

TEAM: Omar Alshamsi, Meer Baker, Eric Bergman, Jack Lambert, Eli Landers, Quentin Moore, Alex Mulvaney, Donald Palomino, Wyatt Raich, Brody Rosipajla, Aytac Teker, Eric Zhao

Customer: Robert Leben

Advisor: John Mah

Project Objectives

<u>Mission Statement</u>: BEACAN will design, build, and test a miniaturized ocean drifter. The drifter shall be capable of collecting positional coordinates and transmitting coordinates to a communications satellite. Secondary, the team will develop a drifter deployment mechanism.

Final Customer Deliverables:

- 1 deployment mechanism, 2 drifters (1 for testing)
- Method for comparing performance metrics of BEACAN drifter to drifters currently on the market

Why Miniaturize the Drifter?

- Current Drifters are bulky which limits deployment methods to large vessels
- Ship time is COSTLY ~ \$10,000 /day
- Save costs by deploying via UAV
- Further study currents in the Gulf of Mexico

Customer CONOPS

Testing CONOPS

Buoy-Empled Analysis of Currents via Aerial Navigation

Functional Requirements

Functional Requirement	Description
FR 1.0	Drifter shall be capable of following ocean currents in the Gulf of Mexico
FR 2.0	Drifter shall maintain a 3-month lifespan
FR 3.0	Drifter shall be deployed from an altitude of 300 [m]
FR 4.0	The drifter shall measure and store position coordinates
FR 5.0	Drifter shall transmit stored position coordinates to a ground station up to 800 [km]
FR 6.0	Mass of 4 drifters and deployment mechanisms shall not exceed 2.7 [kg]
FR 7.0	Cost of manufacturing 1 drifter and required communications package shall not exceed \$1000
FR 8.0	The deployment mechanism system shall deploy each drifter individually

Design Solutions

Design Solution: Functional Block Diagram

8

Design Solution: Deployment Mechanism

Deploys drifter upon received signal

• Mass of Mechanism : 35 [g]

- Linear motor pulls pin for deployment
- Rear assembly stores and properly deploys parachute

Design Solution: Deployment Mechanism

Design Solution: Deployment Mechanism

- Before deployment, float holds parachute in place
- Linear motor pulls pin
- Float is released from mechanism
- Parachute housing opens
- Falling float pulls parachute from housing
- Deployment not time critical
 - Deployed from 300 [m]

Design Solution: Integrated System

- Drifter in freefall and float stages of mission
- Drifter total mass:
 - 560 [g]

Design Solution: Float

- Keeps drifter afloat
- Protects electronics
- Components glued together and to float in shown configuration
- Remaining Volume filled with packing peanuts for extra protection

Design Solution: Drogue

- Fruity Chutes: 12 [in] Compact Elliptical Parachute
- Reinforced nylon
- Slows drifter upon impact
- Follows measured currents
- Cd = 1.5
- Mass
 - 24.2 [g]

Design Solution: Float

- Pre-built rocket nose cone by LOC Precisions
- Cut along plane to install electronics
- Loctite Polypropylene glue

Microcontroller: STM 32L Nucleo

- Low power options
- Industry standard
- Internal low power timer
- •

Receiver: NEO-6MUblox

- Industry Standard
- Lightweight
- Low power consumption

Transmitter: Iridium RockBlock 9603

• All-in-one, industry standard package

Battery: TL-2200/S Li C Cell (x3)

- 3.6 V
- 7.2 Ah
- 230 mA max continuous current
- 450 mA max pulse current

Antenna: Taoglas CGIP

- Shared antenna between Rx and Tx
- Hemispherical antenna

Idle Mode

Only powering internal low power timer on μ C, and real time clock on Rx through VBAT pin.

5 minute cycle

- Microcontroller wakes up, powers on Rx and Current Sensor
- 2. Rx gets positional data sends it to microcontroller
- 3. Microcontroller parses data and verifies accuracy
- 4. Rx and Current Sensor Power off

Transmit cycle

- 1. Microcontroller powers on Tx. Tx begins searching for a fix.
- 2. Microcontroller compresses saved data
- Microcontroller sends data to Tx and Tx sends data to Iridium satellite
- 4. Tx verifies successful transmission and Microcontroller clears saved data

Serial Interface Connections

- NEO-6M Ublox uses UART for serial communication and Asynchronous RS232 protocol.
- Iridium Rockblock 9603 also uses UART for serial Interface and RS232 protocol.
- 3. RF switch is used to route signal through transmission or receiving path.
- RF switch insertion loss is
 0.9 dB
- 5. Active 5 dBi Antenna @ 1575 [MHz] to 1621 [MHz]

Design Solution: Mock UAV Integration

Critical Project Elements

Critical Project Elements

Design Requirements and Satisfaction

Design Requirements: Structures

Structure Functional Requirements

FR 1.0	Drifter shall be capable of following water current flow
DR 1.1	The drifter shall float to keep antenna above water
DR 1.2	The drifter shall maintain stable orientation in the water
FR 3.0	Drifter shall be deployed from an altitude of 300 [m]
DR 3.1	The drifter shall maintain full structural integrity after impact with water
DR 3.2	The drifter shall maintain full component functionality after impact with water

