

# **Collision Avoidance System Testbed**

#### **Test Readiness Review**

Customer: John Reed and United Launch Alliance

**Team members**: Trace Valade, Adam Holdridge, Angel Hoffman, Cameron Turman, Conner Martin, Griffin Van Anne, Hugo Stetz, Isaac Goldner, Jason Balke, Reade Warner, Roland Bailey, Sam Hartman **Advisor:** Prof. John Mah

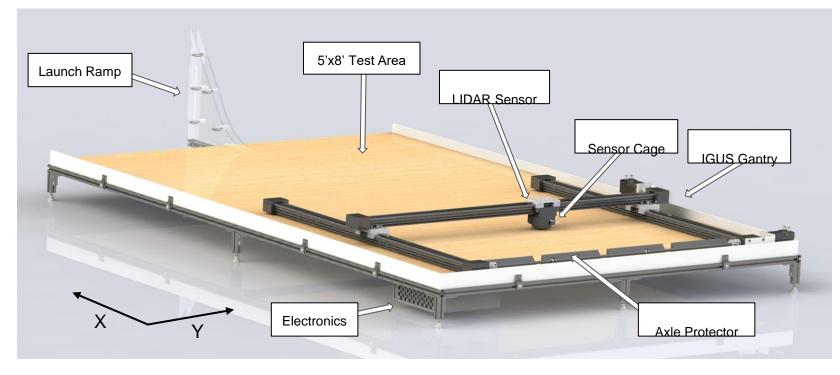
#### **Presentation Outline**

- 1. Project Overview
- 2. Schedule
- 3. Test Readiness
- 4. Budget



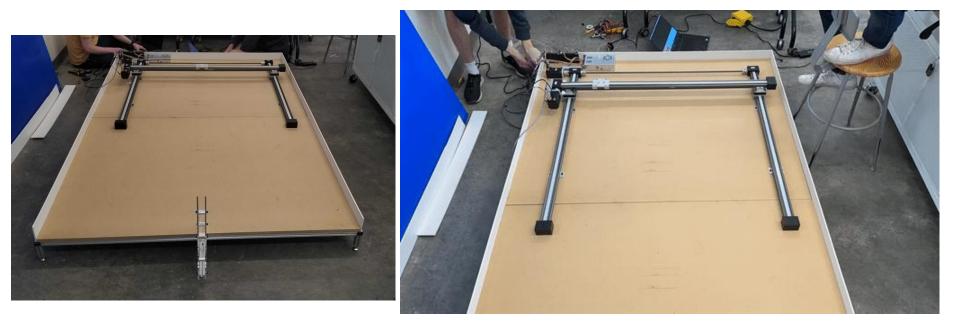


# **Project Overview**


# **Project Objectives**

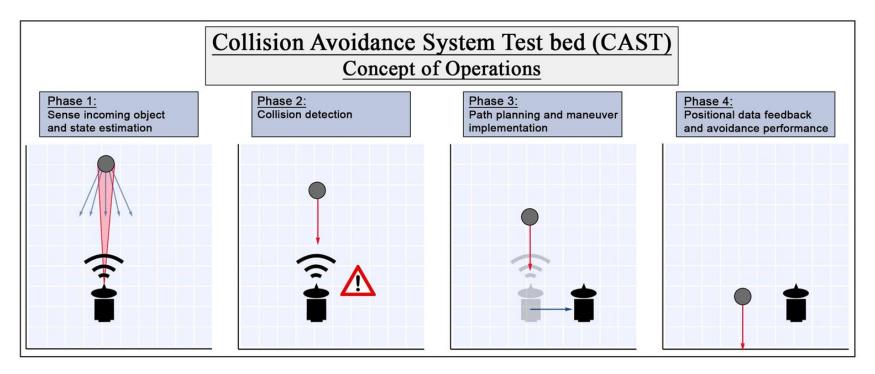


- Implement physical 2D demonstration that implements a detect, decide, and react algorithm
  - a. Detect foreign incoming object in detection space of testing environment
  - b. Perform **state estimation** and motion prediction of foreign object
  - c. Develop **control law** that determines **reaction maneuver**, if necessary, in relative frame while mimicking thruster motion
- 2. Prove control law against various collision scenarios with physical demo
- 3. Control law scaled up in simulation to full scale orbital cross-track scenario


## **Baseline Design**






| Project Overview | Schedule | Test Readiness | > | Budget |
|------------------|----------|----------------|---|--------|
|------------------|----------|----------------|---|--------|

