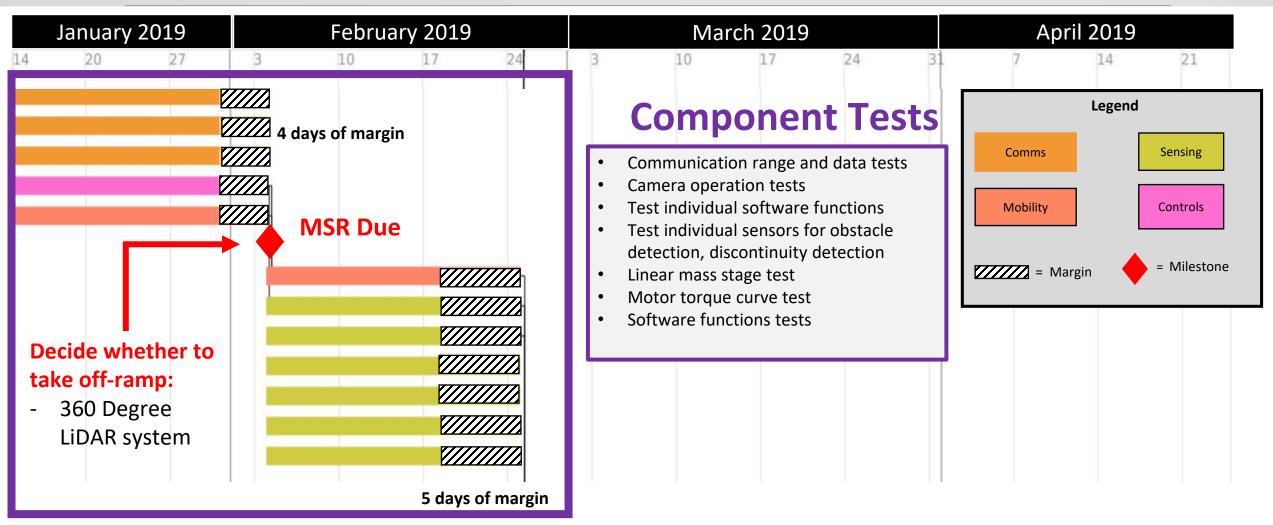
Project Planning

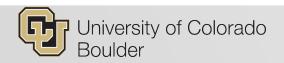
Organizational Chart



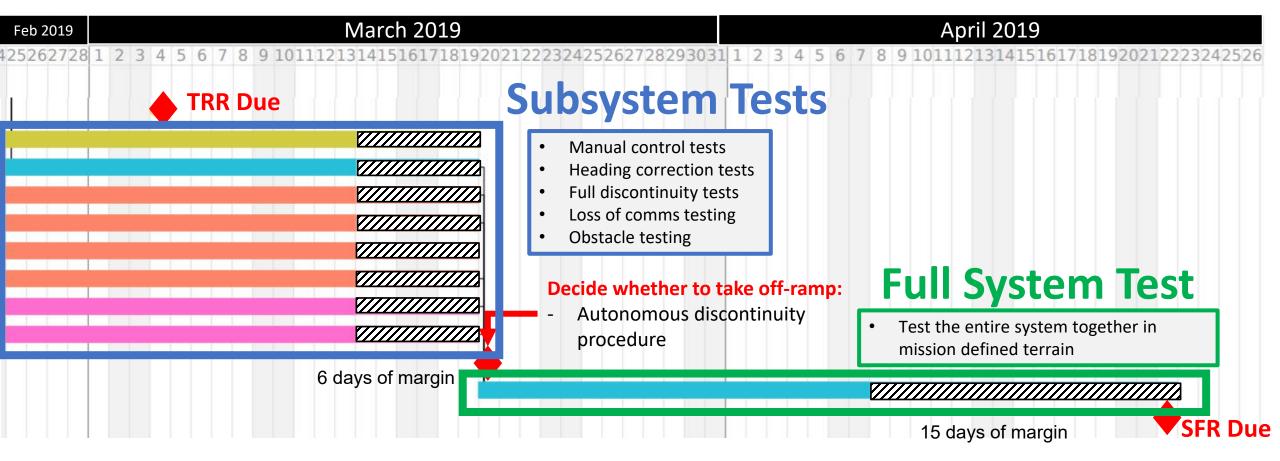
University of Colorado Boulder October 2018


56

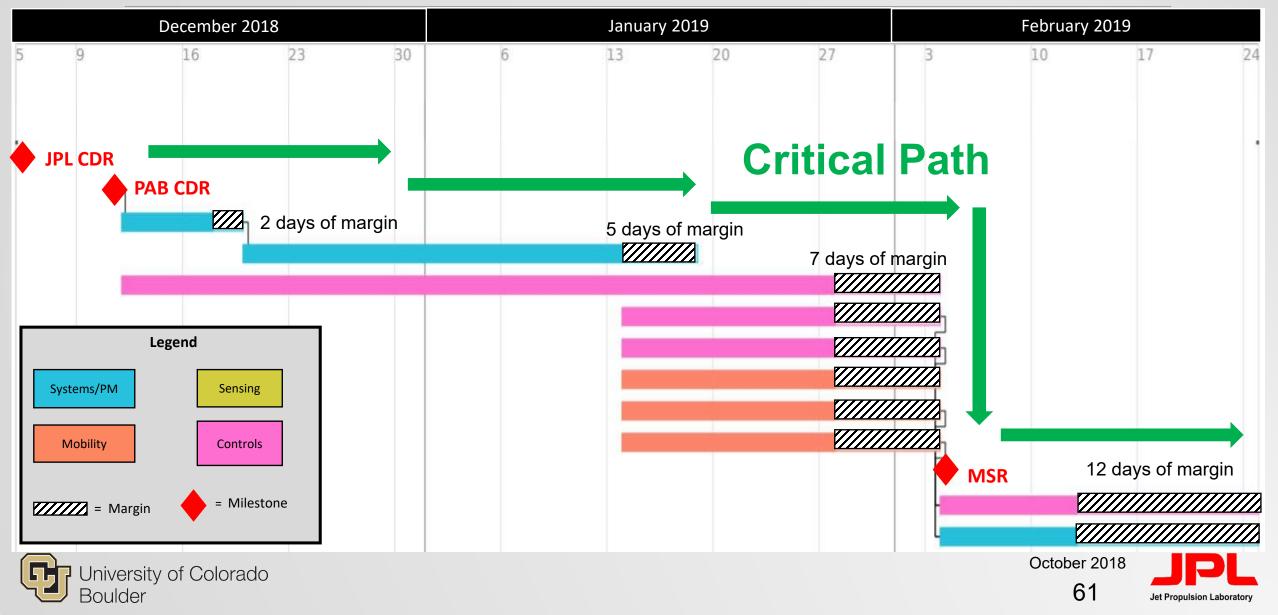

Work Breakdown Structure

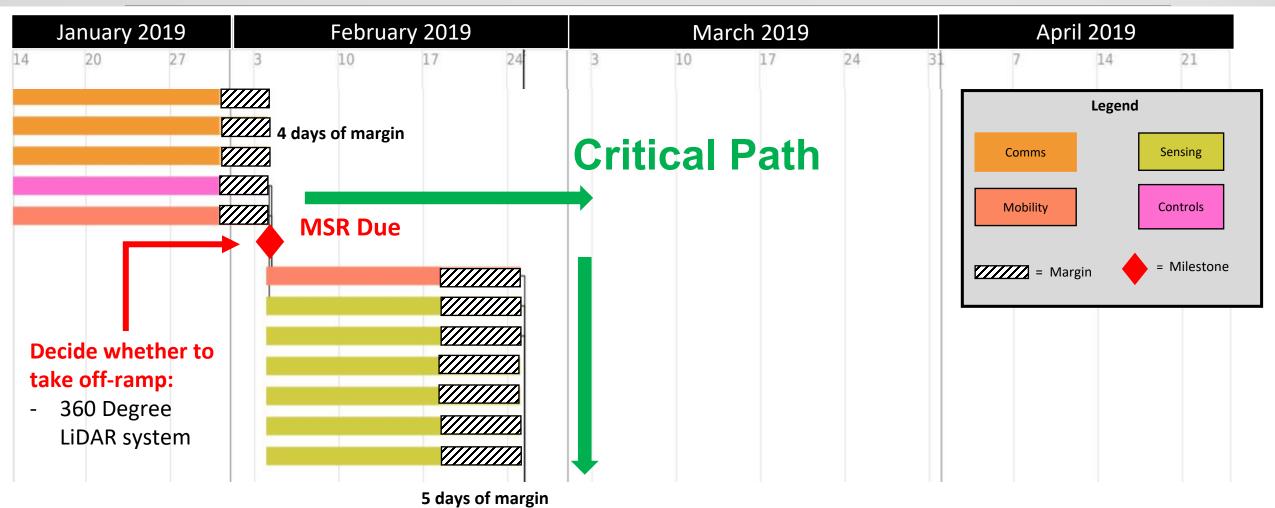


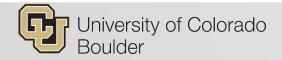
University of Colorado Boulder 57 Jet Propulsion Laboratory



Jet Propulsion Laboratory






October 2018

60

63

Jet Propulsion Laboratory

Test Plan

Major Test	Phase/Date	Testing Facility	Subsystem
Object detection testing	Phase 1: 1/22	CU business field	Sensing
Discontinuity detection testing	Phase 1: 1/29	Open field	Sensing
Camera operations testing	Phase 1: 2/5	CU Boulder South	Sensing
Motor validation - Torque curve characterization	Phase 1: 2/12	ITLL	Mobility
Communications Testing	Phase 1: 2/19	CU Boulder South	Comms
C&DH Testing & Integration	Phase 2: 2/24-3/19	ITLL	C&DH
Sensing Integration	Phase 2: 2/24-3/19	Senior Project Room	Sensing, C&DH
Rover functional testing	Phase 3: 3/19	Parking lot – flat ground	Mobility
Environmental maneuverability testing	Phase 3: 3/26	CU Boulder South	Mobility
Obstacle maneuverability testing	Phase 3: 4/7	20° slope next to ITLL	Mobility

Note: Tests in Phase 1 are not dependent on each other

Cost Plan

Most Expensive Subsystems:

- 1. Mobility
- 2. Sensing
- 3. Communication
- 4. Navigation

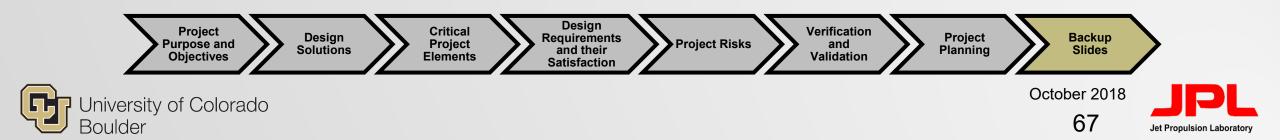
Current Budget Without Margin: \$3,954.86


15% Margin: \$593.23

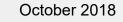
Total Budget with Margin: \$4548.09

Remaining Funds: \$451.91

*current budget includes items from BoM, shipping costs, and electronic wiring



Jet Propulsion Laboratory


Backup Slides

References

- 1. "AndyMark Redline Motor", Retrieved November 13, 2018, from http://www.andymark.com/RedLine-Motor-p/am-3775.htm. NOTE: No motor curve longer on website, is shown
- 2. "57 Sport", Retrieved Number 13, 2018, from https://www.andymark.com/products/57-sport-options
- 3. "8 in. Rubber Treaded Wheel", Retrieved November 14, 2018 from https://www.andymark.com/products/8-in-rubber-treaded-wheel
- 4. "Pololu Dual VNH5019 Motor Driver Shield for Arduino", Retrieved November 13, 2018 from https://www.pololu.com/product/2507
- 5. "Gens Ace 4S LiHV 100C LiPo Battery Pack (15.2V/7500mAh)", Retrieved November 13, 2018 from https://www.amainhobbies.com/gens-ace-4s-lihv-100c-lipo-battery-pack-15.2v-7500mAh-ga-b1102/p779337
- 6. "CNC Router Single Axis 3.5A TB6560 Stepper Stepping Motor Driver 16 Microstep Factory price MD430" Retrieved November 28, 2018 from https://www.aliexpress.com/store/product/CNC-Router-Single-Axis-3-5A-TB6560-Stepper-Stepping-Motor-Driver-16-Microstep-Factory-price-MD430/907217_2041316513.html
- 7. "NEO-M8P u-blox M8 High Precisions GNSS Modules", Retrieved November 20, 2018, from "https://cdn.sparkfun.com/assets/2/f/6/8/3/NEO-M8P_DataSheet_UBX-15016656_.pdf"
- 8. "LSM202DLHC", Retrieved November 27, 2018, from "https://cdn-shop.adafruit.com/datasheets/LSM303DLHC.PDF"
- 9. "RPLIDAR A2M8 360 Degree Laser", Retrieve November 15 from "https://www.slamtec.com/en/Lidar/A2Spec"
- 10. "LIDAR-Lite v3", Retrieved November 15 2018, from "https://www.sparkfun.com/products/14032?_ga=2.41586212.746972706.1541356129-811093297.1535990000&_gac=1.6416262.1540966863.EAIaIQobChMIhbz-8YSw3gIVDr7ACh2ERQD2EAAYASAAEgL7LPD_BwE"
- 11. "Ultrasonic Sensor HC-SR04" Retrieved November 15, 2018, from "https://www.sparkfun.com/products/13959"
- 12. "Qwiic Magnetometer (MLX90393) Hookup Guide" Sparkfun, Retrieved November 20, 2018, from <a href="https://learn.sparkfun.com/tutorials/qwiic-magnetometer-mlx90393-hookup-guide?ga=2.194486825.504201191.1543446845-811093297.1535990000&ga=1.245508400.1540966863.EAIaIQobChMIhbz-8YSw3gIVDr7ACh2ERQD2EAAYASAAEgL7LPD_BwE#example-code.
- 13. "COMPASS HEADING USING MAGNETOMETERS" Honeywell, Retrieved November 20, 2018, from https://aerocontent.honeywell.com/aero/common/documents/myaerospacecatalog-

68

Slide Directory

Main Slide Directory

1	HERMES	26	Current Design Requirement	51 Verification Plan
2	Project Purpose and Objectives	26 27	Mobility – Power Capacity	
3	Project Heritage	27	Communication	
1	Project Motivation	20	Communication	Phase 1 –
5	Project Statement	29	Communications Driving Requirements	52 Communications Testing
6	Definitions	30	Communication Data Flow Diagram	
7	CONOPS: Arriving to Location of Interest	31	Guidance, Navigation and Control	Phase 2 – Sensing
В	CONOPS: Other Terrain			53 Integration
9	Functional Requirements	32	GNC Driving Requirements	
10	Primary Success Levels	33	Current Design Requirement	
1	Design Solution			Phase 3 – Obstacle
12	Functional Block Diagram	34	GNC CSR Software Architecture	54 Maneuverability Testing
		35	GNC CSR Software Functionality	55 Project Planning
13	Final Design Overview: System Interface	36	GNC CSR Manual Mode	55 Project Planning
		37	GNC CSR Semi-Autonomous Mode	56 Organizational Chart
14	Final Design Overview: Child Scout Rover		GNC CSR Discontinuity Traversal	
	ő	38	Mode	
15	Final Design Overview: Child Scout Rover	39	Environment Sensing	Work Breakdown 57 Structure
16	Major Element: Control		Environment Sensing Driving	58 Work Plan
17		40	Requirements	59Work Plan
17	Major Element: Mobility		Current Design Requirement	60 Work Plan
18	Major Element: Communications	41	Satisfaction	61 Work Plan
				62Work Plan
19	Major Element: Environment Sensing	42	Discontinuity Detection – Integration	63Work Plan
		43	In-Plane Detection – Integration	64 Test Plan
20	Major Element: Guidance and Navigation	+0		65 Cost Plan
21	Critical Project Elements	44	In-Plane Detection – Data Processing	66 End Slide
22	Critical Project Elements	45	Project Risks	67Backup Slides
	Design Requirements and their	46	Risk Introduction	
23	Satisfaction	47	Risk Descriptions	68 References
24	Mobility	48	Risk Mitigation	
		49	Risk Matrices	
25	Mobility Driving Requirements	50	Verification and Validation	

Project Definition

Terrain Definition

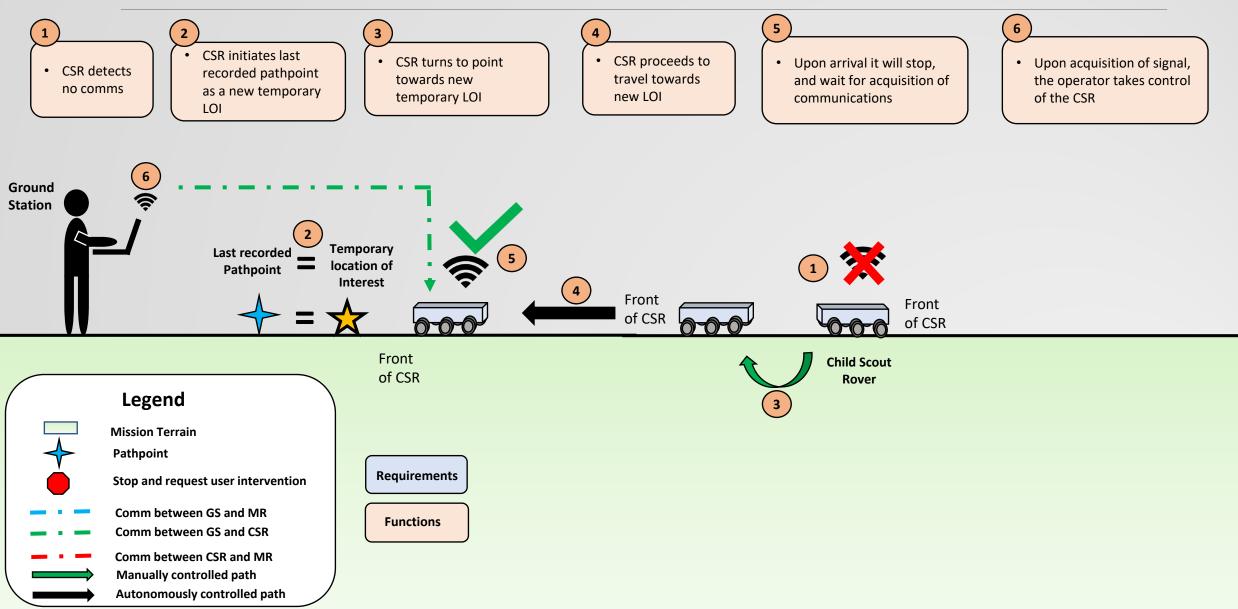
Terrain	Forest	Ground	Underbrush
	Open:	Mud:	Dirt with no vegetation:
Туре А	0 trees per acre	Grain size: 0.00006 - 0.0039 mm	- Refer only to ground classification
	0 tiees per acre	(< .0002 in)	- Scattered leaves
		Silt:	Grass, Fallen Leaves, and No shrubbery:
Type B	Understocked:	Grain Size: 0.0039 - 0.0625 mm	- Full ground coverage by leaves
Type D	~100 trees per acre	(< .003 inch)	- Grass between 2cm - 10cm height (.8 - 4 inches)
		(<.003 mem)	- Small roots 1-2 cm (.48 inches) in diameter
	Fully Stocked: ~170 trees per acre	Sand:	Grass, Fallen Leaves, and Scattered Shrubbery
Type C		Grain Size: 0.0625 - 2.00 mm	- Shrubbery spaced by at least 1 meter
Type C			- Includes type A and B underbrush
		(< .08 inch)	- Medium roots: 3-4 cm (1.2 - 1.6 inches) in diameter
		Gravel:	Grass, Fallen Leaves, and Dense Shrubbery
Type D	Overstocked:	Grain Size: 2.00 - 4.096 mm	- No spacing between shrubbery
Type D	~200 trees per acre		- Includes type A, B, and C underbrush
		(< .2 inch)	- Large Roots: 5-6 cm (2 - 2.4 inches) in diameter