FR 6.0	Mass of 4 drifters and deployment mechanisms shall not exceed 2.7 [kg]
FR 7.0	Cost of manufacturing 1 drifter and required communications package shall not exceed \$1000

Design Solution: Antenna Above Waterline

- Knowing the total volume of the submerged buoy, the center of buoyancy (KB) can be calculated using Center of Mass (COM) calculations
 - $KB = \frac{m_{cylinder}COM_{cylinder} + m_{partial cone}COM_{partial cone}}{m_{cylinder} + m_{partial cone}} = 6 \sim [cm]$

Design Solution: Instability

- Achieved when the center of gravity (CG) is lower than the center of buoyancy (KB)
- A restoring moment is produced when subjected to disturbances

DR 1.1 The drifter shall float to keep antenna above water

- From SolidWorks: $CG = \sim 1.6 [cm]$
- From calculations: $KB = \sim 6 [cm]$

Design Solution: Stability When Afloat

θ

KB.

- Three criterion must be met:
 - 1. The metacentre (M) of the buoy must be above the CG
 - The point at which a vertical line passes through KB and intersects the CG vertical
 - 2. The metacentric height (GM) above the CG must be positive
 - GM = BM GB
 - BM is the metacentric radius: $BM = \frac{I_z}{V_z}$
 - GB is the distance between CG and KB
 - 3. The righting arm (GZ) must be positive
 - $GZ = GMsin(\theta)$
- Using SolidWorks and previous calculations:
 - 1. GM = 4.8 [cm]
 - 2. $GZ = |4.8| \sin(\theta) [cm]$

DR 1.2 The drifter shall maintain stable orientation in the water

Impact Pressure Load

Impact Stress Analysis S, Mises (Ava: 75%) [Pa]+4.032e+05 $\sigma_{max} = 0.403 \, [MPa]$ -1.000e+05 +8.344e+04 ⊦6.688e+O4 -5.860e+04 ⊦1.720e+O4 +8.925e+03 +6.460e+02 Max: +4.032e+05 Elem: NOSE_ABACUS-1.6337 Node: 16464 Ζ Max: +4.032e+005 х 🔶 Tensile yield strength of Polypropylene is 40 [MPa] DR 3.1 The drifter shall maintain $40 \ [MPa] \gg 0.403 \ [MPa] \Rightarrow \sigma_{yield} \gg \sigma_{max}$ full structural integrity after

 $FOS \approx 100$

34

impact with water

Design Solution: Electronics Survivability

$$F = \sigma A_{cross} = 326.5 (N)$$
$$a = \frac{F}{m} = 522.4 \left(\frac{m}{s}\right) = 53.3 (G)$$

53.3 << 1000 [G] Rating

DR 3.2 The drifter shall maintain full component functionality after impact with water

Design Requirements: Electronics

Electronics Functional Requirement

FR 2.0	The drifter shall maintain a 3-month lifespan
DR 2.1	The drifter shall contain power to supply all electronic components for 3 months
FR 4.0	The drifter shall measure and store position coordinates

DR 4.1	The drifter shall measure position coordinates with an accuracy of 60 [m]

FR 5.0	Drifter shall transmit stored position coordinates to a communications satellite up to 800 [km] away
DR 5.1	Transmit latency shall be less than 24 hours

FR 6.0	Mass of 4 drifters and deployment mechanisms shall not exceed 2.7 [kg]
FR 7.0	Cost of manufacturing 1 drifter and required communications package shall not exceed \$1000

Software Tree

Data Compression

Best Performance

Data Compression: Summary

- 340 Bytes per message
- \$0.35 per message

Compression	File size for one day	Messages per day	Transmission time per day	Messages per 90 days	Cost per 90 days
None	$\textbf{23.81} \pm \textbf{0.027} \text{ [kB]}$	71	730 [s]	6390	\$2236.50
Delta + xz	2.632 ± 0.017 [kB]	8	100 [s]	720	\$252.00
Delta + gzip	2.74 ± 0.027 [kB]	9	110 [s]	810	\$283.50
Delta + zip	2.88 ± 0.027 [kB]	9	110 [s]	810	\$283.50

Power Budget: Assumptions

- 1. Battery self-discharge is negligible (~0.3%/month)
- 2. Internal battery impedance is negligible
- 3. Batteries will provide suitable voltage until their capacity drops below 10%
- 4. Transistors act as ideal electronic switches
- 5. All current loads are constant
- 6. Voltage booster efficiency is 92% for currents greater than 1 [mA]
- 7. All other component inefficiencies are negligible