### **Baseline Design**

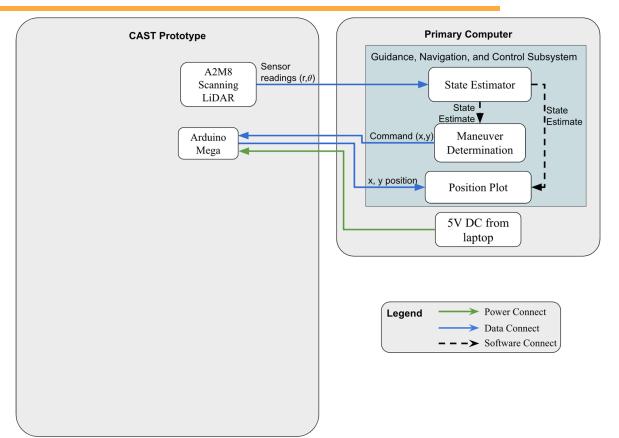


#### CONOPs



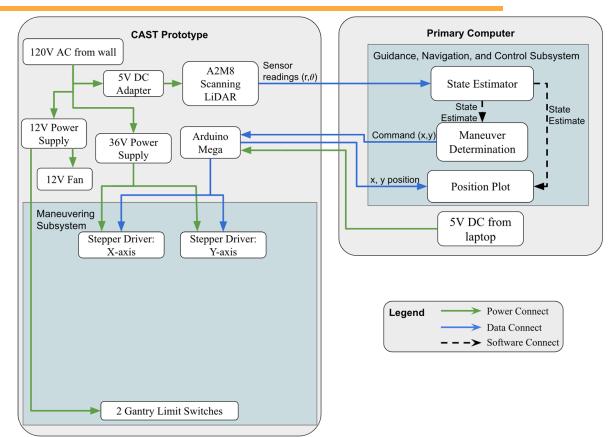


**Project Overview** 


Schedule

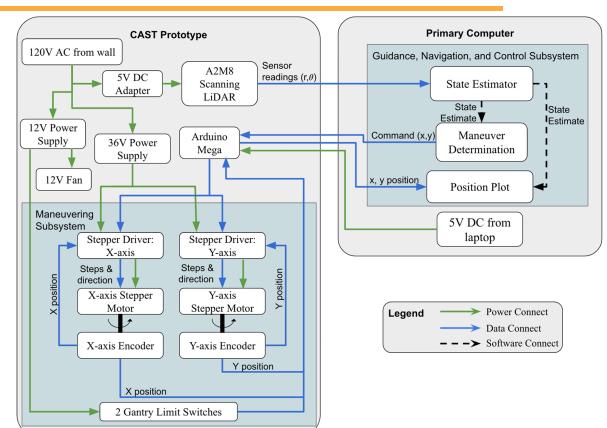
Test Readiness

7




#### **Functional Block Diagram**






#### **Functional Block Diagram**





#### **Functional Block Diagram**





11

## Levels of Success (1/3)

| Project<br>Element  | Level 1                                                                                                   | Level 2                                                                                                  | Level 3                                                                                                               | Level 4                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Test<br>Environment | Testbed is capable of<br>creating a 1D collision<br>trajectory (no miss<br>scenario)                      | Testbed is capable of<br>1D collision with<br>variations in approach<br>speed                            | Testbed is capable of<br>2D collision scenario<br>with variations in<br>approach speed and<br>heading                 | N/A                                                                                                                   |
| Detection           | Able to detect moving<br>object (>50mm<br>sphere) with an<br>incoming heading at<br>speeds up to 0.25 m/s | Able to detect moving<br>object (>50mm<br>sphere) with an<br>incoming heading at<br>speeds up to 0.5 m/s | Able to detect moving<br>object (>50mm<br>sphere) at speeds up<br>to 1 m/s with a<br>heading +/- 10° of<br>centerline | Able to detect moving<br>object (>50mm<br>sphere) at speeds up<br>to 2 m/s with a<br>heading +/- 20° of<br>centerline |



### Levels of Success (2/3)

| Project<br>Element  | Level 1                                                                                                  | Level 2                                                                     | Level 3                                                                              | Level 4                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| State<br>Estimation | Able to return<br>estimation of state at<br>current time and<br>predict forward to<br>point of collision | 2 sigma prediction<br>covariance driven to<br>within an avoidable<br>region | 70% confidence<br>dynamic consistency<br>chi-squared<br>hypothesis testing<br>passes | 95% confidence<br>dynamic consistency<br>chi-squared<br>hypothesis testing<br>passes |
| Avoidance           | System can avoid a<br>collision (without<br>tracking acceleration<br>profile input)                      | Avoidance maneuver<br>follows acceleration<br>profile with <15%<br>error    | Avoidance maneuver<br>follows acceleration<br>profile with <10%<br>error             | Avoidance maneuver<br>follows acceleration<br>profile with <5% error                 |



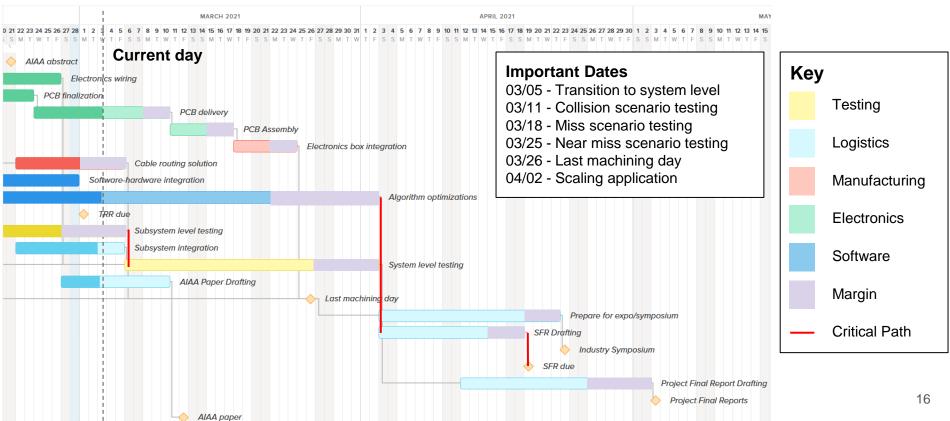
### Levels of Success (3/3)

| Project<br>Element        | Level 1                                                                                    | Level 2                                                                                                            | Level 3                                                                           | Level 4                                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Testbed<br>Simulation     | Control law simulated<br>for 1D collision profile<br>represented on testing<br>environment | Control law simulated<br>for any 2D collision<br>profile capable of<br>being represented on<br>testing environment | N/A                                                                               | N/A                                                                                                                  |
| Application<br>Simulation | N/A                                                                                        | N/A                                                                                                                | Control law scaled<br>up to a single full<br>scale orbital<br>crosstrack scenario | Control law<br>performance<br>improved upon using<br>results from full-scale<br>orbital maneuver<br>scenario results |

| Project Overview | Schedule | $\geq$ | Test Readiness | $\geq$ | Budget |  |
|------------------|----------|--------|----------------|--------|--------|--|
|------------------|----------|--------|----------------|--------|--------|--|



