

## **Collision Avoidance System Testbed**

### **Spring Final Review**

Customer: John Reed and United Launch Alliance

**Team members**: Trace Valade, Adam Holdridge, Angel Hoffman, Cameron Turman, Conner Martin, Griffin Van Anne, Hugo Stetz, Isaac Goldner, Jason Balke, Reade Warner, Roland Bailey, Sam Hartman **Advisor:** Prof. John Mah

### **Presentation Outline**

- 1. Project Overview
- 2. Design Description
- 3. Test Overview
- 4. Test Results
- 5. Systems Engineering
- 6. Project Management

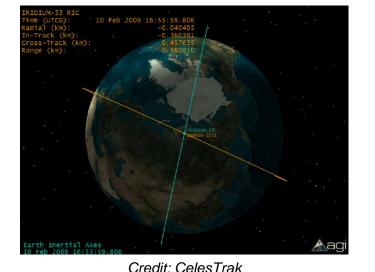




# **Project Overview**

#### **Project Overview**

Test Overview


Test Results

Systems Engineering Project Management

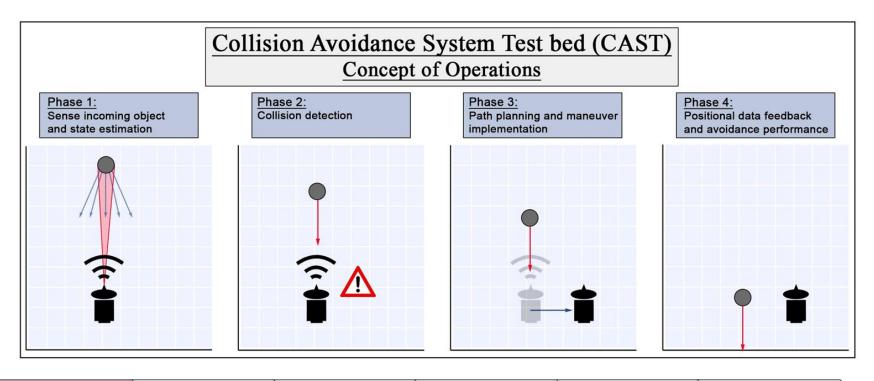
4

### **Project Purpose**

- Space is cluttered. At orbital velocities, any colliding object may pose a mission ending threat to spacecraft.
- Typical ground station debris tracking allows errors up to tens of kilometers
- If incoming object is **detected** at the last minute, spacecraft need to be able to quickly implement an appropriate **reaction** to avoid a collision






### **Project Objectives**



- Implement physical 2D demonstration that implements a detect, decide, and react algorithm
  - a. Detect foreign incoming object in detection space of testing environment
  - b. Perform **state estimation** and motion prediction of foreign object
  - c. Develop **control law** that determines **reaction maneuver**, if necessary, in relative frame while mimicking thruster motion
- 2. Prove control law against various collision scenarios with physical demo
- 3. Control law scaled up in simulation to full scale orbital cross-track scenario

### **CONOPs**





**Project Overview** 

Design Description

Test Overview

Test Results

Systems Engineering Project Management



### Levels of Success (1/3)

| Project<br>Element  | Level 1                                                                                                      | Level 2                                                                                                  | Level 3                                                                                                               | Level 4                                                                                                               |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Test<br>Environment | Testbed is capable of<br>creating a 1D<br>collision trajectory<br>(no miss scenario)                         | Testbed is capable of<br>1D collision with<br>variations in approach<br>speed                            | Testbed is capable of<br>2D collision scenario<br>with variations in<br>approach speed and<br>heading                 | N/A                                                                                                                   |
| Detection           | Able to detect<br>moving object<br>(>50mm sphere) with<br>an incoming heading<br>at speeds up to 0.25<br>m/s | Able to detect moving<br>object (>50mm<br>sphere) with an<br>incoming heading at<br>speeds up to 0.5 m/s | Able to detect moving<br>object (>50mm<br>sphere) at speeds up<br>to 1 m/s with a<br>heading +/- 10° of<br>centerline | Able to detect moving<br>object (>50mm<br>sphere) at speeds up<br>to 2 m/s with a<br>heading +/- 20° of<br>centerline |

Test Overview

Systems Engineering Project Management



### Levels of Success (2/3)

| Project<br>Element  | Level 1                                                                                                  | Level 2                                                                     | Level 3                                                                              | Level 4                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| State<br>Estimation | Able to return<br>estimation of state at<br>current time and<br>predict forward to<br>point of collision | 2 sigma prediction<br>covariance driven to<br>within an avoidable<br>region | 70% confidence<br>dynamic consistency<br>chi-squared<br>hypothesis testing<br>passes | 95% confidence<br>dynamic consistency<br>chi-squared<br>hypothesis testing<br>passes |
| Avoidance           | System can avoid a<br>collision (without<br>tracking acceleration<br>profile input)                      | Avoidance maneuver<br>follows acceleration<br>profile with <15%<br>error    | Avoidance maneuver<br>follows acceleration<br>profile with <10%<br>error             | Avoidance maneuver<br>follows acceleration<br>profile with <5% error                 |