Success Levels

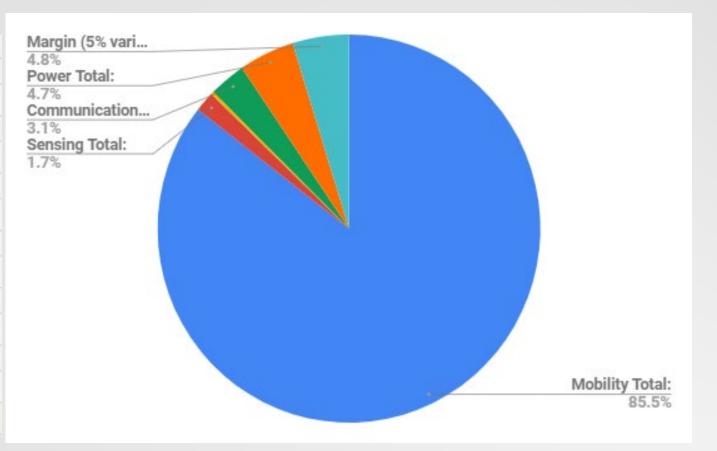
Criteria	Level 1	Level 2	Level 3
Control	 The CSR shall navigate by received control commands from the GS The CSR shall perform a 360 degree turn The CSR shall drive forward and reverse 	The CSR shall navigate to a LOI and shall detect obstacles en route to the LOI, but manual control is needed to circumvent the obstacles.	 The CSR shall autonomously return to the last known GPS location if connection to the GS and MR is lost.
Communication	 The CSR shall verify connection to the MR/GS. The CSR shall send at least one GPS data packet to MR/GS upon command. The CSR shall have functional communication up to a 250 meter radius from the deployment point in an open area. The CSR shall be able receive control commands from MR/GS 	 The CSR shall record and send waypoint locations after encountering an obstacle 	 The CSR shall transmit continuous video feed. The CSR shall verify its location from the LOI within +/- 5 meters The CSR shall communicate through type D terrain up to a 250 meter radius from the deployment point

Jet Propulsion Laboratory

Success Levels Continued


Criteria	Level 1	Level 2	Level 3
Environment	 The CSR shall traverse the following: 1. Open areas 2. Up to 20 degree incline slopes 	 The CSR shall traverse the following: Type A underbrush Roots up to a 2.4 inch(6 cm) diameter 	 The CSR shall traverse the following: Type D underbrush Up to a 9 inch wide discontinuities with depths greater than 2.4 inches (6 cm)
Range	 The CSR shall drive up to a 250 meter radius from the deployment point on flat terrain 	 The CSR shall drive up to a 250 meter radius from the deployment point on flat terrain with obstacles present 	• The CSR shall be able to drive in a 250 meter radius from the deployment point at a 20 degree inclined slope
Video/ Image	 The imaging system on the CSR shall capture a FOV greater than 100 degrees The imaging system shall send time-stamped images to the MR/GS 	 The CSR shall send videos to the MR/GS The MR shall toggle the video capture from the CSR on or off 	 The CSR shall send continuous video feed to the MR and GS

CONOPS: Loss of Comms


Systems

Mass Budget

Total Mass [lbs]	
Mobility Total:	46.342
Sensing Total:	0.916
C&DH Total:	0.135
Communications Total:	1.67
Power Total:	2.545
Margin (5% variation):	2.58
CSR Total:	54.188

Requirement	D Description	V&V
COMM.1.1	The CSR Communication system shall receive command packets up to 250 meters in Mission Defined Terrain with no more than a 10 dB loss <i>Motivation - Since the CSR will be operating over large distances from the GS, it should be able to receive all commands from the maximum distance a mission will travel</i>	Test - Communication Demonstration Analysis
CDH.1.1	The CSR C&DH software shall identify the intended receiving subsys- tem (i.e. Mobility, Sensing, Communication) for received commands <i>Motivation - Since the CSR system will have multiple subsystems it is</i> <i>necessary that the CD&H subsystem distributes commands to the in-</i> <i>tended subsystem</i>	Test - Communication Demonstration
CDH.1.2	The CSR C&DH software shall distribute commands to the intended receiving subsystem (i.e. Mobility, Sensing, Communication) Motivation - In order for the commands received by the receiver to be issued to the rest of the system, the receiver must interface with the hardware that runs the command handling software	Test - Communication Demonstration
CDH.1.3	The CSR C&DH system shall interface with the CSR Communication system receiver on a hardware and software level Motivation - In order for the commands received by the receiver to be issued to the rest of the system, the receiver must interface with the hardware that runs the command handling software	Test - Communication Demonstration

	COMM.2.1	The CSR Communication system shall send GPS data packets to the GS or the MR through mission defined terrain (See Terrain Definition) upon request from the user <i>Motivation - Depending on the COTS GPS component, the transmission frequency of the GPS data packets may vary between this range.</i> ¹⁰	Test - Communication Demonstration	
	COMM.2.2	The CSR Communication system shall send video frames at a fre- quency of at least 30 Hz Motivation - Depending on the capability of the receiver on the MR the CSR transmitter can only send a limited size of imaging data packets	Test - Communication Demonstration	
	СОММ.2.3	The CSR Communication system shall send video from up to 250 me- ters (820 ft) to the GS or the MR <i>Motivation - The CSR will be operating at a maximum distance of 250</i> <i>meters (820 ft) from the GS, so the CSR should be able to send GPS</i> <i>data packets up to this maximum distance.</i>	Test - Communication Demonstration Analysis	
	COMM.2.4	The CSR Communication system shall send GPS data from up to 250 meters (820 ft) to the GS or the MR Motivation - The CSR will be operating at a maximum distance of 250 meters (820 ft) from the GS, so the CSR should be able to send environ- mental position data packets up to this maximum distance.	Test - Communication Demonstration Analysis	
7 University of Colo	COMM.2.5	The CSR Communication system shall send sensor data from up to 250 meters (820 ft) to the GS or the MR <i>Motivation - The CSR will be operating at a maximum distance of 250 meters (820 ft) from the GS, so the CSR should be able to send imaging</i>	Test - Communication Demonstration Analysis	ctober 2018
Boulder		data packets up to this maximum distance.		79

Jet Propulsion Laboratory

CDH.2.1	The CSR C&DH system software shall time stamp collected GPS, ob- stacle position, and imaging data Motivation - Since the CSR will be collecting data over the duration of its mission it is necessary to organize the recorded data so that the mission can be understood	Demonstration
CDH.2.2	The CSR C&DH system shall interface with the CSR Communication system transmitter on a hardware and software level <i>Motivation - In order for the data collected by the CSR to be transmit-</i> <i>ted to the GS the transmitter must interface with the hardware that runs</i> <i>the data handling software</i>	Demonstration



Requirement II	Description	V&V
MOB.3.1	The CSR Mobility system shall be able to perform a 0 meter (0 ft) radius turn up to 360 ° Motivation - In order for the CSR to maneuver around obstacles it needs to turn, so if it can perform the maximum reorientation it can re-orientate to any degree	Test - CSR Functional Demonstration Analysis
MOB.3.2	The CSR shall be able to go over discontinuities up to 9 inches Motivation - While the MR can not go over 1 foot (0.30 m) dis- continuities it is advantageous for the CSR to go over a discon- tinuity in the event that it encounters one while on mission	Test - Discontinuity Operation Demonstration Analysis
MOB.3.3	The CSR shall drive up or down a slope of 20 ° in type A for- est and underbrush terrain (See Terrain Definition) from position hold Motivation - Since the MR can drive up and down slopes of this degree, the CSR needs to have the capability too	Test - Inclinations Demonstration Analysis
MOB.3.4	The CSR shall be able to drive in underbrush (See Terrain Defi- nition) Motivation - The CSR will be operating in forest environment and will encounter varying levels of this type of vegetation	Test - Environmenta Maneuverability

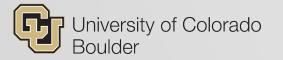
MOB.3.4.1	The CSR Mobility system shall be able to drive the CSR over a 2.4 inch (0.06096 m) step Motivation - When the CSR must drive over roots of this size when driving through type D underbrush	Test - Environmental Maneuverability Demonstration Analysis
SENS.3.1	The CSR Sensing system shall detect objects at least 37.5 inches (3.125 ft, 0.9525 m) from the Sensing system Motivation - In order for the CSR to navigate itself through an unknown environment it needs a way to sense obstacles	Test - Obstacle Detection Demonstration Analysis
SENS.3.1.1	The CSR Sensing system shall report objects within a field of view of at least 103.5° of the CSR Motivation - Available commercial of the shelf devices have a 2D field of view at a minimum of TBD°	Test - Obstacle Detection Demonstration Analysis
SENS.3.1.2	The CSR Sensing system shall detect objects at least 1 inch in width Motivation - Available commercial of the shelf devices have a 2D range up to 4 meters	Test - Obstacle Detection Demonstration Analysis

October 2018

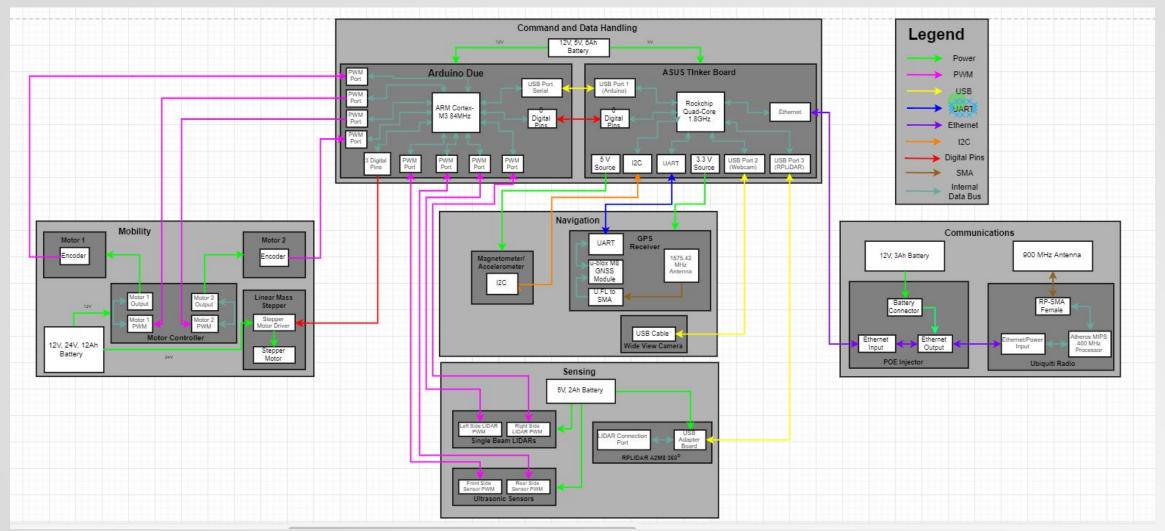
82

SENS.3.2	The CSR Sensing system shall detect discontinuities at least 2.4 inches deep Motivation - The CSR must map the terrain grades its traversing so that a viable path for the MR can be determined, because the MR has a 20 ° terrain limitation	Test - Inclinations Demonstration Analysis
CDH.3.1	The CSR C&DH shall interface with the Mobility system's power train on a hardware and software level <i>Motivation - For the CSR to drive commands must be sent to the</i> <i>power train</i>	Demonstration
CDH.3.2	The CSR C&DH system software shall store the Location of In- terests GPS coordinates in memory. <i>Motivation - The MR has a width limitation of 5 ft (1.524 meters)</i>	Test - Obstacle Detection Analysis Demonstration

CDH.3.3	The CSR C&DH system shall determine if the CSR is within +/- 5 meters of the location of interest Motivation - In order for the CSR to remain on course with the Location of Interest the location must be stored in memory	Demonstration
CDH.3.4	The CSR C&DH system shall determine the heading of the CSR Motivation - In order for the user to correct the heading of the CSR to be towards the LOI the CSR's current heading must be known	Demonstration
POW.3.1	The CSR Power system shall provide at least 69.03 Wh to the CSR Motivation - To fulfill its mission the CSR must house enough power to do so	Inspection

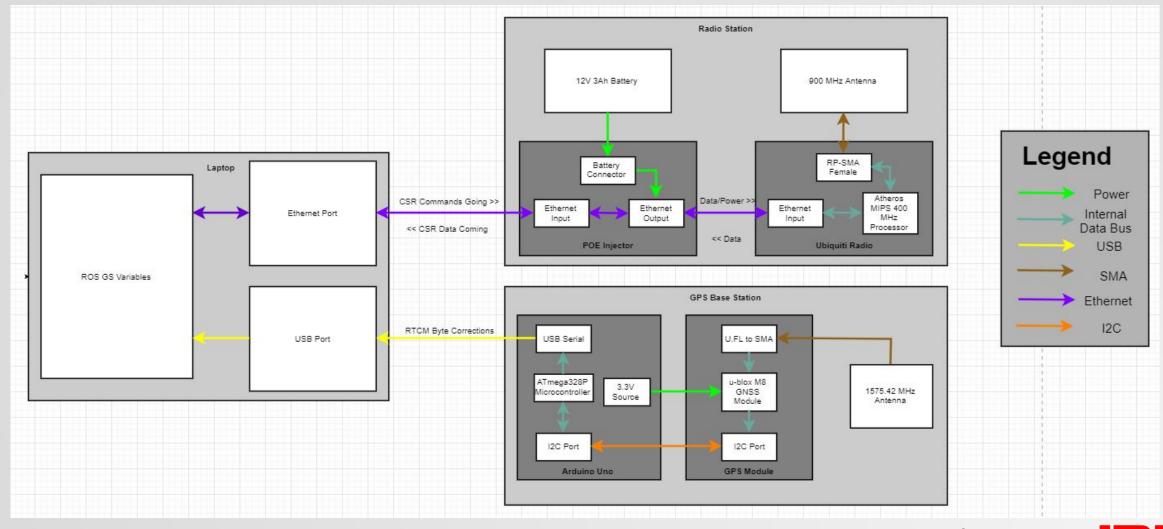

Requirement ID	Description	V&V
CDH.4.1	The CSR C&DH software shall store the last recorded node in memory Motivation - nodes must be stored in memory to be used in the event of off-nominal communication	Test - Off-Nominal Communication Navigation Demonstration
CDH.4.2	The CSR C&DH software shall detect loss of communications with the MR and the GS Motivation - In order to react to a loss of comms the CSR must be monitoring communications	Test - Off-Nominal Communication Navigation Demonstration
CDH.4.3	The CSR C&DH software shall establish a temporary Location of Interest at the last node <i>Motivation - To autonomously travel back to the last recorded</i> <i>node the CSR must know which direction to travel</i>	Test - Off-Nominal Communication Navigation Demonstration

CSR.4 : The CSR shall travel back to the last recorded waypoint upon loss of communications with the MR						
Requirement ID	V&V					
CDH.4.1	The CSR C&DH software shall store the last recorded node in memory Motivation - nodes must be stored in memory to be used in the event of off-nominal communication	Test - Off-Nominal Communication Navigation Demonstration				
CDH.4.2	The CSR C&DH software shall detect loss of communications with the MR and the GS Motivation - In order to react to a loss of comms the CSR must be monitoring communications	Test - Off-Nominal Communication Navigation Demonstration				
CDH.4.3	The CSR C&DH software shall establish a temporary Location of Interest at the last node Motivation - To autonomously travel back to the last recorded node the CSR must know which direction to travel	Test - Off-Nominal Communication Navigation Demonstration				


equirement ID	Description	V&V
ENS.5.1	The CSR Sensing system shall be able to capture video Motivation - The sensing system must be capable of capturing video in order for the CSR to capture video	Test - Camera Operation Demonstration
NS.5.1.1	The CSR Sensing system shall take video at a rate of 30 fps (TBR) Motivation - The quality of the video will is being based on IN- FERNO's frame rate. ¹¹	Test - Camera Operation Inspection Demonstration
ENS.5.1.2	The CSR Sensing system shall take video at at least 800 x 600 pixels Motivation - The video quality is being based on INFERNO's frame resolution. ¹¹	Test - Camera Operation Inspection Demonstration
ENS.5.1.3	The CSR Sensing system video device shall have a field of view of at least 100° Motivation - Establishes the type of lens incorporated in the camera design	Test - Camera Operation Inspection Demonstration