# **Critical Project Elements and Updates**


| CPE               | Updates                                                                                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electronics       | <ul> <li>Baseline electronics wiring complete (encoder labeling proved incorrect)</li> <li>First gantry movement 2/16</li> <li>PCB ordered</li> </ul> |
| Sensing           | Sensor damaged by mounting (return granted)                                                                                                           |
| Mechanical        | <ul> <li>Test environment assembled and tested</li> <li>Designed and printed sensor guard</li> <li>Gantry control demonstrated</li> </ul>             |
| State Estimation  | Transitioning from LKF to EKF                                                                                                                         |
| Control Algorithm | N/A                                                                                                                                                   |
| Maneuver Planning | N/A                                                                                                                                                   |
|                   |                                                                                                                                                       |



# Scheduling

#### **Gantt Chart**







# **Test Readiness**

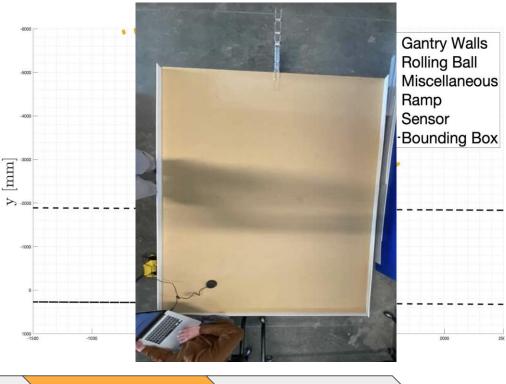


# **Component Level Testing**

| С               | Componer | nt Level         | Subsyst                         | tem Level      | Syster                    | n Level    |
|-----------------|----------|------------------|---------------------------------|----------------|---------------------------|------------|
| Sensor Test     |          | Feb 8th          | Command & Control Test          | Feb 17th       | Collision Scenario        | March 11th |
| Ramp Test       |          | Feb 18th         | Gantry Position Test            | Feb 22th       | NEES/NIS Testing          | March 11th |
| Table / Rolling | g Test   | Feb 18th         | Gantry Velocity Test            | Feb 26th       | Miss Scenario             | March 18th |
| Latency Test    |          | Feb 27th         | Gantry Acceleration Test        | Feb 26th       | Control Law Scaling       | March 18th |
| Software Unit   | Testing  | Feb 28th         | Gantry Vibration Test           | March 3rd      | Questionable<br>Scenarios | March 25th |
|                 |          |                  | Sensor / Software Test          | March 3rd      |                           |            |
|                 |          |                  | Gantry Thrust Curve<br>Matching | March 4th      |                           |            |
|                 | ŀ        | Project Overview | Schedule                        | Test Readiness | Budget                    | 18         |



#### Lidar Sensor


Completed

Requirements: DR 2.1, 2.1.2, 2.2 -

Detect an object of at least 50 mm (1.96") diameter at the scale of our testbed, within bounds

**Expected Results:** 95 x 60 inch testbed. Ability to detect object within minimal (100mm inset) bounds

**Results:** 2" diam ball detected in orange, with the 85 x 52 inch bounds, short length sensed to be 60.2 inch.



Project Overview

Schedule

Test Readiness

Budget

19

# Latency Testing

Completed

**Requirements:** DR 1.3, 3.3 - avoidance algorithm, maneuvering hardware, & sensor capable of communicating data during test

**Expected Results:** Avoidance algorithm and communications are faster than process time and sampling time

**Results:** Maneuvering process is faster than maximum maneuver process time of 6.3ms

Main loop execution is faster than sensor sampling rate of 0.25ms, all sensor data can be received and processed



| Process   | Latency Source                         | Time<br>Allotment | Mean Result    |
|-----------|----------------------------------------|-------------------|----------------|
| Main Loop | Receive Sensor Data                    | -                 | 0.009±7.8e-5ms |
|           | Estimation/Prediction Step             | -                 | 0.09±0.01 ms   |
|           | Total                                  | 0.25 ms           | 0.099±0.01ms   |
| Maneuver  | Matlab Maneuver Sending                | -                 | 3.95±0.2ms     |
|           | Arduino Command<br>Received and Stored | -                 | 0.055±0.001ms  |
|           | Arduino Step Delay<br>Calculation      | -                 | 1.500±0.001ms  |
|           | Total                                  | 6.3 ms            | 5.50±0.2ms     |

Project Overview

Schedule

Budget

20



## Subsystem Level Testing

| C               | omponer | nt Level         | Subsyst                         | em Level       | Syster                    | n Level    |
|-----------------|---------|------------------|---------------------------------|----------------|---------------------------|------------|
| Sensor Test     |         | Feb 8th          | Command & Control Test          | Feb 17th       | Collision Scenario        | March 11th |
| Ramp Test       |         | Feb 18th         | Gantry Position Test            | Feb 22th       | NEES/NIS Testing          | March 11th |
| Table / Rolling | Test    | Feb 18th         | Gantry Velocity Test            | Feb 26th       | Miss Scenario             | March 18th |
| Latency Test    |         | Feb 27th         | Gantry Acceleration Test        | Feb 26th       | Control Law Scaling       | March 18th |
| Software Unit   | Testing | Feb 28th         | Gantry Vibration Test           | March 3rd      | Questionable<br>Scenarios | March 25th |
|                 |         |                  | Sensor / Software Test          | March 3rd      |                           |            |
|                 |         |                  | Gantry Thrust Curve<br>Matching | March 4th      |                           |            |
|                 | F       | Project Overview | Schedule                        | Test Readiness | Budget                    | 21         |

# Thrust Curve Matching

In Progress

**Requirements:** DR 4.2, 4.3 - Confirm that the gantry can follow a representative input thrust curve to an appropriate degree of error.


