

1

<u>Team</u>: Chad Eberl, Matthew Fromm, Timothy Kiley, Tony Ly, Haoyu Li, Andrew McBride, Noel Puldon, Keegan Sotebeer, Morgan Tilong <u>Customer</u>: Henry "Lad" Curtis (Sierra Nevada Corp.) <u>Advisor</u>: Dr. Jelliffe Jackson

Project Overview

Project Motivation

3

- With the growing industry for CubeSats a method of capturing an uncontrollable CubeSat is desirable.
- Existing CubeSats have little or no propulsive capabilities, with no ability to change the orbit drastically and leaving them stuck if major failures occur.
- Sierra Nevada Corporation would use a capture device and vision system in order to recover and repurpose CubeSats.

Project Statement

Team CASCADE will demonstrate the implementation of an algorithm to **autonomously** capture a rotating 3U CubeSat model.

In order to accomplish this goal, Team CASCADE will design and build a CubeSat Recovery System Testbed (**CRST**) used to validate both the **algorithm** and a physical **capture device**.

Overview Schedule	Manufacturing	Budget	> 4
-------------------	---------------	--------	-----

0.) Initiation of Demonstration

- Arm stowed in zero torque configuration
- Vicon Cameras start transmitting data to LabView on a personal Laptop
- LabView used to start the rotation of the CubeSat
- CubeSat starts 1 meter away

 Overview
 Schedule
 Manufacturing
 Budget
 5

1.) Move to Axis of Rotation

- Using Vicon data the axis of rotation will be calculated in LabView
- Commands are sent to the arm to move the end effector to the axis of rotation

2.) Translate CubeSat

- This phase represents the closing of the relative position between the CubeSat and Capture device
- In space thrusters would be used to approach the CubeSat

3.) Wrist Rotation

 Using Vicon Data the wrist will be sent commands to match the rotation of the CubeSat.

4.) Extend Arm

- Using Vicon data the arm will be sent commands to position the end effector over the CubeSat model.
- End effector moves along the axis of rotation.

5.) Claw Closure

• Finally the claw is closed on the CubeSat surface, capture is confirmed, servo and motors are stopped, and the CubeSat is held for 5 minutes until released.

Functional Flow Diagram

Design Solution

Hardware Block Diagram

SIERRA NEVADA

CORPORATION

Critical Project Elements

Critical Project Element	Component
The CRST shall determine the axis of rotation and relative attitude of the CubeSat.	Software and Vision
The robotic arm will operate within safe limits.	Software and Control
The robotic arm shall travel along the axis of rotation as it approaches the CubeSat.	Software and Control
The CRST will confirm capture through the use of the robotic arm's tactile feedback.	Software, Mechanical, and Electrical

Overview

Executive Summary

Changes from MSR

- ✤ AOR Calculation Methodology
- Force Sensor Signal Conditioning Chip

* <u>Schedule</u>

On schedule overall Behind on 1 task → FSR to Arm Integration

✤ <u>Budget</u>

\$4460.64 Spent ~11% Margin

Test bed fully set up in the VICON Lab

Schedule

Schedule Overview

Schedule Overview

SIERRA NEVADA

Summary of Tasks

Completed:

- Full Testbed Manufacturing
- Electrical Housing and wiring
- Force Sensor Calibration Tests
- AOR and Position Tests in VICON
- Arm Accuracy Testing in VICON

Behind Schedule:

• Force Sensor to Gripper Integration

Future Testing Needed...

- Arm Characterization Testing
- Confirm Capture Tests
- Closed Loop Linear Rail Tests
- Wrist Matching CubeSat Tests
- Step Checking Tests

Estimated Hours for in Progress Tasks: 50 hrs

Testing

Overview	Schedule	Testing	Budget	>19

<u>V & V Overview</u>

Major Initiatives

- Requirements Verification
 Inspection
 Test
 Analysis
 Demonstration
- Model Validation
 Arm Accuracy
 AOR Determination
 Phase Timing

Space Systems

Anatomy of a Test Plan

- Identifier
- ✤ Title
- Objectives
- Data Collection
- Impact of Pass/Fail
- Equipment List
- Misc. Notes
- Procedures
- Results

Testing

Overview

Schedule

Budget	>20

Test Fixtures and Facilities

- Facility
 - RECUV Indoor Flying Robot Lab Fleming Building of CU
- Test Fixtures
 - 11 Bonita-10 VICON Cameras