Test Overview

Test Results

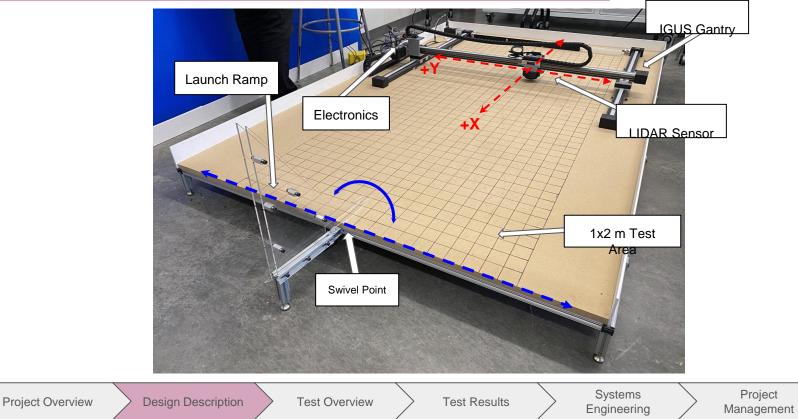
Systems Engineering Project Management



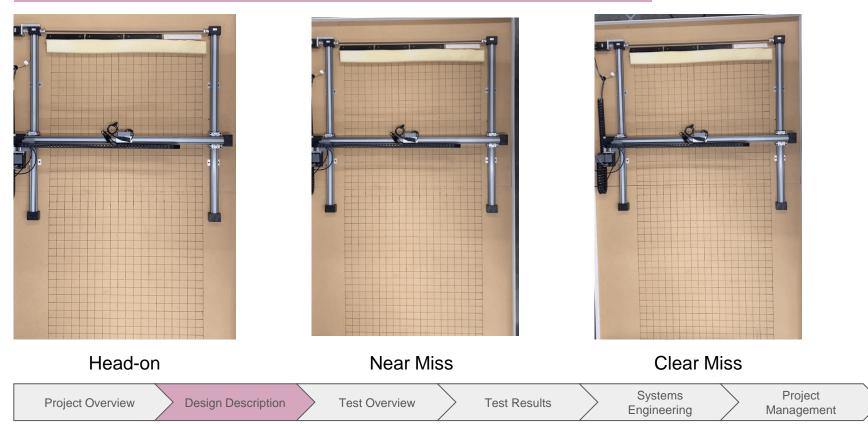
9

### Levels of Success (3/3)

| Project<br>Element        | Level 1                                                                                    | Level 2                                                                                                            | Level 3                                                                           | Level 4                                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Testbed<br>Simulation     | Control law simulated<br>for 1D collision profile<br>represented on testing<br>environment | Control law simulated<br>for any 2D collision<br>profile capable of<br>being represented on<br>testing environment | N/A                                                                               | N/A                                                                                                                  |
| Application<br>Simulation | N/A                                                                                        | N/A                                                                                                                | Control law scaled<br>up to a single full<br>scale orbital<br>crosstrack scenario | Control law<br>performance<br>improved upon using<br>results from full-scale<br>orbital maneuver<br>scenario results |


 
 Project Overview
 Design Description
 Test Overview
 Test Results
 Systems Engineering
 Project Management

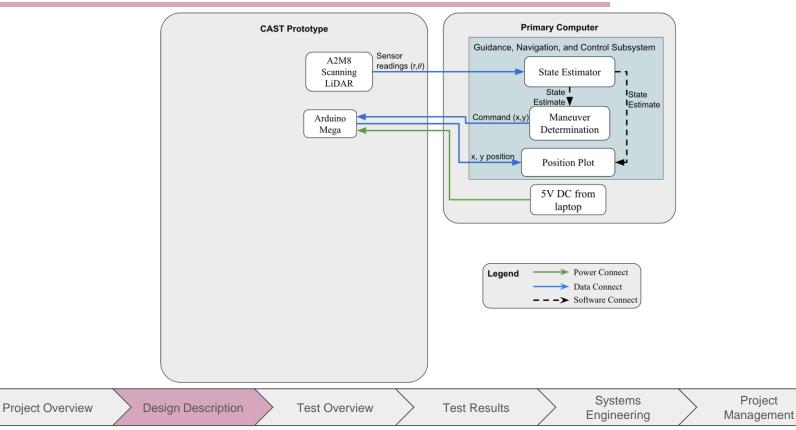



# **Design Description**



### **Baseline Design**

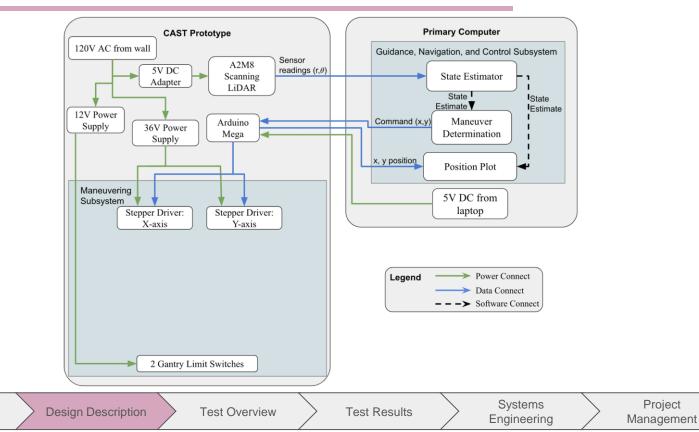



### **Design Operation**



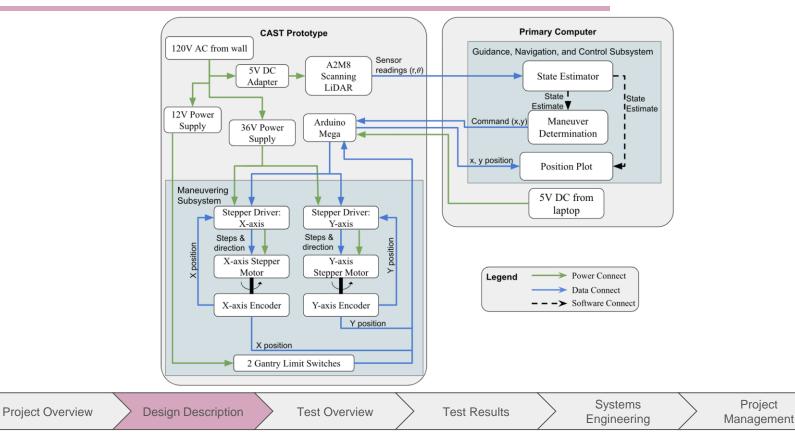





### **Functional Block Diagram**






### **Functional Block Diagram**

**Project Overview** 





### **Functional Block Diagram**





### **Critical Project Elements and Updates**

| CPE               | Change                                                         | Explanation                                                                                                       |
|-------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Electronics       | N/A                                                            | N/A                                                                                                               |
| Sensing           | N/A                                                            | N/A                                                                                                               |
| Mechanical        | <ol> <li>Cable chains</li> <li>Grid on testbed</li> </ol>      | <ol> <li>Prevent cable interference with movement</li> <li>Establish true position for incoming object</li> </ol> |
| State Estimation  | 1. Switched gantry position feedback method from encoder pulse | 1. Increase Arduino main-loop execution speed                                                                     |
| Control Algorithm | counting to driver pulse counting                              | 2. Prevent maneuver from exceeding physical<br>bounds of gantry and designed-to max speed                         |
| Maneuver Planning | 2. Software implemented gantry speed and position limits       |                                                                                                                   |

