

Collision Avoidance System Testbed

Manufacturing Status Review

Customer: John Reed and United Launch Alliance **Team members**: Trace Valade, Adam Holdridge, Angel Hoffman, Cameron Turman, Conner Martin, Griffin Van Anne, Hugo Stetz, Isaac Goldner, Jason Balke, Reade Warner, Roland Bailey, Sam Hartman **Advisor:** Prof. John Mah

Presentation Outline

- 1. Project Overview
- 2. Schedule
- 3. Manufacturing
- 4. Budget

Project Overview

Project Objectives

- Implement physical 2D demonstration that implements a detect, decide, and react algorithm
 - a. Detect foreign incoming object in detection space of testing environment
 - b. Perform **state estimation** and motion prediction of foreign object
 - c. Develop **control law** that determines **reaction maneuver**, if necessary, in relative frame while mimicking thruster motion
- 2. Prove control law against various collision scenarios with physical demo
- 3. Control law scaled up in simulation to full scale orbital cross-track scenario

CONOPs

Schedule

Manufacturing

Functional Block Diagram

Critical Project Elements

CPE	Reasoning
Electronics	The electrical components are essential for the communication of sensor data as well as maneuvering commands.
Sensing	Appropriate sensing of an incoming object is an essential step in detecting potential collisions and confirming successful avoidance.
Mechanical	A mechanical system must provide an environment to test the state estimation, control algorithm, and physical maneuvering.
State Estimation	A state estimator must be implemented to process raw sensor data. This processed state is used in forward propagation to estimate collision probability.
Control Algorithm	A working control algorithm is necessary to produce a maneuver which ensures successful avoidance.
Maneuver Planning	Without proper acceleration profiling, the avoidance maneuver will not be representative of spacecraft motion.

Baseline Design

Major Updates from CDR

- Ramp material changed from plywood to acrylic
- Increased testbed size to 5 ft width
- Added middle legs support due to increased width of MDF
- Switched side-wall material from plywood to PVC
- Further minor items to be covered in manufacturing status

Levels of Success (1/3)

Project Element	Level 1	Level 2	Level 3	Level 4
Test Environment	Testbed is capable of creating a 1D collision trajectory (no miss scenario)	Testbed is capable of 1D collision with variations in approach speed	Testbed is capable of 2D collision scenario with variations in approach speed and heading	N/A
Detection	Able to detect moving object (>50mm sphere) with an incoming heading at speeds up to 0.25 m/s	Able to detect moving object (>50mm sphere) with an incoming heading at speeds up to 0.5 m/s	Able to detect moving object (>50mm sphere) at speeds up to 1 m/s with a heading +/- 10° of centerline	Able to detect moving object (>50mm sphere) at speeds up to 2 m/s with a heading +/- 20° of centerline

Project Overview	Schedule	\rightarrow	Manufacturing	\geq	Budget	\rightarrow

Levels of Success (2/3)

	Level 1	Level 2	Level 3	Level 4
State Estimation	Able to return estimation of state at current time and predict forward to point of collision	2 sigma prediction covariance driven to within an avoidable region	70% confidence dynamic consistency chi-squared hypothesis testing passes	95% confidence dynamic consistency chi-squared hypothesis testing passes
Avoidance	System can avoid a collision (without tracking acceleration profile input)	Avoidance maneuver follows acceleration profile with <15% error	Avoidance maneuver follows acceleration profile with <10% error	Avoidance maneuver follows acceleration profile with <5% error

Levels of Success (3/3)

	Level 1	Level 2	Level 3	Level 4
Testbed Simulation	Control law simulated for 1D collision profile represented on testing environment	Control law simulated for any 2D collision profile capable of being represented on testing environment	N/A	N/A
Application Simulation	N/A	N/A	Control law scaled up to a single full scale orbital crosstrack scenario	Control law performance improved upon using results from full-scale orbital maneuver scenario results