Power Budget: Model

Governing Equation:

$$\dot{Q} = -I(t) - \lambda_s Q$$

$$\rightarrow Q(t) = e^{-\lambda_s t} (Q_0 - \int_{t_0}^t I(\tau) e^{\lambda_s \tau} d\tau)$$

$$\rightarrow Q(t) = Q_0 - \int_{t_0}^t I(\tau) d\tau$$

$$Q(t) = Q_0 - I_{Av} t$$

Constraints

1. $Q(90 \text{ days}) = Q(T) \ge \eta_B Q_0$

where
$$\eta_{\rm B}$$
 is the proportion of the batter capacity at which it can no longer draw a suitable voltage

• $\eta_B \sim 10\%$

2.
$$Q_0 \left(\frac{mass}{capcity}\right)_{battery} \le 675 [g] - m_{buffer}$$

FR 6.0 Mass of 4 drifters and deployment mechanisms shall not exceed 2.7 [kg]

Q: Charge on battery I: Current draw λ_s : Self Discharge rate t: time

Assume:
$$\lambda_s \sim 0 \rightarrow e^{\pm \lambda_s t} \sim 1$$

Assume:
$$\frac{\partial I}{\partial t} = 0$$

DR 2.1 The drifter shall contain power to supply all electronic components for 3 months

Power Budget

Component	Current Draw [mA]	Time per Day (s)	Uncertainty [s]
Microcontroller	15	1042	1042
GNSS Receiver	50	684	684
Sat/Com Module	680	300	300
Current Sensor	10	1042	1042
RF Switch	0.12	1042	1042

Total:

7.36 [Ah] with an uncertainty of 5.76 [Ah] or 13.13 [Ah] total

Power Budget: Current Draw

- Lithium batteries have maximum continuous current draw of 230 [mA]
- Maximum expected current is during transmission

• Need at least 3 batteries (21.6 Ah total)

Mass Budget: Electronics

Component	Mass [g]	Component	Mass [g]
Toaglass CGIP	5	TL-2200/S Battery	50.5 (x3)
Iridum RockBlock 9603	26	Current Sensor	1.3
NEO-6M Ublox	4.5	Capacitor	~0.1(x4)
PCB	5	Micro-Controller	36
RF Switch	2.5	BJT Transistor	~0.1 (x3)
SMA Cord	13.6 (x4)	Resistor	~0.1 (x5)
SMA Adapter	2.1	Bipolar Transistor	~0.1 (x2)
Diode	~0.1(x2)	Inductor	~0.1
		Total	290 [g]

Mass Budget: Structures

Component	Mass [g]
Molded Ogive Float	130
12" CFC-12 Parachute	24
Nylon Shroud Lines & Swivel	31.2
Adhesive	16.7
Band-Connection	9.6
Gimbal Joint	30

Component	Mass [g]	
Gasket	~10	
Packing Peanuts (Full Vol.)	3	
(1/16") Steel Cable (100 cm in length)	15	
Crimp	2 (x2)	
Total	273.5 [g]	

Mass Budget: Total

Sub-System	Mass [g]
Electronics	290 (x4)
Structures	273.5 (x4)
Deployment Mechanism	139
Total	2393 [g]

FR 6.0 Mass of 4 drifters and deployment mechanisms shall not exceed 2.7 [kg]

Allotted Mass: 2700 [g] Margin: 307 [g]

Fiscal Budget

FR 7.0

Cost of manufacturing 1 drifter and required communications package shall not exceed \$1000

Project Risks

5 = Highest 1= Lowest	Electrical Risks			
Risks	Pre-Mitigation Likeliness/Severity	Mitigation	Post-Mitigation Likeliness/Severity	
Component Failure on Impact	2/5	Increase internal damping/ packing ~ increase mass	1/5	
GNSS Connection Loss	3/3	Alternate pre-made nose cone with larger volume or larger gimbal joint	2/3	
Transmission Error	3/4	Alternate pre-made nose cone with larger volume or larger gimbal joint	2/4	
Internal Overheating	1/5	Add heat transfer system	1/5	
Water Leak	2/5	Increase sealing surface height	2/5 51	

5 = Highest 1= Lowest	Highest owest				
Risks	Pre-Mitigation Likeliness/Severity	Mitigation	Post-Mitigation Likeliness/Severity		
Permanent Deformation/Failure at Impact	3/5	Change cone shape or add layer of thickness/ Testing	2/5		
Fracture of Connection to Parachute	2/3	Custom	1/3		
Material Degradation in Water	1/5	Alternate nose cone material	1/5		
Flotation Instability from Drogue	2/4	Gimbel at chute connection to negate chute effects	1/4		

Pre-Mitigation Risk Matrix for High Risks

Likelihood

Severity

Mitigation Risk Matrix for High Risks

Severity

Post-Mitigation Risk Matrix for High Risks

Severity

Verification and Validation

Drop Test

Anticipated Date: January 28th

Motivation	Expected Results According to Models	Actions for Test Failure
Difficult to accurately model water impact	53.3 [G] and roughly 6.5 [kPa] of pressure, but these are over- estimations from model	Use different pre-made nose cone. Have others that are slightly larger than current model.