Test Overview



### **Test Overview**

### **Test Plan**



|                    | Test                         | Purpose                                                                        | <b>Guiding Requirements</b>                                                                           |
|--------------------|------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Component          | Table/rolling resistance     | Ensure linear motion of ball for accurate state estimation                     | DR 1.5: Object maintains constant velocity to within 5% initial velocity                              |
| Level              | Latency                      | Verify processing and communications are faster than process and sampling time | DR 3.3: Avoidance algorithm, maneuvering hardware, & sensor capable of communicating data during test |
|                    | Gantry vibration             | Confirm ability to sense while moving to improve state estimation              | DR 2.5: Sensor shall be capable of sensing while maneuvering system is operating                      |
| Subsystem<br>Level | State estimation integration | Ensure state estimation error is within desired bounds                         | DR 3.1: State estimation error shall be <2 $\sigma$ bound                                             |
|                    | Gantry thrust curve matching | Confirm gantry follows specified acceleration profile to mimic thruster motion | DR 4.3: maneuver shall deviate <5% in acceleration from scaled orbital response                       |

|                  | <b>.</b>           |               |              |                        | <u>.                                    </u> |    |
|------------------|--------------------|---------------|--------------|------------------------|----------------------------------------------|----|
| Project Overview | Design Description | Test Overview | Test Results | Systems<br>Engineering | Project<br>Management                        | 18 |

### **Test Plan**



|                 | Test                            | Purpose                                                                                      | Guiding Requirements                                                                                                           |
|-----------------|---------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                 | Full system collision avoidance | Ensure all systems integrate together to identify a probable collision and perform avoidance | DR 3.3: avoidance algorithm, maneuvering hardware, and sensor capable of communicating during live test                        |
| System<br>Level | Control law scaling             | Determine sensor parameters necessary to avoid full-scale collision                          | DR 2.6: sensor sampling rate shall be high enough to drive the $2\sigma$ covariance ellipse to an avoidable region             |
|                 | NEES/NIS testing                | Ensure filter follows consistent random distribution                                         | DR 3.2: system shall be capable of predicting collision probability with state estimation results with 95% confidence interval |



### **Test Results**

### Latency Testing

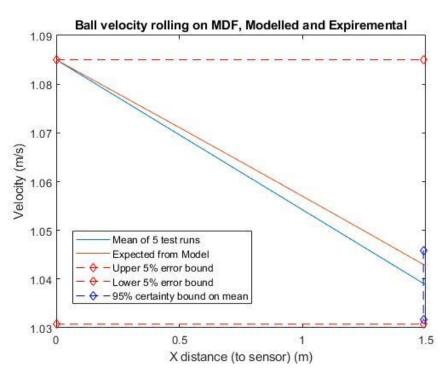


#### **Expected Results:**

• System timings are less than or equal to estimated timings.

- Maneuver generation and transfer is significantly slower than expected.
- Likely causes are:
  - Matlab serial port overhead
  - Increased computational demand since the model was developed
- Model was overly conservative, maneuver is still successful at this rate.

| Process                                                                                                                | Latency Source                      |                                                                                                                                             | Estimated Tim | ıe | Mean Result     |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|-----------------|
| Main Loop                                                                                                              | Receive Sensor Data                 |                                                                                                                                             | 0.1ms         |    | 1.6 ± 4.0e-5ms  |
|                                                                                                                        | Estimation/Predict                  | ion Step                                                                                                                                    | <2ms          |    | 0.48 ± 2.6e-5ms |
|                                                                                                                        | Total                               |                                                                                                                                             | 2.1ms         |    | 2.1 ± 6.6e-5ms  |
| Maneuver                                                                                                               | Matlab Maneuver Generation          |                                                                                                                                             | <2ms          |    | 48.5ms          |
|                                                                                                                        | Arduino Command Received and Stored |                                                                                                                                             | 0.13ms        |    | 48ms            |
|                                                                                                                        | Arduino Step Delay Calculation      |                                                                                                                                             | -             |    | 1.500±0.001ms   |
|                                                                                                                        | Total                               |                                                                                                                                             | 2.1ms         |    | 98ms            |
| Criteria                                                                                                               |                                     | Satisfaction                                                                                                                                |               |    |                 |
| <b>DR 3.3</b> : avoidance algorithm,<br>maneuvering hardware, & sensor<br>capable of communicating data<br>during test |                                     | Overhead of matlab processes<br>and large data computations<br>overwhelm estimates. System<br>still successfully maneuvers<br>despite this. |               |    | 21              |



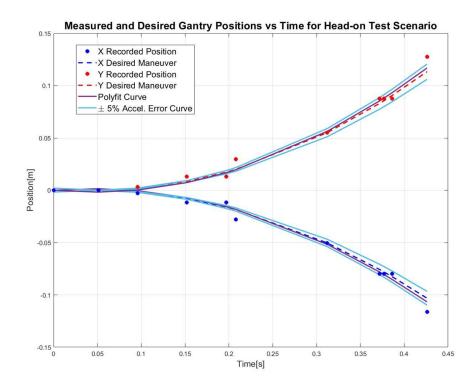

#### **Expected Results:**

• Velocity deviation of 3.9% of initial at 1 m/s

- Motion remains within linearity bounds at 1 m/s and above
- 2.3 m/s PE = 2.17 ± 0.4 %
- 1.0 m/s PE = 4.24 ± 0.39 %

| Criteria                                                                        | Satisfaction                                     |
|---------------------------------------------------------------------------------|--------------------------------------------------|
| <b>DR 1.5:</b> Object maintains constant velocity to within 5% initial velocity | Velocity remains within 5% for all speeds tested |
| Level of Success: Testbed<br>Environment                                        | Satisfies level 3/3 variations in approach speed |




### **Thrust Curve Matching**

#### **Expected Results:**

- <5% deviation in gantry acceleration from desired profile
- Arbitrary acceleration profile test indicated average of 2.81% error

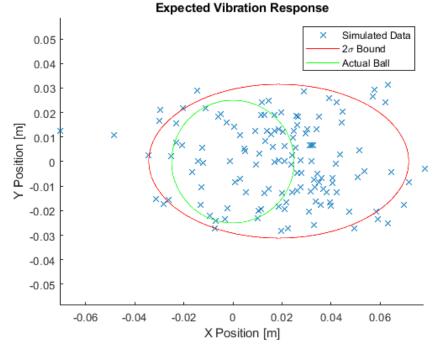
- 3.64% avg. error in acceleration for full system tests
  - Computed based on t<sup>2</sup> coefficient of best-fit line for gantry position profile

| Criteria                                                                               | Satisfaction                                                              |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <b>DR 4.3:</b> Maneuver shall deviate <5% in acceleration from scaled orbital response | Best-fit position curve lies<br>between +/-5% acceleration error<br>curve |
| Level of Success: Avoidance                                                            | Satisfies level 4/4 with acceleration deviation <5%                       |