VICON Camera Setup

Testing Overview

Requirement Verification Matrix

			Varification
Req. #	Туре	Requirement	Method
1.0	FR	The CubeSat Recovery System Testbed (CRST) shall demonstrate the successful capture of a physical CubeSat model.	D
1.1	FR	The CRST shall demonstrate the motion of a CubeSat analogue during the demonstration.	D
1.1.1	DR	The CubeSat analogue shall include a physical model of a 3U CubeSat.	I
1.1.1.1	DR	The physical model of a 3U CubeSat shall have dimensions as specified in Figure 1.	I
1.1.1.2	DR	The physical model of a 3U CubeSat shall include at minimum one significant protrusion to representing solar panel(s).	I
1.1.1.3	DR	The physical model of a 3U CubeSat shall have a mass of 3 ± 0.3 kg.	I
1.1.2	DR	The CubeSat analogue shall allow for translational motion about one axis.	Ι
1.1.2.1	DDR	The CubeSat analogue shall employ a minimum torque of 0.51 Nm to translate the CubeSat model.	Т
1.1.3	DR	The CubeSat analogue shall allow for rotational motion about one axis.	I
1.1.3.1	DR	The axis of rotation of the CubeSat model shall be about its major axis at 3 ± 0.3 deg/s.	Т
1.1.3.2	DDR	The CubeSat analogue shall employ a minimum torque of 0.14 Nm to rotate the CubeSat model.	Т
1.2	FR	The CRST shall determine the relative position and attitude between the CubeSat and capture device during the demonstration.	Т
1.2.1	DR	The CRST shall gather positional data from each control point(servo) on the capture device.	А
1.2.2	DR	The CRST shall communicate with a vision system to sense the initial conditions and motion of the CubeSat.	Т
1.2.3	DR	The CRST shall determine the axis of rotation of the CubeSat model.	Т
1.2.4	DR	The CRST shall determine the relative linear position of the CubeSat model.	Т
1.2.5	DR	The CRST shall calculate the desired capture location and orientation.	т
1.3	FR	The CRST shall command the motion of the capture device during the demonstration.	Т
1.3.1	DR	The commands sent for capture device motion shall be within control point(servo) performance limits.	Т
1.3.1.1	DDR	The CRST shall send commands to the capture device at a minimum rate of 10.5 Hz.	т
1.3.1.2	DDR	The CRST shall run its control loops at a minimum rate of 13.4 Hz.	т
1.3.2	DR	The end effector shall align with the CubeSat's spin axis, and remain aligned until the end of the capture sequence.	D
1.3.3	DR	The capture device shall not collide with the supporting structure or itself. 2	4 D
1.3.3.1	DR	The capture device shall be constrained to performed along the ranges specified in Table 1.	D

Requirement Verification Matrix – cont.

			Verification
Req. #	Туре	Requirement	Method
1.4	FR	The CRST shall execute capture of the physical CubeSat model autonomously during the demonstration.	Т
1.4.1	DR	The CRST shall include a physical capture device used to capture the physical CubeSat model.	I
1.4.1.1	DR	The capture device shall occupy no more volume than the payload bay shown in Figure 2.	I
1.4.1.2	DR	The capture device shall have a mass budget of 15kg.	I
1.4.1.3	DR	The capture device shall have an average power of no more than 100W.	Т
1.4.1.4	DR	The capture device shall have a peak power of no more than 168W.	Т
1.4.1.5	DR	The capture device shall have a peak current draw of no more than 10A.	Т
1.4.1.6	DR	The capture device shall have a peak voltage draw of no more than 28V \pm 6V unregulated.	Т
1.4.1.7	DDR	The end effector of the capture device shall have a minimum grip strength of 8.9 N.	Т
1.4.1.8	DR	The end effector of the capture device shall be capable of movement in 3D space.	D
1.4.1.9	DR	The capture device shall be able to release from the CubeSat after capture without human intervention.	I
1.4.1.10	DR	The capture device shall be able to confirm the capture of the CubeSat with tactile feedback without human intervention.	т
1.4.2	DR	The demonstration shall begin at a minimum distance of 1m between the physical CubeSat model and the capture device.	I
1.4.3	DR	The CRST shall capture the CubeSat with the capture device in less than 30 minutes.	D
1.4.4	DR	The CRST shall capture the CubeSat without visible damage to the CubeSat nor the capture device.	I
1.4.5	DR	The CRST shall allow for five repeated demonstrations.	D
1.4.6	DR	The CRST shall hold the CubeSat with the capture device for a minimum of five minutes after capture confirmation.	I
		The demonstration shall begin at a measurable horizontal distance offset between the base of the capture device and the translation	
1.4.7	DR	axis of the CubeSat model.	<u> </u>
		The demonstration shall begin at a measurable vertical distance offset between the base of the capture device and the translation	
1.4.8	DR	axis of the CubeSat model.	I