Set Up:

An accelerometer will be glued to the inside tip of the nose cone. The drifter will then be dropped at 0.5 [m] interval from heights of 0.5 [m] up to 6 [m]. 5 tests will be conducted at each height to obtain peak acceleration, sampling rate 100 [bits/sec] Acceleration data will be gathered to back out impact force. 57

Deployment Test

Success

Verification: Drop Test Expected Location: East Boulder Community Center

Equipment	Availability	Capability	Requirements	Satisfied
Accelerometer	Already Obtained	Range: -19-19[G]	N/A	Available
Arduino	ITLL	Sampling rate ~ 100 [bits/sec]	Communicate sensor to memory	Available
Data Logging Shield/SD Card	Already Obtained	8GB Memory	Store Acceleration Data	Available

Key Measurement Issues: Impact will cause a spike in acceleration. The data logging process needs to be efficient enough to get an appreciable number of points

DR 3.1	The drifter shall maintain full structural integrity after impact with water
DR 3.2	The drifter shall maintain full component functionality after impact with water

Stability Test

Anticipated Date: February 4th

Motivation	Expected Results	Action for Testing Failure	
Verify stability of drifter and determine	A considerable amount of the buoy	Increase volume of drifter to	
the critical pointing	should remain above	increase buoyancy	
angle for functioning	water. We expect	force or add more	
transmission	minimal interference	massive gyro to	
		counter moment	

Set Up:

Place drifter with electronics set-up and move drifter increment angles and verify GNSS and Iridium connection. As well establishing a connection we want to verify does the drifter tend toward stability at this angle as predicted.

Stability Test

Expected Location: East Boulder Community Center

Equipment	Availability	Capability	Requirements	Satisfied
Iridium Rockblock, Drifter	Project Funds	Be able to transmit data consistently	Send data once per hour for a 24-hour period	Verify transmission Connection
Pull Reel	Project Funds	13 - 27 [N]	Constant Force	Available
Gyro Sensor	Project Funds	250 [°/s]	N/A	Available

Key Measurement Issues: Obtaining non-accelerating angular measurements

FR 5.0	Drifter shall transmit stored position coordinates to a communications satellite up to 800 [km] away
DR 5.1	Transmit latency shall be less than 24 hours

Validation: Deployment Loading

Anticipated Date: February 4th

Expected Results	Action for Test Failure	Side View	g Test Front View
Pin and structure will not fail under drifter weight Linear	Increase pin diameter.	Applied Torque Aerodynamic Load Simulated Force	Whiffletree Load

Validate SolidWorks structural analysis. Validate frictional force analysis.

Motivation

Pin and structure will not fail under drifter weight. Linear actuator will overcome frictional force.

diameter. Increase wall thickness of deployment housing. Implement stronger linear actuator or apply lubrication.

Test set-up: Clamp deployment mechanism to table and load it with a dummy weight. Ensure structure does not fail and load is deployed.

DM: Linear Actuator Force Test

Expected Location: ITLL

Equipment	Availability	Capability	Requirements	Satisfied
Dummy Mass And Table Clamp	ITLL	N/A	Drifter Weight & Aerodynamic Load	Available

Key Measurement Issues: N/A

Verification and Validation Summary

Models Validated	Requirements Satisfied	
Acceleration Model	Drifter maintains full component functionality after impact with water	\checkmark
Communication Model	Drifter shall send location data by means of communications satellite	\checkmark
Link Budget	Electronics maintain positive link budget and strong signal	\checkmark
SolidWorks Structural Analysis	Deployment mechanism will not fail under drifter weight	\checkmark
Frictional Analysis	Linear actuator can overcome forces present during flight	\checkmark
Stability Model	Antenna will be above water line for transmission	\checkmark

Project Planning

Organizational Chart

Test Plan

Work Plan/ Gantt

Work Plan/ Gantt

Work Plan/ Gantt

Fiscal Summary

Subsystem	Total Unit Cost	Anticipated Need for Testing	Total Cost
GNSS	\$16.99	5	\$84.95
Sat/Comm Module	\$384.50	2	\$769.00
Sat/Comm Data	\$252.50	1	\$252.50
Structures	\$34.98	6	\$209.88
Deployment	\$115.00	3	\$345.00
Total	\$798.97		\$1661.33

Margin of \$3338.67

Questions?

Sources

- "Lithium Coin Handbook and Application Manual." *Energizer.com*, Energizer Brands, LLC., 2018, data.energizer.com/pdfs/lithiumcoin_appman.pdf
- "100 MA, Fixed Frequency PWM Step-Up Micropower Switching Regulator." *Sparkfun*, Semiconductor Components Industries, LLC, Mar. 2006, <u>www.sparkfun.com/datasheets/Prototyping/Batteries/Voltage_Switcher-NCP1400A-D.pdf</u>.
- "TLV61220 Low-Input Voltage Step-Up Converter in Thin SOT-23 Package." *Ti.com*, Texas Instruments, Dec. 2014, <u>www.ti.com/lit/ds/symlink/tlv61220.pdf</u>.
- "TPL5110 Nano-Power System Timer for Power Gating." *Ti.com*, Texas Instruments, Sept. 2018, <u>www.ti.com/lit/ds/symlink/tpl5110.pdf</u>.
- "Venus638FLPx GPS Receiver Data Sheet ." *Sparkfun*, SkyTraq Technology, Inc., 2008, cdn.sparkfun.com/datasheets/Sensors/GPS/Venus/638/doc/Venus638FLPx_DS_v07.pdf.
- Lall, Pradeep, et al. "Survivability Assessment of Electronics Subjected to Mechanical Shocks up to 25,000g." 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016, doi:10.1109/itherm.2016.7517591.