### **Gantry Vibration**


#### **Expected Results:**

- 42% within radius of ball
- 85% within 2\*radius of ball

#### **Results:**

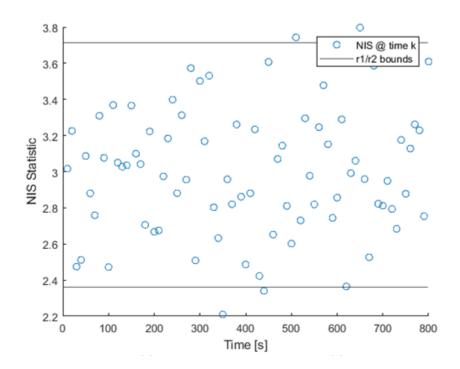
- 98.44% within radius of ball
- 100% within 2\*radius of ball
- Encoder feedback not used for results

| Criteria                                                                                                 | Satisfaction                                                                                                                              |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DR 2.5:</b> The sensor shall be capable of detecting an object while the maneuver system is operating | At least 42% of the points are<br>within the radius of the ball and<br>at least 85% of the data points<br>are within 2*radius of the ball |





### **Dynamic Consistency Testing**


#### Expected Results:

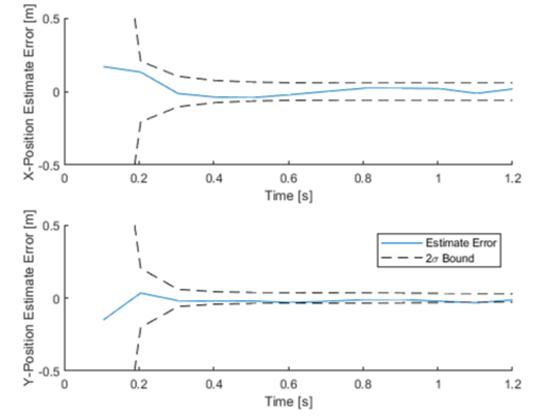
• The normalized estimation error and normalized innovation were expected to fit the  $\chi^2$  distribution

#### **Results:**

• Normalized errors were consistently lower than the expended in the  $\chi^2$  distribution, predicted covariance was too large

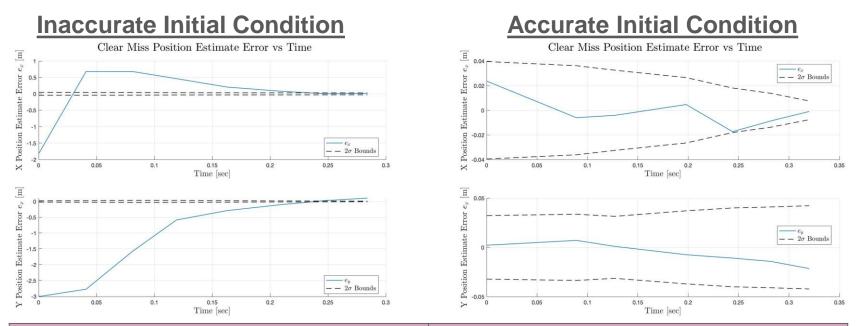
| Criteria                                                                                                                               | Satisfaction                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <b>DR 3.2</b> : System shall be capable of predicting collision probability with state estimation results with 95% confidence interval | Unable to obtain estimation results within 95% confidence. Statistical results consistently lower than the acceptable interval. |
| Level of Success: State Estimation                                                                                                     | Satisfies up to level 2/4 with dynamic<br>consistency chi-squared hypothesis<br>testing not passing                             |






### State Estimation Integration Results




**Expected Results:** State error remains within predicted uncertainty bounds and bounds decrease to within 0.25m

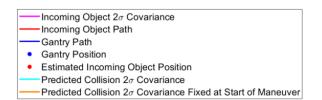
**Results:** State error does not remain bounded, but error remains within diameter of ball

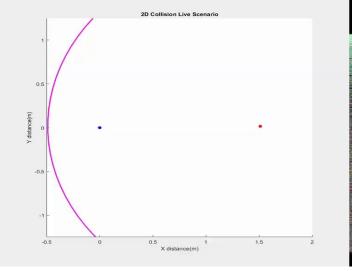


### **State Estimation Integration Results**





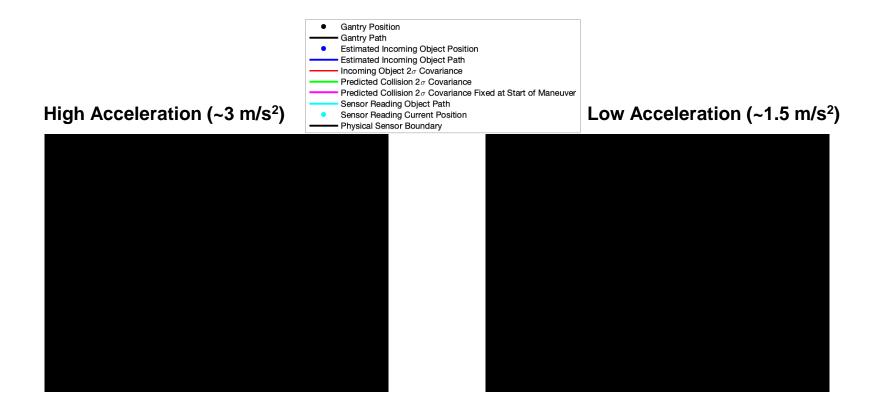

| Criteria                                                                | Satisfaction                                                                                                                             |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DR 3.1</b> : State estimation error shall be within $2\sigma$ bounds | State estimation error within $2\sigma$ bounds with good initial condition                                                               |
| Level of Success: State Estimation                                      | Satisfies up to level 2/4 due to estimator covariance being driven to an avoidable region before collision with a good initial condition |


### Full System Testing



#### Simulated scenario:

- Compare predicted state estimation data and gantry maneuver to live test physical maneuver
  - State estimation data recorded from live test scenario
  - Gantry position recorded via encoder feedback
- Confirm sensor maneuvers outside of collision covariance