Capture Device Testing

Overview Schedule Testing Budget 26

Arm Control Accuracy Test

Objectives

- Ensure that robotic arm can be commanded within allowable position error during phases 1 and 4 of capture sequence
- Validate robotic arm control model

Key Requirements

- FR 1.3 CRST shall command the motion of the capture device during the demonstration
- DDR 1.3.1.1 CRST shall send commands to capture device at a minimum of 10.5 Hz

How it Reduces Risk

• Shows that the arm can move to a commanded position within error limits that will keep it from crashing into CubeSat or itself

Associated Model: Arm Control Model

Overview Schedule Testing Budget	Overview	Schedule	Testing	Budget	27

Arm Accuracy Test Setup

Location: RECUV Motion Capture Lab

SIERRA NEVADA

Space Systems

CORPORATION

Arm Accuracy Test: Phase 1 Results

Overview

Schedule

Budget

Time (s)

29

Arm Control Characterizing

- Force of gravity acting on arm is causing slop in the turntable and joint servos, forcing the end effector to droop down in the Z direction
- Forward kinematics does not account for this, so the arm "thinks" it is in the right place

Mitigation Plan

- Characterize Z position error as a function of (X,Y,Z) position through empirical testing
- Use this characterization to offset arm control commands in software

Test Procedure

- Same setup and data collection as arm accuracy test using VICON
- Test end effector position while extending along X axis at varying Y and Z positions

Each data file involves extending in X direction for particular Y-Z test point

Overview	Schedule	Testing	Budget	> 30
----------	----------	---------	--------	------

Subsystem Testing

CubeSat AOR Position

Objectives

- 1. Verify CubeSat AOR position determination algorithm
 - Functionality
 - Calculation Completion Time
 - Characterize error and standard deviation
- 2. Characterize behaviors of VICON (dynamic noise, unexpected behaviors)

Key Requirements

- FR 1.2 The CRST shall determine the relative position and attitude between the CubeSat and capture device during the demonstration.
- DR 1.2.1 The CRST shall gather positional data from each control point on the CubeSat.
- DR 1.2.4 The CRST shall determine the relative linear position of the CubeSat model.

How it Reduces Risk

• Proves that the algorithm calculates an accurate and safe prediction of the CubeSat's position for capture during phases 1 and 4

Overview	Schedule	Testing	Budget	>32

VICON AOR Position Setup

Location: RECUV Motion Capture Lab Duration: 2 Hour Test

Objective: Verify determination algorithm

- Functionality
- Completion Time (x1)
- Characterize error & standard deviation

Assumption: Position is the CubeSat's C.G. Stationary CubeSat

Data to be Collected	Data Source
Determined Position (x,y,z)	VICON
True Position (x,y,z)	VICON

Equipment: Rotation Testbed, 20 IR spheres

Force Sensor Calibration Test

- As Seen By the Oscilloscope scope
- Vout = -0.0065 * force + 12.20
- When Calibrated 1.2V = 9.2V and 9.2 = 0V giving us a range of 8V
- Coefficient of Variation = 0.94

Force (grams)	Vo
300	9.2
400	9.2
500	9.2
600	9.0
700	8.2
800	7.6
900	6.6
1000	5
1200	4.2
1400	3.4
1600	1.2

Overview	Schedule	Testing	Budget	>3
----------	----------	---------	--------	----

Closed-loop Testing

Capture Confirmation Test

Objectives

- Use the calculated force required to act as the threshold for shutdown of the gripper servos
- Confirm that servos stop when reaching the force threshold at aligned and offset positions
- Confirm that the gripper has a hold of the CubeSat

Key Requirements

- FR 1.4 The CRST shall execute capture of the physical CubeSat model autonomously during the demonstration
- DR 1.4.1.10 The capture device shall be able to confirm the capture of the CubeSat with tactile feedback without human intervention
- DR 1.4.6 The CRST shall hold the CubeSat with the capture device for a minimum of five minutes after capture confirmation

