

<u>Team</u>: Chad Eberl, Matthew Fromm, Timothy Kiley, Tony Ly, Haoyu Li, Andrew McBride, Noel Puldon, Keegan Sotebeer, Morgan Tilong

<u>Customer</u>: Henry "Lad" Curtis (Sierra Nevada Corp.) <u>Advisor</u>: Dr. Jelliffe Jackson

2/6/17

Project Overview

Project Motivation

3

- With the growing industry for CubeSats a method of capturing an uncontrollable CubeSat is desirable.
- Existing CubeSats have little or no propulsive capabilities, with no ability to change the orbit drastically and leaving them stuck if major failures occur.
- Sierra Nevada Corporation would use a capture device and vision system in order to recover and repurpose CubeSats.

Project Statement

Team CASCADE will demonstrate the implementation of an algorithm to **autonomously** capture a rotating 3U CubeSat model.

In order to accomplish this goal, Team CASCADE will design and build a CubeSat Recovery System Testbed (**CRST**) used to validate both the **algorithm** and a physical **capture device**.

Overview Schedule	Manufacturing	Budget	> 4
-------------------	---------------	--------	-----

0.) Initiation of Demonstration

- Arm stowed in zero torque configuration
- Vicon Cameras start transmitting data to LabView on a personal Laptop
- LabView used to start the rotation of the CubeSat
- CubeSat starts 1 meter away

 Overview
 Schedule
 Manufacturing
 Budget
 5

1.) Move to Axis of Rotation

- Using Vicon data the axis of rotation will be calculated in LabView
- Commands are sent to the arm to move the end effector to the axis of rotation

2.) Translate CubeSat

- This phase represents the closing of the relative position between the CubeSat and Capture device
- In space thrusters would be used to approach the CubeSat

3.) Wrist Rotation

 Using Vicon Data the wrist will be sent commands to match the rotation of the CubeSat.

4.) Extend Arm

- Using Vicon data the arm will be sent commands to position the end effector over the CubeSat model.
- End effector moves along the axis of rotation.

5.) Claw Closure

• Finally the claw is closed on the CubeSat surface, capture is confirmed, servo and motors are stopped, and the CubeSat is held for 5 minutes until released.

Functional Flow Diagram

Hardware Block Diagram

SIERRA NEVADA

CORPORATION

Critical Project Elements

Critical Project Element	Component
The CRST shall determine the axis of rotation and relative attitude of the CubeSat.	Software and Vision
The robotic arm will operate within safe limits.	Software and Control
The robotic arm shall travel along the axis of rotation as it approaches the CubeSat.	Software and Control
The CRST will confirm capture through the use of the robotic arm's tactile feedback.	Software, Mechanical, and Electrical

Executive Summary

Changes from CDR

- Robot State definition
- Wrist rotation on separate control loop as a consequence

* <u>Schedule</u>

- On schedule
- I Item behind schedule
- 2 Items ahead of schedule

∻<u>Budget</u>

- No risk to budget
- \$4,263.92 spent so far, ~15% margin.
- \$175 estimated future spending.

Budget

Schedule

Schedule Overview

SIERRA NEVADA

Summary of Tasks

18

Completed:

- All procurement
- LabVIEW- Open Loop Linear Belt
- LabVIEW- Closed Loop CubeSat Rotation Control
- LabVIEW- Arm Servo Position Control for Testing
- LabVIEW- Force Sensor VI
- LabVIEW- AOR and Position VI with Vicon
- Rotation Frame Assembly

Schedule

- Arm Assembly
- FSR Circuitry on Vector Board

Behind Schedule:

CubeSat Assembly

Overview

Ahead of Schedule:

• Arm Velocity Controller

Budget

Electrical Housing

Manufacturing

Manufacturing

Manufacturing Status:

Hardware Overview

Capture Device Status

Overview Schedule Manufacturing Budget 21

Robotic Arm Status

Completed:

- Completely assembled and wired
- Open loop position control of individual joint servos for testing.

In Progress:

- Secure wires along arm joints
- Create longer wires for the unlimited rotation joints
- Wire Sheathing
- Arm Mount
- Gripper Modification

5-6 Hrs. Remaining

Overview

Budget

Force Sensing Status: Ball Joint

- Prototype printed and tested for functionality
- Overnight printing in ITLL at \$10 per
- Printed with counter bore for 2-56 socket screw mounting
- Modifications to gripper yet to be made but scheduled for later this week.

Overview

FSR Signal Conditioner

- Signal conditioner circuit built and tested.
- AD524 used to reject common mode noise, and linearize the voltage divider/FSR output.