**Procedure:** Command gantry to follow input position and velocity curves. Compare actual position vs time to modeled.

**Expected Results:** Less than 5% cumulative error on acceleration

Schedule

**Project Overview** 

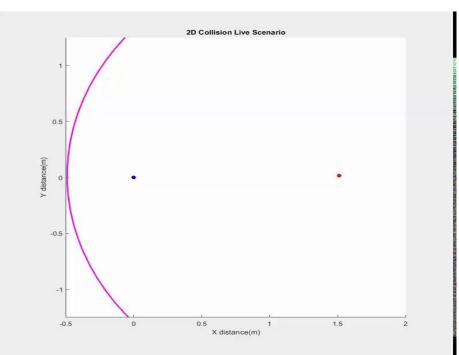






## System Level Testing

| Comp                | onent Level      | Subsyst                         | em Level       | Syster                     | n Level    |
|---------------------|------------------|---------------------------------|----------------|----------------------------|------------|
| Sensor Test         | Feb 8th          | Command & Control Test          | Feb 17th       | Collision Scenario         | March 11th |
| Ramp Test           | Feb 18th         | Gantry Position Test            | Feb 22th       | NEES/NIS Testing           | March 11th |
| Table / Rolling Tes | Feb 18th         | Gantry Velocity Test            | Feb 26th       | Miss Scenario              | March 18th |
| Latency Test        | Feb 27th         | Gantry Acceleration Test        | Feb 26th       | Control Law<br>Scaling     | March 18th |
| Software Unit Test  | ng Feb 28th      | Gantry Vibration Test           | March 3rd      | Near-Collision<br>Scenario | March 25th |
|                     |                  | Sensor / Software Test          | March 3rd      |                            |            |
|                     |                  | Gantry Thrust Curve<br>Matching | March 4th      |                            |            |
|                     | Project Overview | Schedule                        | Test Readiness | Budget                     | 23         |

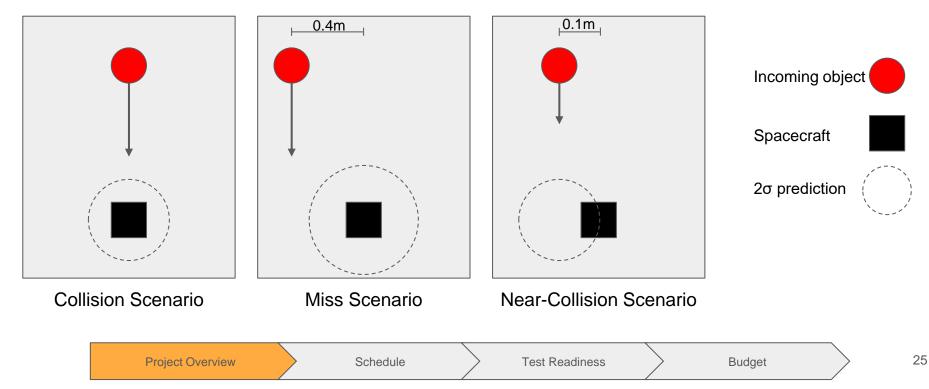



## Full System Tests Overview

**Requirements:** All (emphasis on DR 1.3, 2.7, 3.3, 4.2, 4.3) - Confirm that system can avoid a collision as designed.

**Procedure:** Roll incoming object on various colliding and non-colliding trajectories. Confirm system collision avoidance with expected maneuver (or lack thereof).

**Expected Results:** Incoming object is sensed and trajectory predicted in time for maneuver to react to potential collision




To Be Completed

# Full System Test Scenarios



Test cases involve changing aspects of the incoming object's trajectory:

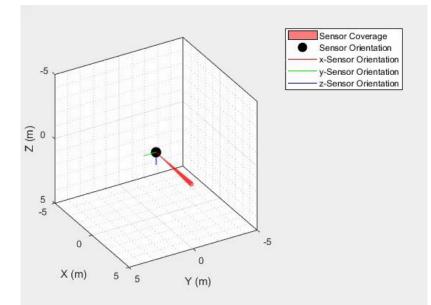




# Full System Tests Matrix

|                                                                                                                                                                                                     |                                                                   | <b>Collision Scenarios</b>                                                                                            | Miss Scenarios                                                                                                                | Near-Collision<br>Scenarios                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| In                                                                                                                                                                                                  | puts                                                              | <ul> <li>Ramp along centerline<br/>(head on)</li> <li>0.5 m/s, 1 m/s, 1.5 m/s, 2<br/>m/s incoming velocity</li> </ul> | <ul> <li>Ramp 0.4 m off<br/>centerline (head on)</li> <li>0.5 m/s, 1 m/s, 1.5<br/>m/s, 2 m/s incoming<br/>velocity</li> </ul> | <ul> <li>Ramp 0.1 m off<br/>centerline (head on)</li> <li>0.5 m/s, 1 m/s, 1.5<br/>m/s, 2 m/s incoming<br/>velocity</li> </ul> |  |
| Expecte                                                                                                                                                                                             | ed Results                                                        | System maneuvers to avoid object and associated $2\sigma$ covariance                                                  | System does not maneuver,<br>object and associated 2σ<br>covariance are avoided                                               | System maneuvers to avoid associated 2o covariance to reduce probability of collision                                         |  |
| Ou                                                                                                                                                                                                  | Outputs         Encoder position information and video recordings |                                                                                                                       |                                                                                                                               |                                                                                                                               |  |
| <ul> <li>System remains fully functional after repeated tests</li> <li>No reorientation maneuver required for sensing</li> <li>Test system produces force capable of avoiding 2σ ellipse</li> </ul> |                                                                   |                                                                                                                       |                                                                                                                               |                                                                                                                               |  |
|                                                                                                                                                                                                     | Project Ov                                                        | erview Schedule                                                                                                       | Test Readiness                                                                                                                | Budget 26                                                                                                                     |  |