Scheduling

14

Key

Testing

General

Manufacturing

Electronics

Software

Margin

Critical Path

Gantt Chart - Semester Overview

16

Schedule - Test Plan

	Test	Level	Date TBC	Updates
Launch	ing Mechanism		Feb 05	In Manufacturing
Lidar So	ensor	Component	Jan 25	Completed Jan 25
Softwar	e Unit Testing	Unit Testing Feb 03 for completed code		Testing In Progress
Gantry Characterization Vibration Characterization			Feb 17	
		Subsystem	Feb 19	
Software/Sensor Integration			Feb 12	On schedule for completion
All Full System Tests		Full System	Mar 18	
	Project Overview	Schedule	Manufacturing	Budget

Schedule - Remaining Manufacturing

Subsystem	Necessary Work	Required Tools	Submitted?
Testbed	80-20 ¼" thread tapping	One of the following: - hand - lathe machine - milling machine - tapping machine	Yes
Testbed	Rear axle protector	Band saw	Planned 2/3
Sensing	Sensor Mount	Lulzbot Taz 6	Yes
Electronics	Electronics Enclosure	Lulzbot Taz 6	Planned 2/14
Electronics	PCB manufacturing	Soldering station	Fabrication 2/14 Assembly 2/20

Manufacturing Status

Maneuvering Subsystem Manufacturing Completed

Completed: Delivered, assembled

In Progress: N/A

Remaining: Testing

Identified Issues: Gantry outer dimensions larger than expected, axle support not in plane

Mitigation: Increased testbed size, added bracket for axle support

Schedule

Testing Environment Manufacturing

Completed: MDF cuts, wall cuts

In Progress: Aluminum extrusion tapping for 1/4" thread, rear axle protector

Remaining: Frame assembly and mounting panels

Identified Issues: Acquiring properly sized MDF

Mitigation: Split MDF, added 3 center support legs

In Progress

Schedule

Launching Mechanism Manufacturing

Completed: Ramp cut

In Progress: Base beam tapping for 1/4" thread

Remaining: Mount ramp to 80-20 base beam, testing

Identified Issues: Laser cutting, weight

Mitigation: Switched to acrylic, added standoffs for rigidity

In Progress

Sensing Subsystem Manufacturing

In Progress

Completed: Sensor component level testing

In Progress: 3D printing mount, standoffs for sensor height

Remaining: Assemble sensor mount

Identified Issues: 3D printing overhangs

Mitigation: Sensor mount redesigned

Electronics Housing Manufacturing

Completed: CAD Plans, material selection (ABS), component purchasing

In Progress: Finalizing fastening hardware

Remaining: Manufacture/assemble

Identified Issues: Old design did not fit on 3D printer plate

Mitigation: Box redesign to 11" x 10.5" x 4"

Schedule

Electronics Manufacturing

Completed:

- LiDAR sensor initial testing & MATLAB connectivity
- Limit switch circuit analysis
- PCB first revision

In Progress:

- Low Voltage Differential Signaling receiver analysis
- PCB revisions

Remaining:

- Verify limit switch voltage divider operation
- Wire stepper motors, drivers, power supplies, and Arduino
- Design and assemble final PCB

In Progress

24

Electronics: LiDAR Sensor In Progress

Identified Issue:

• LiDAR sensor motor communication error

Mitigation:

- Health status loop implemented to reset sensor when necessary
- Robotshop company & Slamtec contacted

Project Overview

- If faulty:
 - Return eligible until 2/18
 - Exchange eligible until 3/17

Schedule

Electronics: LVDS Receiver

Identified Issue:

• Encoders require RS-422 receiver prior to Arduino input

Mitigation:

• Low Voltage Differential Signaling receiver prior to Arduino input

Project Overview

• Ordering by 2/5/2021 (2 day shipping)

In Progress

Software Development

In Progress

Identified Issues: Real time processing presents significant risk.

Mitigation: Runtime is being carefully monitored, compilation, multithreading, and pre-computation are available and/or being explored for speed ups.