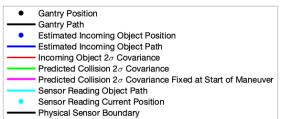



\*Simulated scenario

### Full System Testing Results (Head On)






#### 30

### Full System Testing Results (Near Miss)

#### **Expected Results:**

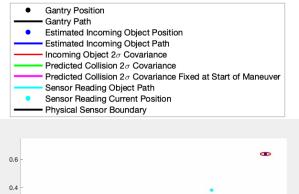
• Maneuver will occur if sensor is located within collision covariance

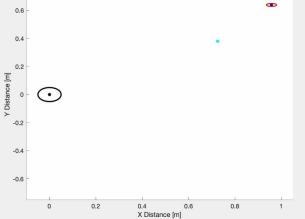
- Maneuver does not occur because sensor is not located within collision covariance
- Out of 10 near miss tests performed, 7 required a maneuver








### Full System Testing Results (Clear Miss)


#### **Expected Results:**

- Maneuver will not occur
  - Sensor located outside of collision covariance

- Maneuver does not occur because sensor is not located within collision covariance
- Out of 10 clear miss tests performed, 0 resulted in maneuver

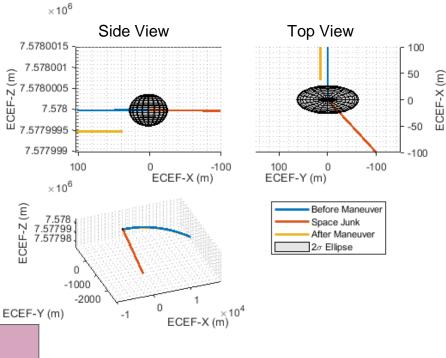
| Criteria                             | Satisfaction                                                                              |  |
|--------------------------------------|-------------------------------------------------------------------------------------------|--|
| Level of Success: Detection          | Level 4/4 reached by ability to detect at speeds up to 2m/s and 20° off centerline        |  |
| Level of Success: State Estimation   | Level 2/4 achieved with $2\sigma$ prediction covariance driven to within avoidable region |  |
| Level of Success: Testbed Simulation | Level 2/2 achieved with testbed simulated                                                 |  |







### **Control Law Scaling Results**


#### **Expected Results:**

- Simulated collision is avoided
- Necessary sensor parameters for orbital detection.

#### **Results:**

- Simulated collision is avoided
- ~ Arcminute pointing accuracy and 70 km range required for avoidance.

# CriteriaSatisfactionLevel of Success: Application<br/>SimulationLevel 4/4 achieved due to improvements<br/>in maneuver planning based on scaled<br/>results

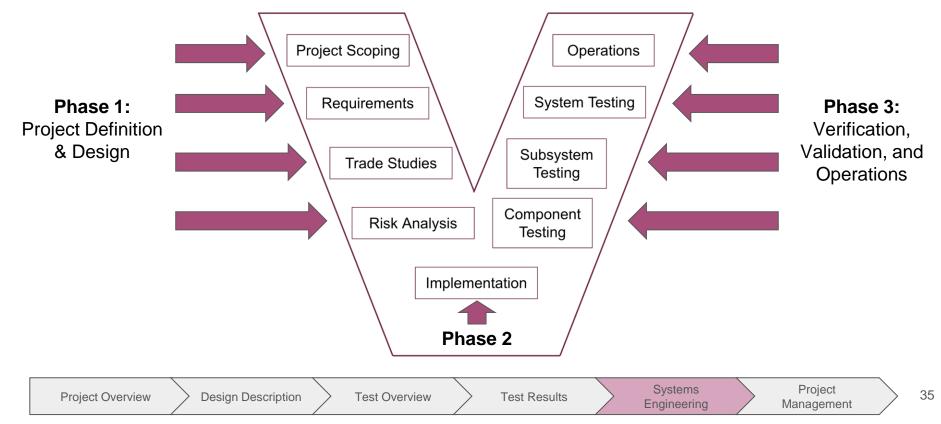


Maneuver Comparison Integrated to Time-of-Collision



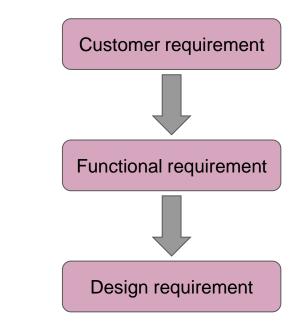
### **Functional Requirement Satisfaction**




| FR                                                                                                                                         | Conducted Tests                                                                                                  | Satisfaction |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------|
| <b>FR1</b> : The test system shall consist of a physical testbed capable of creating relative motion between two objects                   | <ul> <li>Linearity √</li> <li>Velocity/Acceleration testing √</li> </ul>                                         | $\checkmark$ |
| <b>FR2</b> : The test system shall be capable of detecting a live, incoming object                                                         | <ul> <li>Gantry Vibration √</li> <li>Lidar Sensing Testing √</li> <li>Control Law Scaling √</li> </ul>           | $\checkmark$ |
| <b>FR3</b> : The test system shall be capable of determining if a collision will occur                                                     | <ul> <li>Dynamic Consistency X</li> <li>State Estimation Integration X</li> <li>Full System Testing √</li> </ul> | x            |
| <b>FR4</b> : The test system shall be capable of avoiding a physical collision using motion characteristic of a thruster response in orbit | <ul> <li>Thrust Curve Matching √</li> <li>Velocity/Acceleration Testing √</li> <li>Latency √</li> </ul>          | $\checkmark$ |



# Systems Engineering




### V-Diagram Model



### **Project Definition & Design**

- Customer requirements
  - Physical testbed
  - Ability to make recommendations on collision avoidance system for use in satellites
- Functional/Design requirements
  - **Challenge:** identifying timing requirements from each subsystem
- Project scoping
  - Shifted from attempting to scale *all* collision parameters to mimicking thruster motion
  - Shifted to focus hardware on *both* detection and reaction components
  - **Challenge:** identifying what part of project to tackle this year