# **Control Law Scaling**


To Be Completed



**Requirements:** DR3.1, DR3.2 - Perform state estimation from sensor data with  $< 2\sigma$ uncertainty, collision probability detection from sensor readings

**Procedure:** Once control law is validated at small scale, simulation is run at large scale

**Expected Results:** Required sensor range, sampling rate, available thrust, scan rate to successfully avoid collision







# Budget

| 0           | $\sim$ |
|-------------|--------|
| $^{\prime}$ | u      |
| ~           | J      |

#### Cost Plan

|                    |       |                  |               |                |                                                   | - |
|--------------------|-------|------------------|---------------|----------------|---------------------------------------------------|---|
|                    |       | Budget<br>(\$)   | TRR<br>(\$)   | Margin<br>(\$) | Expected Further<br>Purchases (\$)                |   |
| Maneuv             | ering | 3100             | 3000          | 100            | 0                                                 |   |
| Testing<br>Environ | ment  | 500              | 625           | -125           | <50 (Fasteners + Cable<br>Management)             |   |
| Electror           | nics  | 350              | 340           | 10             | 0                                                 | E |
| Sensor             |       | 330              | 641           | -311           | *Refund upon return                               |   |
| Total              |       | 4280             | 4648          | -368           | *Doesn't include returns<br>(\$4224 with returns) |   |
| Remaini            | ing   | 720              | 352           | -368           |                                                   |   |
|                    |       | Project Overview | $\rightarrow$ | Sched          | ule Test Readines                                 | s |





# Questions?



# **Backup Slides**



32

# Launching Mechanism & Table

Completed

**Rationale:** Ensure near linear motion of ball on test environment for accurate state estimation. Ensure accurate and precise launching of ball.

**Equipment/Facilities:** Ball, Ramp, Assembled Base Structure

**Procedure:** Launch the ball 5 times from the same position on ramp, record test on video. Track ball frame by frame to obtain position vs time data.

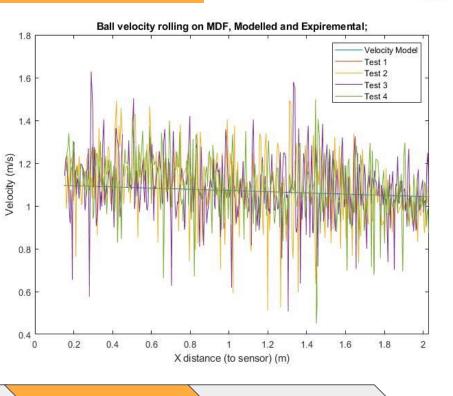


**Requirements:** DR 1.1, 1.2, 1.5

Project Overview Schedule Test Readiness Budget

# Launching Mechanism & Table

Schedule


**Risk Reduction:** State estimation will be accurate.

**Expected Results:** Velocity deviation < 5% of initial.

**Results:** Further testing needed at low speed

- 2.3 m/s PE = 2.17 ± 0.4 %
- 1.1 m/s PE = 4.8 ± 0.4 %

**Project Overview** 



Budget

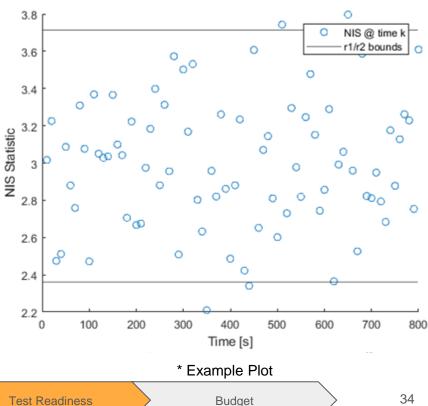
**Test Readiness** 

Completed



# **NEES/NIS** Testing

To Be Completed




**Requirements:** DR3.2 - Perform state estimation from sensor data and ensure the results are within a 95% confidence interval

**Procedure:** Both sensing and state estimation should be done on multiple scenarios (varying angles) with NEES/NIS tests performed, plot measurement errors