Project Overview

Progress ompleted

Status Overview

Budget

Cost Plan

		Budget (\$)	Spent (\$)	Expected Further Purchases (\$)	
Maneuv	ering	3100	3000	0	Remaining
Testing Environ	ment	500	541	<50 (Misc. Supplies, Extra Fastening Hardware)	Sensor
Electror	nics	350	312	<100 (PCBs, non-critical components)	Electronics Spent (\$)
Sensor		330	322	0	Testing Environment
Total		4280	4175	<4350	Maneuvering
Remain	ing	720	817		
	P	roject Overviev	v	Schedule	Manufacturing Budget 30

Parts/Material Procurement

Linear Rail Gantry	\$2	2,995.64	T-Slot Framing	\$ 109.61
RPLIDAR A2M8 360° Laser Scanner	\$	319.00	Anti-Slit Leveling Mount	\$ 55.71
Barrel Connector	\$	2.80	Silver Corner Bracket Large	\$ 105.00
CL57T Closed Loop Stepper Driver	\$	113.67	T-Slotted Framing Concelead bracket	\$ 21.60
Arduino Mega 2560	\$	40.00	Hanger for Solid Panels (Wall Bracket)	\$ 49.50
Power plugs	\$	8.98	Inline Pivot	\$ 20.50
Switch/Receptical	\$	6.99	End Caps	\$ 4.80
12AWG Stranded Wire	\$	12.00	T-Slotted Framing End-Feed Single Nut, 1/4"-20 Thread	\$ 27.20
22AWG Stranded Wire	\$	10.00	MDF	\$ 69.82
Ring terminals	\$	2.99	Ramp	\$ 26.58
Switching Power Supply 36v 14a 500W	\$	39.99	Ball	\$ 10.00
Switching power supply - 60W, 12V, 5A	\$	12.99	Fastening Bolts	\$ 34.31
1W Resistors	\$	9.99	Female Threaded Hex Standoff	\$ 6.15

Electronics

Mechanical

Project Overview

Schedule

Manufacturing

Questions?

Backup Slides

Backup Slide Directory

General **CONOPs Block Diagram** V&V Plans **Budget Breakdown Risk Analysis** Requirements Components List Full Test Outline

Maneuvering **IGUS** Quote **IGUS** App Review Past Scaling **Thruster Model** Launching Velocity Vibration Analysis Thermal Analysis **Structural Analysis**

Electronics Wiring Diagram Power Timing Delays PCB Software Planar Deviation Estimation Error Linearizing Measurements

Collision Scenario Varieties

Test cases involve changing aspects of the incoming object's trajectory:

Full System Test Outline

- 1. Launch incoming object along desired trajectory
 - Clear miss cases (maneuver required)
 - Clear collision cases (no maneuver)
 - Case where object won't collide but object covariance ellipse could (Near collision case, maneuver required)
- 2. Sensor outputs data on potential colliding object position and time
- 3. Determine speed, trajectory, and covariance of oncoming object (state estimation)
- 4. Control laws determine:
 - If maneuver is necessary
 - \circ \quad Direction and acceleration of maneuver
- 5. Maneuver plan sent to testbed
- 6. Testbed maneuvers
- Avoidance of colliding object (and its 2σ covariance ellipse) verified through visual confirmation, live plot, and post data analysis (DR 1.5)

Vibration Analysis

- Stepping induced vibration
 Vibration increases with speed
- Main concern is resonance
 - Frequency sweep of beams
- Direction of maximum resonance
- 0.5mm negligible relative to foreign object size (<1%)
 - Vibration will not interfere with object detection

B	<u>a</u>	C	k

Requirement	Satisfaction
DR 2.5: The sensor shall be capable of detecting an object while the maneuvering system is operating	Maximum resonance in beam structure adds 0.5 mm of amplitude to stepping motion

MDF Structural Analysis

38

- Max displacement of 0.014 mm
- FOS > 100 everywhere

Past Scaling Results

Electronics Wiring Diagram

40

Accounting for major time delays:

Action	Location	Expected Timespan
Transfer of sensor data to primary computer	Sensor-primary computer connection	0.1 ms
State estimation; maneuver check and generation	Primary computer	2 ms
Thrust profile pull	Primary computer	2 ms
Thrust profile transfer to Arduino	Primary computer-Arduino connection	0.13 ms
Saving thrust profile	Arduino	Negligible
Step delay calculation	Arduino	1.4 ms
Generation of motor commands	Arduino	Negligible
	<u>Total:</u>	5.63 ms

Requirements

and Satisfaction

Our need:

Project Overview

$$T_p = \frac{(1 - e^{-1})(\text{maximum distance})}{(\text{maximum speed})} = \frac{(1 - e^{-1})(0.5\sqrt{2})}{(5\sqrt{2})} = 0.063 \text{ s}$$

Risk Analysis

Our process time constant is...

Design Solution

Our delay time (applying a 10% sampling rule) is thus... $T_d = 0.1T_p = 0.1(0.063) = 0.0063$ s = 6.3 ms

Critical Project

Elements

Back

42

Project

Summary

Verification and Validation

Action	Location	Expected Timespan
Transfer of sensor data to primary computer	Sensor-primary computer connection	0.1 ms
State estimation and maneuver check and generation	Primary computer	2 ms
Thrust profile pull	Primary computer	2 ms
Thrust profile transfer to Arduino	Primary computer-Arduino connection	0.13 ms
Saving thrust profile	Arduino	Negligible
Step delay calculation	Arduino	1.4 ms
Generation of motor commands	Arduino	Negligible
Transfer of motor commands to drivers	Arduino-driver connection	Negligible
Motor actuation	Drivers	Negligible
Motor motion	Motors	0
Motor motion tracking	Encoders	0
Encoder information returned to driver	Encoder-drivers connections	Negligible
PID control implementation	Drivers	Negligible
Updated motor actuation	Drivers	Negligible
Updated motor motion	Motors	0
Gantry motion	Gantry	0
	<u>Total:</u>	<u>5.63 ms</u>

Project Overview

Project

Summary

47

Design Requirements

Requirement	Parent Requirement	Requirement Text
DR1.1	FR1	The test system shall be capable of creating various trajectories of the incoming object to create a collision or miss scenario
DR1.2	FR1	The incoming object trajectory shall be within the plane of collision. In other words, the trajectory of the avoidance maneuver and the incoming object will reside within the same 2D domain.
DR1.3	FR1	The test system shall be fully functional after repeated detect and react procedures, where full functionality is defined as the ability to sense position and velocity data for an incoming object, integrate this data into the avoidance algorithm software, and perform an avoidance maneuver
DR1.4	FR1	The total cost of the test bed system shall be less than \$5000
DR1.5	FR1	The incoming object shall maintain constant velocity to within 5% of its initial velocity upon launch

Project

Design Requirements

Requirement	Parent Requirement	Requirement Text
DR2.1	FR2	The sensor shall be capable of detecting one incoming object
DR2.1.2	FR2	The sensor shall be capable of sensing an incoming sphere of 50mm or greater diameter
DR2.2	FR2	The sensor shall be capable of returning distance and bearing measurements of the incoming object
DR2.3	FR2	The sensor shall be capable of sensing within a preset domain of a 2x1 meter rectangle
DR2.4	FR2	The sensor field of view shall be at least 30 degrees
DR2.5	FR2	The sensor shall be capable of detecting an object while the maneuvering system is operating
DR2.6	FR2	The detection sensor sampling rate shall be high enough to drive the 2 sigma covariance ellipse into an avoidable region, where the avoidable region is defined as the 2D domain of the max distance the maneuvering system can operate in at any given time until collision
DR2.7	FR2	A reorientation maneuver shall not be required for the test system to sense an incoming object