• Abraham, T. S. J., "Velocity and Density Effect on Impact Force during Water Entry of Sphere," *Journal of Geophysics & Remote Sensing*, vol. 03, 2014.

- Lall, P., Dornala, K., Lowe, R., and Foley, J., "Survivability assessment of electronics subjected to mechanical shocks up to 25,000g," 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016.
- Applied Mathematics Group, New York University, "The Force of Impact on a Sphere Striking a Water Surface," *The Force of Impact on a Sphere Striking a Water Surface*, Jul. 1945.
- *Overview of materials for High Density Polyethylene (HDPE), Injection Molded* Available: http://www.matweb.com/search/datasheet.aspx?matguid=fce23f90005d4fbe8e12a1bce53ebdc8.

Backup Slides

• Structures

- Buoyancy
- Gps Above Water
- <u>Chute Packing</u>
- Drag Drift
- <u>Terminal Velocity</u>
- <u>Adhesion</u>
- Back of Envelope Survival
- <u>Tab</u>
- Electronics
- <u>Components</u>
- <u>Software Charts</u>
- <u>Error</u>
- Flags
- <u>Thermal</u>

- Deployment
 Mechanism
- <u>Electronics</u>
- <u>Shear Stress</u>
- <u>Friction Model</u>
- <u>Aero Analysis</u>
- Schedule
- Fall to Winter Break
- <u>Risk</u>

Work Plan/ Gantt : Fall ~ Winter Break

Dec	ember 2018	January 2019 February	2019
3 4 5 6 7 10 11 12 13 1	4 17 18 19 20 21 24 25 26 27 28 31 Fall Report FFR	1 2 3 4 7 8 9 10 11 14 15 16 17 18 21 22 23 24 25 28 29 30 31 1 4 5 6 7 8 11 12 13 14 15	i 18
		Material Part Procurement	
		Board Development	
		Drifter Assembly x5	
		Deployment Mech Manufacturing	
		Software Development	
		Electronic Component Integration	
		MSR Completion	
		MSR .	

Backup: Risk

Deployment Risks

5 = Highest 1= Lowest	Deployment Risks			
Risks		Pre-Mitigation Likeliness/Severity	Mitigation	Post-Mitigation Likeliness/Severity
Shearing of release pin		2/5	Increase diameter	1/5
Shearing of adhesive on deployment		2/5	Increase length of tab for increased adhesive surface area	1/5
Aileron and deployment mechanism contact		2/4	Lengthen pylon	1/4
Linear actuator not able to pull release pin		3/5	Add lubrication	2/5

Pre-Mitigation Risk Matrix for Structures

Severity

Mitigation Risk Matrix for Structures

Post-Mitigation Risk Matrix for Structures

Pre-Mitigation Risk Matrix for Electronics

Mitigation Risk Matrix for Electronics

Post-Mitigation Risk Matrix for Electronics

Pre-Mitigation Risk Matrix for Deployment

Mitigation Risk Matrix for Deployment

Post-Mitigation Risk Matrix for Deployment

Floatation Experiment

DR 1.1	The drifter shall float	
DR 1.2	The drifter shall maintain stable orientation in the water	
	Current Models: Model of stability Model of buoyancy and prediction of how much of the body is submerged 	

Backup: Structures

Buoyancy CONOPS

Drifter is expected to impact water nosecone down

Drifter will need to turn upwards to ensure antenna is upright

Drifter must float to surface

Drifter must be in stable buoyant equilibrium with antenna above the waterline

DR 1.1 The drifter shall float to

keep antenna above water

S ADOVE WALETIME

$$W_d = F_B$$

 $m_T g = \rho_w g \forall_S$
• $\forall_S = \forall_{cylinder} + \forall_{partial cone}$
• $\forall_{partial cone} = \forall_{total cone} - \forall_{unsubmerged cone}$
• $\forall_{unsubmerged cone} = \frac{1}{3}\pi r_{unsubmerged}^2 h_{unsubmerged}$
• $Using 'similar triangles':$
• $r_{unsubmerged} = r_{cone} \frac{h_{unsubmerged}}{h_{cone}}$
• $\forall_{unsubmerged cone} = \frac{1}{3}\pi r_{cone}^2 \frac{1}{h_{cone}^2} h_{unsubmerged}^3$
• Rearranging and solving for unsubmerged height:

$$h_{unsubmerged} = \sqrt[3]{\frac{3h_{cone}^2}{\pi r_{cone}^2}} \left(V_T - \frac{m_T}{\rho_w}\right) = \sim 24 \ [cm]$$