Test Overview

Test Results

Systems Engineering Project Management



## **Project Definition & Design**

- Trade studies
  - Evaluated following determination of system functionality
  - Identified most important functions and requirements to base trades on
- Risk reduction
  - Risks evaluated based on probability and severity with mitigation plans to lower both
  - "Failure to interface" → mitigated with budget
     to purchase open loop stepper motor drivers
  - "Insufficient data rate"  $\rightarrow$  mitigated with addition of interrupt routines

| Study                  | Result        | Reasoning                                          |
|------------------------|---------------|----------------------------------------------------|
| Sensor                 | LiDAR         | Range & increased<br>FOV over laser                |
| Maneuvering<br>System  | Linear Gantry | Repeatability of tests & capable acceleration      |
| Launching<br>Mechanism | Ramp          | Adaptability to<br>multiple collision<br>scenarios |
| Base Structure         | MDF           | Cost, weight, &<br>ease of<br>manufacturing        |

#### Trade study summary

Project Overview

Design Description

Test Overview

Test Results

Systems Engineering Project Management

37



### Verification, Validation, and Operations

- Tests designed to specifically verify requirement satisfaction
- 1) Test individual components, 2) test as subsystem, 3) test as a system
  - Verify each to allocated requirements

#### Lessons learned

- Requirements and levels of success must be specific and testable
- Better to have a larger number of specific requirements than an all-encompassing requirement
- Many requirements boiled down to software
  - Better familiarize each subsystem with required integration to the software

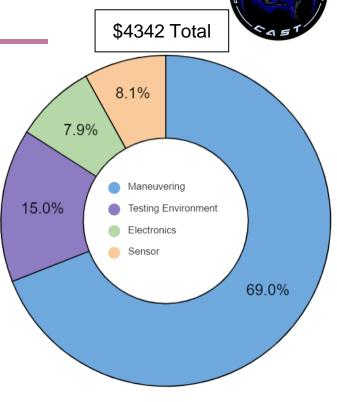


# **Project Management**



## **Project Management Lessons Learned**

Approach:


- Trello Board
- Gantt Chart
- Weekly Quad Charts
- Subteam meetings as needed
- Check-in polls

Lessons Learned:

- (Over-)communicating is critical during WFH
- Starting a task is often the hardest part
- Testing documentation and expectations
- Identify issues early and don't be afraid to ask for help

### Budget

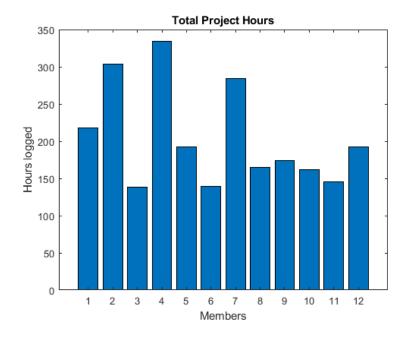
|                        | CDR (\$)               | SFR (\$) | Margin (\$) | Notes                                                  |
|------------------------|------------------------|----------|-------------|--------------------------------------------------------|
| Maneuvering            | 3100                   | 3000     | + 100       |                                                        |
| Testing<br>Environment | 500                    | 652      | - 152       | <ul> <li>Cable Management</li> <li>Shipping</li> </ul> |
| Electronics            | 350                    | 344      | + 6         |                                                        |
| Sensor                 | 330                    | 350      | - 20        | -Tax                                                   |
| Total                  | 4430 (150<br>Shipping) | 4342     | + 88        |                                                        |
| Remaining              | 570                    | 658      | + 88        |                                                        |



Project Overview

Test Overview

Test Results


Systems Engineering Project Management

41

#### Effort Assessment

- Estimate of Total Hours:
  - 2448 logged hrs (20 wks)
  - ~1100 hrs before timesheets (9 wks)
  - Total: 3548 hrs
- Labor (\$65k annual salary): \$110,875
- Materials: \$4661
- Total (No overhead): \$115,536
- Total (200% overhead): \$231,072

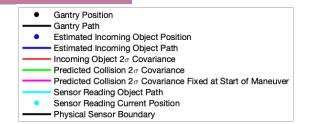


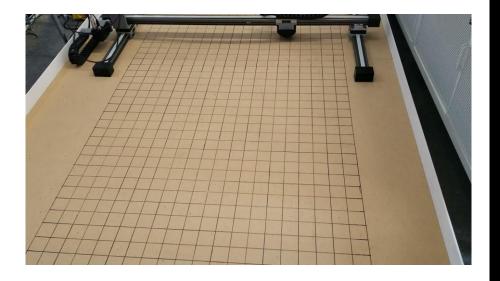


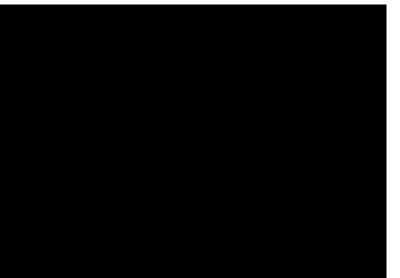
Test Overview

Test Results




## Questions?





# **Backup Slides**

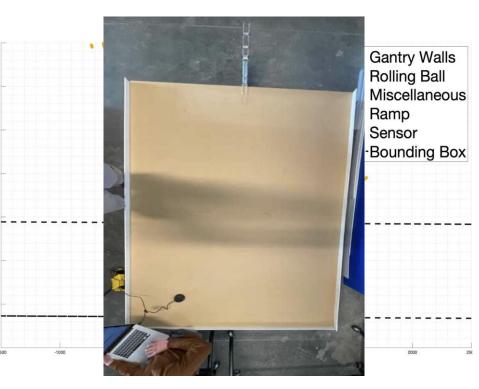
#### **Angled Scenario**










#### Lidar Sensor



**Requirements:** DR 2.1, 2.1.2, 2.2 -Detect an object of at least 50 mm (1.96' diameter at the scale of our testbed, with bounds

Expected Results: 95 x 60 inch testbe Ability to detect object within minimal (100mm inset) bounds

**Results:** 2" diam ball detected in orange with the 85 x 52 inch bounds, short lengt sensed to be 60.2 inch.



### Latency Testing



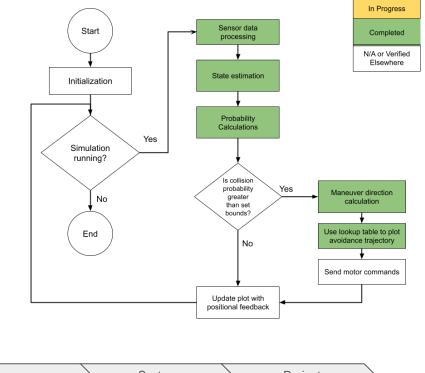
**Requirements:** DR 1.3, 3.3 - avoidance algorithm, maneuvering hardware, & sensor capable of communicating data during test