How it Reduces Risk

 Testing the shutoff of the servos at the appropriate force and the grip on the CubeSat ensures that the capture will not result in damage to the capture device and that the capture device will successfully maintain a hold on the CubeSat

Associated Model: Minimum Grip Force

Capture Confirmation Test: Setup

<u>1.)</u>

Location: RECUV Motion Capture Lab

Testing Procedure:

<u>1.</u>

- Line up the gripper to be as close to the center of the CubeSat as possible
- Ensure that the servos shut off when the appropriate force is reaches by reading the force sensor data

<u>2.</u>

 Test with the gripper purposefully misaligned and show that the servos shut off at different times

Data Sources	Sampling Rate	Data Collected
LabVIEW		Force Generated
Force Sensor	~ 100 Hz	Voltage (V)
Dynamixel	~28 Hz	Joint Angle
Gripper Servos		Torque
Overview		Schedule

Full Integration Testing

Objective: Integration leading up to final demonstration – **Highest level of success**

Phase Checks/ Commands Testing

Objectives:

- Verify functionality of autonomous algorithm
- Verify each loop runs at least the required rate.

Requirements:

- 1.4--The CRST shall execute capture of the physical CubeSat model autonomously during the demonstration.
- 1.3.1.1: CRST shall send commands to the capture device at a minimum rate of 10.5 Hz
- 1.3.1.2 CRST shall run its control loops at a minimum rate of 13.4 Hz

How it Reduces Risk

- Validates that each step of capture sequence can be performed autonomously
- Increases confidence for final integration

		_		
Overview	Schedule	Testing	Budget	40

Phase Checks/ Commands

Objectives: Verify functionality of autonomous algorithm **Location**: RECUV vision lab **Duration**: 8 Hr

Test Procedure:

- 1. Start program for phase 1
- Once phase 1 completes, compare to phase check results(i.e. desired command vs actual result)
- 3. Check loop rates
- 4. Continue for remaining 4 phases.

Loop	Predicted Rate	Requirement
VICON	100 Hz	10.5 Hz
Arm	28 Hz	13.4 Hz
TestBed	~100 Hz	13.4 Hz

Budget

Overview

Schedule

Testing

Final Test

Objective: Verify integration of subsystems for the final Demonstration **Requirements**: 1.0--The CubeSat Recovery System Testbed (CRST) shall demonstrate the successful capture of a physical CubeSat model. **Location**: VICON Lab

Budget

Budget Update

Additional Procurements since MSR:

Extra Force Sensing Resistors: Delivered

3D Printed Ball Joints and Hinges: Delivered

Vicon Reflective Spheres: **Delivered**

Estimating Spending at MSR: \$4,437.77 Total Spending: \$4,460.64 (11% Margin at TRR)

Future Procurements \$173.85 allotted for printing

Updated Budget Estimate

Budget Status

<u>Conclusion</u>

Thanks for your time!

Acknowledgments: Our Customer Henry "Lad" Curtis Sierra Nevada Corporation

Faculty Advisor: Jelliffe Jackson Robotics Help: Nikolaus Correll CU Faculty and Staff

Budget Status

Component	Cost at MSR	Actual Cost	Projected Cost	Difference
CubeSat Model	\$101.68	\$133.53	\$0.00	-\$31.85
CS Rotation Frame	\$192.26	\$208.60	\$0.00	-\$16.34
CS Rotation Motor	\$695.01	\$695.01	\$0.00	\$0.00
CS Translation Frame	\$124.92	\$124.92	\$0.00	\$0.00
Arm Mount	\$64.42	\$70.07	\$0.00	-\$5.65
Pro Series Arm	\$2492.60	\$2492.60	\$0.00	\$0.00
Gripper and FSR circuit	\$243.30	\$217.20	\$0.00	\$26.10
Vicon Reflective Spheres	\$0.00	\$140.00	\$0.00	-\$140.00
Shipping	\$182.63	\$211.61	\$0.00	-\$28.98
Printing	\$341	\$167.15	\$173.85	\$0.00
Total:	\$4437.77	\$4460.64	\$173.85	-\$196.72

Overview	Schedule	Manufacturing	Budget	47
----------	----------	---------------	--------	----