Knowing the total volume of the submerged buoy, the center of • buoyancy (KB) can be calculated using Center of Mass (COM) calculations

•
$$KB = \frac{m_{cylinder}COM_{cylinder} + m_{partial cone}COM_{partial cone}}{m_{cylinder} + m_{partial cone}} = \sim 6 [cm]$$
91

Parachute Packing

- Parachute packed using Fruity Chutes packing jig
- Designed specifically for micro parachutes
- Extremely detailed step by step procedures for optimal packing for fast deployment
- Practice and test parachute packing

Drogue Design: Drag Model

Drag Analysis:

- Section 1: Drag surface wind
- Section 2: Wind induced current
- Section 3: Tracked current

Assumptions:

- Cylindrical float
 - Cylinder exposed to wind
 - Cylinder exposed to measured current
- Parachute drogue perpendicular to flow
- Density Air = 1.225 $\left[\frac{kg}{m^3}\right]$
- Density Water = 1027 [$\frac{kg}{m^3}$]
- Reynolds Number 1,2 = 2.1x10⁴, 2.4x10⁴
- Reynolds Number 3 = 7.7x10⁴
- C_d from experimental data
- 24 cm cylinder above water
- 12 cm cylinder below water

Drogue Design: Drag Model

Givens:

- $V_{\infty 1} = 3 \left[\frac{m}{s}\right]$ • $V_{\infty 2} = 0.3 \left[\frac{m}{s}\right]$
- $V_{\infty 3} = 0.7 \left[\frac{m}{s}\right]$
- $C_{d1} = 0.74$
 - (assumed cylindrical for worst case)
- C_{d2} = 0.68
- $C_{d3} \sim 1.5$
- $A_1 = 0.006 \ m^2$
- $A_2 = 0.023 \ m^2$
- $A_3 = 0.073 m^2$

Solution:

- $D = \frac{1}{2}\rho V^2 C_d A$
- Drag Ratio = $\frac{D_3}{D_1 + D_2}$

Results:

- D₁ = 0.04 N
- D₂ = 0.60 N
- D₃ = 27.5 N

•
$$\frac{D_3}{D_1 + D_2} = 43.2 >> 40$$

• Exceeds Design Requirement

Impact Velocity Model

$$\begin{array}{l} \hline \textbf{Governing Equations:} \\ F_{drag} &= \frac{1}{2}\rho |V_{rel}|^2 * (\mathcal{C}_{d_{drifter}} * A_{drifter} + \mathcal{C}_{d_{parachute}} * A_{parachute}) \check{v} \\ V_{rel} &= [V_x - W_x, V_y - W_y, V_z - W_z] \\ \check{v} &= \frac{V_{rel}}{|V_{rel}|} \\ \check{v} &= \frac{V_{rel}}{|V_{rel}|} \\ \frac{\delta \dot{x}}{\delta t} &= -F_{drag,x} \\ \frac{\delta \dot{z}}{\delta t} &= -F_{drag,z} - (m_{drifter} + m_{parachute}) * g \\ \frac{\delta \dot{y}}{\delta t} &= -F_{drag,y} \end{array}$$

Assumptions:

$$\Delta \rho = -4\% \approx 0$$
 $\frac{dW_x}{dz} = 0$ $\frac{dW_y}{dz} = 0$ $\frac{dW_z}{dz} = 0$

Terminal Velocity vs Parachute Mass

Impact Velocity

- Compromise between Impact velocity and additional mass of parachute
- Plots show that velocity drops \bullet quickly and levels, but mass continues to increase
- Had to consider sizes that parachutes are manufactured
- Results:
 - Impact Velocity: 9.48 0 (m/s)
 - Mass of Parachute: ~24 0 (kg)

No Parachute on Top:

Radius of Parachute:

• 0.152 Distance Tr

Electronics Survival (Back of Envelope)

To give a rough estimate we can approximate the force as the change in drag from air to water:

 $\Delta D = D_w - D_A$ $D = \frac{1}{2}\rho V^2 C_d A$ $\Delta D = \frac{1}{2}V^2 C_d A(\rho_w - \rho_A)$ $A = \frac{\pi}{4}D^2$ $\Delta D = 48.4 [N]$ $a = \frac{F}{m}$ $a = 77.4 \left(\frac{m}{s}\right) = 7.9(G)$

$$\begin{array}{l} \underline{Constants:}\\ \rho_w = 1024 \; (kg/m^3)\\ \rho_A = 1.225 \; (kg/m^3)\\ D = 0.072 \; (m)\\ C_d = 0.18 \; (m)\\ V = 9.48 \; (m/s) \end{array}$$

Cable Tension/Glue Force

- Assume:
 - Drag forces are from body entering higher density fluid
 - V = 4 m/s
- $F_T = F_{DC} F_{DF}$ • $F_T = \frac{1}{2} V^2 C_{dC} A_C \rho_w - \frac{1}{2} V^2 C_{dF} A_F \rho_w$ • $F_T = 897 \text{ N}$
- $\tau_{alue} = 5 MPa$
- D = 0.0762 m