- Status: The first vector board has been built and tested.
- The second vector board will be built within the week. Estimated time: 2 hours.

Design Changes: Arm Control

- Changes Made:
 - 1. Removed wrist rotate from joint space
 - Commanded separately to match CubeSat spin angle
 - 2. Robot state definition: reduced to 5 DOF
 - Orientation only concerned with pointing direction
- Benefits:
 - No wrist rotation singularities or instability
 - Smoother extension along axis of rotation
 - No problems controlling orientation

Overview

Schedule

Manufacturing

Budget

25

CubeSat Translation System

SIERRA NEVADA

CORPORATION

	\sum	Overview	Schedule	Manufacturing	Budget	>26
--	--------	----------	----------	---------------	--------	-----

CubeSat Translation System

Closed Loop

CubeSat Translation System

CubeSat Rotation System

Overview

CubeSat Rotation Support System Assembly

Design Updates:

- Reduced Interface Plate width to save on cost
- Changed size of clearance holes -> allows for tapped holes

Completed:

- ESCON speed control configuration to 3 deg/s
- Electrical Connector to myRIO

Overview

• Preliminary system functionality testing

Schedule

Support Structure

Incomplete:

Motor Mount

Manufacturing

Electrical Connector to Motor

CubeSat Assembly

Completed:

- CubeSat main structure (3U)
- Rotation shaft interface
- Mass with solar panels: 2.97kg (satisfies requirement)
- Dimensions: 10 cm x 9.5 cm x 33.8 cm (satisfies requirement)

Incomplete:

- Solar Panel finish and mount
- Measure C.G.
- Ballast for C.G. correction
- Mount to rotation assembly

Electronics Housing Overview

Aluminum electronic housing units used to protect and organize electronic hardware includes:

- Overcurrent protection through the use of a fuse.
- Prevents wire damage from external hazards, EM interference, and noise.

Software Integration Plan

Software I/O

Software Integration Plan: 3 Step Process

Status: Software Functions

Final Integration

Possible Risk	Mitigation	Risk
Step 2 Behind Schedule	Dan Godrick/ Team allocation	
Arm Control Implementation	Dr Correll, Dr Frew	

Final Integration done by March 1st.

Loop	Requirement	CDR Time	MSR Prediction	Risk
VICON	10.5 Hz	100.0 Hz	100.0 Hz	
Arm Control	10.5 Hz	144.4 Hz	30.2 <u>+</u> 2Hz	
Testbed	13.4 Hz	166.6 Hz	>166 Hz	

- VICON and Testbed loops are of no concern
- Arm Controller--no concern: ~185% margin

Budget

Procurement Status

39

All Project Procurements:

CrustCrawler Pro Series Robotic Arm and Gripper: Delivered

Motor, Driver, Gearhead, and Encoder: **Delivered**

Aluminum Plates, 80-20, Fasteners: Delivered

Estimating Spending: \$4,422.46 Total Spending: \$4,263.92

Future Procurements \$175 allotted for printing

Updated Budget Estimate

\$4437.77

 Overview
 Schedule
 Manufacturing
 Budget

Budget Status

\$6,000.00

SIERRA

NEVADA CORPORATION

Space Systems

~

Budget Status

Component	Estimated Cost	Actual Cost	Projected Cost	Difference
CubeSat Model	\$250.00	\$101.68	\$0.00	\$148.32
CS Rotation Frame	\$135.78	\$192.26	\$0.00	-\$56.48
CS Rotation Motor	\$695.01	\$695.01	\$0.00	\$0.00
CS Translation Frame	\$124.92	\$124.92	\$0.00	\$0.00
Arm Mount	\$231.56	\$64.42	\$0.00	\$167.54
Pro Series Arm	\$2474.79	\$2512.95	\$0.00	-\$38.16
Gripper and FSR circuit	\$169.40	\$222.90	\$0.00	-\$53.90
Shipping	\$0.00	\$182.63	\$0.00	-\$182.63
Printing	\$341	\$167.15	\$173.85	\$0.00
Total:	\$4422.46	\$4263.92	\$173.85	-\$15.31

Overview	Schedule	Manufacturing	Budget	41

<u>Conclusion</u>

Thanks for your time!