CubeSat Ballasting

49

Budget

- Inspection: CubeSat C.G. within tolerable limits and no ballasting is needed
- Have not quantified to a degree of accuracy what the C.G. offset is
- A test would consist of sweeping through focal points to find C.G. and measuring offset to within ± .01"

Overview

Schedule

Testing

Arm Accuracy Error

Error Budget:

	AOR Determination	Arm Control	Total
X Position	± 0.1 cm	± 1.31 cm	± 1.41 cm
Y Position	± 0.5 cm	± 0.91 cm	± 1.41 cm
Z Position	± 0.2 cm	± 2.3 cm	± 2.5 cm

_	_	_			
	Overview	Schedule	Testing	Budget	>50

Ball Joint Friction Test

Objectives

 Obtain the static frictional coefficient of the ball joint with force sensor from angle of repose measurements Space Systems

• Determine the required torque to keep hold of the CubeSat

Key Requirements

- FR 1.4 The CRST shall execute capture of the physical CubeSat model autonomously during the demonstration.
- DR 1.4.1.10 The capture device shall be able to confirm the capture of the CubeSat with tactile feedback without human intervention.
- DR 1.4.1.7 The end effector of the capture device shall have a minimum grip strength of 8.9 N.

How it Reduces Risk

 Testing the static friction of the ball joint helps to confirm that the capture device will be capable of holding onto the CubeSat with the given torque capabilities

Associated Model: Minimum Grip Force

Ball Joint Friction Test

Location: Senior Projects Room

Testing Procedure:

- Force sensor on ball-joint is placed on CubeSat face analog
- The face analog is raised in elevation until the force sensor slides down
- 25 tests are conducted to find the mean and standard deviation
- Tangent of the angle of repose gives static friction coefficient

Mean: 22.58°

Standard Deviation: 1.15°

<u>Coefficient of Friction \mu = Tan(\theta) 0.4159 ± 0.0201</u>

Overview

Testing

Updated Claw Torque Required

- Capture Time (δt) is greater
 than 0.01 seconds
- d = distance from CG to outer surface of CubeSat = 1.87"
- $\blacktriangleright \delta \omega$ = CubeSat speed = 0.05 rad/s

Minimum Force Required

2.227 lbf	Max Required	Servo Stall	Margin
Maximum Force Required	Torque	Torque	
2.494 lbf	125.29 oz-in	226 oz-in	44.56%

Overview Schedule Testing Budget

CubeSat Translation Testing

Overview	Schedule	Testing	Budget	> 54
				/

CubeSat Stationary Position Failure

Unexpected Results & Conflicts

- 1. VICON dynamic data was too noisy for the algorithm
 - Numerical differentiation is an <u>unstable</u> method
 - Shorter time intervals leads to instability
- 2. LabVIEW's Matlab Script node decreases loop time

Key Requirements Affected

- FR 1.2 The CRST shall determine the relative position and attitude between the CubeSat and capture device during the demonstration.
- DR 1.2.1 The CRST shall gather positional data from each control point on the CubeSat.
- DR 1.2.4 The CRST shall determine the relative linear position of the CubeSat model.

Impact

- Algorithm cannot handle dynamic data that contains high frequency noise at 100 Hz
 - A modified or new algorithm must be developed

Solution Attempts

- 1. Ensuring correct data stream, ensuring algorithm functionality within model
- 2. Increasing loop speed
- 3. Applying a digital filter to eliminate high frequency noise
 - Slow and not smooth enough
- 4. Utilizing different numerical differential methods
- 5. Modified TNB frame development strategy, but not developed

Overview Schedule Testing Budget	>55
----------------------------------	-----

CubeSat Stationary Position Failure

- TNB Frame Instability
- Closest Intersection Prediction Inaccurate
- A.O.R. prediction not successful

56

VICON Position Error Tolerance

• Similar to Arm Accuracy

Test

Allowable Maximum Error				
X Position	Y Position	Z Position		
±2.5 cm	±1.41 cm	±1.41 cm		

Measurem	ent Error Bars

VICON Camera System	±3mm (VICON noise + sphere
	placement error)

VICON Position Results – Physical Setup

58

Overview Schedule Testing Budget

VICON Position Results Butterworth Filter

59

Budget

Info X (mm) Y (mm) Z (mm) Raw Noise ~ 0.2 ~ 0.3 ~ 0.15 R.M.S. 0.1459 0.1849 0.5557

Testing

Schedule

Overview

CubeSat Stationary Orientation Test

Objectives

- 1. Verify the A.O.R. & Orientation algorithm
 - Functionality
 - Calculation Completion Time
 - Characterize error and standard deviation

Key Requirements

- FR 1.2 The CRST shall determine the relative position and attitude between the CubeSat and capture device during the demonstration.
- DR 1.2.2 The CRST shall communicate with a vision system to sense the initial conditions and motion of the CubeSat.
- DR 1.2.3 The CRST shall determine the axis of rotation of the CubeSat model.