•
$$h_{ring} = \frac{F}{\tau_{glue}\pi D}$$

- $h_{ring} = 0.075 \text{ cm}$
- $h_{ring} < h_{actual} = 0.075 \text{ cm} < 1.276 \text{ cm}$
- 1/16" cable rated to 2300 N in tension

 $40 \ [MPa] > 11.4 \ [MPa] \Rightarrow \sigma_{yield} > \sigma_{max}$

Induced Moment on Tab and Trajectory

• Moment will cause a change in path angle

$$\alpha = \frac{M}{I} \to M = R D_{tab} \to \alpha = \frac{R D_{tab}}{I}$$
$$\frac{d^2 \theta}{dt^2} = \frac{R D_{tab}}{I}$$

- We can now solve for θ and relate that to the velocity: $\vec{v} = |v| \langle \sin \theta | \cos \theta \rangle$
- Velocity will change due to force of drag, gravity, and buoyant force $m \frac{d^2 v}{dt^2} = -D_{tab} - D_{float} - \rho_w V_{disp} cos\theta + mgcos\theta$
- Parachute trails by 1.45 meters, so we need to find the horizontal distance traveled before parachute impact

<u>Radius of Parachute</u>: 0.15 [m] <u>Horizontal Distance Traveled:</u> 0.225 [m]

0.225 [m] > 0.15 [m] Parachute will not land on float

DM: Linear Actuator Force Test

Anticipated Date: February 4th

Motivation	Expected Results	Action for Test Failure
Validate frictional force analysis	LA can overcome the frictional force due to the drifter weight and aerodynamic loads	Use a LA that can produce more force. Add lubrication to the pin.

Test set-up: Clamp DM to table and load it with a dummy weight. Then activate the linear actuator to release the dummy weight

Backup: Electronics

Component Overview

Features	Description
Power	3V – 5V @ 10 mA
Serial Interface	5x USART 2x SPI 2x I2C
Internal Timers	21x Timers
Non-volatile Memory	64 Kbytes of flash program 6 Kbytes EEPROM 20 Kbytes of RAM
Cost	\$46.5

STM32L0

Features	Description
Power	5V@ 450 mA
Serial Interface	1x UART
Serial Interface	RS-232
Baud Rate	9600 bps
Cost	\$200
Weight	26 g

Component Overview

Features	Description
Power	3V – 5V @ 1 uA
Frequency	DC to 4 GHz
Insertion loss	0.7 dB
Туре	Switch ,SPDT
Cost	\$107
Weight	2.5 g

HMC544A / 544AE RF Switch

Features	Description
Power	3.6 V@ 100 mA
Serial Interface	1x UART
Serial Interface	RS-232
Baud Rate	9600 bps
Cost	\$16.99
Weight	4.5 g

NEO-6M Ublox GPS Module

Component Overview

Features	Description		Features	Description	
Frequency	1575 MHz to 1621 MHz	CGIP 25.4.A.02	Power	3V @ 20 mA	Low Noise Amplifier SKY65715-81
Gain	5 dBi	Etaogi.	Gain	16.5 dB	
Туре	Active	CGIP.25.A.A.OZ	Туре	LNA with Pre- filter	
Polarization	RHCP		Cost	\$~10	
Cost	\$6.88		Weight	23 g	
Weight	5 g				

Stm32L0

- Ultra low-timer clock
- Dynamic Voltage Scaling
- Power efficient best for batteries and energy harvesting

- Cost: \$46.50
- Weight: 4.1 g
- Volume: 235.2 mm³
Iridium 9603

- Smallest form factor of any commercial satellite transceiver today
- Single Board transceiver with Global Coverage
- No sim card required

- Cost: \$200.00
- Weight: 11.4 g
- Volume: 7552.4 mm³

Ublox Neo-6m

- Position Engine fitted into miniature form NEO (strict size)
- Low cost for it's size and peak performance
- Inspection and testing is conducted for reliability/endurance
- Industry standard worldwide
- Cost: \$11.37
- Weight: 16 g
- Volume: 508.8 mm³

Detailed Pin Configuration

111

GPS Software Interface Plan

Iridium Rockblock software Interface Plan

Data Compression: Error Estimate

Horizontal Dilution of Precision (HDOP)

• Empirical Formula relating root mean squared error in meters to HDOP

$$Error_{RMS} = \sqrt{(A \cdot HDOP)^2 + B^2}$$

• where: A = 3.04 [m], B = 3.57 [m]

Data Compression: Flags

Character	Significance	Binary
V	Questionable vertical accuracy	0001
Q	Low positional quality	0010
N	Insufficient number of satellites (< 4)	0100
Р	Low Power	1000

• Total Flag is sum of individual flags, reported as hexadecimal

Hex	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
V	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Q	0	0	1	1	0	0	1	1	0	0	1	`		0	1	1
N	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Р	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Data Compression: Flags