**Expected Results:** Avoidance algorithm and communications are faster than process time and sampling time

**Results:** Maneuvering process is faster than maximum maneuver process time of 6.3ms

Main loop execution is faster than sensor sampling rate of 0.25ms, all sensor data can be received and processed

| Process   | Latency Source                         | Time<br>Allotment | Mean Result    |
|-----------|----------------------------------------|-------------------|----------------|
| Main Loop | Receive Sensor Data                    | -                 | 0.009±7.8e-5ms |
|           | Estimation/Prediction Step             | -                 | 0.09±0.01 ms   |
|           | Total                                  | 0.25 ms           | 0.099±0.01ms   |
| Maneuver  | Matlab Maneuver Sending                | -                 | 3.95±0.2ms     |
|           | Arduino Command<br>Received and Stored | -                 | 0.055±0.001ms  |
|           | Arduino Step Delay<br>Calculation      | -                 | 1.500±0.001ms  |
|           | Total                                  | 6.3 ms            | 5.50±0.2ms     |


### Software Unit Testing

**Rationale:** Verify that individual functions behave as expected.

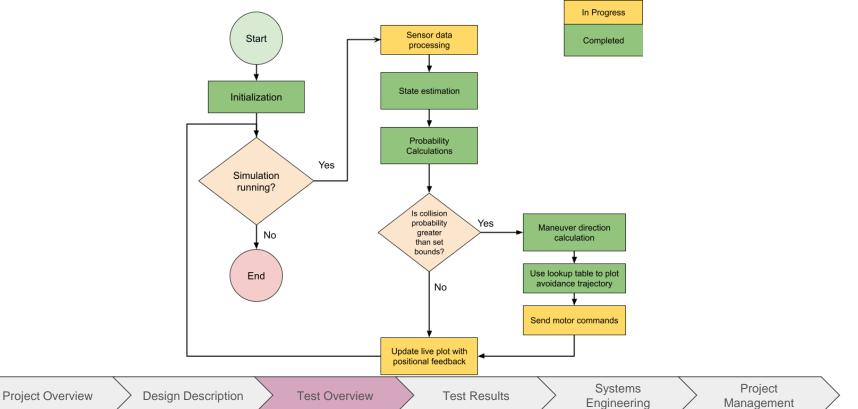
**Procedure:** Each function used is tested for expected inputs and outputs.

**Risk Reduction:** Reduction in required debugging time for final program.

**Expected Results:** Every function tested, every test passing.






**Test Overview** 

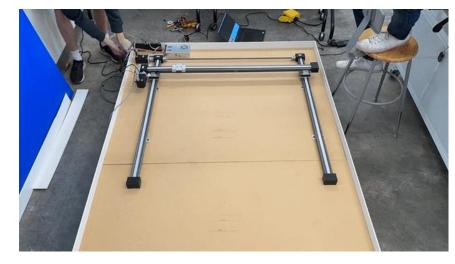




49

#### Software Flowchart





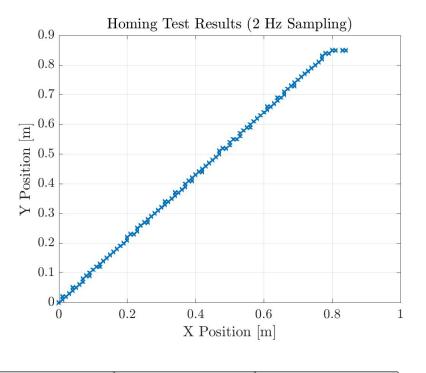

### Command and Control / Position

**Rationale:** FR 4, DR 4.2, 4.3 - Confirm that the gantry can be accurately controlled and encoder positional feedback data is accurate.

**Procedure:** Move gantry, compare actual position to position measured by encoders. Verify full range of gantry.

**Expected Results:** 1.04m x 1.08m maneuvering area






#### Command and Control / Position

**Risk Reduction:** Gantry will be able to maneuver and avoid collision.

**Results:** Verified ability to control gantry, verified maneuvering area, verified encoder feedback at full gantry range.

|        | Actual<br>Position | Encoder<br>Position |
|--------|--------------------|---------------------|
| X Axis | 1.07 m             | 1.01 m              |
| Y Axis | 1.02 m             | 1.02 m              |



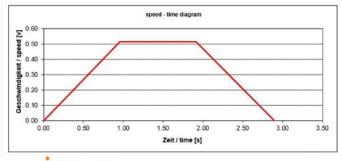
Project

#### Velocity / Acceleration

**Requirements:** FR 4, DR 4.2, 4.3 - Confirm the gantry be moved at velocities and accelerations that will allow for tracking of a representative thrust curve

Equipment/Facilities: Gantry/Electronics

**Procedure:** Move gantry at max acceleration, compare spec'd acceleration to acceleration measured by encoders. Perform along both axes.


#### **Speed Estimate for X-axis**

-Improve technology, reduce costs

drylin® E drive technology - speed



| Strecke         | 5  | 1.000 | mm | Geschwindigkeit                                             | v | 0.515 | m/s  |
|-----------------|----|-------|----|-------------------------------------------------------------|---|-------|------|
| distance        | \$ | 1,000 |    | speed                                                       | • | 30.9  | m/mi |
| Positionierzeit | t  | 2.90  | 5  | Beschleunigung / Verzögerung<br>acceleration / deceleration | а | 0.538 | m/s² |