**Expected Results:** Both the state and the measurements result in chi squared tests within 95% bounds

Schedule



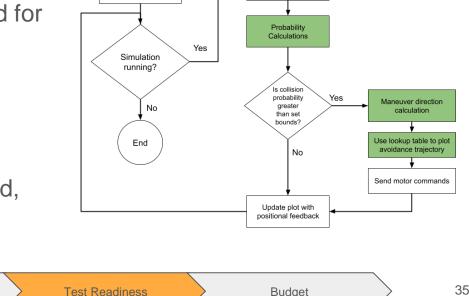
# Software Unit Testing

Completed

Start

Initialization

**Rationale:** Verify that individual functions behave as expected.


**Procedure:** Each function used is tested for expected inputs and outputs.

**Risk Reduction:** Reduction in required debugging time for final program.

**Expected Results:** Every function tested, every test passing.

Schedule

**Project Overview** 

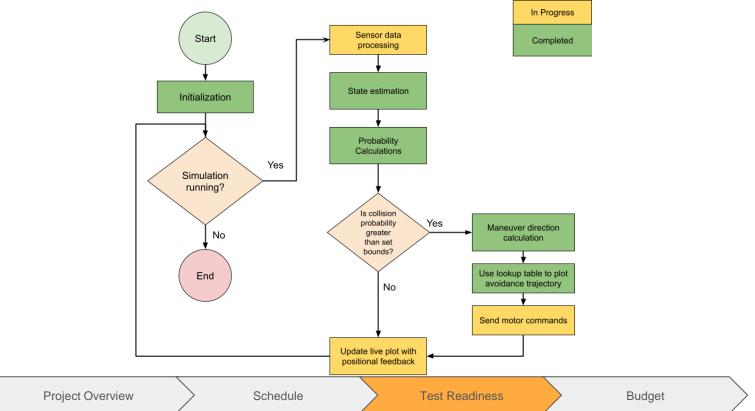


Sensor data

processing

State estimation




In Progress

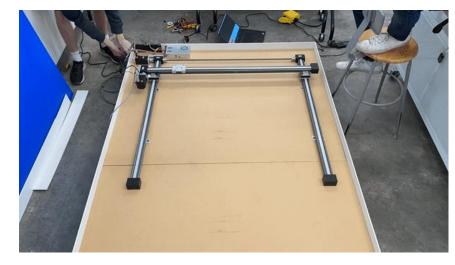
Completed

N/A or Verified Elsewhere



#### Software Flowchart






## Command and Control / Position Completed

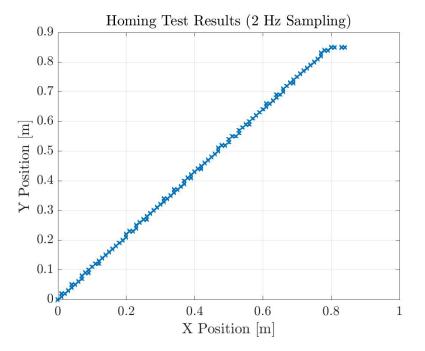
**Rationale:** FR 4, DR 4.2, 4.3 - Confirm that the gantry can be accurately controlled and encoder positional feedback data is accurate.

**Procedure:** Move gantry, compare actual position to position measured by encoders. Verify full range of gantry.

**Expected Results:** 1.04m x 1.08m maneuvering area






# Command and Control / Position Completed

Schedule

**Risk Reduction:** Gantry will be able to maneuver and avoid collision.

**Results:** Verified ability to control gantry, verified maneuvering area, verified encoder feedback at full gantry range.

|        | Actual<br>Position | Encoder<br>Position |
|--------|--------------------|---------------------|
| X Axis | 1.07 m             | 1.01 m              |
| Y Axis | 1.02 m             | 1.02 m              |



Budget

**Test Readiness** 



## Velocity / Acceleration

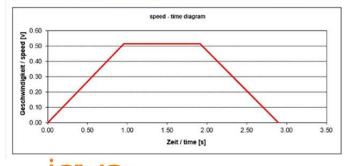
Completed



**Requirements:** FR 4, DR 4.2, 4.3 - Confirm the gantry be moved at velocities and accelerations that will allow for tracking of a representative thrust curve

Equipment/Facilities: Gantry/Electronics

**Procedure:** Move gantry at max acceleration, compare spec'd acceleration to acceleration measured by encoders. Perform along both axes.


## **Speed Estimate for X-axis**

-Improve technology, reduce costs

drylin® E drive technology - speed



| Strecke         |   | 1.000 | mm | Geschwindigkeit                                             |   | 0.515 | m/s   |
|-----------------|---|-------|----|-------------------------------------------------------------|---|-------|-------|
| distance        | 5 | 1,000 | mm | speed                                                       | v | 30.9  | m/mir |
| Positionierzeit | t | 2.90  | 5  | Beschleunigung / Verzögerung<br>acceleration / deceleration | а | 0.538 | m/s²  |



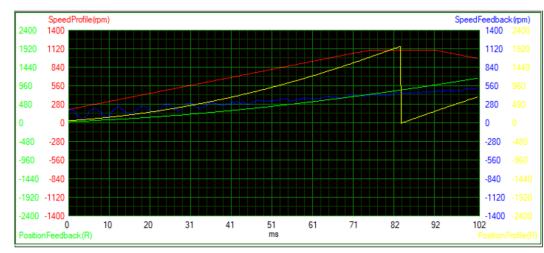
Schedule

Test Readiness

## Velocity / Acceleration

Completed




**Risk Reduction:** Gantry is capable of tracking the thrust curve that was designed for.

## **Expected Results:**

Speed - 553 rpm Acceleration - 9.6 rev/s^2

### **Results:**

Speed - 560 rpm Acceleration - 56 rev/s^2

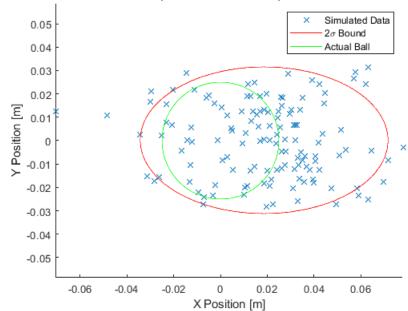






Rationale: DR 2.5, 2.7 - Confirm ability to

**Procedure:** Run gantry through full motion sweep while sensing a stationary ball. Compare sensor measurements sensor model.


sense while gantry is moving.

### **Expected Results:**

$$\begin{split} \text{Mean}(x) &\cong 0.02\text{m}, \, \text{Mean}(y) \cong 0.00 \text{ m} \\ \text{Std}(x) &\cong 0.027\text{m}, \, \text{Std}(y) \cong 0.015 \text{ m} \end{split}$$

Gantry Vibration Resonance In Progress





Expected Vibration Response

Project Overview

Schedule

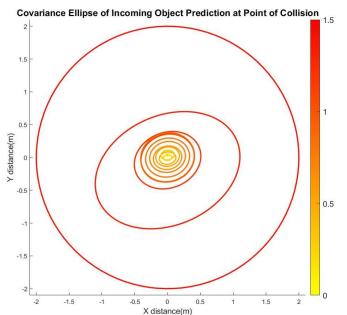
Test Readiness

41

# Software / Sensor Integration

**Rationale:** DR 2.1-2.4, 2.6, 3.1, 3.2 - Verify that the live sensor data properly results in a state estimation for a possible collision.