Acknowledgments: Our Customer Henry "Lad" Curtis Sierra Nevada Corporation

Faculty Advisor: Jelliffe Jackson Robotics Help: Nikolaus Correll CU Faculty and Staff

Project Scope

Design Changes: Arm Control

• Issues with previous design

- Large deviations from reference position
- Difficulty controlling orientation
- Began finding unstable trajectories
- Causes

Overview

 Wrist rotate joint caused singularity in Jacobian matrix in common configurations

Schedule

• Orientation definition not unique

Arm Extension Simulation

Arm Control Simulation Results

Arm Control & CubeSat Goal Position

Possible Issue

- Attempting to control 5 states with only 4 degrees of freedom
- Because of this, there are certain poses within the sphere of reach that the arm cannot do
- Happens only with some states where elevation and azimuth pointing angles are **nonzero**
- In simulation, motion remains stable

Solution In Progress

- Check for possible solutions before initiating phase 1 (moving arm to CubeSat axis of rotation)
- Be "smart" about positioning CubeSat
- Diagram on next slide

Overview	Schedule	Manufacturing	Budget	46

Arm Control & CubeSat Goal Position

*Solution checking done with numerical IK solver written by CASCADE that is essentially what was used for arm control simulations

Overview Schedule	Manufacturing	Budget	
-------------------	---------------	--------	--

Software Development Status

• CubeSat A.O.R. & Position/Orientation VI

CubeSat Manufacturing & Tolerances

Overview	Schedule	Manufacturing	Budget	> 49

CubeSat C.G.

- Developing method to test C.G. location
- 20 mm maximum offset for motor performance

	_	_		
Overview	Schedule	Manufacturing	Budget	>50

CubeSat Status

Sides

|--|

CubeSat Status

Sides

CubeSat Status

Front and Back plates

Machining Process – Interface Plate

Overview

Schedule

Manufacturing

Budget

55

Rotation Motor Mount

Rotation Motor Mount

Overview Schedule Manufacturing Budget

Software Development Status

• Axis of Rotation Determination

Error Estimates

Sample Rate	Error (m)
10 Hz	4.908e-03
50 Hz	9.817e-04
100 Hz	4.908e-04

SIERRA NEVADA

🚪 Space Systems

CORPORATION

Error Sources

-0.02

Numerical Differentiation

-0.005

0

у

0.005

0.01

0.015

-0.01

Round-off error

-0.015

	_			
Overview	Schedule	Manufacturing	Budget	>58

-0.01

-0.015

-0.02

Software Development Status

- Position & Orientation Determination
 - 1. <u>Position Vector</u> of CubeSat's C.G.
 - Assumption: C.G. is at axis of rotation
 - 2. Orientation Vector of CubeSat
 - Given: VICON Euler Angles(Yaw, pitch, roll)
 - 3. <u>Angular Velocity Vector of CubeSat</u>
 - Mapping Matrix

$${}^{\mathcal{B}}\!\omega = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{bmatrix} -\sin\theta & 0 & 1 \\ \sin\phi\cos\theta & \cos\phi & 0 \\ \cos\phi\cos\theta & -\sin\phi & 0 \end{bmatrix} \begin{pmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{pmatrix}$$

Backup: Communication Between Loops

Communication Between Loops

- Set up Producer-Consumer model in labview
- Ran 1st Loop at 100 Hz (VICON)
- Sent Current Time to Queue (FIFO)
- Second Loop Takes (Current time Time in Queue)

Second Loop Rate	Delay [µs]
100 Hz	3.69
166 Hz	24.61
50 Hz	28.72

Backup: Timing Methodology

Testbed Simulation results

Arm Controller Timing Simulation Results

Arm Position: Move to AOR [1 Hz] Arm Position: Move to AOR [10 Hz] 0.6 0.4 Ê., Ê 0.35 0.2 sod 0.3 0.25 10 12 14 16 8 10 12 14 18 0.1 0.05 (E 0.04 U 0.03 position (m) oitisod 0.02 ≻0.01 -0.2 2 10 12 14 16 18 10 12 14 16 18 1.3 1.4 r Ê 1.2 Ê 1.25 uoitis 1.2 N 1.15 0.8 N 1.1 0.6 10 Time (s) 2 6 8 10 Time (s) 12 14 16 18 20 2 6 8 12 14 16 18 20

Force Sensing Status: Software

- The FSR signal Condition will go into the MyRiO DAQ.
- Through the FSR VI the capture device will confirm capture when the voltage goes above a predefined voltage level .

Plot display of FSR_Sensor .Vi

~					\
\geq	o Overview	Schedule	Manufacturing	Budget	64

Backup: Arm Controller

SIERRA NEVADA

CORPORATION

Backup: Linear Rail Controller

Backup: Goal Check/ Command Block

Software's Five Phases To Capture