How it Reduces Risk

- Proves that the algorithm calculates an accurate and safe prediction of the CubeSat's axis of rotation and orientation for capture during phases 1 and 4.
 - Minimizing alignment error of end effector
 - Minimizing phase error of wrist rotator

Overview	Schedule	Testing	Budget	60

<u>Closed Loop Position Control</u> Testing

Objectives

 Ensure that the translation system is capable of moving a commanded distance using position feedback from VICON system

Key Requirements

- DR 1.1.2 The CubeSat analogue shall allow for translational motion along one axis
- DR 1.2.3 The CRST shall determine the relative linear position of the CubeSat model

How it Reduces Risk

• Ensures that the CubeSat will reach the commanded position along the linear rail and is not in danger of crashing into the arm during final integration

Associated Models: CubeSat translation control model

$\overline{\ }$	Overview	Schedule	Testing	Budget	> 61
				/	1

<u>Closed Loop Position Control</u> <u>Testing Setup</u>

Location: RECUV Motion Capture Lab

8x Reflector Spheres for CubeSat position feedback from VICON

Input	Data to be	Data	Sampling
Command	Collected	Source	Frequency
Change in X position	CubeSat position (X,Y,Z)	VICON	~85 Hz

 Wand
 Overview
 Schedule
 Testing
 Budget
 62

Closed Loop Expected Results

Space Systems

- Input: 1 meter step command
- Expected accuracy: ±1 mm due to noise in VICON system
- Expected loop rate: 166 Hz

Overview	Schedule	Testing	\rangle

CubeSat Rotation Testing

Testing

Overview Schedule		
-------------------	--	--

CubeSat A.O.R. & Orientation Testing Setup

Location: RECUV Motion Capture Lab Duration: 3.5 hour Test

Objective: Verify the A.O.R. & Orientation algorithm

- Functionality
- Calculation Completion Time
- Characterize error and standard deviation

Assumption: Stationary CubeSat

Data to be Collected	Data Source
Determined Position (x,y,z)	VICON
Euler Angles (Ψ, Θ, Φ)	VICON
Sampling Time	LabVIEW

Equipment: Rotation Testbed, 20 IR Spheres

Overview Schedule	Testing	Budget	65
-------------------	---------	--------	----

CubeSat A.O.R. & Orientation Expected Results

Input: VICON data Expected Output:

- 1. Continuous prediction of CubeSat's relative orientation
 - 1 angle: Rotation angle
- 2. Prediction of CubeSat's axis of rotation
 - 2 angles: Azimuth, elevation

A.O.R. Expected Results			
Expected	Value		
X,Y,Z	[0.9, 1.4e-4, 2.24e-4]		
Azimuth, Elevation	1.398e-4, 2.241e-4		
Completion Time	5.448 ms		

CubeSat Rotation Rate Test

Objectives

1. Verify that the CubeSat analogue spins at the desired rotation rate

Key Requirements

- FR 1.1 The CRST shall demonstrate the motion of a CubeSat analogue during the demonstration.
- DR 1.1.3 The CubeSat analogue shall allow for rotational motion about one axis.
- DR 1.1.3.1 The axis of rotation of the CubeSat model shall be about its major axis at 3 +/- 0.3 deg/s.

How it Reduces Risk

• Ensures that the CubeSat rotates at the desired rotation rate and precisely to limit the possibility of phase error during capture.