Project

Design Requirements

Requirement	Parent Requirement	Requirement Text
DR3.1	FR3	The test system avoidance algorithm shall be capable of estimating the state of an incoming object from sensor data, with state estimation error less than the 2 sigma estimate bound
DR3.2	FR3	The test system avoidance algorithm shall be capable of predicting collision probability from state estimation data
DR3.3	FR3	The test system avoidance algorithm, maneuvering hardware, and sensor shall be capable communicating data between subsystems
DR4.1	FR4	The test system shall be capable of receiving and acting upon maneuvering commands based on received sensor data as an object is incoming (a live scenario)
DR4.2	FR4	The test system shall generate sufficient force to avoid a collision with the covariance ellipse of the incoming object state estimation for a subset of the possible relative velocities (0m/s to 2m/s)
DR4.3	FR4	The test system shall produce a maneuver that does not deviate more than 5% in acceleration from a chosen scaled orbital response acceleration curve

Project Overview

Project

Electronics: Power (Encoder)

Electronics: Power (Stepper Motor Driver)

Electronics: Power (Stepper Motor)

Electronics: Power (Sensor & Arduino)

Electronics: Power (Limit Switches)

Planar Deviation Analysis

Purpose:

• Can the full-scale collision be accurately scaled to a 2D rectilinear test-bed?

Assumptions:

- Both objects orbiting at same altitude
- Both objects in circular orbits
- Simplified 2-body problem without perturbations

Results:

- Under 100s \rightarrow R² of 0.999, max deviation of 4°
- Small planar deviation
- Very linear relative motion
- Accurate 2D representation of 3D environment for 100 seconds is feasible

Linearizing Measurements

- Conversion from polar to cartesian yields statistical bias
- De-bias measurement covariance before running through linear KF
- Condition error statistics on state prediction

Credit: buffalo.edu

Lianmeng Jiao, Quan Pan, Xiaoxue Feng, Feng Yang. A robust converted measurement Kalman filter for target tracking. 2012 31st Chinese Control Conference (CCC), Jul 2012, Hefei, China. pp.3754-3758 hal-01081009

Requirement	Satisfaction
DR 3.1: The test system avoidance algorithm shall be capable of predicting collision probability from sensor data	We can use direct sensor measurements if we debias the conversion to cartesian

Project Overview

Critical Project Requirements and Satisfaction

Elements

Risk Analysis

Project Summary

57

Back

Thruster Blowdown Model

- MR-107s hydrazine monopropellant thruster
 - Selected due to available thrust and current use on orbit
- Thrust computed over time based on blowdown model
 - Results indicate approximately linear decrease in thrust over ~30s burn

Requirement	Satisfaction
DR 4.3: The test system shall produce a maneuver that does not deviate more than 5% in acceleration from a chosen scaled orbital response acceleration curve	Acceleration of stepper motor maneuvering system can be modelled off of an approximately linearly decreasing acceleration to maintain <5% acceleration error
	Back

58

Electronics: Timing

Accounting for major time delays:

Action	Location	Expected Timespan
Transfer of sensor data to primary computer	Sensor-primary computer connection	0.1 ms
State estimation; maneuver check and generation	Primary computer	2 ms
Thrust profile pull	Primary computer	2 ms
Thrust profile transfer to Arduino	Primary computer-Arduino connection	0.13 ms
Saving thrust profile	Arduino	Negligible
Step delay calculation	Arduino	1.4 ms
Generation of motor commands	Arduino	Negligible
	<u>Total:</u>	5.63 ms

Our need:

$$T_p = \frac{(1 - e^{-1})(\text{maximum distance})}{(\text{maximum speed})} = \frac{(1 - e^{-1})(0.5\sqrt{2})}{(5\sqrt{2})} = 0.063 \text{ s}$$

- Our process time constant is...
- Our delay time (applying a 10% sampling rule) is thus... $T_d = 0.1T_p = 0.1(0.063) = 0.0063$ s = <u>6.3 ms</u>

Back

Project