87

Hardware Architecture Diagram: CSR



October 2018

Hardware Architecture Diagram: GS

October 2018

89

JPL Jet Propulsion Laboratory

Bill of Materials

Subsystem	Subassembly	Part Name	Description	Qty	Source	Unit Cost	Total Cost
Mechanical	Chassis	chassis_bot	Aluminum Chassis Base Plate	1	https://www.mcmaster	\$69.02	\$69.02
Mechanical	Chassis	chassis_top	Acrylic Top Plate (Cut from 0.25"x12"x48" sheet)	1	https://www.mcmaster	\$39.86	\$39.86
Mechanical	Chassis	chassis_housing	Acrylic Housing (Cut from 0.25"x12"x48" sheet)	1	https://www.mcmaster	\$39.86	\$39.86
Mechanical	Chassis	80/20 Framing	Support struts for top plate (Part: 5 struts, 2.2 in height. Component: 2 ft)	1	https://www.mcmaster	\$7.79	\$7.79
Mechanical	Chassis	80/20 Brackets	Support brackets for 80/20 framing and housing (12 for struts).	12	https://www.mcmaster	\$5.21	\$62.52
Mechanical	Chassis	80/20 Fasteners	Fasteners for 80/20 struts (Need 12, Comes in pack of 4)	3	https://www.mcmaster	\$2.30	\$6.90
Mechanical	Chassis	1" 1/4-20 Screws	Plate-Strut Fastener. Need 9, comes in pack of 50	1	https://www.mcmaster	\$8.14	\$8.14
Mechanical	Chassis	14-20 Nuts	Plate-Strut-Bracket Fastener. Need 10, comes in pack of 50	1	https://www.mcmaster	\$4.60	\$4.60
Mechanical	Chassis	1/4" Washer	Washers for 1/4-20 Screws. Need 19, comes in pack of 100	1	https://www.mcmaste	\$3.37	\$3.37
Mechanical	Chassis	0.75" 1/4-20 Screws	Screws for Plate-Strut-Bracket Fastener. Need 10, comes in pack of 50	1	https://www.mcmaste	\$7.48	\$7.48
Mechanical	Chassis	General Purpose Corner Brackets	Corner brackets to support the acrylic housing and walls	12	https://www.mcmaste	\$1.00	\$12.00
Mechanical	Chassis	0.5" 10-32 Screws	Screws to fix corner brackets interfaces. (Need 20, Comes in pack 100)	1	https://www.mcmaster	\$9.60	\$9.60
Mechanical	Chassis	10-32 Nuts	Fastener for corner bracket interfaces. (Need 20, Comes in pack of 100)	1	https://www.mcmaster	\$3.77	\$3.77
Mechanical	Chassis	Shaft Mount	Part: 12 of 2"x0.5"x1.5" aluminum blocks. Stock: 1 of 2"x0.5"x24"	1	https://www.mcmaster	\$17.86	\$17.86
Mechanical	Chassis	1" 1/4-20 Screws	Screws to mount shaft mount to base plate (Need 12, use from line 8).	12	Line 8	\$0.00	\$0.00
Mechanical	Chassis	1/4-20 Helicoils	Helicoil Inserts for shaft mount (Need 24, Comes in pack of 10)	3	https://www.mcmaster	\$6.15	\$18.45
Mechanical	Chassis	0.5" 10-32 Screws	Screws to mount the gearbox to the base plate (Need 8, use from line 13)	8	Line 13	\$0.00	\$0.00
Mechanical	Chassis	#10 Washers	Washers for gearbox screws (Need 8, Comes in pack of 100)	1	https://www.mcmaster	\$2.33	\$2.33
Mechanical	Drive Train	AndyMark 775 RedLine Motor	Drive Motor	2	nark.com/RedLine-Moto	\$18.00	\$36.00
Mechanical	Drive Train	57 Sport 64:1 Gearbox	Drive train gearbox	2	http://www.andymark.	\$96.00	\$192.00

Bill of Materials

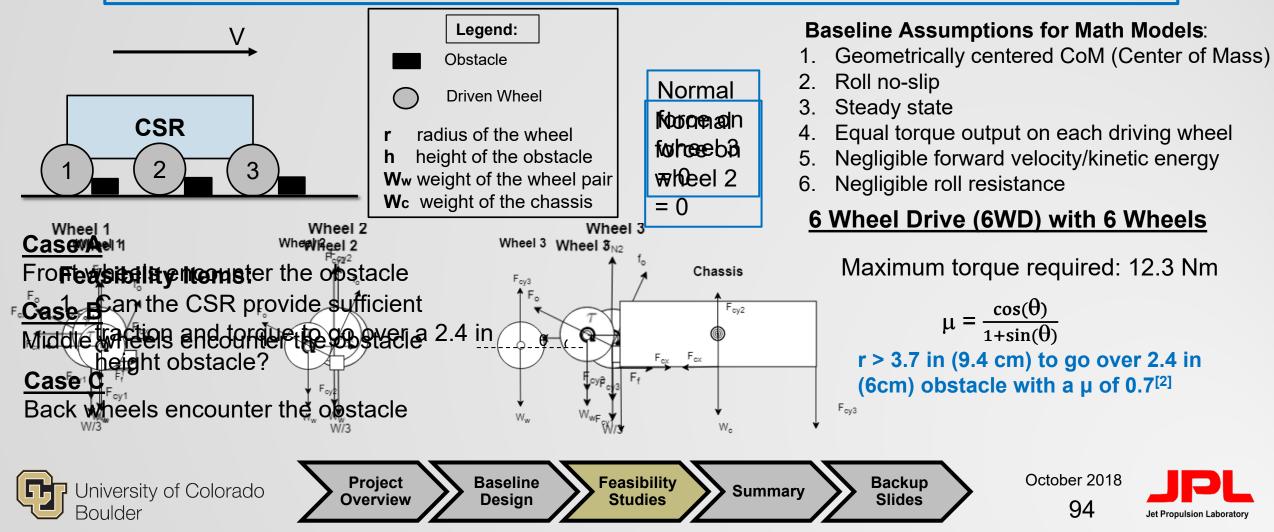
Mechanical	Drive Train	AndyMark Motor Vent Spacer	Drive Motor Ventilation Spacer	2 https://www.andymark		\$5.00	\$10.00
Mechanical	Drive Train	Wheel Sprocket (#25-38t)	Sprocket to fix to wheel	8 https://www.vexrobotic		\$11.99	\$95.92
Mechanical	Drive Train	Gearbox Sprocket (#25-22t)	Sprocket to fix to gearbox	4	https://www.vexrobotic	\$9.99	\$39.96
Mechanical	Drive Train	10-24 Wheel Set Screws	Screws fixing sprocket to wheel. Need 36. Comes in set of 50.	1	https://www.andymark	\$8.50	\$ 8.50
Mechanical	Drive Train	Chains	5 ft, 1/4 in pitch chains for drive train	1	https://www.mcmaster	\$25.70	\$25.70
Mechanical	Drive Train	Shaft	Part: 6 of 3.75", 1/2"OD Shaft. Stock: 1 of 24", 1/2" OD Shaft	1	https://www.mcmaster	\$17.21	\$ 17.21
Mechanical	Drive Train	Wheels	8" Rubber Treaded Wheels	e	https://www.andymark	\$12.00	\$72.00
Mechanical	Drive Train	Bearings	1/2" ID Wheel Bearings	e	https://www.andymark	\$3.00	\$18.00
Mechanical	Drive Train	Shaft Collars	1/2" ID Shaft collars to ensure wheels stay on shafts	12	https://www.mcmaster	\$2.51	\$30.12
Mechanical	Linear Mass Stage	Linear Stage	Actuated Linear Stage to vary CoM	1	https://www.amazon.c	\$98.99	\$98.99
Mechanical	Linear Mass Stage	Linear Mass	Mass used to vary CoM	1	https://www.mcmaster	\$39.49	\$39.49
SUBTOTAL							\$997.44
Subsystem	Subassembly	Part Name	Description	Qty	Source	Unit Cost	Total Cost
Power	Power	Sensing Battery	Sensing Battery	1	https://www.adafruit.c	\$12.50	\$12.50
Power	Power	Motor Battery	Motor Battery	1	https://www.amainhot	\$139.99	\$139.99
Power	Power	Communication Battery	Communication Battery	1	https://www.amazon.c	\$24.79	\$24.79
Power	Power	Computer Battery	Computer Battery	1	https://www.amazon.c	\$34.00	\$34.00
SUBTOTAL							\$211.28

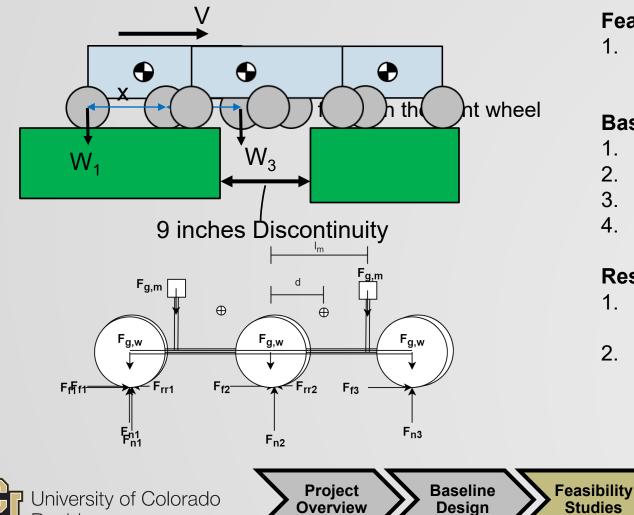
Bill of Materials

Subsystem	Subassembly	Part Name	Description	Qty	Source	Unit Cost	Total Cost
C&DH	C&DH	ASUS Tinker Board	ASUS Tinker Board		1 https://www.asus.com	\$80.00	\$80.00
C&DH	C&DH	Arduino Due	Arduino Due		1 https://www.sparkfun.	\$49.95	\$49.95
SUBTOTAL							\$129.95
Subsystem	Subassembly	Part Name	Description	Qty	Source	Unit Cost	Total Cost
Comms	Comms	Ubiquiti Radio	Ubiquiti Radio		3 https://www.amazon.c	\$118.95	\$356.85
Comms	Comms	POE Adapter	POE Adapter		3 https://www.amazon.c	\$44.90	\$134.70
Comms	Comms	900 MHz Antenna	900 MHz Antenna		6 http://www.l-com.com	\$26.84	\$161.04
SUBTOTAL							\$652.59
Subsystem	Subassembly	Part Name	Description	Qty	Source	Unit Cost	Total Cost
GNC	Motor Controls	Drivetrain Motor Controller	Drivetrain Motor Controller		1 www.pololu.com/produc	\$49.95	\$49.95
GNC	Motor Controls	Linear Stage Stepper Controller	Linear Stage Stepper Controller		1 198988&hvpos=1o1&h	\$13.99	\$13.99
GNC	Sensing	360 Degree Lidar	360 Degree Lidar		1 w.sparkfun.com/produ	\$319.95	\$319.95
GNC	Sensing	Ultrasonic Range	Ultrasonic Range		2 w.sparkfun.com/produce	\$3.95	\$7.90
GNC	Sensing	Single Beam Lidar	Single Beam Lidar		2 .1535990000&_gac=1.	\$129.99	\$259.98
GNC	Sensing	180 degree Fisheye Lens	180 degree Fisheye Lens		1 MZJNR1X3E&pd_rd_v	\$45.00	\$45.00
GNC	Nav	GPS Module	GPS Module		2 w.sparkfun.com/produce	\$199.95	\$399.90
GNC	Nav	GPS Antenna	GPS Antenna		2 https://www.sparkfun.	\$12.95	\$25.90
GNC	Nav	Magnetometer/Accelerometer	Magnetometer/Accelerometer		1 ww.adafruit.com/produ	\$14.95	\$14.95
SUBTOTAL							\$1,137.52
	TOTAL						\$3,128.78

Note: This bill of materials does not include electronics, shipping, and testing materials. But the cost plan includes all of these.

October 2018 92 Jet Propulsion Laborator


Mobility


Mobility – Obstacle Model

MOB.3.4 The CSR shall be able to drive in underbrush MOB.3.4.1 The CSR shall drive over a traversable obstacle up to 2.4 inches (0.06096 m) in height

Mobility - Discontinuity Model

MOB.3.2 The CSR shall be able to go over discontinuities up to 9 inches (0.2286 m)

Boulder

Feasibility Items:

1. Can the CSR provide sufficient traction and torque to cross a 9 inches discontinuity?

Baseline Assumptions:

Summary

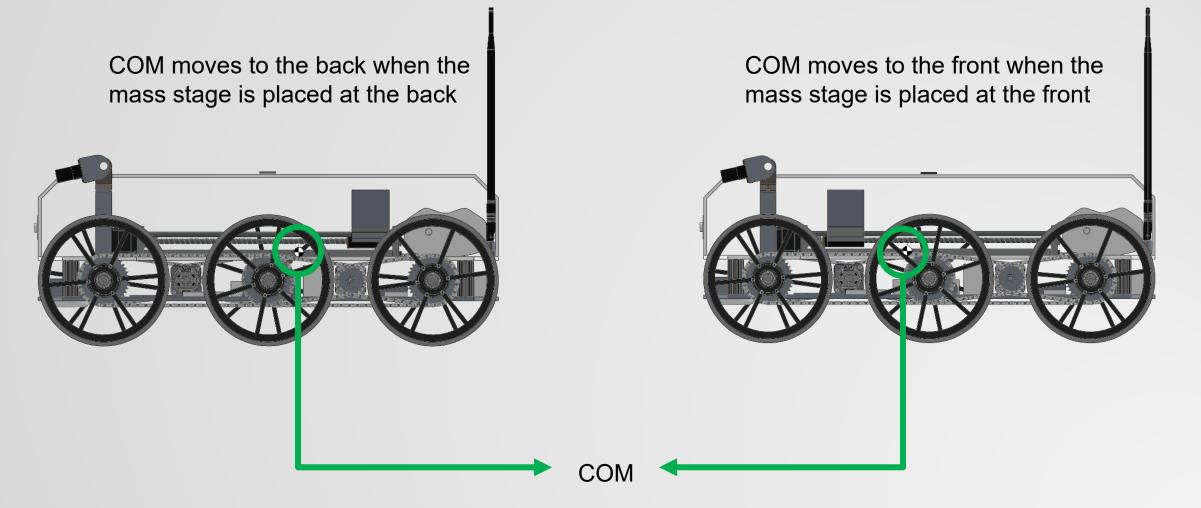
- 1. Roll no-slip
- 2. Negligible forward velocity
- 3. Equal torque across both driven wheels
- 4. Rigid Chassis

Results

- 1. Driving over a flat gap requires less torque than driving over obstacles
- 2. Feasibility of Case 2 obstacle proves feasibility of crossing discontinuity

Backup

Slides

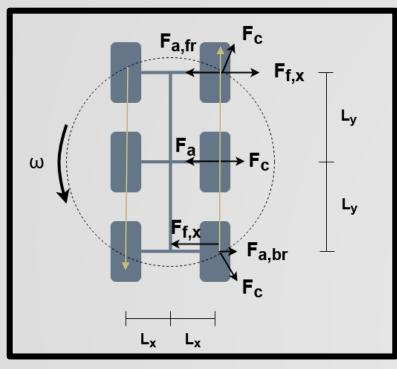

FEASIBLE

Jet Propulsion Laborator

October 2018

95

Mobility – Center of Mass



Mobility - 360 Degree Turn / Skid Steering

MOB.3.1 - The CSR Mobility system shall be able to perform a 0 m (0 ft) radius turn up to 360 degrees

Feasibility Items:

- 1. Can the CSR preform up to 360 degree turns?
- 2. If so, what are the axial loads?

Baseline Assumptions:

- 1. Constant angular velocity
- 2. Geometrically centered CoM

Results:

1. Expect axial loads about 20N, given:

Summary

1. Baseline Dimensions

Feasibility

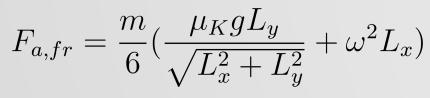
Studies

Baseline

Design

3. Angular Velocity = 0.5 rad/s (4.25 rpm)

Backup


Slides

FEASIBLE

Jet Propulsion Laborator

October 2018

97

Project

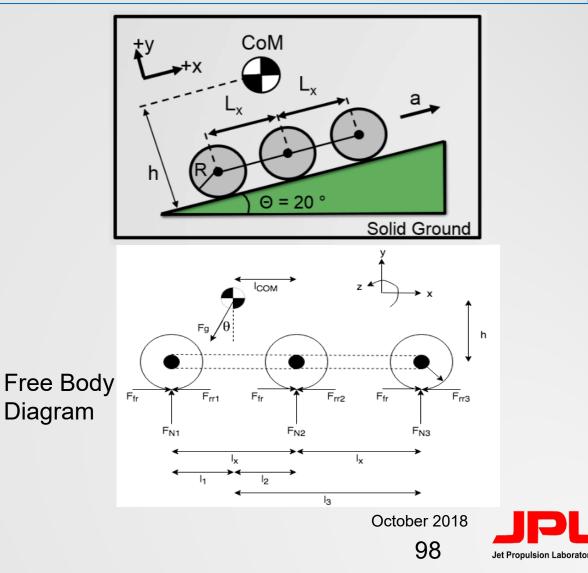
Overview

University of Colorado Boulder

Mobility – Slope Model

MOB.3.3 - The CSR shall drive up or down a slope of up to 20 degrees in type A terrain (See Terrain Definition)

Feasibility Items:

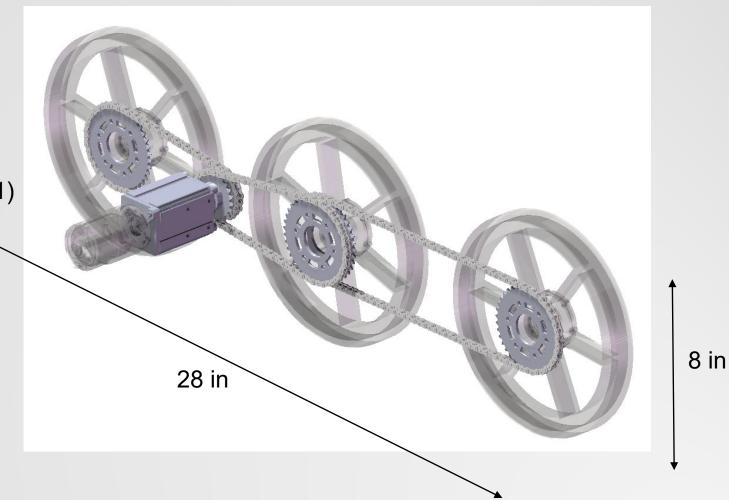

- 1. Instantaneous power required
- 2. Torque required by a single motor

Baseline Assumptions:

- 1. Roll no-slip
- 2. Weights act as single point forces CoM (Center of Mass)
- 3. CoM is not the moving mass location
- 4. Rigid Chassis

Results using Baseline Dimensions:

- 1. Gravel (Crr = 0.02, μ = 0.60)
 - 2. Torque required by a single motor = 3.6702 Nm
- 2. Sand (Crr = 0.20, µ = 0.60)
 - 2. Torque required by a single motor = 5.3908 Nm



Mobility – Hardware Specifications

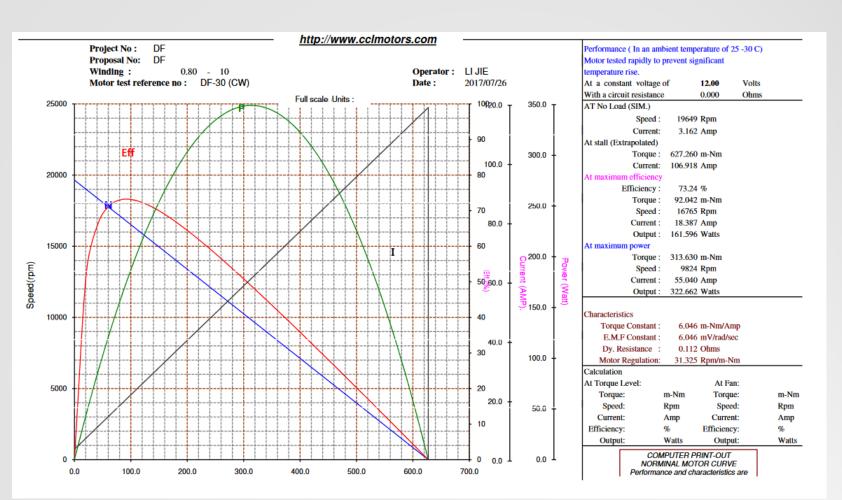
Gear Train:

- 57 Sport Planetary Gearbox (64:1)
 - Gear Ratio = 64:1
 - Maximum Torque: 40.1 Nm (29.6 ft-lbf)
- 38:22 Tooth Sprocket Assembly (1.72:1)
- Effective Gear Ratio (110:1)

October 2018

99

Jet Propulsion Laborato



Mobility – Hardware Specifications

AndyMark 755 Redline Motor:

Using 64:1 Gearbox and 38:22 tooth gear train (n = 110:1) at peak expected torque (11.1 Nm)

- Motor Torque: 101 mNm
- Motor Max Loaded RPM: 16500 rpm
- CSR Max Speed: 1.76 m/s
- Pulse Current: 20 A
- Effective Current at 1 m/s: 11.4 A

October 2018 100 Jet Pro

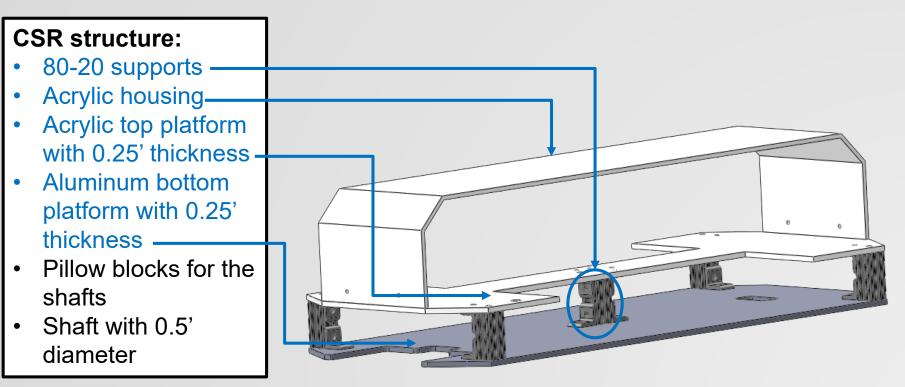
Mobility – Hardware Specifications

Pololu Dual VNH5019 Motor Driver:

Expected Current Loads:

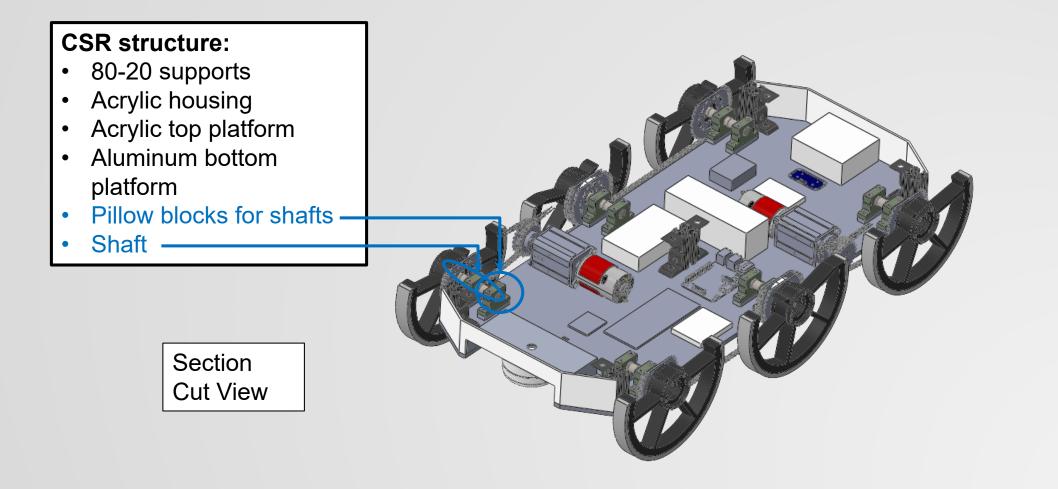
- Slope:
 - Peak Current Draw: 11 A
 - Max Speed: 1.95 m/s
 - Expected Current Draw: 5.6 A
- Obstacle:
 - Peak Current Draw: 20 A each motor
 - Max Speed: 1.75 m/s
 - Expected Current Draw: 11.43
- Nominal (Gravel):
 - Peak Current Draw: 3.2 A each motor
 - Max Speed: 2.1 m/s
 - Expected Current Draw: 1.5 A each motor

Driver Capacity:


- 12 A Continuous Draw
- 30 A Instantaneous Draw

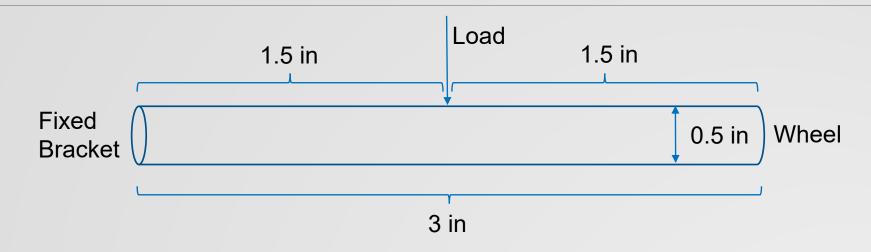
Final Design Overview: Child Scout Rover

Section			
Cut View			



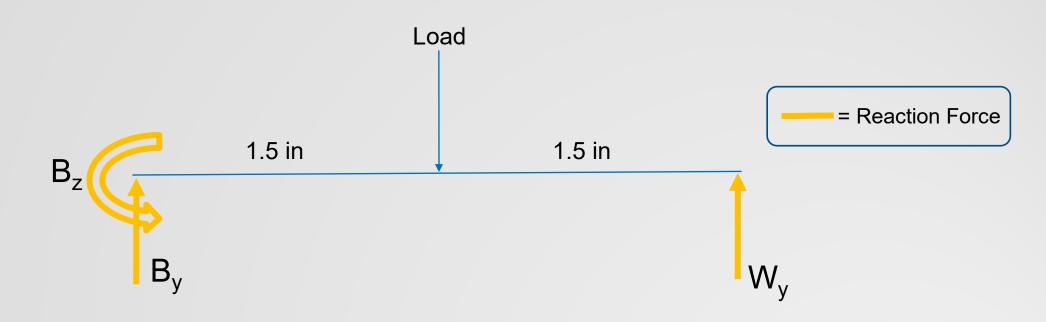
= Outlines components
Note: Green indicates component being outlined

Final Design Overview: Child Scout Rover



= Outlines components
Note: Green indicates component being outlined

Force Analysis of the Shaft



- The shaft is supporting the chassis right in the middle
- Having 6 shafts, each shaft supports 1/6 weight of the chassis in regular condition
- Material: 303 Stainless Steel
- Yield Strength: 45,000 psi

Force Analysis of the Shaft

- Bracket is fixed
- Neglecting the force in the X direction of the wheel because it is a lot smaller compare to gravity force.
- Since a lot of forces are neglected, the factor of safety is 3 for the calculation.

Force Analysis of the Shaft

	1/6 W _{chassis}	¹∕₄ W _{chassis}	¹∕₂ W _{chassis}	Capability
Maximum Shear Stress	2,468.53 psi	3,703.6 psi	7,407.11 psi	Yield Strength 45,000 psi
Maximum Bending Moment	397.2 lbf in	595.8 lbf in	1,192 lbf in	26,595 lbf in

- Safety Factor of 3
- Wheel shafts are not experiencing torsion because the wheels are coupled to the shaft through bearings. The sprockets are fixed to the wheels, which are driving the wheels. Thus, no calculation needed for torsion.
- Only the gearbox shaft that is experiencing torsion. Full gearbox assembly is rated 3 times of our expected load (40Nm vs 12Nm), thus the requirement is still satisfied.

Mobility – Shaft FEA Tests : Displacement

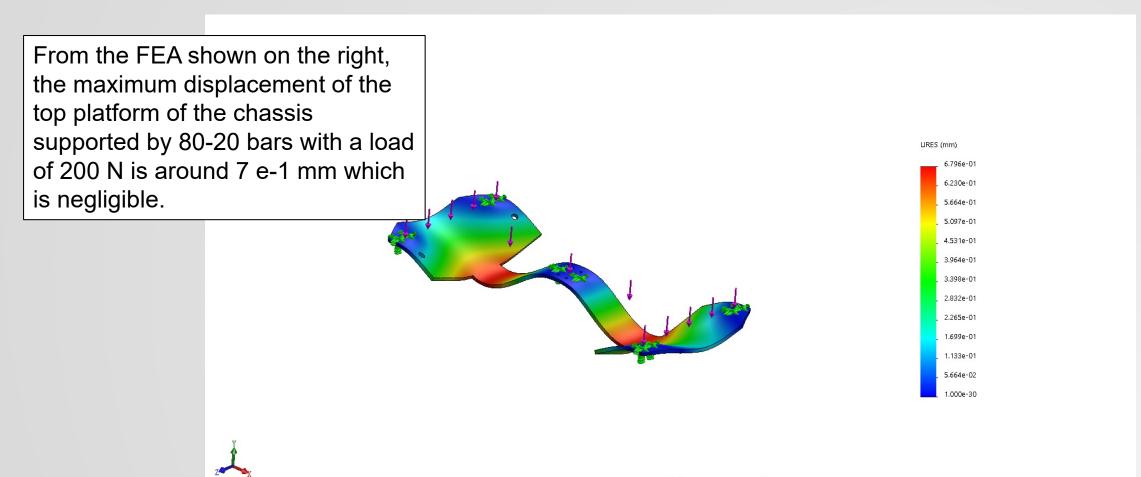
Model name:2025(300_10) 55 SHAFT WITH RETAINING RING GROOVES Study name/oad(2025(5)) Plot type: Static displacement Displacement1 Deformation craits: 603.431

From the FEA shown on the right, the maximum displacement of the shaft with a load of 200 N at the middle is around 1.2 e-2 mm which is negligible.

-

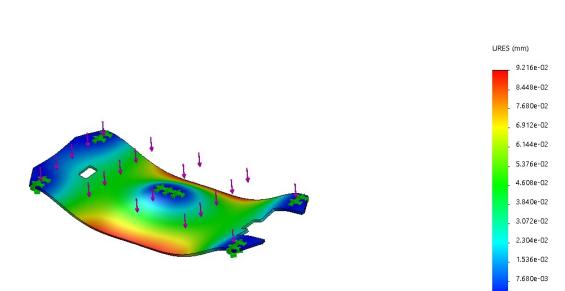
UBES (mm) 1.172+-02 1.074+-02 3.765+-03 4.781+-03 4.781+-03 5.555+-03 4.881+-03 3.306+-03 3.306+-03 1.953+-03 8.765+-04 1.000+-30

SOLIDWORKS Educational Product. For Instructional Use Only.



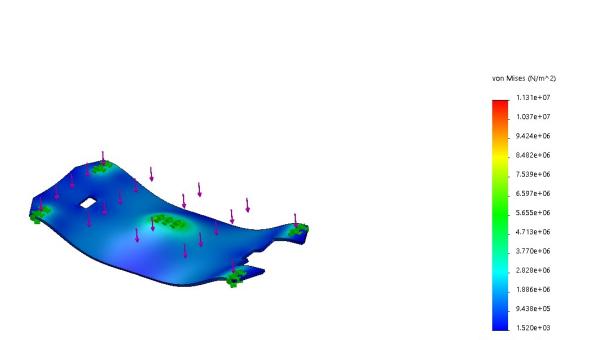
Mobility – Shaft FEA Tests: Stress

SOLIDWORKS 教育版产品。仅供教学使用。


SOLIDWORKS 教育版产品。仅供教学使用。

From the FEA shown on the right, the maximum displacement of the bottom platform of the chassis supported by 80-20 bars with a load of 500 N is around 9 e-2 mm which is negligible.

SOLIDWORKS 教育版产品。仅供教学使用。

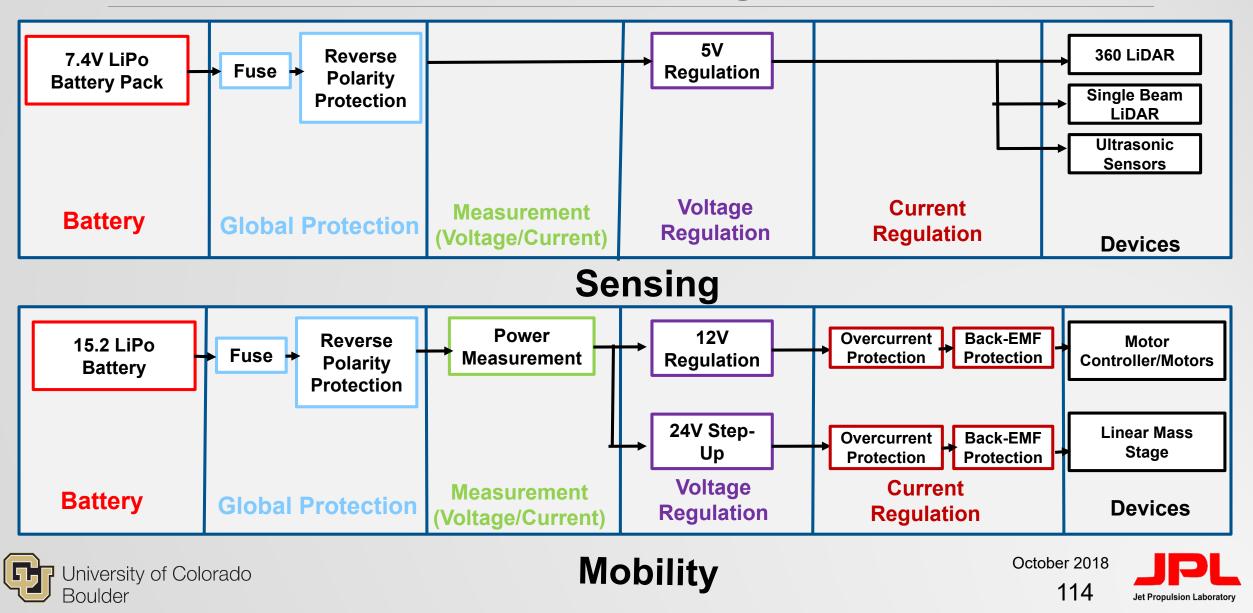


1.000e-30

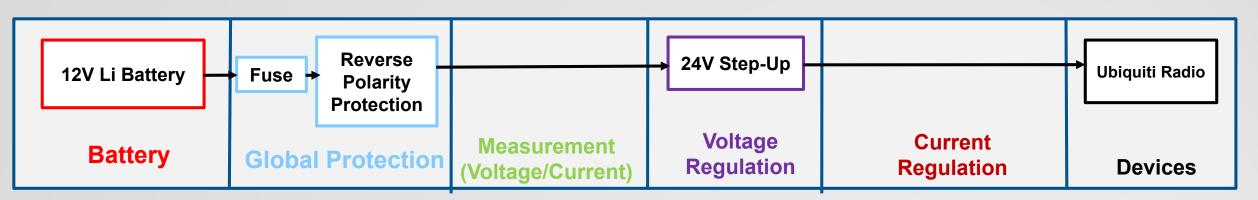
From the FEA shown on the right, the maximum stress on the top platform of the chassis supported by 80-20 bars with a load of 500 N is around 1 e7 Pa which is within the range of the yield strength of the bottom platform.

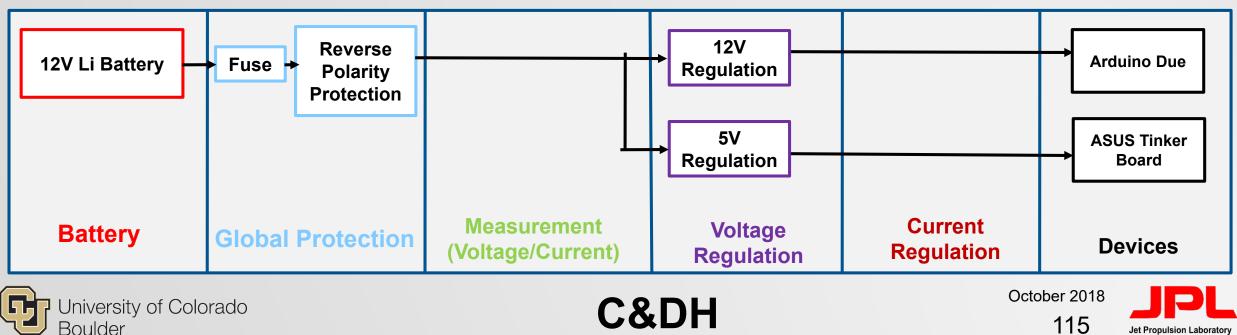
SOLIDWORKS 教育版产品。仅供教学使用。

Yield Strength : 5.515e+07



CSR Power




Power Distribution Diagrams

Power Distribution Diagrams

Communications

Mobility – Power (Example Mission)

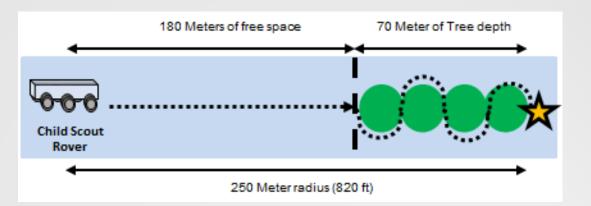
1 Hour Projected Mission

Assumptions:

• Worst case tree depth for communication (70 meters of

depth)

- 11 inches (0.2794 m) diameter trees back-to-back for the 70 meters
- Driving with average speed 0.5 [m/s]

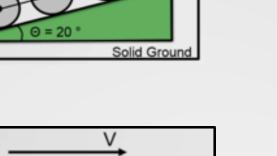

Resulting Approximation:

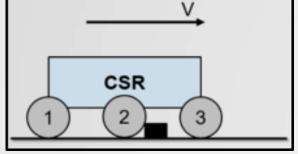
• ~0.32 hrs

Including Operations:

- Discontinuity traversal, communications delay, and obstacle traversal
- ~ 1 hr (including 20 percent margin)

Mobility – Power Analysis


Power Spikes - Analysis


Power [W] = (Torque [N*m]*(# of motors) * Speed [RPM])/ 9.549

Torque is the torque required for the maneuver
RPM is a function of wheel radius and average linear speed

•Power spikes mainly occur from two scenarios:

- •1. Traveling up Inclined Slope (at 20°)
- Total Power Required: ~140 [W]
- Current Consumption per Motor: 5.6 [A]
- •2. Traversing over 2.4 [in] (0.061 [m]) obstacle
- Total Power Required: ~275 [W]
- Current Consumption per Motor: 11.4 [A]

CoM

Power Hardware

Sensing:

- •x2 Adafruit 3.7 V 2 Ah LiPo Batteries in series
- •Will utilize voltage regulator and current limiters

•Mobility:

- x1 15.2 V 7.5Ah 100C LiPo Battery Pack
- Will utilize a voltage regulator and current limiters

•Comms:

- x1 Talent Cell 12 V 3000mAh Battery Pack
- xWill utilize a voltage regulator and current limiters
 C&DH:
- x1 Talent Cell 12 V 6000 mAh Battery Pack
- Will utilize voltage regulator and current limiters

Power Solution

Subsystem	Energy Capacity Required[Ah]	Power Solution Capacity [Ah]	Battery Mass [kg]	Capacity Margin [Ah]	Margin
Sensing	1.30	2.00	0.052	0.70	35%
Comms	1.65	3.00	0.18	1.35	45%
C&DH	2.31	6.00	.346	3.69	62%

*Assuming all these subsystems remain turned on for example 1 hour mission *Inefficiencies for each subsystems are built into the capacity required

Power – Torque Equation

Power [W] = (Torque [N*m]*(# of motors) * Speed [RPM]) / 9.549

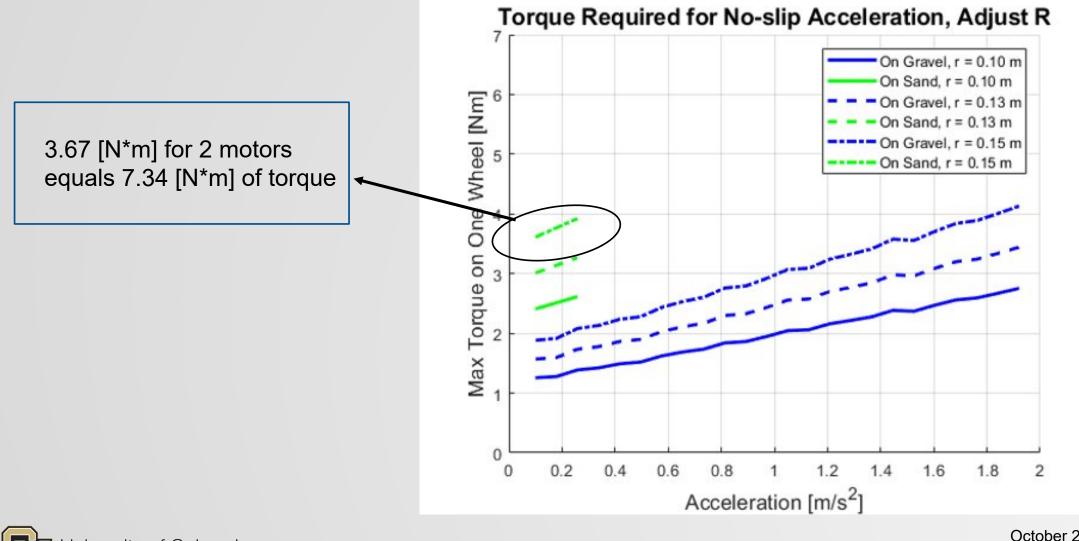
9.549 is the conversion factor between LHS and RHS (accounts for angular velocity)

W = (N*m) * (Revolutions / Minute)

(J / s) = (J) * (Revolutions / 60s)

Multiply through by seconds

- J = J * (Revolution / 60)
- 1 Revolution = 2π rads
- $J = J * (2\pi rads/60)$
- $J = J^*(.104719)$

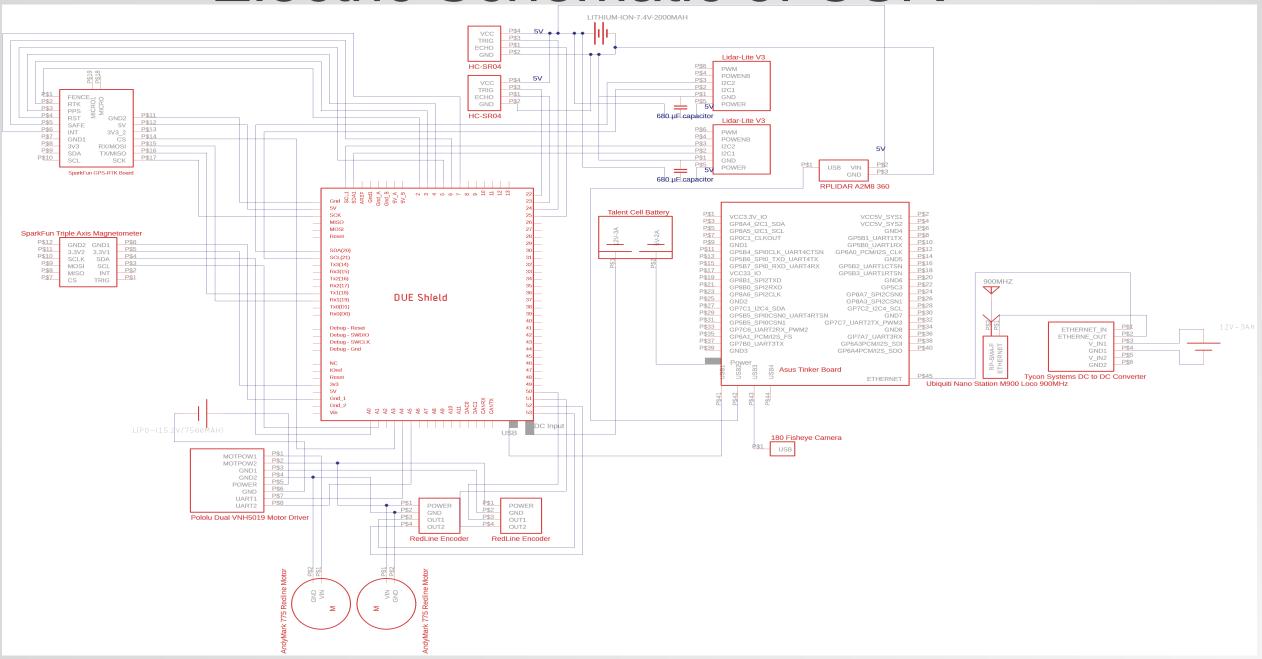

.104719 = (1 / 9.549) J = J / 9.549

Power[W] = {Torque[N*m] *Speed[RPM]} / 9.549

Power – Inclined Slopes of 20°

October 2018

122



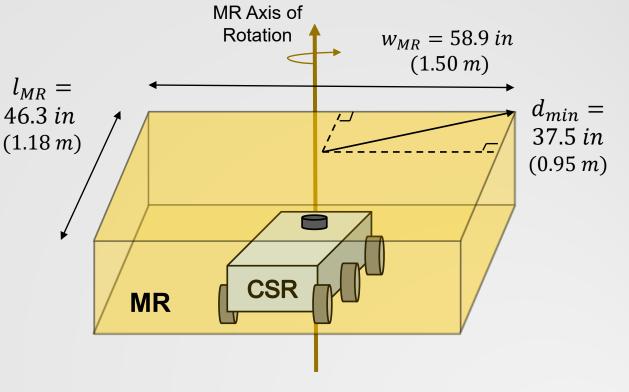
Electronics

Electric Schematic of CSR

Environmental Sensing

Visualization of 360° LiDAR Mounting

Description:

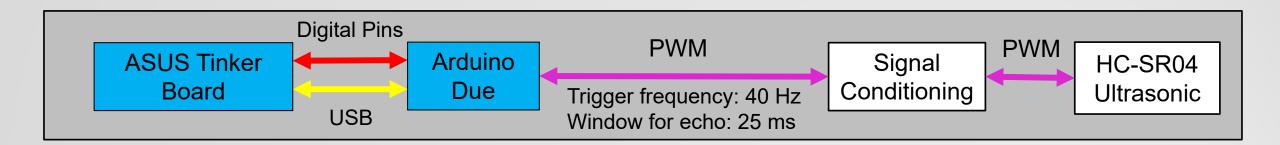

- Object detection feasibility is based on the dimensions of the MR, not the CSR
- The parameter d_{min} is the minimum distance the LiDAR sensor can be so that the MR will not collide with an obstacle (more information in backup slides)

Assumptions:

- 1. The MR is roughly a uniform rectangular box (including wheels)
- 2. LiDAR is mounted on the CSR, in line with the MR axis of rotation

Requirement Allocation:

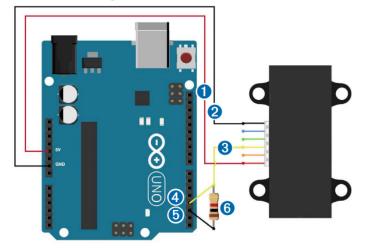
These MR dimensions determine the range for the SENS.1

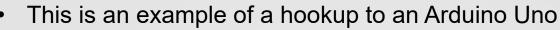


Exact sensor mounting positions on CSR TBD

Discontinuity Depth Sensing – Integration

Integration Needs


- Physical hardware interface (2 PWM pins)
- Tinker Board ROS integration (software)
- Arduino sketch that controls the PWM triggers/echoes to sensor (software)
 - HC-SR04 maximum response time is 17.4 ms which is < 25 ms
 - HC-SR04 has enough to time to receive trigger and return echo before next trigger is received
- Signal conditioning
 - Digital signaling is usually resistant to system noise, so most likely, additional filtering is not required



Integration Info for LiDAR-Lite v3

PWM Arduino Wiring

Item	Description	Notes
0	5 Vdc power (+) connection	Red wire
		The sensor operates at 4.75 through 5.5 Vdc, with a max. of 6 Vdc.
2	Power ground (-) connection	Black Wire
8	Mode-control connection	Yellow wire
4	Monitor pin on microcontroller	Connect one side of the resistor to the mode- control connection on the device, and to a monitoring pin on your microcontroller.
6	Trigger pin on microcontroller	Connect the other side of the resistor to the trigger pin on your microcontroller.
6	1kΩ resistor	

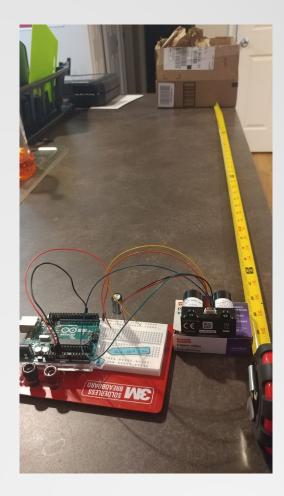
- It utilizes two PWM pins on the Arduino
 - The Due has 12 total PWM ports
- The PWM requires two pins on the Arduino, but only communicates with one pin on the device itself

PWM Data Rate

- Arduino baud rate = 9600 bps
- PWM data storage = 2 bytes at 100 Hz
- Total data rate = 1600 bps
- Arduino can process data in time

PWM Control Specifications

- PWM Trigger pulling mode-control connection (pin 5 on diagram) LOW will trigger the sensor for the duration of the pull
- PWM Echo Time of the LOW voltage echo determines the distance (10 us/cm)
 - Monitored with pin 4 in diagram

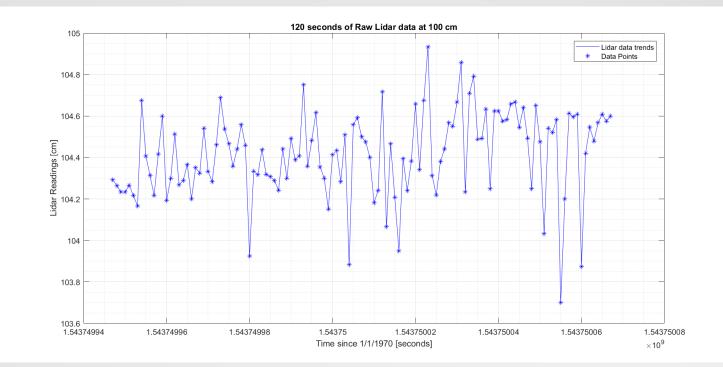

LiDAR Lite Testing

Test objective: Determine if the LiDAR has lots of error associated with it's readings

Test Setup:

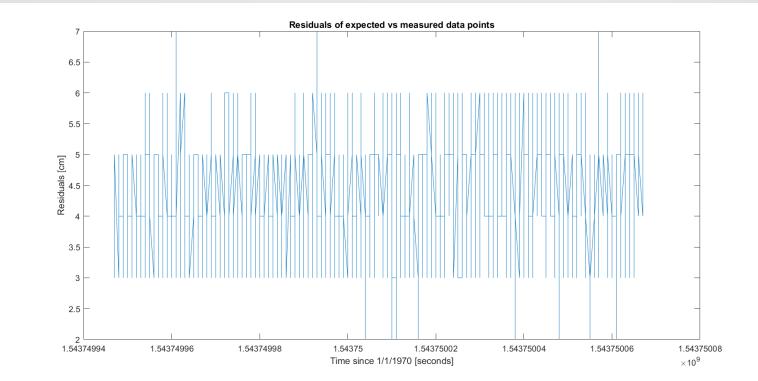
- This LiDAR was placed at 1 meter away from a carboard box, which would represent an obstacle
- The LiDAR was connected to an Arduino Uno over I2C, and the serial data output was recorded using RealTerm.
- Equipment used: LiDARLiteV3, 1000uF Capacitor, Solderless breadboard, Arduino Uno, Jumper Wires, Laptop, RealTerm Desktop app, cardboard boxes
- Measurements required: Distance measurements at 1 m

October 2018


129

LiDAR Lite Results

- The LiDAR data varied from around 103 to 105 cm
- 120 seconds of data was captured
- Multiple tests were conducted and every time the LiDAR reported values greater than the expected value
- The required threshold for the single beam LiDAR needed is 1 m, and since the measurement errors are greater, there will not be an issue.


LiDAR Lite Results

Residuals were determined by subtracting the measured outputs versus expected value of 100 cm

• The measurements resulted in an average error of 4.42 %

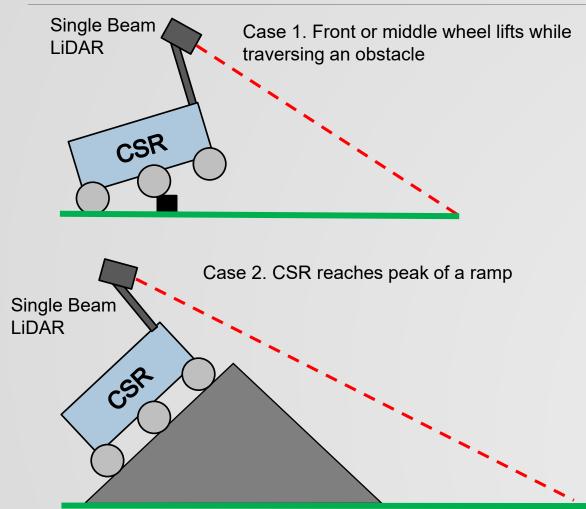
Sources of Error: Connection using solderless breadboard could have contributed to the error. A measuring tap

the error. A measuring tape was used at 39 3/8 inches which is approximately a meter, however there is inaccuracy associated with the test setup

Integration Info for HC-SR04

- Direct connection required between trigger and echo pins to 2 independent PWM pins on the Arduino
- Powered separately from the Arduino

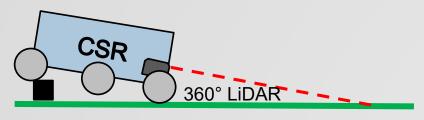
	10us TTL	
Trigger Input to Module	8 Cycle Sonic Burst	
Sonic Burst from Module		
		Input TTL lever signel with a range in proportion
Echo Pulse Output to User T	imeing Circuit	

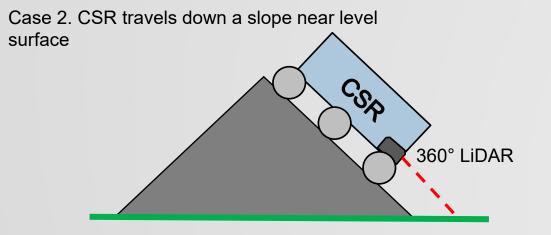

PWM Timing Diagram

- Triggered by pulling the Trig pin to HIGH voltage
- 8 cycle sonic burst is ultrasonic burst from the sensor
- Response will pull HIGH voltage on Echo pin time dependent like LiDAR-Lite 3
 - Formula: range = high level time * velocity (340M/S) / 2

Edge Cases of Detection- Single Beam LiDAR

In both cases, the LiDAR detects a distance greater than threshold **falsely indicating a discontinuity**.


Solution: Use an onboard accelerometer to measure the orientation of the CSR. If the CSR is not level, **ignore single beam LiDAR data**.

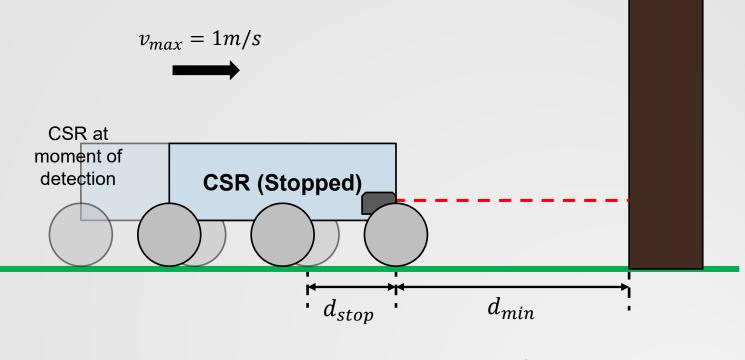


Edge Cases of Detection- 360° LiDAR

Case 1. Back wheel lifts while traversing an obstacle

In both cases, the LiDAR detects level surface and falsely identifies it as a non-traversable obstacle.

Solution: Again, use an onboard accelerometer to measure the orientation of the CSR. If the CSR is not level, **ignore single beam LiDAR data**.


In-Plane Objects – Detection Speed

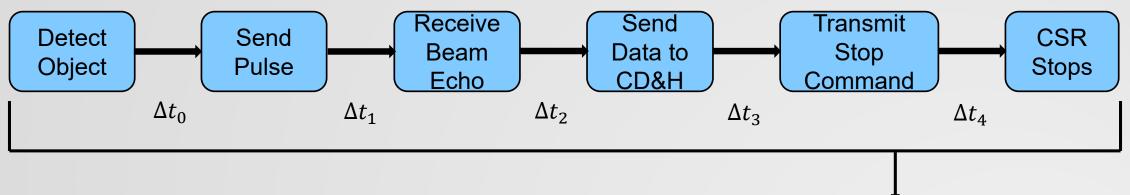
Feasibility Item:

• Will the CSR have enough time to stop once an obstacle is detected by the in-plane sensor?