Test Overview

#### Velocity / Acceleration

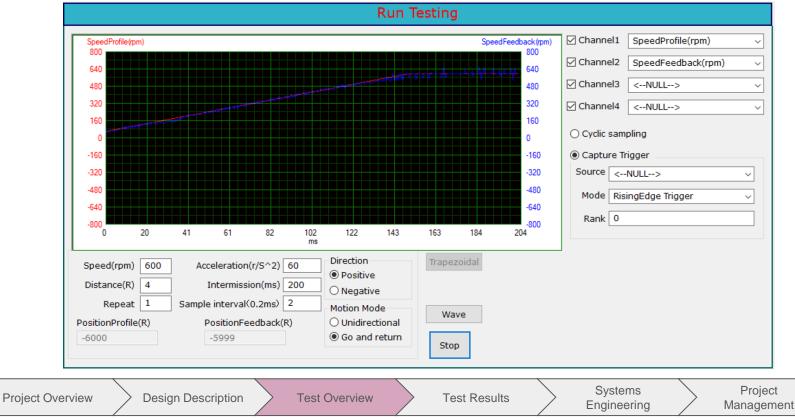



**Risk Reduction:** Gantry is capable of tracking the thrust curve that was designed for.

#### **Expected Results:**

Speed - 553 rpm Acceleration - 9.6 rev/s^2

#### **Results:**


Speed - 560 rpm Acceleration - >50 rev/s^2



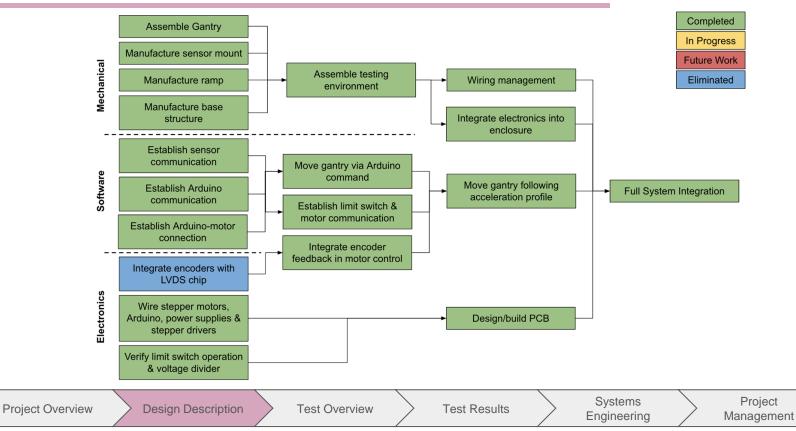




#### Velocity / Acceleration

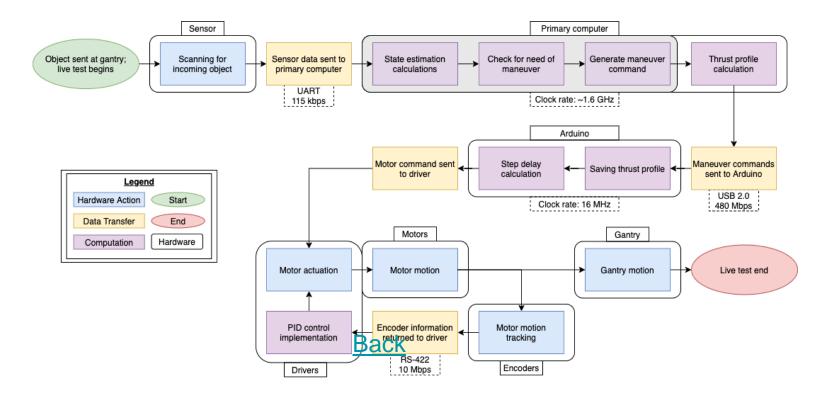


54


#### **Sensor Protector**








#### **Status Overview**



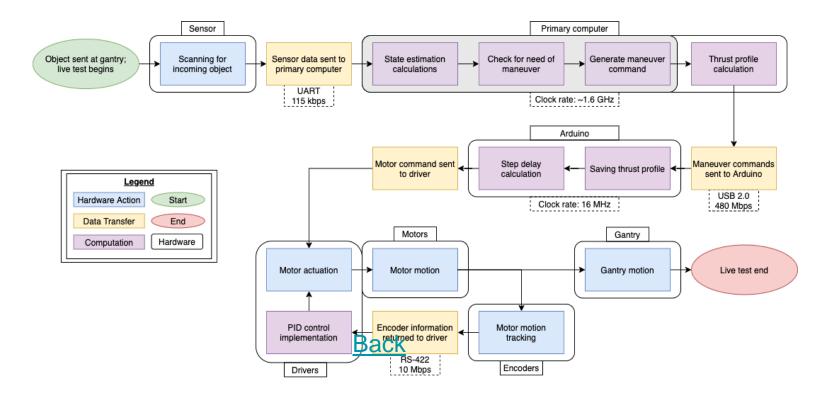
56



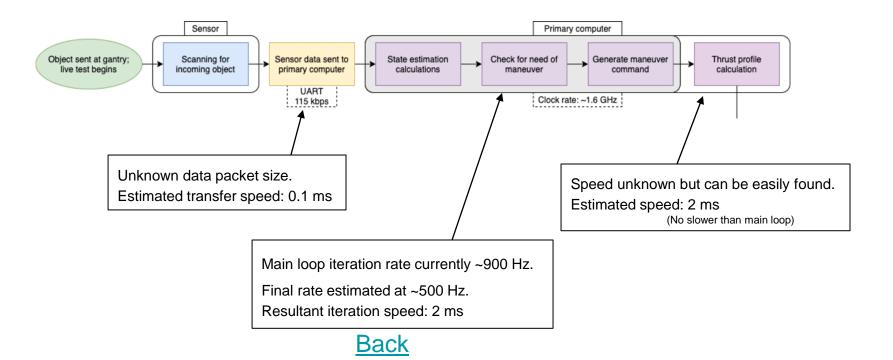




#### Accounting for major time delays:


| Action                                          | Location                            | Expected Timespan |
|-------------------------------------------------|-------------------------------------|-------------------|
| Transfer of sensor data to primary computer     | Sensor-primary computer connection  | 0.1 ms            |
| State estimation; maneuver check and generation | Primary computer                    | 2 ms              |
| Thrust profile pull                             | Primary computer                    | 2 ms              |
| Thrust profile transfer to Arduino              | Primary computer-Arduino connection | 0.13 ms           |
| Saving thrust profile                           | Arduino                             | Negligible        |
| Step delay calculation                          | Arduino                             | 1.4 ms            |
| Generation of motor commands                    | Arduino                             | Negligible        |
|                                                 | <u>Total:</u>                       | 5.63 ms           |

Our need:


$$T_p = \frac{(1 - e^{-1})(\text{maximum distance})}{(\text{maximum speed})} = \frac{(1 - e^{-1})(0.5\sqrt{2})}{(5\sqrt{2})} = 0.063 \text{ s}$$

- Our process time constant is...
- Our delay time (applying a 10% sampling rule) is thus...  $T_d = 0.1T_p = 0.1(0.063) = 0.0063$  s = <u>6.3 ms</u>