**Procedure:** Run headon scenario where the sensor detects a rolling ball and the software performs the state estimation.


**Expected Results:** Forward prediction covariance is driven to an avoidable region through sensor data. 366mm radius with 1.2s to collision

**Project Overview** 



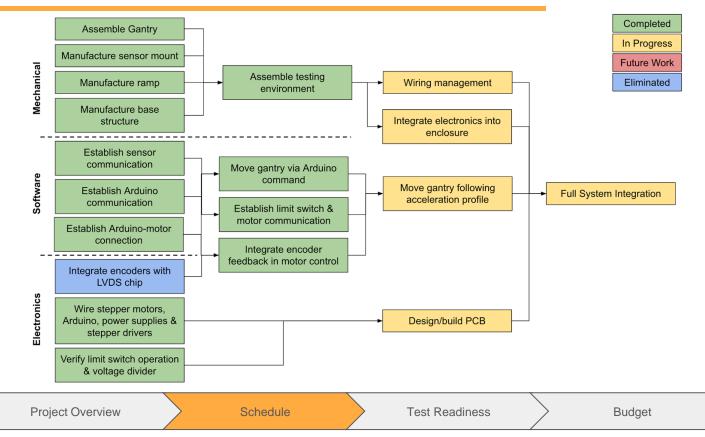
Schedule

**Test Readiness** 

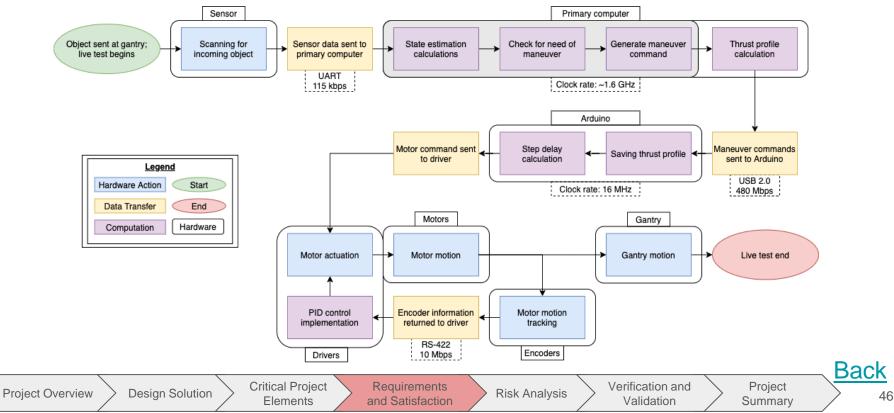


Budaet




## **Sensor Protector**








## **Status Overview**









#### Accounting for major time delays:

| Action                                          | Location                            | Expected Timespan |
|-------------------------------------------------|-------------------------------------|-------------------|
| Transfer of sensor data to primary computer     | Sensor-primary computer connection  | 0.1 ms            |
| State estimation; maneuver check and generation | Primary computer                    | 2 ms              |
| Thrust profile pull                             | Primary computer                    | 2 ms              |
| Thrust profile transfer to Arduino              | Primary computer-Arduino connection | 0.13 ms           |
| Saving thrust profile                           | Arduino                             | Negligible        |
| Step delay calculation                          | Arduino                             | 1.4 ms            |
| Generation of motor commands                    | Arduino                             | Negligible        |
|                                                 | Total:                              | 5.63 ms           |

Requirements

and Satisfaction

#### Our need:

**Project Overview** 

$$T_p = \frac{(1 - e^{-1})(\text{maximum distance})}{(\text{maximum speed})} = \frac{(1 - e^{-1})(0.5\sqrt{2})}{(5\sqrt{2})} = 0.063 \text{ s}$$

**Risk Analysis** 

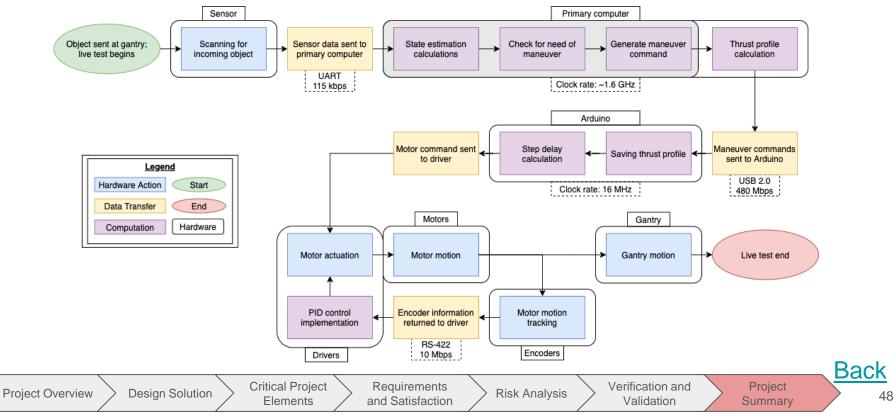
• Our process time constant is...