Worst Case Scenario:

- If scan just misses object, it must make a full revolution before it detects the object
- Once sensing occurs, the CD&H system must determine if object is detected
- If detected, CSR must control motors to stop

 $d_{stop} + d_{min}$ must be < range of LiDAR


Obstacle

In-Plane Objects – Detection Speed

Flow Diagram of Stopping Sequence

RPLIDAR A3 Specs:

Scan rate: 5-20 rev/s Response time: 0.06 ms

 d_{s}

 $\Delta t_0 = 0.2$ s (worst case scenario; one full scan revolution)

- $\Delta t_1 \sim 0 \text{ s}$ (time of pulse; speed of light)
- $\Delta t_2 = 0.00025 \text{ s}$ (sensor response time)

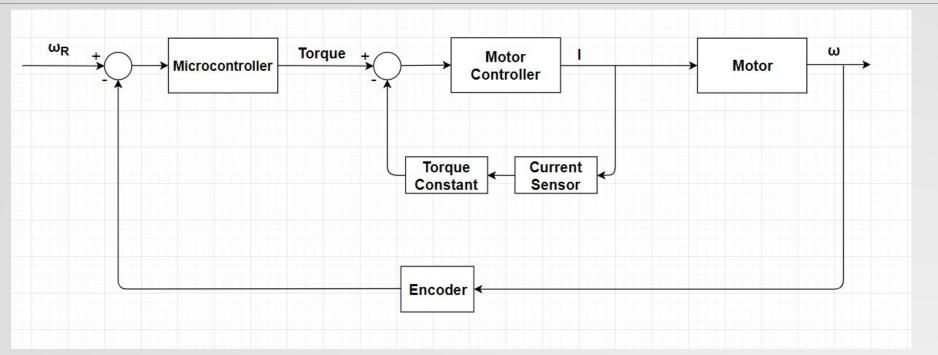
 $\Delta t_3 = 0.00006$ s (data processing time; estimated from data processing analysis)

 $\Delta t_4 = 0.15$ s (time for CSR to stop due to skidding; next slide)

$$t_{tot} = \Delta t_0 + \Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4$$

$$t_{tot} \approx \Delta t_0 + \Delta t_4 = 0.35 s$$

$$d_{stop} = v_{max} t_{tot} \approx 0.35 m$$


$$top + d_{min} = 1.3 m \ll \text{range of LiDAR (25)}$$

m), so CSR stops in time

In-Plane Objects – Detection Speed

To stop the CSR, a command of zero angular velocity will be inputted into the microcontroller and negative torque will be applied to the wheel. Since the settling time can be very small depending on the gains used in the loop, we can assume the wheel will stop spinning immediately. Therefore, the stopping time can be calculated using the friction coefficient:

$$a = \mu g$$

 $t = v/a = 1/\mu g = 0.15 s$

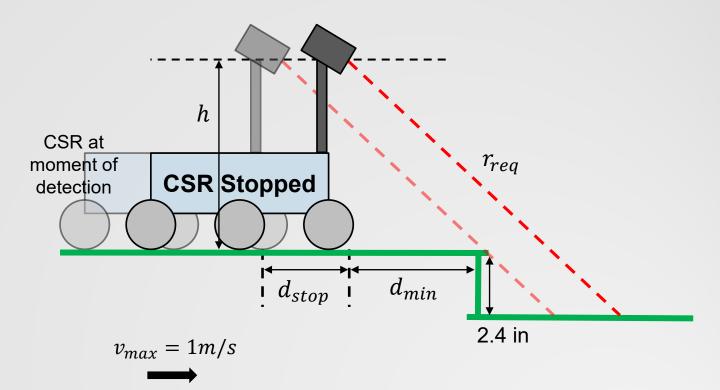
University of Colorado Boulder

Where μ is assumed to be 0.7

Discontinuity Detection – Detection Speed

Feasibility Item:

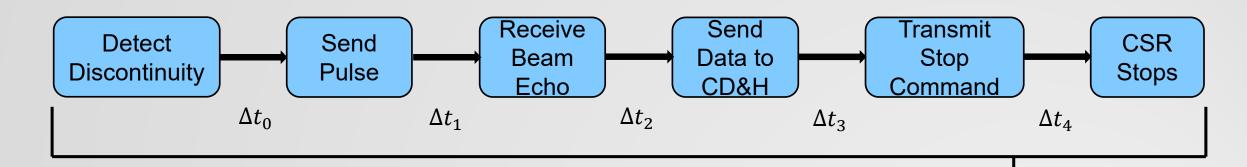
 Will the CSR have enough time to stop once a discontinuity is detected by the single beam sensors?


Worst Case Scenario:

 From discontinuity detection feasibility, worst case is when h = 0.2 ft

$$r_{req} = \frac{\left[h + (2.4 \text{ in})\right]}{\left|\cos\left[\tan^{-1}\left(\frac{d_{stop} + d_{min}}{h}\right)\right]}$$

 r_{req} must be < range of LiDAR



Discontinuity Detection – Detection Speed

Flow Diagram of Stopping Sequence

 $\Delta t_0 = 0$ s (no worst case scenario; detecting and sending pulse happen simultaneously)

 $\Delta t_1 \sim 0$ s (time of pulse; speed of light)

 $\Delta t_2 = 0.020 \text{ s}$ (sensor response time)

 $\Delta t_3 = 0.025$ s (data processing time; estimated from PWM analysis)

 $\Delta t_4 = 0.15$ s (time for CSR to stop due to skidding; previous slide)

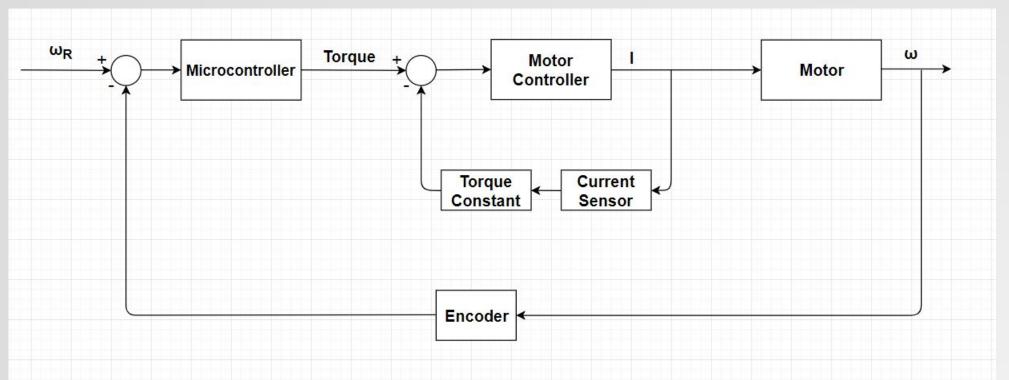
$$t_{tot} = \Delta t_0 + \Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4$$

$$t_{tot} \approx \Delta t_4 = 0.15 s$$

$$d_{stop} = v_{max} t_{tot} \approx 0.15 m$$

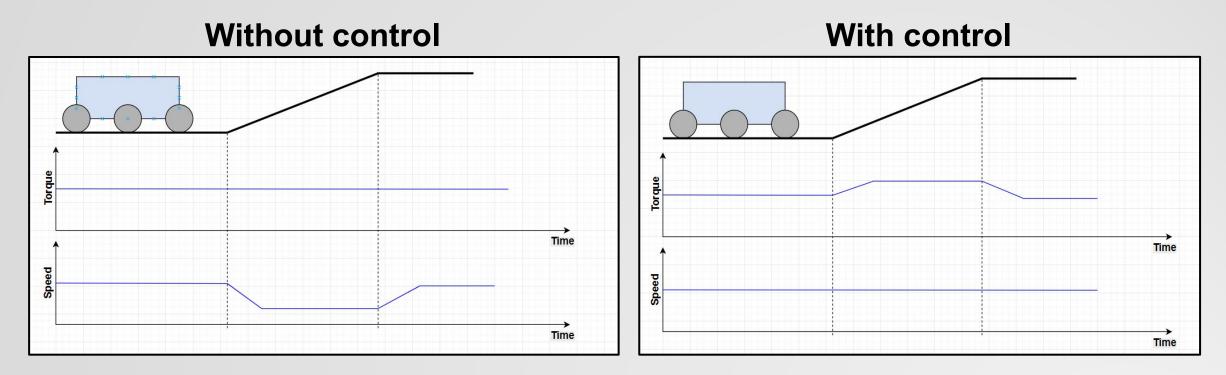
Use equation on previous slide to get r_{req} $r_{req} = 2.2 \ m \ll$ range of LiDAR (40 m), so CSR stops in time

October 2018 **139**


Guidance, Navigation, and Control

Speed Control Closed Loop Algorithm

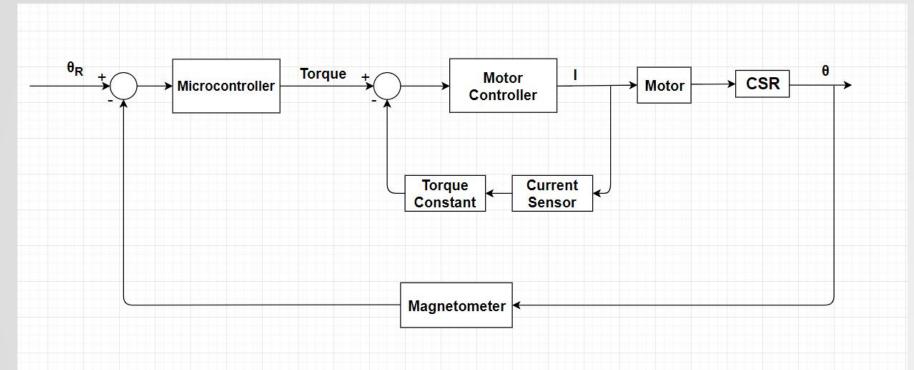
This control will be an active loop through the entire mission



- ω_R : Input command for desired angular velocity
- $\boldsymbol{\omega}$: Measured angular velocity of the wheel
 - : Current applied to the motor

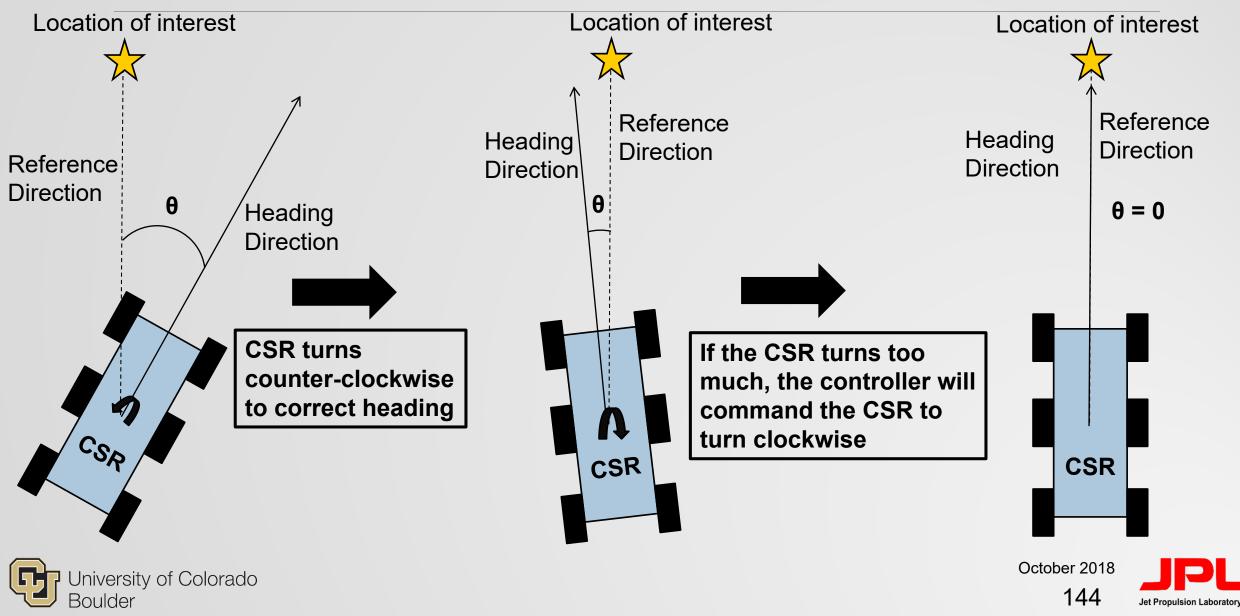
University of Colorado Boulder

Speed Control Visualization


The speed closed loop control system is used to maintain the speed of the CSR by outputting different torque at different situations such as going over obstacles, traversing on a slope, etc.

Heading Correction Closed Loop Algorithm

This control will be an active loop that only happens when the CSR receives a command from the ground station to perform a heading correction.



- θ_R : Input command for desired angle
- **θ** : Angle between heading direction and reference direction
 - : Current applied to the motor

¹ University of Colorado Boulder October 2018

Heading Correction Visualization

Magnetometer Motor Interference Test

Purpose:

Estimate the level of magnetic interference from the motor on a magnetometer.

Materials:

- Engineering Paper
- Straight-edge Ruler
- 27.5V, 1.2A, 4500rpm, 1/50 Brushed DC Motor
- Motor Stand
- Samsung S7 Smartphone
 - SensorLab App
 - Sensor Box for Android App
 - Sensors Multitool App

Procedure:

- 1. Fix motor in motor stand and place on workstation.
- 2. Using engineering paper and a straight edge, mark phone positions every 15 cm (15 cm, 30 cm, 45 cm, 60 cm) from the motor shaft.
- 3. Take magnetometer measurements using the three different apps to ensure there are no issues with any one single app.
- 4. For each position, take the *x*, *y*, *z* magnetometer measurements for the following cases:
 - a) No motor or test stand
 - b) Non-powered motor and test stand
 - c) Powered motor and test stand. Motor is powered for approximately 5 seconds before taking measurements to obtain a steady state measurement
- 5. Record the magnetometer measurement when rotating the smartphone.

Magnetometer Motor Interference Test

Results:

Motor State	Distance [cm]	Magnetic Field [uT]			
		х	у	Z	
No motor	15	13	-44	-1	
	30	16	-33	-15	
	45	5	-28	-20	
	60	0	-20	-31	
Motor, off	15	12	-44	-3	
	30	16	-32	-16	
	45				
	60				
Motor, on	15	14	-44	-3	
	30	17	-32	-16	
	45				
	60				

Motor State	Angle [deg]	Magnetic Field [uT]			
		x	У	z	
No motor	0	0 -56 -15		59	
	90	13	24	-6	
	180	-5	-20	77	
	270	16	77	-12	

NOTE: Data for "Motor, off" and "Motor, on" not recorded for 45 and 60 cm, as the measurements even closer did not significantly change

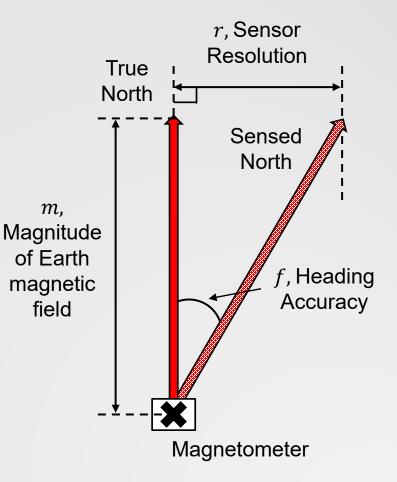
Conclusion:

The difference in the magnetic field for no motor, a non-powered motor, and a powered motor is insignificant (+/- 2 uT), even at the closest location (15 cm), especially compared to the differences of angle changes (+/- 40 uT).

Moving forward with the design, the magnetometer will be placed about 15 cm (6 in) away from the motor. If this is not sufficient, design alternatives, such as mu-metal foil shielding or increased distance, can be considered.

Heading Correction – Accuracy

Critical Items:

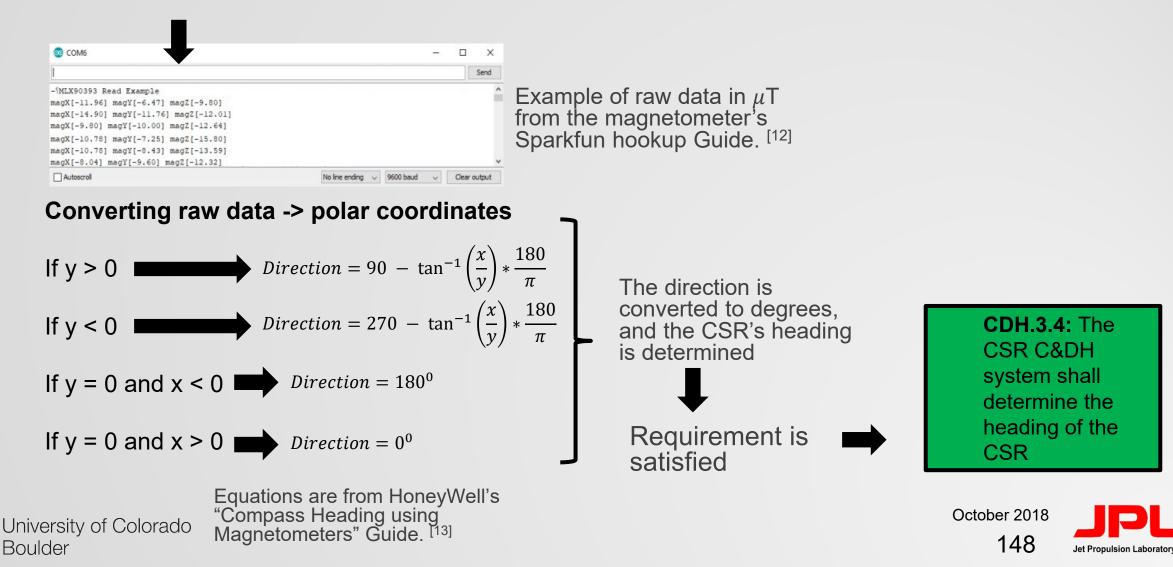

- What is the heading accuracy of the magnetometer? **Assumptions:**
- There is no noise in the system and the magnetometer takes data continuously
- Accuracy is related to the magnitude of the magnetic field being sensed
- Earth's magnetic field's magnitude, *m*, ranges from 0.25 to 0.65 G (Gauss)

 $f = \tan^{-1}\left(\frac{r}{m}\right)$

Magnetometer has $r = 1 \ \mu T$

Results:

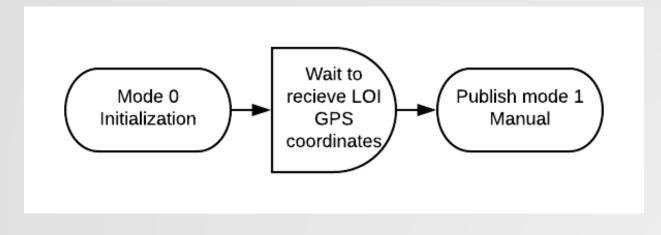
The worst case heading accuracy f = 0.133°



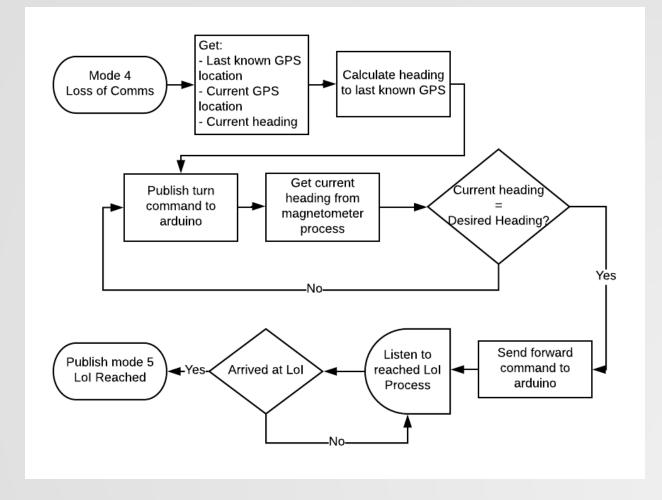
147

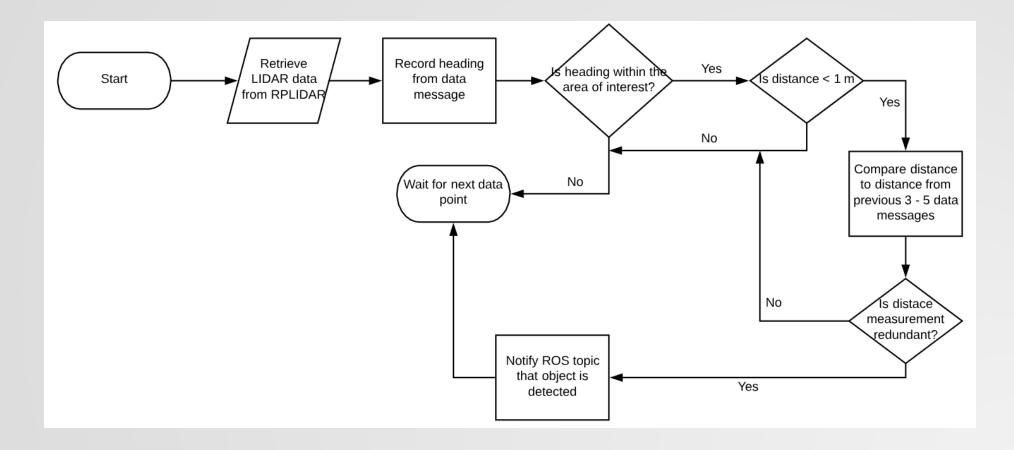
Current Design Requirement Satisfaction

Using the 3 axis magnetometer raw data will be received.