Quality Indicator

Value	Significance	Q
1	Uncorrected coordinate	1
2	Differentially correct coordinate	0
4	Centimeter Precision	0
5	Decimeter Precision	0

• Vertical Flag

- Compares E_{RMS} to deviation in altitude from sea level
- Assumes dilution of precision is similar in all directions

Thermal Model

Electronics typically rated up to 85 [°C]

A detail thermal model of our electrical systems would be complex

 Upper bound: steady state heat current at maximum power dissipation out of centrally located battery

Thermal Model

Temperature Gradient

Thermal Model

Effective Thermal Conductivity of Copper and Polystrene

Voltage Booster

V_{R1} = 4500 mV V_{R2} = 500 mV

$$L = \frac{1}{f \times 200 \text{ mA}} \times \frac{V_{IN} \times (V_{OUT} - V_{IN})}{V_{OUT}}$$

$$R_1 = R_2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right)$$

$$R_{2} = \frac{V_{1}}{I_{1}} (\frac{V_{OUT}}{V_{FB}} - 1)$$

$$R_{1} = \frac{V_{2}}{I_{2}} (\frac{V_{OUT}}{V_{FB}} - 1)$$

Transistor

- $I_{C} = I_{B} * HFE$
- $V_R = V_{in} V_F$
- HFE : β Beta of Transistor
- C : Connector
- E : Emitter
- B: Base

Current Sensor

- 1. Short circuit protection
- 2. Battery Drain monitoring

Deployment Mechanism

DM: Electronics

FR 8.0

- Electronics package will consist of a microcontroller programmed to release 4 drifters individually at specified locations
- Will be located in the payload bay of the UAV
- Wires will extend from the electronics package to the DMs
- Linear actuators will be powered from the power supply provided by the UAV

The deployment mechanism system shall deploy each drifter individually

DM: Shear Stress Analysis

ASSUMPTIONS:

- In worst case scenario, the coefficient of drag is 0.82.
- In worst case scenario, the airspeed is 32.7 [m/s].

EQUATIONS:

KNOWNS:

 $\tau = \frac{F}{A_{surface}}$ $F_D = \frac{1}{2} \cdot C_D \cdot \rho \cdot A \cdot V^2$

• Shear Stress of Loctite 496: 5 [MPa]

• Drifter Surface Area: 0.0761 [m²]

Density of Air: 1.1901 [kg/m³]

• Tab Surface Area: 0.00045 [m²]

RESULTS:

- F = 2250 [N]
- F_D= 39.72 [N]

 $F_D < F$

DM: Electric Linear Actuator Friction

KNOWNS:

- Applied Force: 15 [N]
- Mass of the drifter: 0.62 [kg]

 $f < F_{app}$

• Coefficient of Friction of Nylon: 0.25

ASSUMPTION:

• Rod is massless.

EQUATIONS:

$$f = \mu \cdot N$$
 $N = W = m \cdot g$

RESULT:

• Force of friction is 1.521 [N].

FR 8.0 The deployment mechanism system shall deploy each drifter individually

DM: Aerodynamic Analysis

KNOWNS:

- Wetted Area of the Loaded Configuration, S_{wet}: 29.82 [ft²]
- Wetted Area of the Clean Configuration, S_{wet}: 26.28 [ft²]
- Planform Area, S: 20.53 [ft²]
- Correlation Coefficient a: -2.2614
- Correlation Coefficient b: 1

ASSUMPTIONS:

- ScanEagle UAV is applicable for aerodynamic analysis of the project.
- Zero-lift drag coefficient, C_{Do}, can be expressed in terms of parasite area, f, and planform area, S.

DM: Aerodynamic Analysis

EQUATIONS:

 $C_{D_0} = \frac{f}{S}$

 $log(f) = a + b \cdot log(S_{wet})$

RESULTS:

- Loaded Zero-Lift Drag Coefficient = 0.007959
- Clean Zero-Lift Drag Coefficient = 0.007011
- <u>13.5% increase in zero-lift drag coefficient.</u>

DM: Aerodynamic Analysis

KNOWNS:

- Velocity, V: 22 [m/s]
- Density, ρ: 1.1901 [kg/m³]
- Planform Area: 1.90695 [m²]
- Oswald's Efficiency Factor, e: 0.85
- Aspect Ratio, AR: 0.85
- Range of ScanEagle, R: 1300 [miles]

EQUATIONS:

ASSUMPTIONS:

- Steady level flight
- Range is inversely proportional to the coefficient of drag.

RESULTS:

- Loaded Coefficient of Drag = 0.01564
- Clean Coefficient of Drag = 0.01469
- 6.47% increase in coefficient of drag.
- 6.47% decrease for the range of UAV.
- There will be about 84 miles decrease in the range.

DM: Stress Analysis

- Maximum yield strength of Nylon: 50 [MPa]
- Maximum stress on model: 4.45 [MPa]

DR 3.1	The drifter shall maintain full structural integrity after impact with water
DR 3.2	The drifter shall maintain full component functionality after impact with water

Current Predictive Models: What Are We Looking For? What Models Do We Have?