Associated Models: CubeSat rotation control model

Overview	Schedule	Testing	Budget	67

Objective: Verify CubeSat's rotation rate

 Ensure 3 deg/s Characterize standard deviation

Assumption: Stationary CubeSat

Data to be Collected	Data Source
Euler Angles (Ψ, Θ, Φ)	VICON
Sampling Time	LabVIEW

Equipment: Rotation Testbed, 8 IR Spheres

Budget

Duration: 1 hour Test

Overview

Location: RECUV Motion Capture Lab

Schedule

Testing

68

VICON Rotation Results – Physical Setup

Overview Schedule Testing Budget

69

VICON Rotation Test Results

Notes:

•

- VICON body coordinate frames flip occasionally
 - Cause: Roll axis flips 180°
 - Mitigation: IR Sphere Arrangement to Lock In Coordinate Frame

Overview Schedule Testing Budget	70
----------------------------------	----

VICON Rotation Test Results

Allowable Maximum Error					
10 % of Desired Rotation : 0.3 deg/s					
Calculated Pitch Angular Rate					
Slope #					
1	3.0094				
2	2.9889				
3	2.9833				
Standard Dev.	0.0137				
Desired Angular Rate					
Requirement	3				
Maximum Differences					
Δė	0.0167				
% Tolerance	5.567 %				

Overview	Schedule	Testing	Budget	>71

Potential Software Offramp

- In the event parallel while loops don't work
- Utilize loops in sequential order for phases

Still allows for highest level of success

		_		
Overview	Schedule	Testing	Budget	72
Software Timing—5 Steps

6.73 min

Software I/O

Software: Controllers

Software's Five Phases To Capture

Backup: Phase Check/ Command Block

Wrist Rotation Test

Objective:

• Verify functionality of End effector--CubeSat orientation matching

Requirements:

• 1.3.2--The end effector shall align with the CubeSat's spin axis and remain aligned until the end of the capture sequence

How it Reduces Risk:

• Highest probably of success since risk of collision is low

Overview Schedule Testing Budget	Overview	Schedule	Testing	Budget	78
--	----------	----------	---------	--------	----

Wrist Rotation Tests

Objectives: Verify functionality of End effector--CubeSat orientation matching **Location**: RECUV vision lab **Duration**: 3 Hr

Test Procedure:

- 1. Rotate CubeSat
- 2. Collect data on orientation of end effector and CubeSat

Difference in Orientation ~0.15 ± 0.03 degrees

Overview	Schedule	Testing	Budget	>79

VICON Calibration

- Calibration uses specialized objects with known dimension and relative marker position to calculate relative position and orientation of VICON cameras to correct for lens distortion.
- Volume origin set using Tracker- measures position of Calibration object and uses the information to define a global coordinate system.
- Image error (RMS distance in camera pixels) shows accuracy of marker position
 reconstruction: difference
 between 2D image and 3D
 reconstruction dependent on camera type, size of capture volume, lens type

80

$$Vout = V_{thev} \left(\frac{R_2}{R_{thev}}\right) - V_2 \left(\frac{R_4}{R_3 + R_4}\right) \left(\frac{R_2 + R_{thev}}{R_2}\right)$$

- Operating at an FSR resistance of $10K\Omega$ to $30K\Omega$
- V_{thev} = Voltage divider output as a function of Fsr.
- R_{thev} =FSR in parallel with 10K Ω

	Over	view	Schedule	Testing	>	Budget	81
--	------	------	----------	---------	---	--------	----

Integrating the FSR and MyRio

The MyRio will read an inverted voltage signal when turned on.

- The MyRio will read the FSR voltage signal at 500mHz at ±0.005V
- When the Voltage goes below a predefined voltage which we will set at 6.6V an alarm will go off signifying confirm Capture.

The voltage signal will decrease with an increase in force over time.

APPENDIX

<u>Overview</u>	<u>CPEs</u>	<u>Schedule</u>	<u>Testing</u>	<u>Subsystem</u> <u>Testing</u>	<u>Closed-loop</u> <u>Testing</u>	<u>Full</u> Integration Testing	Budget	<u>Backup</u>
<u>CONOPs</u>			Fixtures & Facilities	AOR	<u>Capture</u> <u>Confirmatio</u> <u>n</u>	<u>Phase</u> <u>Checks</u>		<u>Arm</u> <u>Accuracy</u> <u>Error</u>
<u>FBD</u>			<u>Overview</u>	Translation				Friction Test
HBD			Requiremen t Verification	<u>FSR</u>				<u>Stationary</u> <u>Position</u> <u>Error</u>
			Arm					<u>VICON</u> <u>Position</u> <u>Error</u>
								Position Control
								AOR & Orientation
								<u>VICON</u> <u>Rotation</u> <u>Results</u>
								Software I/O
								VICON Calibration