Software Backup


GNC CSR Initialization Mode Diagram


GNC CSR Loss of Comms Mode Diagram

Environment Sensing Object Detection Diagram

Main Loop Pseudo Code

```
While (roscore)
      getMode()
      While (mode == 0):
             Initialization mode
      End
      While (mode == 1):
             Manual mode
      End
      If (mode == 2):
             Semi-Autonomous mode
      End
      If (mode == 3):
             Discontinuity traversal mode
      End
      If (mode == 4):
             Loss of comms mode
      End
      While (mode == 5):
             LOI arrival mode
      End
```

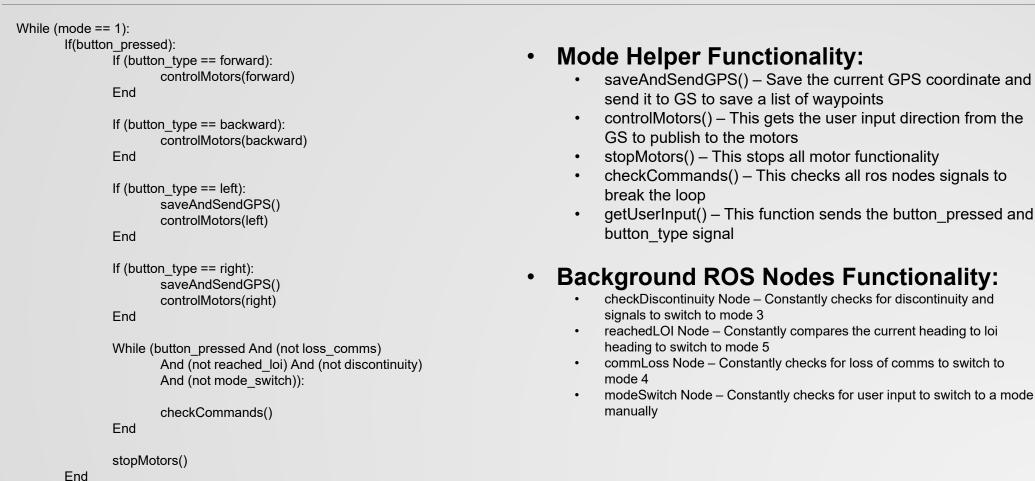
- This will function as the main loop program which • constantly checks what mode to be in.
- This main loop will run on the ASUS Tinker Board •
- 'mode' variable can change outside of the loop since • will be a multithreaded program.

End

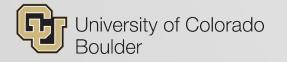
Mode 0 (Wait for GPS) Pseudo Code

While	(mode == 0)	:
	If (received_	_GPS):

mode == 1


End End

- This mode is started at the beginning before anything is started.
- Waits in a loop after initialization of everything until a GPS coordinate is received from the GS.
- Once it is received then it will save the LOI GPS coordinate as variable.
- Once there is a LOI GPS coordinate than will switch to Mode 1.
- Just a waiting loop to proceed once everything is initialized and the GPS LOI has been determined.



Mode 1 (Manual) Pseudo Code

End

Mode 2 (Semi Autonomous) Pseudo Code

If (mode == 2):

fixOrientation()

goForward()

While ((not object_detected) And (not loss_comms) And (not reached_loi) And (not discontinuity) And (not mode_switch)):

checkCommands()

End

stopMotors()

End

Mode 3 (Discontinuity) Pseudo Code

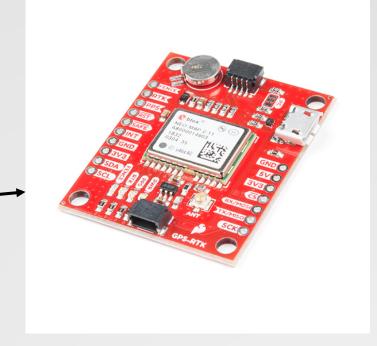

```
If (mode == 3):
          #This while loop is manual control until user allows to proceed
         While (not (user proceed)):
                   #Similar code as Mode 1 goes here
         #Once it hits here then will function autonomously
         slowerSpeed()
         goForward()
         Discontinuity not crossed = true
         While (discontinuity not crossed):
                   If(checkFrontGap() And (mass spot == mass center)):
                            stopMotors()
                            moveMassBackward()
                            goForward()
                   End
                   If(checkFrontAndBack() And (mass spot == mass back)):
                            stopMotors()
                            moveMassForward()
                            goForward()
                            While (backWheelOnFirstLedge()):
                                      Wait()
                            End
                   End
                   If(checkBackNoGap() And (mass spot == mass front)):
                            stopMotors()
                            moveMassCenter()
                            saveAndSendGPS()
                            signalComplete()
                            discontinuity not crossed = false
                   End
         End
Fnd
```


Mode 4 (Loss Comms) Pseudo Code

```
If (mode == 4):
      If(compareGPS()):
            fixOrientation()
            goForward()
            While (not (reached last gps))
                   checkCommands()
            End
            stopMotors()
            mode = 5
      End
      Else
            mode = 5
      End
End
```


Mode 5 (LOI Reached) Pseudo Code

```
While (mode == 5):
    #This is when the CSR reaches the last known GPS coordinate
    If (lost_comms):
        checkComms()
        If (comms == open):
            mode = 1
        End
    End
    #This is when the CSR reaches the LOI w/out problems
    If (reached_loi):
            mode = 1
    End
End
End
```

GPS

To ensure that the CSR has accurate GPS data for loss of communication situations, and for final path verification an accurate GPS must be used.

SparkFun GPS-RTK Board – NEO – M8P-2 (Qwiic)

- \$199.95
- Four communication ports: USB, UART, I²C, SPI
- Voltage: 3.3 V
- Horizontal Position Accuracy: .025 m with RTK (Real Time Kinematics)
- Max Navigation Rate: 4 Hz

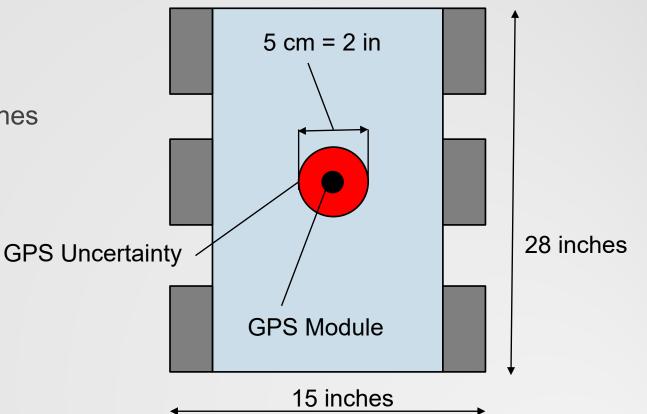
GPS

How does it work?

- A GPS receiver capable of RTK takes in normal signals from the Global navigation Satellite Systems (GNSS) along with a Correction Stream
 - Raw streams from the GPS satellites are captured, and the logs are post processed by an open source program called RTKLIB

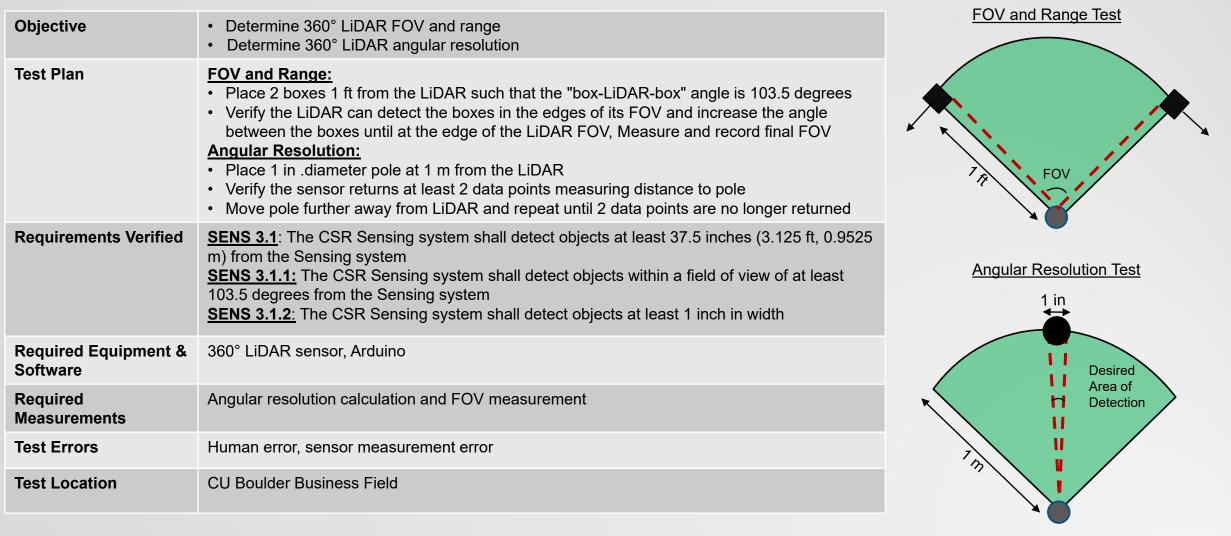
This module is capable of mobile and base station operations

- One board serves as a base station and produces RTCM correction data.
 - RTCM = Radio Technical Commission for Maritime. RTCM is related to the bytes of correction data
 - Each RTCM message contains details about the GPS/GNSS network
- Another board will serve as the mobile GPS RTK receiver
 - The GPS receiver parses the correction data
 - The GPS module will output NMEA sentences with latitude and longitude information
 - NMEA = National marine electronics association, a standard data format for GPS


In summary, 2 of these boards and a GPS antenna will be required.

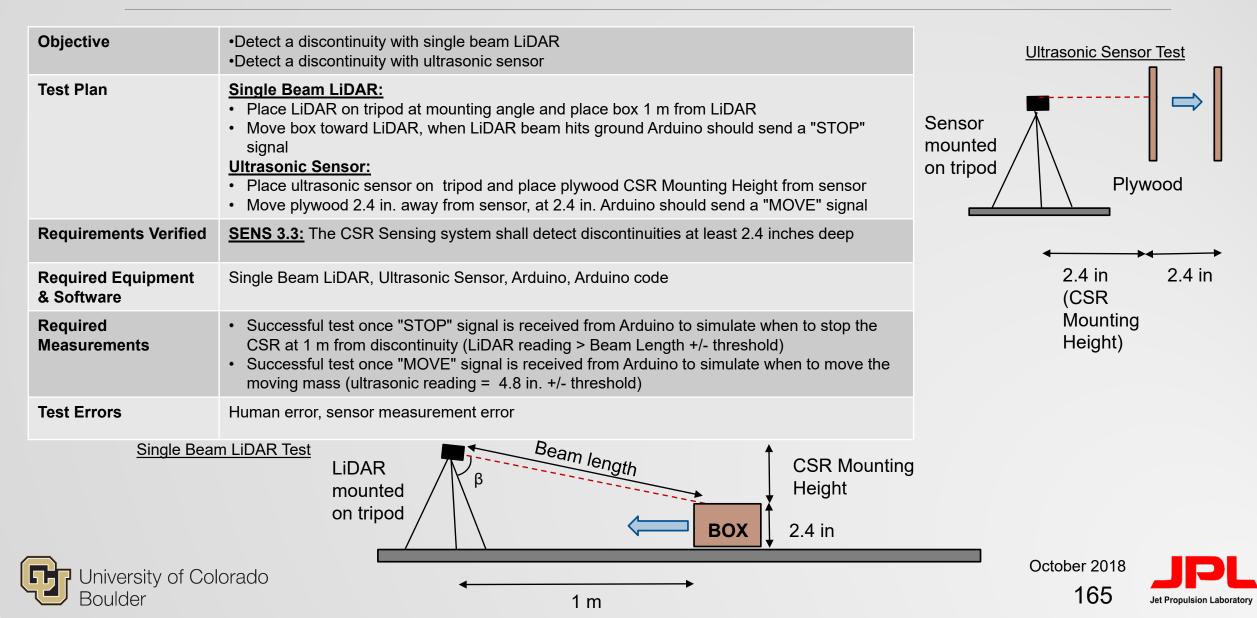
GPS Error

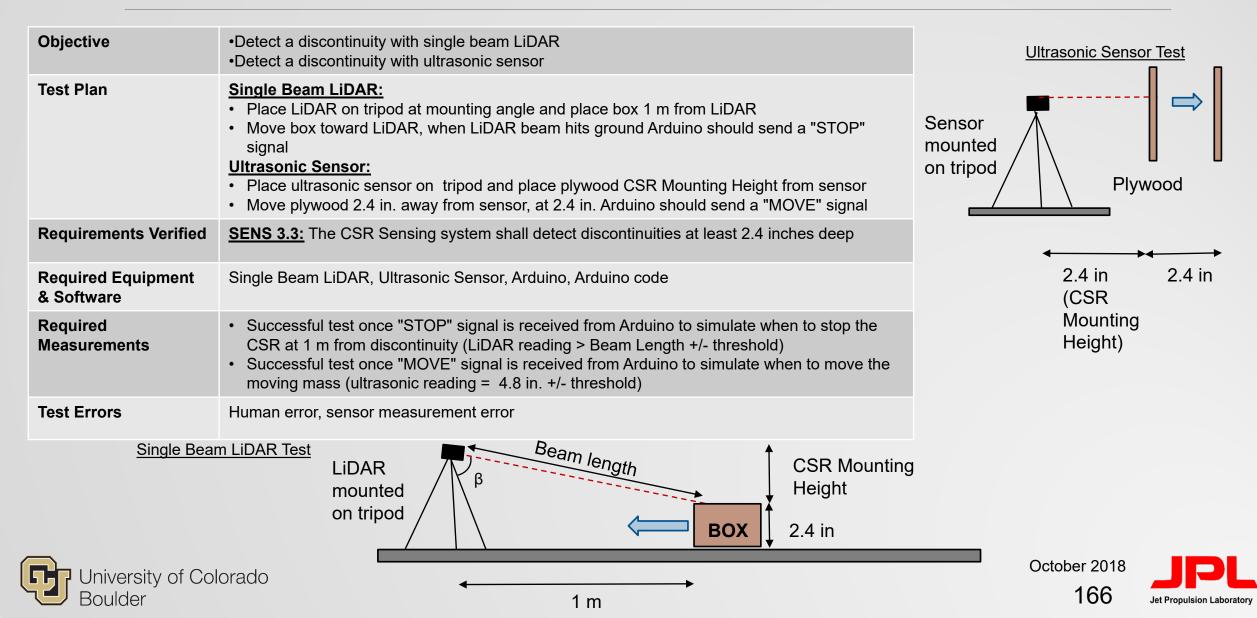
- The GPS error is contained within the confines of the CSR
- Due to this, the uncertainty of the GPS should be negligible
- Diameter of uncertainty is 5 cm = 2 inches
- Width of CSR is 15 inches > 2 inches
- Length of CSR is 28 inches > 2 inches



Verification and Validation

Phase 1 – Obstacle Detection Testing




October 2018

164

Phase 1 – Discontinuity Detection Testing

Phase 1 – Discontinuity Detection Testing

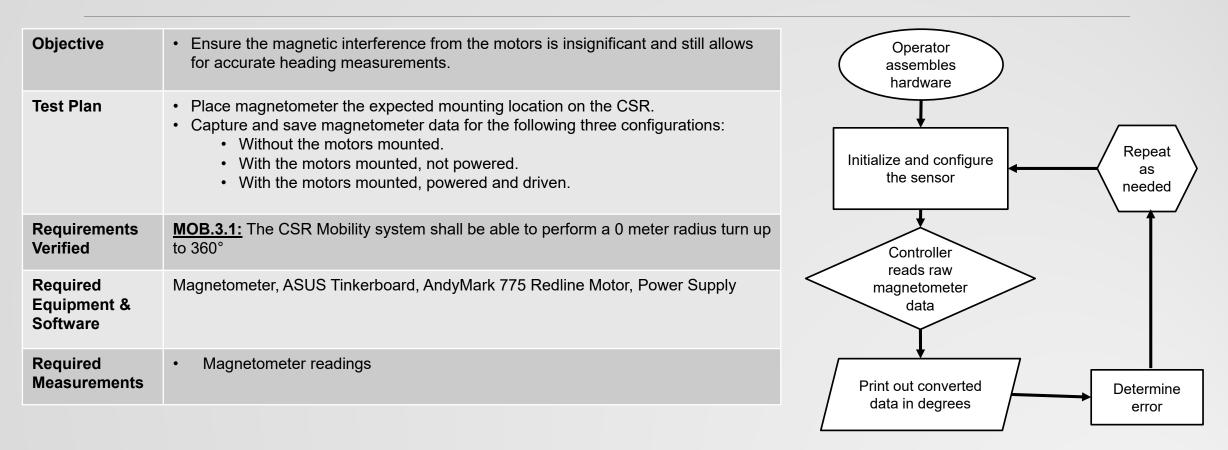
Phase 1 – Bearing Load Capacity Testing

Objective	 Determine if non-thrust rated bearings can handle the expected axial loads from skid steering.
Test Plan	 Firmly mount the bearing. Place a plate that circular plate that is larger than the inner race, and smaller than the outer race, over the bearing's inner race. Attach a force gauge to the plate. Pull the forge gauge down until a force of 60N (Expected 20N, FOS=3) is reached.
Requirements Verified	MOB.3.1: The CSR Mobility system shall be able to perform a 0 meter radius turn up to 360°
Required Equipment & Software	Wheel bearing (0.5" ID, 1.125" OD), Force gauge mounting plate, Force gauge
Required Measurements	 Successful test once the bearing is shown to be capable of undergoing an axial load of 60N, or shown to be incapable of undergoing a load of 60N.
Test Errors	Human error, sensor measurement error