**Design Solution** 

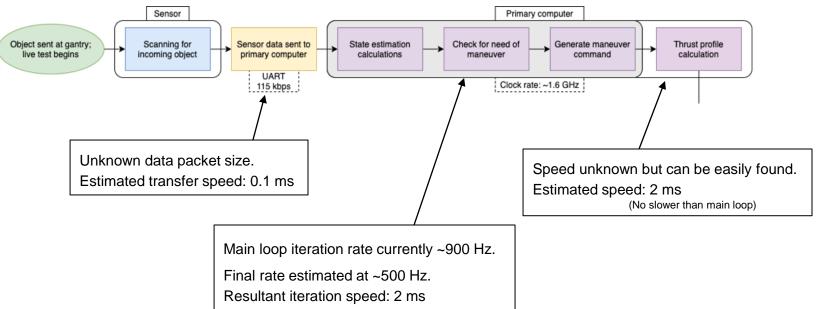
• Our delay time (applying a 10% sampling rule) is thus...  $T_d = 0.1T_p = 0.1(0.063) = 0.0063$  s = <u>6.3 ms</u>

**Critical Project** 

Elements

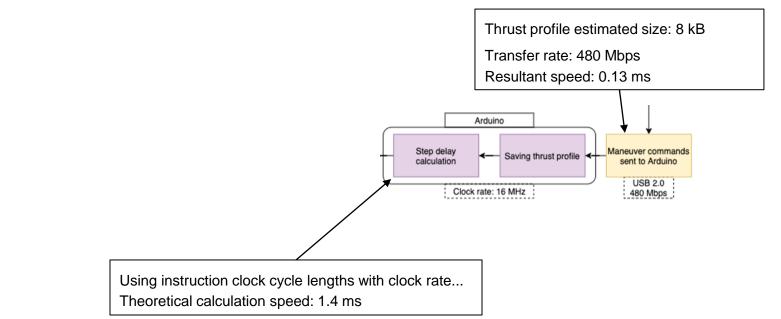

\_<u>Back</u>

47


Verification and

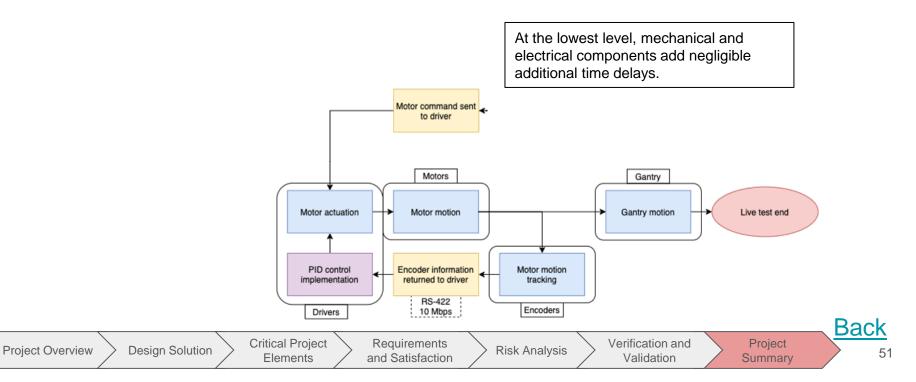
Validation











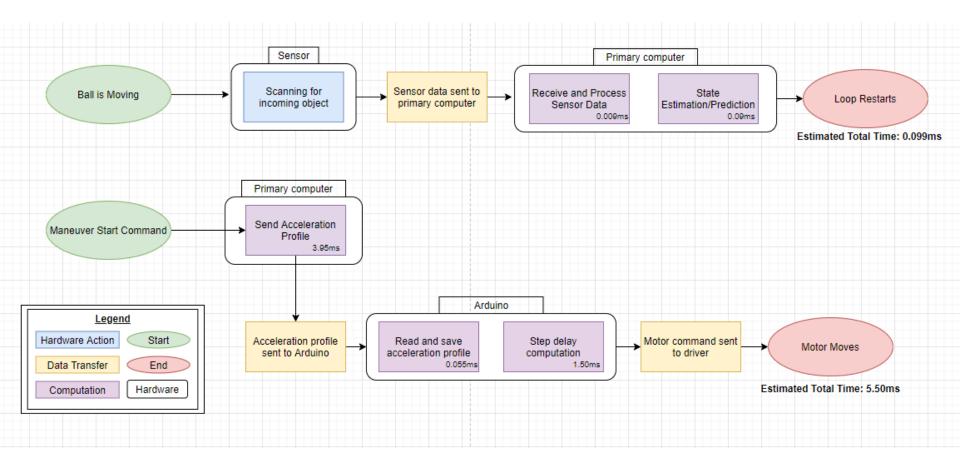












| Action                                             | Location                            | Expected Timespan |
|----------------------------------------------------|-------------------------------------|-------------------|
| Transfer of sensor data to primary computer        | Sensor-primary computer connection  | 0.1 ms            |
| State estimation and maneuver check and generation | Primary computer                    | 2 ms              |
| Thrust profile pull                                | Primary computer                    | 2 ms              |
| Thrust profile transfer to Arduino                 | Primary computer-Arduino connection | 0.13 ms           |
| Saving thrust profile                              | Arduino                             | Negligible        |
| Step delay calculation                             | Arduino                             | 1.4 ms            |
| Generation of motor commands                       | Arduino                             | Negligible        |
| Transfer of motor commands to drivers              | Arduino-driver connection           | Negligible        |
| Motor actuation                                    | Drivers                             | Negligible        |
| Motor motion                                       | Motors                              | 0                 |
| Motor motion tracking                              | Encoders                            | 0                 |
| Encoder information returned to driver             | Encoder-drivers connections         | Negligible        |
| PID control implementation                         | Drivers                             | Negligible        |
| Updated motor actuation                            | Drivers                             | Negligible        |
| Updated motor motion                               | Motors                              | 0                 |
| Gantry motion                                      | Gantry                              | 0                 |
|                                                    | <u>Total:</u>                       | <u>5.63 ms</u>    |

Project Overview

Project

Summary

52