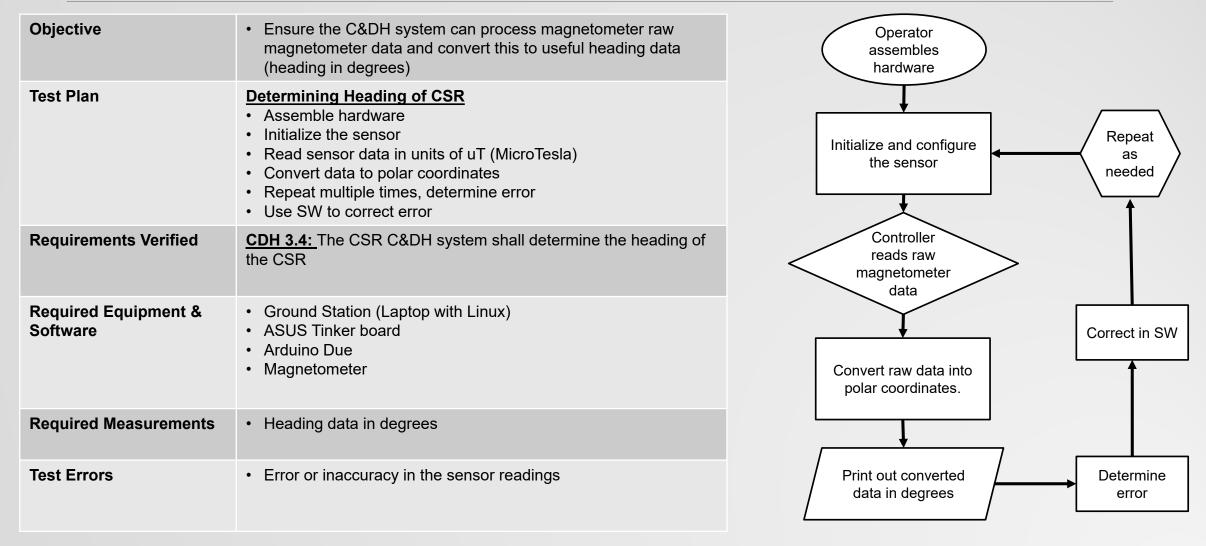
Source: PCE Instruments website

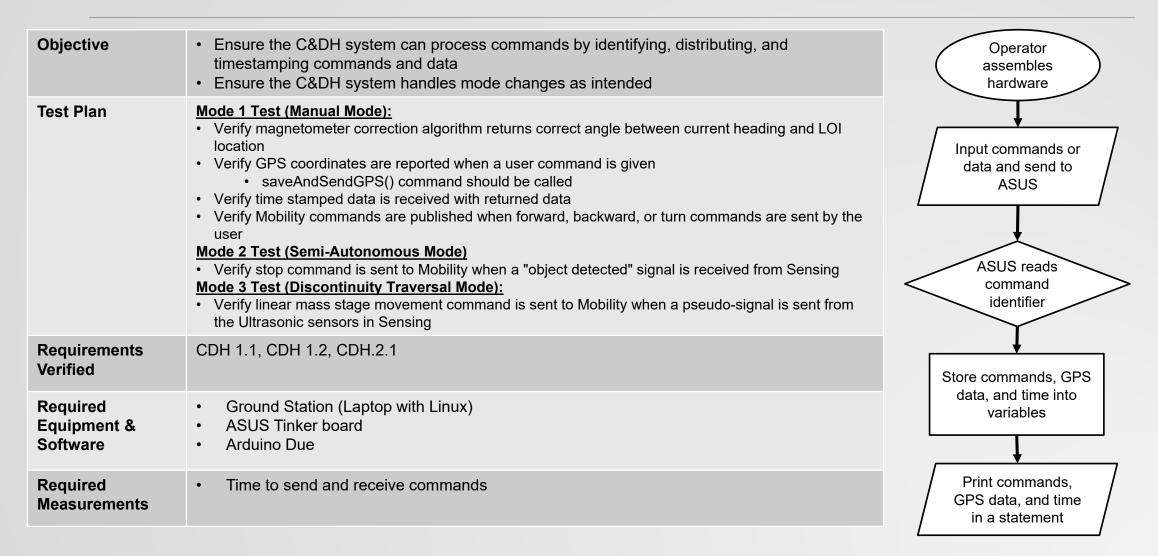
Phase 1 – Camera Operations Testing

Objective	 Verify camera system's Field of View Quantify length of time for video/image transmission Verify Standard Definition Resolution 	
Test Plan	 Field of View Turn camera on and take image, then video in forest location. Locate outermost objects on image, then compare to actual degree measurement/arc length of distance between trees on location. Image/Video Transmission Turn camera on and take 10 second video, panning around forest testing location; send data to ground station at a distance of 250 meters and measure time of transmission Once transmission is received by ground station, check resolution of video to verify standard definition quality 	User pans camera around forest image
Requirements Verified	<u>SENS 5.1</u> : The CSR Sensing system shall capture video <u>SENS 5.1.1</u> : The CSR Sensing system shall capture video at Standard Definition <u>SENS 5.1.3:</u> The CSR Sensing system shall capture video with a field of view of at least 100 degrees	
Required Equipment & Software	180° Fisheye Lens Camera, Ground Station Computer	
Required Measurements	Distance/Degree between objects, time of transmission, video time, distance from GS to camera, video resolution	Open video file, determine resolution
Test Errors	Estimate of Resolution, Actual Field of View	


Phase 1 – GPS Accuracy Test

Objective	Ensure the C&DH system can store and compare positioning coordinates
Test Plan	 Location of Interest Storage Send a location of interest GPS location to the ASUS board and verify that the ASUS receives and stores the coordinate as a variable Tolerance Validation Input a GPS coordinate and have the controller determine if the input GPS location is within 5 meters of the current GPS module's output. The software will compare both GPS locations (the CSR GPS coordinates, and the inputted LOI GPS coordinates)
Requirements Verified	CDH 3.2: The CSR C&DH system software shall store the Location of Interest's GPS coordinates in memory. CDH 3.2: The CSR C&DH system shall determine if the CSR is within +/- 5 meters of the location of interest
Required Equipment & Software	 Ground Station (Laptop with Linux) ASUS Tinker board Arduino Due GPS RTK Modules and antennas
Required Measurements	GPS coordinate location
Test Errors	GPS error and inaccuracy


Phase 1 – Motor Magnetometer Interferance Testing


Phase 2 – C&DH Testing Heading

October 2018 171 Jet Propulsion Laboratory

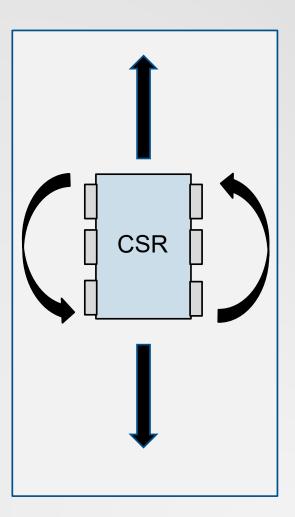
Phase 2 – C&DH Testing

Phase 3 – Full System LabVIEW Interface

University of Colorado Boulder

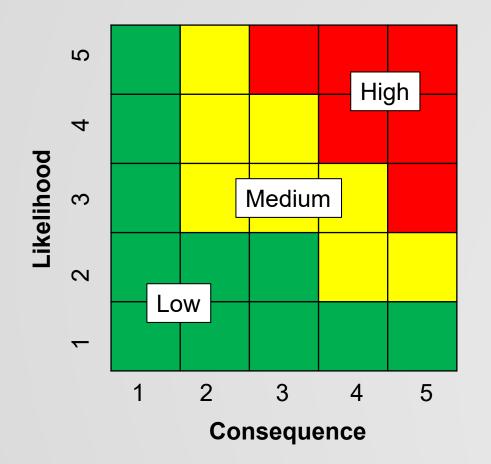
Phase 3 – Environmental Maneuverability Testing

Objective	 Drive through underbrush (See Terrain Definition) Drive over a 2.4 inch step
Test Plan	 Attach an L bracket to both 2.4 x 2.4 in. sides of a wood block with width of CSR and secure to ground with stakes Manually drive CSR over the wood block, successful test if CSR is able to traverse 2.4 x 2.4 in wood block with width of CSR 2.4 x 2.4 in wood block Yerrain test Yerrify if CSR is able to drive on desired terrain and through underbrush
Requirements Verified	MOB 3.4, MOB 3.4.1
Required Equipment & Software	 Functional CSR with mobility system 2.4 in. x 2.4 in. x CSR width block Two L brackets Two stakes LabVIEW interface
Test Location	CU Boulder South Campus – rocky trail terrain, small slopes, light grass
	October 2018



Phase 3 – CSR Functional Testing

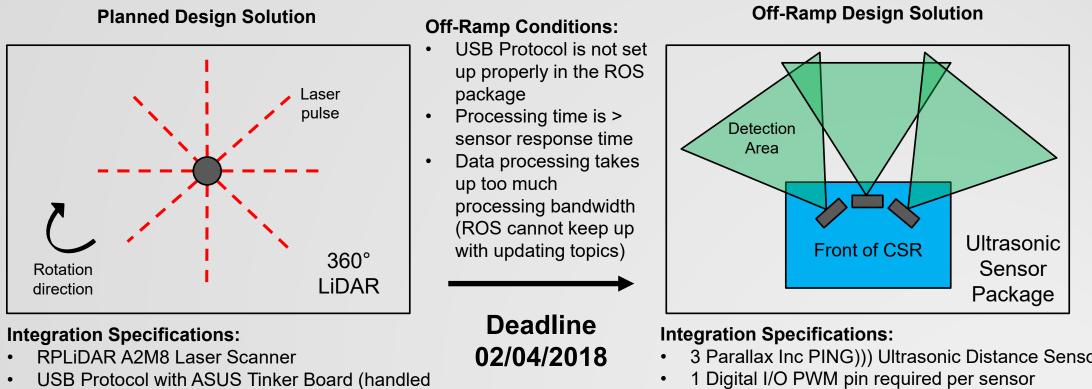
Objective	 Verify that the mobility system can translate Drive forward and reverse Perform a 360° turn
Test Plan	 Conduct mobility testing for forward and reverse motion Conduct mobility testing for 360° turn
Requirements Verified	MOB 3.1: The CSR Mobility system shall perform a 0 meter radius turn up to 360 degrees
Required Equipment & Software	 CSR Chassis Motor mounts Motors Mobility power source
Required Measurements	TorqueVoltage and Current (I.e. power)
Test Location	Parking lot - flat ground



Risk

Risk Introduction

Low (Green): Minimum impact. Minimum oversight needed to ensure risk remains low.

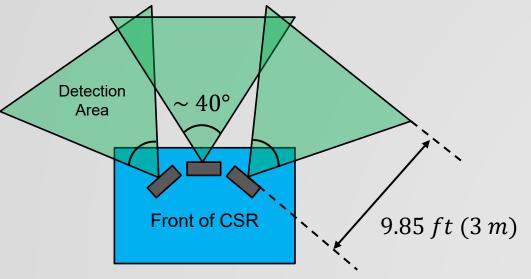

Indedium (Yellow): Some disruption. Different approach may be required. Additional management attention may be required.

High (Red): Unacceptable. Major disruption likely. Different approach required. Priority management attention required.

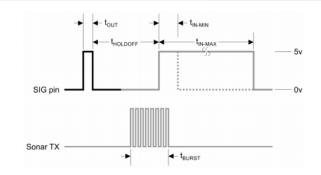
SENS.1.T Mitigation Off-Ramp

- with ROS package)
- Data Processing through ROS on Tinker Board

University of Colorado


Boulder

- 3 Parallax Inc PING))) Ultrasonic Distance Sensors
- 1 Digital I/O PWM pin required per sensor
- Data Processing in Arduino Sketch on Arduino Due



SENS.1.T Off-Ramp Requirement Satisfaction

PWM Integration:

- Utilizes 1 I/O pin per device for PWM control
- Does not require specific digital PWM pins on the Arduino
 - Digital PWM is controlled with one trigger and sensor has its own procedure (diagram to the right)

[I	Host Device	Input Trigger Pulse	t _{out}	2 µs (min), 5 µs typical
	PING)))		Echo Holdoff	t _{HOLDOFF}	750 µs
		Sensor	Burst Frequency	t _{BURST}	200 µs @ 40 kHz
			Echo Return Pulse Minimum	t _{IN-MIN}	115 µs
			Echo Return Pulse Maximum	t _{IN-MAX}	18.5 ms
			Delay before next measurement		200 µs

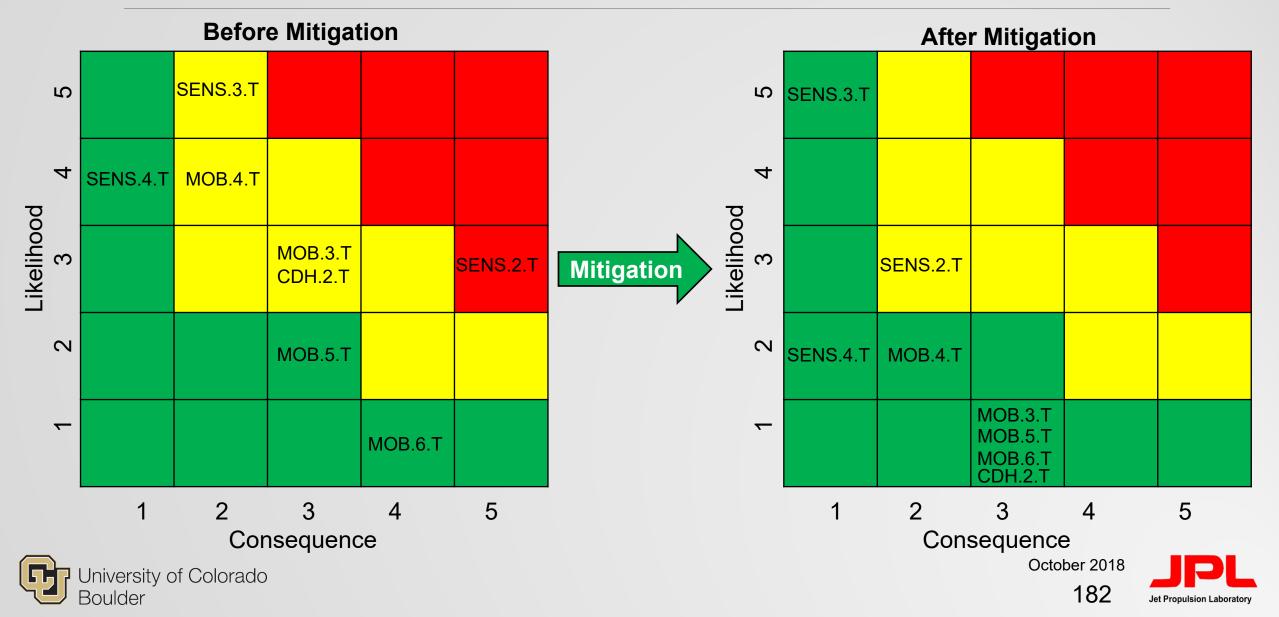
	Required Specifications	Achieved Specifications	Requirements Satisfied
In-Plane Object DetectionParallax PING))) Ultrasonic Distance Sensor	 Range – 3.125 ft (0.9525 m) Field of View – 103.5° Smallest Detectable Object – 1 in 	 Range – 9.85 ft (3 m) Field of View – 40*3 = 120° Smallest Detectable Object – 0.25 – 0.75 in (determined from tests from manufacturer) 	 SENS.3.1 SENS.3.1.1 SENS.3.1.2

Lower level risks

Risk	Description	Effect	Туре	Likelihood	Severity	Total
SENS.2.T	Noise interference on magnetometer from motors	Data from the magnetometer is incorrect and therefore cannot accurately correct heading	Т	5	3	15
SENS.3.T	Single Beam LiDAR's falsely detect a discontinuity when traversing an obstacle or slope	The CSR autonomously stops, this can cause the CSR to roll down the obstacle/slope and cause fatigue on the motors	Т	5	2	10
MOB.3.T	Chain slippage	Tension is not sufficient to drive CSR	Т	3	3	9
CDH.2.T	Insufficient thermal management of electrical components	Component failure and data not received	Т	3	3	9
MOB.4.T	Wheel slippage	May not be able to overcome obstacles	Т	4	2	8
MOB.5.T	Back EMF from motors	Current is sent backwards into system	Т	2	3	6
MOB.6.T	Structural deformation	Chassis deforms which can cause a decrease in mobility performance	Т	1	4	4
SENS.4.T	System calibration offsets	Heading correction is not accurate with LOI	Т	4	1	4
	ity of Colorado			October 20)18	

180

Jet Propulsion Laboratory



Risk Mitigation

Risk	Mitigation Strategy	Likelihood	Severity	Total
SENS.2.T	Place the magnetometer a safe distance away from the motors. Test results show that 15cm should suffice, however if not can utilize mu-metal foil shielding	3	2	6
SENS.3.T	Add an accelerometer on board and use this data when the CSR is at a slope to ignore single beam LiDAR	5	1	5
MOB.3.T	Utilize chain tensioners	1	3	3
CDH.2.T	Gain familiarity of data sheets of components to understand the max power ratings of each, monitor current	1	3	3
MOB.4.T	Design for non-slip conditions, if slipping does occur can try another path, also consider wheels with deep treads	2	2	4
MOB.5.T	Chosen motor uses resistors and FET's (Field Effect Transistors) to regulate back EMF	1	3	3
MOB.6.T	Choose a strong alloy with relatively high temperature rating (Aluminum Alloy 6061)	1	3	3
SENS.4.T	Frequently check and recalibrate magnetometer when needed	2	1	2

Risk Matrices

